WO1999062468A1 - Composition d'apres-shampooing comprenant une huile primaire et une huile secondaire - Google Patents

Composition d'apres-shampooing comprenant une huile primaire et une huile secondaire Download PDF

Info

Publication number
WO1999062468A1
WO1999062468A1 PCT/US1998/011785 US9811785W WO9962468A1 WO 1999062468 A1 WO1999062468 A1 WO 1999062468A1 US 9811785 W US9811785 W US 9811785W WO 9962468 A1 WO9962468 A1 WO 9962468A1
Authority
WO
WIPO (PCT)
Prior art keywords
hair
carbons
silicone
molecular weight
alkyl
Prior art date
Application number
PCT/US1998/011785
Other languages
English (en)
Inventor
Hirotaka Uchiyama
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to PCT/US1998/011785 priority Critical patent/WO1999062468A1/fr
Priority to CN98814103.5A priority patent/CN1295457A/zh
Priority to BR9815885-6A priority patent/BR9815885A/pt
Priority to AU81395/98A priority patent/AU8139598A/en
Priority to JP11541461A priority patent/JP2000515562A/ja
Priority to EP98931218A priority patent/EP1087745A1/fr
Publication of WO1999062468A1 publication Critical patent/WO1999062468A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8105Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • A61K8/8111Homopolymers or copolymers of aliphatic olefines, e.g. polyethylene, polyisobutene; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • A61K8/892Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by a hydroxy group, e.g. dimethiconol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/896Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
    • A61K8/898Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine

Definitions

  • the present invention relates to hair conditioning compositions comprising a primary oil and a secondary oil. More specifically, the present invention relates to hair conditioning compositions comprising a primary oil selected from certain high molecular weight ester oils.
  • shampooing cleans the hair by removing excess soil and sebum.
  • shampooing can leave the hair in a wet, tangled, and generally unmanageable state. Once the hair dries, it is often left in a dry, rough, lusterless, or frizzy condition due to removal of the hair's natural oils and other natural conditioning and moisturizing components.
  • the hair can further be left with increased levels of static upon drying which can interfere with combing and result in a condition commonly referred to as "fly-away hair", or contribute to an undesirable phenomena of "split ends", particularly for long hair.
  • hair conditioning agents such cationic surfactants and polymers, silicone conditioning agents, hydrocarbon oils, and fatty alcohols.
  • Cationic surfactants and polymers, hydrocarbon oils and fatty alcohols are known to enhance hair shine and provide moistness, softness, and static control to the hair.
  • such components can also provide stickiness or greasy or waxy feeling, particularly when the hair is dried.
  • Silicone conditioning agents are also known to provide conditioning benefits such as smoothness and combing ease due to the low surface tension of silicone compounds.
  • silicone conditioning agents can cause dry feel or frizzy condition to the hair, again, particularly when the hair is dried.
  • the present invention is directed to a hair conditioning composition
  • a hair conditioning composition comprising: (1) a primary oil being water-insoluble, having a molecular weight of at least about 800, and in liquid form at 25°C, the primary oil selected from the group consisting of: a) pentaerythritol ester oils of the following formula:
  • R ⁇ R 2 , R 3 , and R 4 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons; b) trimethylol ester oils of the following formula:
  • R 11 is an alkyl group having from 1 to about 30 carbons
  • R 12 , R 13 , and R 14 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons; and mixtures thereof;
  • a secondary oil selected from the group consisting of: c) poly ⁇ -olefin oils derived from 1-alkene monomers having from about 6 to about 16 carbons, the poly ⁇ -olefin oils having a viscosity of from about 1 to about 35,000 cst, a molecular weight of from about 200 to about 60,000, and a polydispersity of no more than about 3; d) citrate ester oils being water-insoluble, having a molecular weight of at least about 500, and in liquid form at 25°C and having the following formula:
  • R 21 is OH or CH 3 COO
  • R 22 , R 23 , and R 24 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons
  • giyceryl ester oils being water-insoluble, having a molecular weight of at least about 500, and in liquid form at 25°C and having the following formula: wherein R 41 , R 42 , and R 43 , independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons; and mixtures thereof; and (3) an aqueous carrier.
  • the hair conditioning compositions of the present invention provide long lasting moisturized feel, smooth feel, and manageability control to the hair when the hair is dried, yet not leave the hair feeling greasy.
  • the hair conditioning compositions of the present invention are suitable for product forms to leave on the hair, or rinse off from the hair.
  • the hair conditioning composition of the present invention comprises a primary oil selected from the group consisting of pentaerythritol ester oils, trimethylol ester oils, and mixtures thereof.
  • the primary oils useful herein are those which are water-insoluble, have a molecular weight of at least about 800, and are in liquid form at 25°C.
  • water-insoluble means the compound is substantially not soluble in water at 25°C; when the compound is mixed with water at a concentration by weight of above 1.0%, preferably at above 0.5%, the compound is temporarily dispersed to form an unstable colloid in water, then is quickly separated from water into two phases.
  • the primary oil herein provides conditioning benefits such as moisturized feel, smooth feel, and manageability control to the hair when the hair is dried, yet not leave the hair feeling greasy. It is believed that water-insoluble oily material in general are capable of being deposited on the hair. Without being bound by theory, it is believed that, because of its bulkiness, the primary oil covers the surface of the hair and, as a result, the primary oil reduces hair friction to deliver smoothness and manageability control to the hair. It is also believed that, because it has some hydrophilic groups, the primary oil provides moisturized feel, yet, because it is liquid, does not leave the hair feeling greasy. The primary oil is chemically stable under normal use and storage conditions.
  • the primary oil is preferably included in the composition at a level by weight of from about 0.1% to about 20%, preferably from about 0.2% to about 10%, more preferably from about 0.5% to about 5%.
  • Pentaerythritol ester oils useful herein are those having the following formula:
  • R 1 , R 2 , R 3 , and R 4 are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
  • R 1 , R 2 , R 3 , and R 4 independently, are branched, straight, saturated, or unsaturated alkyl groups having from about 8 to about 22 carbons. More preferably, R ' . R 2 , R 3 and R 4 are defined so that the molecular weight of the compound is from about 800 to about 1200.
  • Trimethylol ester oils useful herein are those having the following formula:
  • R 11 is an alkyl group having from 1 to about 30 carbons
  • R 12 , R 13 , and R 14 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
  • R 11 is ethyl and R 12 .
  • R 13 , and R 14 independently, are branched, straight, saturated, or unsaturated alkyl groups having from 8 to about 22 carbons. More preferably, R 11 , R 2 , R 3 and R 14 are defined so that the molecular weight of the compound is from about 800 to about 1200.
  • pentaerythritol ester oils and trimethylol ester oils herein include pentaerythritol tetraisostearate, pentaerythritol tetraoleate, trimethylolpropane triisostearate, trimethylolpropane trioleate, and mixtures thereof.
  • Such compounds are available from Kokyo Alcohol with tradenames KAKPTI, KAKTTI, and Shin-nihon Rika with tradenames PTO, ENUJERUBU TP3SO.
  • the hair conditioning composition of the present invention comprises a secondary oil selected from the group consisting of poly ⁇ -olefin oils, citrate ester oils, giyceryl ester oils, and mixtures thereof.
  • the secondary oils useful herein are those which are water-insoluble, and are in liquid form at 25°C.
  • the term "water-insoluble" is defined in the section above.
  • the secondary oil enhances the conditioning benefits of the primary oil. Particularly, it is believed that the secondary oil enhances the smooth feel to the hair when the hair is dried.
  • the secondary oil is preferably included in the composition at a level by weight of from about 0.1% to about 20%, preferably from about 0.2% to about 10%, more preferably from about 0.5% to about 5%.
  • Poly ⁇ -olefin oils useful herein are those derived from 1-alkene monomers having from about 6 to about 16 carbons, preferably from about 6 to about 12 carbons atoms.
  • Nonlimiting examples of 1-alkene monomers useful for preparing the poly ⁇ -olefin oils include 1-hexene, 1-octene, 1-decene, 1- dodecene, 1-tetradecene, 1-hexadecene, branched isomers such as 4-methyl-1- pentene, and mixtures thereof.
  • Preferred 1-alkene monomers useful for preparing the poly ⁇ -olefin oils are 1-octene, 1-decene, 1-dodecene, 1- tetradecene. 1-hexadecene, and mixtures thereof.
  • Poly ⁇ -olefin oils useful herein further have a viscosity of from about 1 to about 35,000 cst, a molecular weight of from about 200 to about 60,000, and a polydispersity of no more than about 3.
  • Poly ⁇ -olefin oils having a molecular weight of at least about 800 are useful herein. Such high molecular weight poly ⁇ -olefin oils are believed to provide long lasting moisturized feel to the hair.
  • Poly ⁇ -olefin oils having a molecular weight of less than about 800 are useful herein.
  • Such low molecular weight poly ⁇ -olefin oils are believed to provide a smooth, light, clean feel to the hair.
  • Citrate ester oils useful herein are those having a molecular weight of at least about 500 having the following formula:
  • R 2' is OH or CH 3 COO
  • R 22 , R 23 , and R 24 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
  • R 21 is OH
  • R 22 , R 23 , and R 24 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 8 to about 22 carbons. More preferably, R 21 , R 22 , R 23 and R 24 are defined so that the molecular weight of the compound is at least about 800.
  • Giyceryl ester oils useful herein are those having a molecular weight of at least about 500 and having the following formula: wherein R 41 , R 42 , and R 43 , independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
  • R 4 , R 42 , and R 43 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 8 to about 22 carbons. More preferably, R 41 , R 42 , and R 43 are defined so that the molecular weight of the compound is at least about 800.
  • Particularly useful poly ⁇ -olefin oils herein include polydecenes with tradenames PURESYN 6 having a number average molecular weight of about 500 and PURESYN 100 having a number average molecular weight of about
  • citrate ester oils herein include triisocetyl citrate with tradename CITMOL 316 available from Bernel, triisostearyl citrate with tradename PELEMOL TISC available from Phoenix, and trioctyldodecyl citrate with tradename CITMOL 320 available from Bernel.
  • Particularly useful giyceryl ester oils herein include triisostearin with tradename SUN ESPOL G-318 available from Taiyo Kagaku, triolein with tradename CITHROL GTO available from Croda Surfactants Ltd., trilinolein with tradename EFADERMA-F available from Vevy, or tradename EFA- GLYCERIDES from Brooks.
  • compositions of the present invention comprise an aqueous carrier.
  • the level and species of the carrier are selected according to the compatibility with other components, and other desired characteristic of the product.
  • Carriers useful in the present invention include water and water solutions of lower alkyl alcohols and polyhydric alcohols.
  • Lower alkyl alcohols useful herein are monohydric alcohols having 1 to 6 carbons, more preferably ethanol and isopropanol.
  • the polyhydric alcohols useful herein include propylene glycol, hexylene glycol, glycerin, and propane diol.
  • the aqueous carrier is substantially water. Deionized water is preferably used. Water from natural sources including mineral cations can also be used, depending on the desired characteristic of the product.
  • the compositions of the present invention comprise from about 20% to about 95%, preferably from about 30% to about 92%, and more preferably from about 50% to about 90% water..
  • compositions of the present invention may further comprise an additional conditioning agent.
  • the addition conditioning agents herein are selected from the group consisting of high melting point compounds, cationic surfactants, silicone compounds, and mixtures thereof.
  • the additional conditioning agents herein are used at levels by weight of the composition of from about 0.01% to about 20%, preferably from about 0.1% to about 15%, more preferably from about 1% to about 10%.
  • compositions of the present invention may further comprise a high melting point compound.
  • the high melting point compound useful herein have a melting point of at least about 25°C selected from the group consisting of fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, hydrocarbons, steroids, and mixtures thereof. It is understood by the artisan that the compounds disclosed in this section of the specification can in some instances fall into more than one classification, e.g., some fatty alcohol derivatives can also be classified as fatty acid derivatives. However, a given classification is not intended to be a limitation on that particular compound, but is done so for convenience of classification and nomenclature.
  • certain compounds having certain required carbon atoms may have a melting point of less than about 25°C. Such compounds of low melting point are not intended to be included in this section.
  • Nonlimiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.
  • the high melting point compound is preferably included in the composition at a level by weight of from about 1% to about 14%, more preferably from about 3% to about 10%, still preferably from about 4% to about 8%.
  • the fatty alcohols useful herein are those having from about 14 to about 30 carbon atoms, preferably from about 16 to about 22 carbon atoms. These fatty alcohols can be straight or branched chain alcohols and can be saturated or unsaturated. Nonlimiting examples of fatty alcohols include, cetyl alcohol, stearyl alcohol, behenyl alcohol, and mixtures thereof.
  • the fatty acids useful herein are those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty acids can be straight or branched chain acids and can be saturated or unsaturated. Also included are diacids, triacids, and other multiple acids which meet the requirements herein. Also included herein are salts of these fatty acids. Nonlimiting examples of fatty acids include lauric acid, palmitic acid, stearic acid, behenic acid, sebacic acid, and mixtures thereof.
  • the fatty alcohol derivatives and fatty acid derivatives useful herein include alkyl ethers of fatty alcohols, alkoxylated fatty alcohols, alkyl ethers of alkoxylated fatty alcohols, esters of fatty alcohols, fatty acid esters of compounds having esterifiable hydroxy groups, hydroxy-substituted fatty acids, and mixtures thereof.
  • Nonlimiting examples of fatty alcohol derivatives and fatty acid derivatives include materials such as methyl stearyl ether; the ceteth series of compounds such as ceteth-1 through ceteth-45, which are ethylene glycol ethers of cetyl alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; the steareth series of compounds such as steareth-1 through 10, which are ethylene glycol ethers of steareth alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; ceteareth 1 through ceteareth-10, which are the ethylene glycol ethers of ceteareth alcohol, i.e.
  • Steroids useful herein include compounds such as cholesterol.
  • High melting point compounds of a single compound of high purity are preferred.
  • Single compounds of pure fatty alcohols selected from the group of pure cetyl alcohol, stearyl alcohol, and behenyl alcohol are highly preferred.
  • pure herein, what is meant is that the compound has a purity of at least about 90%, preferably at least about 95%.
  • high melting point compounds useful herein include: cetyl alcohol, stearyl alcohol, and behenyl alcohol having tradenames KONOL series available from Shin Nihon Rika (Osaka, Japan), and NAA series available from NOF (Tokyo, Japan); pure behenyl alcohol having tradename 1- DOCOSANOL available from WAKO (Osaka, Japan), various fatty acids having tradenames NEO-FAT available from Akzo (Chicago Illinois, USA), HYSTRENE available from Witco Corp. (Dublin Ohio, USA), and DERMA available from Vevy (Genova, Italy); and cholesterol having tradename NIKKOL AGUASOME LA available from Nikko.
  • compositions of the present invention may further comprise a cationic surfactant.
  • cationic surfactants useful herein are any known to the artisan, and is preferably included in the composition at a level by weight from about 0.01 % to about 20%, more preferably from about 0.05% to about 10%.
  • cationic surfactants useful herein are those corresponding to the general formula (I):
  • R 101 , R 102 , R 103 and R 104 is selected from an aliphatic group of from 8 to 30 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 22 carbon atoms
  • the remainder of R 01 , R 102 , R 103 and R 04 are independently selected from an aliphatic group of from 1 to about 22 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 22 carbon atoms
  • X is a salt-forming anion such as those selected from halogen, (e.g.
  • the aliphatic groups can contain, in addition to carbon and hydrogen atoms, ether linkages, and other groups such as amino groups.
  • the longer chain aliphatic groups e.g., those of about 12 carbons, or higher, can be saturated or unsaturated. Preferred is when R 101 , R 102 , R 103 and R 104 are independently selected from C to about C 22 alkyl.
  • Nonlimiting examples of cationic surfactants useful in the present invention include the materials having the following CTFA designations: quaternium-8, quatemium-14, quatemium-18, quaternium-18 methosulfate, quatemium-24, and mixtures thereof.
  • cationic surfactants of general formula (I) preferred are those containing in the molecule at least one alkyl chain having at least 16 carbons.
  • preferred cationic surfactants include: behenyl trimethyl ammonium chloride available, for example, with tradename INCROQUAT TMC-80 from Croda and ECONOL TM22 from Sanyo Kasei; cetyl trimethyl ammonium chloride available, for example, with tradename CA-2350 from Nikko Chemicals, hydrogenated tallow alkyl trimethyl ammonium chloride, dialkyl (14-18) dimethyl ammonium chloride, ditallow alkyl dimethyl ammonium chloride, dihydrogenated tallow alkyl dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, dicetyl dimethyl ammonium chloride, di ehenyl/arachidyl) dimethyl ammonium chloride, dibehenyl dimethyl ammonium chloride, stearyl dimethyl benz
  • hydrophilically substituted cationic surfactants in which at least one of the substituents contain one or more aromatic, ether, ester, amido, or amino moieties present as substituents or as linkages in the radical chain, wherein at least one of the R 101 -R 104 radicals contain one or more hydrophilic moieties selected from alkoxy (preferably C C 3 alkoxy), polyoxyalkylene (preferably C C 3 polyoxyalkylene), alkylamido, hydroxyalkyl, alkylester, and combinations thereof.
  • the hydrophilically substituted cationic conditioning surfactant contains from 2 to about 10 nonionic hydrophile moieties located within the above stated ranges.
  • Preferred hydrophilically substituted cationic surfactants include those of the formula (II) through (VIII) below:
  • n 1 is from 8 to about 28, m 1 +m 2 is from 2 to about 40, Z is a short chain alkyl, preferably a C r C 3 alkyl, more preferably methyl, or (CH 2 CH 2 0) m3 H wherein m 1 +m 2 +m 3 is up to 60, and X is a salt forming anion as defined above;
  • n 2 is 1 to 5
  • R 105 , R 106 , and R 107 are independently an C
  • Z 2 is an alkyl, preferably C C 3 alkyl, more preferably methyl
  • Z 3 is a short chain hydroxyalkyl, preferably hydroxymethyl or hydroxyethyl
  • n 3 and n 4 independently are integers from 2 to 4, inclusive, preferably from 2 to 3, inclusive, more preferably 2
  • R 111 and R 112 independently, are substituted or unsubstituted hydrocarbyls, C 12 -C 20 alkyl or alkenyl
  • X is a salt forming anion as defined above
  • R 113 is a hydrocarbyl, preferably a C C 3 alkyl, more preferably methyl
  • Z 4 and Z 5 are, independently, short chain hydrocarbyls, preferably C 2 -C 4 alkyl or alkenyl, more preferably ethyl
  • m 4 is from 2 to about 40, preferably from about 7 to about 30, and
  • X is a salt forming anion as defined above;
  • R 114 and R 115 are C r C 3 alkyl, preferably methyl, Z 6 is a
  • A is a protein, preferably a collagen, keratin, milk protein, silk, soy protein, wheat protein, or hydrolyzed forms thereof; and X is a salt forming anion as defined above;
  • Nonlimiting examples of hydrophilically substituted cationic surfactants useful in the present invention include the materials having the following CTFA designations: quatemium-16, quatemium-26, quatemium-27, quatemium-30, quatemium-33, quatemium-43, quatemium-52, quaternium-53, quaternium-56, quatemium-60, quatemium-61 , quatemium-62, quatemium-70, quaternium-71 , quatemium-72, quatemium-75, quaternium-76 hydrolyzed collagen, quaternium-77, quatemium- 78, quaternium-79 hydrolyzed collagen, quaternium-79 hydrolyzed keratin, quaternium-
  • hydrophilically substituted cationic surfactants include dialkylamido ethyl hydroxyethylmonium salt, dialkylamidoethyl dimonium salt, dialkyloyl ethyl hydroxyethylmonium salt, dialkyloyl ethyldimonium salt, and mixtures thereof; for example, commercially available under the following tradenames; VARISOFT 110, VARISOFT 222, VARIQUAT K1215 and VARIQUAT 638 from Witco Chemical, MACKPRO KLP, MACKPRO WLW, MACKPRO MLP, MACKPRO NSP, MACKPRO NLW, MACKPRO WWP, MACKPRO NLP, MACKPRO SLP from Mclntyre, ETHOQUAD 18/25, ETHOQUAD 0/12PG, ETHOQUAD C/25, ETHOQUAD S/25, and ETHODUOQUAD from Akzo, DEHYQUAT SP from Henkel, and ATLAS G265
  • Amines are suitable as cationic surfactants.
  • Primary, secondary, and tertiary fatty amines are useful. Particularly useful are tertiary amido amines having an alkyl group of from about 12 to about 22 carbons.
  • Exemplary tertiary amido amines include: stearamidopropyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmitamidopropyldiethylamine, palmitamidoethyldiethylamine, palmitamidoethyldimethylamine, behenamidopropyldimethylamine, behenamidopropyldiethylamine, behenamidoethyldiethylamine, behenamidoethyldimethylamine, arachidamidopropy
  • dimethylstearamine dimethylsoyamine, soyamine, myristylamine, tridecylamine, ethylstearylamine, N-tallowpropane diamine, ethoxylated (with 5 moles of ethylene oxide) stearylamine, dihydroxyethylstearylamine, and arachidylbehenylamine.
  • Useful amines in the present invention are disclosed in U.S. Patent 4.275,055, Nachtigal, et al.
  • amines can also be used in combination with acids such as l- glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, tartaric acid, citric acid, ⁇ -glutamic hydrochloride, maleic acid, and mixtures thereof; more preferably -glutamic acid, lactic acid, citric acid.
  • the amines herein are preferably partially neutralized with any of the acids at a molar ratio of the amine to the acid of from about 1 : 0.3 to about 1 : 2, more preferably from about 1 : 0.4 to about 1 : 1.
  • compositions of the present invention may further comprise a silicone compound.
  • silicone compounds useful herein include volatile soluble or insoluble, or nonvolatile soluble or insoluble silicone conditioning agents.
  • soluble what is meant is that the silicone compound is miscible with the carrier of the composition so as to form part of the same phase.
  • insoluble what is meant is that the silicone forms a separate, discontinuous phase from the carrier, such as in the form of an emulsion or a suspension of droplets of the silicone.
  • the silicone compounds herein may be made by any suitable method known in the art, including emulsion polymerization.
  • the silicone compounds may further be incorporated in the present composition in the form of an emulsion, wherein the emulsion is made my mechanical mixing, or in the stage of synthesis through emulsion polymerization, with or without the aid of a surfactant selected from anionic surfactants, nonionic surfactants, cationic surfactants, and mixtures thereof.
  • the silicone compounds for use herein will preferably have a viscosity of from about 1 ,000 to about 2,000,000 centistokes at 25°C, more preferably from about 10,000 to about 1 ,800,000, and even more preferably from about 100,000 to about 1 ,500,000.
  • the viscosity can be measured by means of a glass capillary viscometer as set forth in Dow Corning Corporate Test Method CTM0004, July 20, 1970.
  • Silicone compound of high molecular weight may be made by emulsion polymerization.
  • Suitable silicone fluids include polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes, polyether siloxane copolymers, and mixtures thereof. Other nonvolatile silicone compounds having hair conditioning properties can also be used.
  • the silicone compound is preferably included in the composition at a level by weight from about 0.01% to about 20%, more preferably from about 0.05% to about 10%.
  • silicone compounds herein also include polyalkyl or polyaryl siloxanes with the following structure (I)
  • Z 8 represents groups which block the ends of the silicone chains.
  • the alkyl or aryl groups substituted on the siloxane chain (R 123 ) or at the ends of the siloxane chains Z 8 can have any structure as long as the resulting silicone remains fluid at room temperature, is dispersible, is neither irritating, toxic nor otherwise harmful when applied to the hair, is compatible with the other components of the composition, is chemically stable under normal use and storage conditions, and is capable of being deposited on and conditions the hair.
  • Suitable Z 8 groups include hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy.
  • the two R 123 groups on the silicon atom may represent the same group or different groups.
  • the two R 123 groups represent the same group.
  • Suitable R 123 groups include methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl.
  • the preferred silicone compounds are polydimethylsiloxane, polydiethylsiloxane, and polymethylphenylsiloxane. Polydimethylsiloxane, which is also known as dimethicone, is especially preferred.
  • the polyalkylsiloxanes that can be used include, for example, polydimethylsiloxanes.
  • silicone compounds are available, for example, from the General Electric Company in their Viscasil® and SF 96 series, and from Dow Corning in their Dow Corning 200 series.
  • Polyalkylaryl siloxane fluids can also be used and include, for example, polymethylphenylsiloxanes. These siloxanes are available, for example, from the General Electric Company as SF 1075 methyl phenyl fluid or from Dow Corning as 556 Cosmetic Grade Fluid.
  • highly arylated silicone compounds such as highly phenylated polyethyl silicone having refractive index of about 1.46 or higher, especially about 1.52 or higher.
  • a spreading agent such as a surfactant or a silicone resin, as described below to decrease the surface tension and enhance the film forming ability of the material.
  • the silicone compounds that can be used include, for example, a polypropylene oxide modified polydimethylsiloxane although ethylene oxide or mixtures of ethylene oxide and propylene oxide can also be used.
  • the ethylene oxide and polypropylene oxide level should be sufficiently low so as not to interfere with the dispersibility characteristics of the silicone. These material are also known as dimethicone copolyols.
  • Suitable alkylamino substituted silicone compounds include those represented by the following structure (II) wherein R 124 is H, CH 3 or OH, p , p 2 , q 1 and q 2 are integers which depend on the molecular weight, the average molecular weight being approximately between 5,000 and 10,000. This polymer is also known as "amodimethicone”.
  • Suitable amino substituted silicone fluids include those represented by the formula (III)
  • R 125 a G 3 . a -Si-(OSiG 2 ) p3 -(OSiG b (R 125 ) 2 . b ) p4 -0-SiG 3 .
  • G is chosen from the group consisting of hydrogen, phenyl, OH, C C 8 alkyl and preferably methyl; a denotes 0 or an integer from 1 to 3, and preferably equals 0; b denotes 0 or 1 and preferably equals 1 ; the sum p 3 +p 4 is a number from 1 to 2,000 and preferably from 50 to 150, p 3 being able to denote a number from 0 to 1 ,999 and preferably from 49 to 149 and p 4 being able to denote an integer from 1 to 2,000 and preferably from 1 to 10; R 125 is a monovalent radical of formula C q3 H 2q3 L in which q 3 is an integer from 2
  • R 126 is chosen from the group consisting of hydrogen, phenyl, benzyl, a saturated hydrocarbon radical, preferably an alkyl radical containing from 1 to 20 carbon atoms, and X' denotes a halide ion.
  • An especially preferred amino substituted silicone corresponding to formula (III) is the polymer known as "trimethylsilylamodimethicone wherein R 124 is CH 3 .
  • R 128 denotes a monovalent hydrocarbon radical having from 1 to 18 carbon atoms, preferably an alkyl or alkenyl radical such as methyl
  • R 29 denotes a hydrocarbon radical, preferably a 0,-0, 8 alkylene radical or a C,-C, 8 , and more preferably C,-C 8 , alkyleneoxy radical
  • Q " is a halide ion, preferably chloride
  • p 5 denotes an average statistical value from 2 to 20, preferably from 2 to 8
  • p 5 denotes an average statistical value from 20 to 200, and preferably from 20 to 50.
  • a preferred polymer of this class is available from Union Carbide under the name "UCAR SILICONE ALE 56.”
  • References disclosing suitable nonvolatile dispersed silicone compounds include U.S. Patent No. 2,826,551 , to Geen; U.S. Patent No. 3,964,500, to Drakoff, issued June 22, 1976; U.S. Patent No. 4,364,837, to Pader; and British Patent No. 849,433, to Woolston.
  • "Silicon Compounds" distributed by Petrarch Systems, Inc.. 1984 provides an extensive, though not exclusive, listing of suitable silicone compounds.
  • silicone gum means a polyorganosiioxane material having a viscosity at 25°C of greater than or equal to 1 ,000,000 centistokes. It is recognized that the silicone gums described herein can also have some overlap with the above-disclosed silicone compounds. This overlap is not intended as a limitation on any of these materials. Silicone gums are described by Petrarch, and others including U.S. Patent No. 4.152,416, to Spitzer et al., issued May 1 , 1979 and Noll, Walter, Chemistry and Technology of Silicones, New York: Academic Press 1968.
  • silicone gums will typically have a mass molecular weight in excess of about 200,000, generally between about 200,000 and about 1,000,000. Specific examples include polydimethylsiloxane, polydimethylsiloxane methylvinylsiloxane) copolymer, polydimethylsiloxane diphenylsiloxane methylvinylsiloxane) copolymer and mixtures thereof.
  • silicone resins which are highly crosslinked polymeric siloxane systems.
  • the crosslinking is introduced through the incorporation of tri- functional and tetra-functional silanes with mono-functional or di-functional, or both, silanes during manufacture of the silicone resin.
  • the degree of crosslinking that is required in order to result in a silicone resin will vary according to the specific silane units incorporated into the silicone resin.
  • silicone materials which have a sufficient level of trifunctional and tetrafunctional siloxane monomer units, and hence, a sufficient level of crosslinking, such that they dry down to a rigid, or hard, film are considered to be silicone resins.
  • the ratio of oxygen atoms to silicon atoms is indicative of the level of crosslinking in a particular silicone material.
  • Silicone materials which have at least about 1.1 oxygen atoms per silicon atom will generally be silicone resins herein.
  • the ratio of oxygen:silicon atoms is at least about 1.2:1.0.
  • Silanes used in the manufacture of silicone resins include monomethy!-, dimethyl-, trimethyl-, monophenyl-, diphenyl-, methylphenyl-, monovinyl-, and methylvinylchlorosilanes, and tetrachlorosilane, with the methyl substituted silanes being most commonly utilized.
  • Preferred resins are offered by General Electric as GE SS4230 and SS4267.
  • silicone resins will generally be supplied in a dissolved form in a low viscosity volatile or nonvolatile silicone fluid.
  • the silicone resins for use herein should be supplied and incorporated into the present compositions in such dissolved form, as will be readily apparent to those skilled in the art. Without being bound by theory, it is believed that the silicone resins can enhance deposition of other silicone compounds on the hair and can enhance the glossiness of hair with high refractive index volumes.
  • silicone resin powders such as the material given the CTFA designation polymethylsilsequioxane, which is commercially available as TospearlTM from Toshiba Silicones.
  • Silicone materials and silicone resins in particular, can conveniently be identified according to a shorthand nomenclature system well known to those skilled in the art as the "MDTQ" nomenclature. Under this system, the silicone is described according to the presence of various siloxane monomer units which make up the silicone. Briefly, the symbol M denotes the mono-functional unit (CH 3 ) 3 SiO 0 5 ; D denotes the difunctional unit (CH 3 ) 2 SiO; T denotes the trifunctional unit (CH 3 )SiO, 5 ; and Q denotes the quadri- or tetra-functional unit Si02.
  • Primes of the unit symbols denote substituents other than methyl, and must be specifically defined for each occurrence. Typical alternate substituents include groups such as vinyl, phenyl, amino, hydroxyl, etc.
  • the molar ratios of the various units either in terms of subscripts to the symbols indicating the total number of each type of unit in the silicone, or an average thereof, or as specifically indicated ratios in combination with molecular weight, complete the description of the silicone material under the MDTQ system. Higher relative molar amounts of T, Q, T' and/or Q' to D, D', M and/or or M' in a silicone resin is indicative of higher levels of crosslinking. As discussed before, however, the overall level of crosslinking can also be indicated by the oxygen to silicon ratio.
  • the silicone resins for use herein which are preferred are MQ, MT, MTQ, MQ and MDTQ resins.
  • the preferred silicone substituent is methyl.
  • MQ resins wherein the M:Q ratio is from about 0.5:1.0 to about 1.5:1.0 and the average molecular weighi of the resin is from about 1000 to about 10,000.
  • silicone compounds which are useful herein include Dimethicone with tradename D-130, cetyl Dimethicone with tradename DC2502, stearyl Dimethicone with tradename DC2503, emulsified polydimethyl siloxanes with tradenames DC1664 and DC1784, and alkyl grafted copolymer silicone emulsion with tradename DC2-2845; all available from Dow Corning Corporation, and emulsion polymerized Dimethiconol available from Toshiba Silicone as described in GB application 2,303,857.
  • the compositions of the present invention may include a variety of additional components, which may be selected by the artisan according to the desired characteristics of the final product. Additional components include, for example, cationic polymers, additional oily compounds, nonionic polymers, and other additional components.
  • the hair conditioning compositions of the present invention may contain one or more cationic polymers.
  • polymer shall include materials whether made by polymerization of one type of monomer or made by two (i.e., copolymers) or more types of monomers.
  • the cationic polymer is a water-soluble cationic polymer.
  • water soluble cationic polymer what is meant is a polymer which is sufficiently soluble in water to form a substantially clear solution to the naked eye at a concentration of 0.1% in water (distilled or equivalent) at 25°C.
  • the preferred polymer will be sufficiently soluble to form a substantially clear solution at 0.5% concentration, more preferably at 1.0% concentration.
  • the cationic polymers hereof will generally have a weight average molecular weight which is at least about 5,000, typically at least about 10,000, and is less than about 10 million. Preferably, the molecular weight is from about 100,000 to about 2 million.
  • the cationic polymers will generally have cationic nitrogen-containing moieties such as quaternary ammonium or cationic amino moieties, and mixtures thereof.
  • the cationic charge density is preferably at least about 0.1 meq/gram, more preferably at least about 1.5 meq/gram, even more preferably at least about 1.1 meq/gram, still more preferably at least about 1.2 meq/gram.
  • Cationic charge density of the cationic polymer can be determined according to the Kjeldahl Method. Those skilled in the art will recognize that the charge density of amino-containing polymers may vary depending upon pH and the isoelectric point of the amino groups. The charge density should be within the above limits at the pH of intended use.
  • any anionic counterions can be utilized for the cationic polymers so long as the water solubility criteria is met. Suitable counterions include halides (e.g., Cl, Br, I, or F, preferably Cl, Br, or I), sulfate, and methylsulfate. Others can also be used, as this list is not exclusive.
  • the cationic nitrogen-containing moiety will be present generally as a substituent, on a fraction of the total monomer units of the cationic hair conditioning polymers.
  • the cationic polymer can comprise copolymers, terpolymers, etc. of quaternary ammonium or cationic amine-substituted monomer units and other non-cationic units referred to herein as spacer monomer units.
  • Suitable cationic polymers include, for example, copolymers of vinyl monomers having cationic amine or quaternary ammonium functionalities with water soluble spacer monomers such as acrylamide, methacrylamide, alkyl and dialkyl acrylamides, alkyl and dialkyl methacrylamides, alkyl acrylate, alkyl methacrylate, vinyl caprolactone, and vinyl pyrrolidone.
  • the alkyl and dialkyl substituted monomers preferably have C, - C 7 alkyl groups, more preferably C, - C 3 alkyl groups.
  • Other suitable spacer monomers include vinyl esters, vinyl alcohol (made by hydrolysis of polyvinyl acetate), maleic anhydride, propylene glycol, and ethylene glycol.
  • the cationic amines can be primary, secondary, or tertiary amines, depending upon the particular species and the pH of the composition. In general, secondary and tertiary amines, especially tertiary amines, are preferred.
  • Amine-substituted vinyl monomers can be polymerized in the amine form, and then optionally can be converted to ammonium by a quaternization reaction.
  • Amines can also be similarly quatemized subsequent to formation of the polymer.
  • tertiary amine functionalities can be quatemized by reaction with a salt of the formula R 118 X wherein R 118 is a short chain alkyl, preferably a C. - C 7 alkyl, more preferably a C, - C 3 alkyl, and X is a salt forming anion as defined above.
  • Suitable cationic amino and quaternary ammonium monomers include, for example, vinyl compounds substituted with dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, monoalkylaminoalkyl methacrylate, trialkyl methacryloxyalkyl ammonium salt, trialkyl acryloxyalkyl ammonium salt, diallyl quaternary ammonium salts, and vinyl quaternary ammonium monomers having cyclic cationic nitrogen-containing rings such as pyridinium, imidazolium, and quatemized pyrrolidone, e.g., alkyl vinyl imidazolium, alkyl vinyl pyridinium, alkyl vinyl pyrrolidone salts.
  • the alkyl portions of these monomers are preferably lower alkyls such as the C, - C 3 alkyls, more preferably C, and C 2 alkyls.
  • Suitable amine-substituted vinyl monomers for use herein include dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, dialkylaminoalkyl acrylamide, and dialkylaminoalkyl methacrylamide, wherein the alkyl groups are preferably C, - C 7 hydrocarbyls, more preferably C, - C 3 , alkyls.
  • the cationic polymers hereof can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium-substituted monomer and/or compatible spacer monomers.
  • Suitable cationic hair conditioning polymers include, for example: copolymers of 1-vinyl-2-pyrrolidone and 1-vinyl-3-methylimidazolium salt (e.g., chloride salt) (referred to in the industry by the Cosmetic, Toiletry, and Fragrance Association, "CTFA", as Polyquatemium-16), such as those commercially available from BASF Wyandotte Corp.
  • CTFA Cosmetic, Toiletry, and Fragrance Association
  • Suitable cationic polymers are amphoteric terpolymers consisting of acrylic acid methacrylamidopropyl trimethylammonium chloride and methyl acrylate, having a structure as shown below referred to in the industry (CTFA) as Polyquaternium 47.
  • CTFA chemical vapor deposition
  • An example of a suitable commercial material is MERQUAT 2001 ® wherein the ratio of n 6 :n 7 :n 8 is 45:45:10 supplied by Calgon Corp.
  • cationic polymers that can be used include polysaccharide polymers, such as cationic cellulose derivatives and cationic starch derivatives.
  • Cationic polysaccharide polymer materials suitable for use herein include those of the formula:
  • Z 7 is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual
  • R 119 is an alkylene oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or combination thereof
  • R 120 , R 121 , and R 22 independently are alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups, each group containing up to about 18 carbon atoms, and the total number of carbon atoms for each cationic moiety (i.e., the sum of carbon atoms in R 120 , R 121 and R 122 ) preferably being about 20 or less
  • X is as previously described.
  • Cationic cellulose is available from Amerchol Corp. (Edison, NJ, USA) in their Polymer JR ® and LR ® series of polymers, as salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 10.
  • CTFA trimethyl ammonium substituted epoxide
  • Another type of cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 24. These materials are available from Amerchol Corp. (Edison, NJ, USA) under the tradename Polymer LM-200 ® .
  • cationic polymers that can be used include cationic guar gum derivatives, such as guar hydroxypropyltrimonium chloride commercially available from Celanese Corp. in their Jaguar R series.
  • Other materials include quaternary nitrogen-containing cellulose ethers as described in U.S. Patent 3,962,418, and copolymers of etherified cellulose and starch as described in U.S. Patent 3,958,581.
  • Particularly useful cationic polymers herein include Polyquaternium-7,
  • Additional oily compounds useful herein include fatty alcohols and their derivatives, fatty acids and their derivatives, and hydrocarbons.
  • the additional oily compounds useful herein may be volatile or nonvolatile, and have a melting point of not more than about 25°C. Without being bound by theory, it is believed that, the additional oily compounds may penetrate into the hair to modify the hydroxy bonds of the hair, thereby resulting in providing softness and flexibility to the hair.
  • the additional oily compounds of this section are to be distinguished from the high melting point compounds described above. Nonlimiting examples of the additional oily compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.
  • the fatty alcohols useful herein include those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty alcohols can be straight or branched chain alcohols and can be saturated or unsaturated alcohols, preferably unsaturated alcohols. Nonlimiting examples of these compounds include oleyl alcohol, palmitoleic alcohol, isostearyl alcohol, isocetyl alchol, undecanol, octyl dodecanol, octyl decanol, octyl alcohol, caprylic alcohol, decyl alcohol and lauryl alcohol.
  • the fatty acids useful herein include those having from about 10 to about
  • fatty acids can be straight or branched chain acids and can be saturated or unsaturated.
  • Suitable fatty acids include, for example, oleic acid, linoleic acid, isostearic acid, linolenic acid, ethyl linolenic acid, ethyl linolenic acid, arachidonic acid, and ricinolic acid.
  • the fatty acid derivatives and fatty alcohol derivatives are defined herein to include, for example, esters of fatty alcohols, alkoxylated fatty alcohols, alkyl ethers of fatty alcohols, alkyl ethers of alkoxylated fatty alcohols, and bulky ester oils such as pentaerythritol ester oils, trimethylol ester oils, citrate ester oils, giyceryl ester oils, and mixtures thereof.
  • Nonlimiting examples of fatty acid derivatives and fatty alcohol derivatives include, for example, methyl linoleate, ethyl linoleate, isopropyl linoleate, isodecyl oleate, isopropyl oleate, ethyl oleate, octyldodecyl oleate, oleyl oleate, decyl oleate, butyl oleate, methyl oleate, octyldodecyl stearate, octyldodecyl isostearate, octyldodecyl isopalmitate, octyl isopelargonate, octyl pelargonate, hexyl isostearate, isopropyl isostearate, isodecyl isononanoate, isopropyl isostearate,
  • Bulky ester oils such as pentaerythritol ester oils, trimethylol ester oils, citrate ester oils and giyceryl ester oils useful herein are those which have a molecular weight of less than about 800, preferably less than about 500.
  • the hydrocarbons useful herein include straight chain, cyclic, and branched chain hydrocarbons which can be either saturated or unsaturated, so long as they have a melting point of not more than about 25°C. These hydrocarbons have from about 12 to about 40 carbon atoms, preferably from about 12 to about 30 carbon atoms, and preferably from about 12 to about 22 carbon atoms.
  • polymeric hydrocarbons of alkenyl monomers such as polymers of C 2 .
  • alkenyl monomers can be straight or branched chain polymers.
  • the straight chain polymers will typically be relatively short in length, having a total number of carbon atoms as described above.
  • the branched chain polymers can have substantially higher chain lengths.
  • the number average molecular weight of such materials can vary widely, but will typically be up to about 500, preferably from about 200 to about 400, and more preferably from about 300 to about 350.
  • mineral oils are liquid mixtures of hydrocarbons that are obtained from petroleum.
  • hydrocarbon materials include paraffin oil, mineral oil, dodecane, isododecane, hexadecane, isohexadecane, eicosene, isoeicosene, tridecane, tetradecane, polybutene, polyisobutene, and mixtures thereof.
  • hydrocarbons selected from the group consisting of mineral oil, poly ⁇ -olefin oils such as isododecane, isohexadecane, polybutene, polyisobutene, and mixtures thereof.
  • fatty alcohols and their derivatives useful herein include: oleyl alcohol with tradename UNJECOL 90BHR available from Shin Nihon Rika, various liquid esters with tradenames SCHERCEMOL series available from Scher, and hexyl isostearate with a tradename HIS and isopropryl isostearate having a tradename ZPIS available from Kokyu Alcohol.
  • Commercially available bulky ester oils useful herein include: trimethylolpropane tricaprylate/tricaprate with tradename MOBIL ESTER P43 from Mobil Chemical Co.
  • hydrocarbons useful herein include isododecane, isohexadeance.
  • Nonionic polymers useful herein include cellulose derivatives, hydrophobically modified cellulose derivatives, ethylene oxide polymers, and ethylene oxide/propylene oxide based polymers.
  • Suitable nonionic polymers are cellulose derivatives including methylcellulose with tradename BENECEL, hydroxyethyl cellulose with tradename NATROSOL, hydroxypropyl cellulose with tradename KLUCEL, cetyl hydroxyethyl cellulose with tradename POLYSURF 67, all supplied by Herculus.
  • Other suitable nonionic polymers are ethylene oxide and/or propylene oxide based polymers with tradenames CARBOWAX PEGs, POLYOX WASRs, and UCON FLUIDS, all supplied by Amerchol.
  • R 201 is selected from the group consisting of H, methyl, and mixtures thereof.
  • these materials are polymers of ethylene oxide, which are also known as polyethylene oxides, polyoxyethylenes, and polyethylene glycols.
  • R 201 is methyl, these materials are polymers of propylene oxide, which are also known as polypropylene oxides, polyoxypropylenes, and polypropylene glycols.
  • R 201 is methyl, it is also understood that various positional isomers of the resulting polymers can exist.
  • x3 has an average value of from about 1500 to about 25,000, preferably from about 2500 to about 20,000, and more preferably from about 3500 to about 15,000.
  • polymers include the polypropylene glycols and mixed polyethylene/polypropylene glycols.
  • Polyethylene glycol polymers useful herein are PEG-2M wherein R 201 equals H and x3 has an average value of about 2,000 (PEG-2M is also known as Polyox WSR ® N-10, which is available from Union Carbide and as PEG-2,000); PEG-5M wherein R 201 equals H and x3 has an average value of about 5,000 (PEG-5M is also known as Polyox WSR ® N-35 and Polyox WSR ® N-80, both available from Union Carbide and as PEG-5,000 and Polyethylene Glycol 300,000); PEG-7M wherein R 201 equals H and x3 has an average value of about 7,000 (PEG-7M is also known as Polyox WSR ® N-750 available from Union Carbide); PEG-9M wherein R 20 equals H and x3 has an average value of about 9,000 (PEG 9-M is also known as Polyox WSR ® N-3333 available from Union Carbide); and PEG-14 M wherein R
  • compositions of the present invention may include other additional components, which may be selected by the artisan according to the desired characteristics of the final product and which are suitable for rendering the composition more cosmetically or aesthetically acceptable or to provide them with additional usage benefits.
  • additional components generally are used individually at levels of from about 0.001% to about 10%, preferably up to about 5% by weight of the composition.
  • a wide variety of other additional components can be formulated into the present compositions. These include: other conditioning agents such as hydrolysed collagen with tradename Peptein 2000 available from Hormel, vitamin E with tradename Emix-d available from Eisai, panthenol available from Roche, panthenyl ethyl ether available from Roche, hydrolysed keratin, proteins, plant extracts, and nutrients; hair-fixative polymers such as amphoteric fixative polymers, cationic fixative polymers, anionic fixative polymers, nonionic fixative polymers, and silicone grafted copolymers; preservatives such as benzyl alcohol, methyl paraben, propyl paraben and imidazolidinyl urea; pH adjusting agents, such as citric acid, sodium citrate, succinic acid, phosphoric acid, sodium hydroxide, sodium carbonate; salts, in general, such as potassium acetate and sodium chloride; coloring agents, such as any of the FD&C or D&C dyes;
  • compositions of the present invention are suitable for rinse-off products and leave-on products, and are particularly useful for making products in the form of emulsion, cream, gel, spray or, mousse.
  • Examples 1 through 6 are hair conditioning compositions of the present invention which are particularly useful for rinse-off use.
  • Compositions are particularly useful for rinse-off use.
  • Varisoft 110 obtained by Witco. * 14 Stearamidopropyl Dimethylamine: Amidoamine MPS obtained by Nikko. * 15 -Glutamic Acid: £-Glutamic acid (cosmetic grade) obtained by Ajinomoto. * 16 Hydroxyethyl Cellulose: Available from Aqualon. * 17 Polyoxyethylene (2000): WSR N-10 obtained Amerchol.
  • polymeric materials such as hydroxyethyl cellulose, polyoxyethylene, Polyquatemium-10, and Polyquaternium-7 are dispersed in water at room temperature to make a polymer solution.
  • High melting point compounds, hydrophilically substituted cationic surfactant, tertiary amido amines, and the polymer solution, if present, are mixed and heated up to above 70°C.
  • the mixture thus obtained is cooled down to below 50°C, and the remaining components are added with agitation, and further cooled down to about 30°C.
  • high melting point compounds, tertiary amido amines, and the polymer solution, if present are mixed and heated up to above 70°C.
  • the mixture thus obtained is cooled down to about 60°C where the hydrophilically substituted cationic surfactant is added.
  • the final mixtures thus obtained is cooled below 50°C, and the remaining components are added with agitation, and further cooled down to about 30°C.
  • a triblender and/or mill can be used in each step, if necessary to disperse the materials.

Abstract

L'invention concerne une composition d'après-shampooing qui comprend : (1) une huile primaire insoluble dans l'eau, ayant un poids moléculaire d'au moins 800, se présentant sous forme liquide à 25 °C et choisie dans le groupe comprenant les huiles a) d'ester de pentaérythritol, b) d'ester de triméthylol, et leurs mélanges; (2) une huile secondaire choisie dans le groupe comprenant les huiles c) de poly-α-oléfines, d) d'ester de citrate, e) d'ester de glycéryle, et leurs mélanges; et (3) un excipient aqueux.
PCT/US1998/011785 1998-06-04 1998-06-04 Composition d'apres-shampooing comprenant une huile primaire et une huile secondaire WO1999062468A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/US1998/011785 WO1999062468A1 (fr) 1998-06-04 1998-06-04 Composition d'apres-shampooing comprenant une huile primaire et une huile secondaire
CN98814103.5A CN1295457A (zh) 1998-06-04 1998-06-04 包含首要油和次要油的头发调理组合物
BR9815885-6A BR9815885A (pt) 1998-06-04 1998-06-04 Composição de condicionamento de cabelo.
AU81395/98A AU8139598A (en) 1998-06-04 1998-06-04 Hair conditioning composition comprising primary oil and secondary oil
JP11541461A JP2000515562A (ja) 1998-06-04 1998-06-04 第一オイルおよび第二オイルを含むヘアーコンディショニング組成物
EP98931218A EP1087745A1 (fr) 1998-06-04 1998-06-04 Composition d'apres-shampooing comprenant une huile primaire et une huile secondaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1998/011785 WO1999062468A1 (fr) 1998-06-04 1998-06-04 Composition d'apres-shampooing comprenant une huile primaire et une huile secondaire

Publications (1)

Publication Number Publication Date
WO1999062468A1 true WO1999062468A1 (fr) 1999-12-09

Family

ID=22267264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/011785 WO1999062468A1 (fr) 1998-06-04 1998-06-04 Composition d'apres-shampooing comprenant une huile primaire et une huile secondaire

Country Status (6)

Country Link
EP (1) EP1087745A1 (fr)
JP (1) JP2000515562A (fr)
CN (1) CN1295457A (fr)
AU (1) AU8139598A (fr)
BR (1) BR9815885A (fr)
WO (1) WO1999062468A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091565A2 (fr) * 2003-04-16 2004-10-28 Cognis Ip Management Gmbh Composition cosmetique contenant de la poly-$g(a)-olefine
WO2005097044A1 (fr) * 2004-04-05 2005-10-20 Cognis Ip Management Gmbh Cires sensorielles destinees a des formulations cosmetiques et/ou pharmaceutiques
WO2005097055A2 (fr) * 2004-04-05 2005-10-20 Cognis Ip Management Gmbh Compositions huile/eau avec des esters de pentaerythritol ou ses oligomeres
CN100343377C (zh) * 2003-06-26 2007-10-17 西姆莱斯有限责任两合公司 O/w乳化剂、o/w乳液及其用途
WO2008012442A2 (fr) * 2006-07-28 2008-01-31 Stearinerie Dubois Fils Mélange d'esters partiels de monopentaérythritol, dipentaérythritol et tripentaérythritol, procédé pour leur obtention et produit cosmétique en contenant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748487B2 (en) * 2004-09-21 2014-06-10 The Nisshin Oillio Group, Ltd. Raw material for cosmetic preparation containing benzoate and cosmetic preparation containing such raw material
WO2017166088A1 (fr) * 2016-03-30 2017-10-05 Beiersdorf Daily Chemical (Wuhan) Co. Ltd. Composition d'après-shampoing contenant un/des esters de pentaérythritol et un/des éthers alkyliques de ppg

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547897A2 (fr) * 1991-12-19 1993-06-23 Unilever Plc Composition cosmétique
WO1995000107A1 (fr) * 1993-06-22 1995-01-05 Aminco, Inc. Protection du cuir chevelu et de la peau lors de l'application de produits traitants sur les cheveux
DE4337169A1 (de) * 1993-10-30 1995-05-04 Hartmann Haarkosmetik Gmbh Haarbehandlungsmittel, insbesondere zum Zwecke der Frisurengestaltung, das in Emulsionsform vorliegt und frei von haarfestigenden Polymeren bzw. Harzen ist
US5578298A (en) * 1994-05-27 1996-11-26 General Electric Company Microemulsions for high viscosity amino silicone fluids and gums and their preparation
WO1997035547A1 (fr) * 1996-03-27 1997-10-02 The Procter & Gamble Company Composition de shampooing conditionneur
WO1997035546A1 (fr) * 1996-03-27 1997-10-02 The Procter & Gamble Company Compositions pour shampooing traitant contenant des agents selectionnes de mise en forme du cheveu

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547897A2 (fr) * 1991-12-19 1993-06-23 Unilever Plc Composition cosmétique
WO1995000107A1 (fr) * 1993-06-22 1995-01-05 Aminco, Inc. Protection du cuir chevelu et de la peau lors de l'application de produits traitants sur les cheveux
DE4337169A1 (de) * 1993-10-30 1995-05-04 Hartmann Haarkosmetik Gmbh Haarbehandlungsmittel, insbesondere zum Zwecke der Frisurengestaltung, das in Emulsionsform vorliegt und frei von haarfestigenden Polymeren bzw. Harzen ist
US5578298A (en) * 1994-05-27 1996-11-26 General Electric Company Microemulsions for high viscosity amino silicone fluids and gums and their preparation
WO1997035547A1 (fr) * 1996-03-27 1997-10-02 The Procter & Gamble Company Composition de shampooing conditionneur
WO1997035546A1 (fr) * 1996-03-27 1997-10-02 The Procter & Gamble Company Compositions pour shampooing traitant contenant des agents selectionnes de mise en forme du cheveu

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091565A3 (fr) * 2003-04-16 2005-02-17 Cognis Deutschland Gmbh Composition cosmetique contenant de la poly-$g(a)-olefine
US8821844B2 (en) 2003-04-16 2014-09-02 Cognis Ip Management Gmbh Poly-α-olefin-containing cosmetic composition
US8518386B2 (en) 2003-04-16 2013-08-27 Cognis Ip Management Gmbh Poly-α-olefin-containing cosmetic composition
WO2004091565A2 (fr) * 2003-04-16 2004-10-28 Cognis Ip Management Gmbh Composition cosmetique contenant de la poly-$g(a)-olefine
CN100343377C (zh) * 2003-06-26 2007-10-17 西姆莱斯有限责任两合公司 O/w乳化剂、o/w乳液及其用途
US8183298B2 (en) 2004-04-05 2012-05-22 Cognis Ip Management Gmbh Fatty acid esters, processes for their production and for incorporation into cosmetic and/or pharmaceutical formulations
WO2005097055A3 (fr) * 2004-04-05 2006-11-30 Cognis Ip Man Gmbh Compositions huile/eau avec des esters de pentaerythritol ou ses oligomeres
WO2005097055A2 (fr) * 2004-04-05 2005-10-20 Cognis Ip Management Gmbh Compositions huile/eau avec des esters de pentaerythritol ou ses oligomeres
WO2005097044A1 (fr) * 2004-04-05 2005-10-20 Cognis Ip Management Gmbh Cires sensorielles destinees a des formulations cosmetiques et/ou pharmaceutiques
US9149420B2 (en) 2004-04-05 2015-10-06 Cognis Ip Management Gmbh O/W-gel-compositions having pentaerythritol esters or oligomers thereof
WO2008012442A2 (fr) * 2006-07-28 2008-01-31 Stearinerie Dubois Fils Mélange d'esters partiels de monopentaérythritol, dipentaérythritol et tripentaérythritol, procédé pour leur obtention et produit cosmétique en contenant
FR2904217A1 (fr) * 2006-07-28 2008-02-01 Stearinerie Dubois Fils Sa Melange d'esters partiels de monopentaerytritol, dipentaerytritol et tripentaerytritol, procede pour leur obtention et produit cosmetique en contenant
WO2008012442A3 (fr) * 2006-07-28 2008-03-13 Stearinerie Dubois Fils Mélange d'esters partiels de monopentaérythritol, dipentaérythritol et tripentaérythritol, procédé pour leur obtention et produit cosmétique en contenant

Also Published As

Publication number Publication date
EP1087745A1 (fr) 2001-04-04
CN1295457A (zh) 2001-05-16
JP2000515562A (ja) 2000-11-21
AU8139598A (en) 1999-12-20
BR9815885A (pt) 2001-02-20

Similar Documents

Publication Publication Date Title
EP1227784B1 (fr) Composition apr s-shampooing antipelliculaire
US20040028711A1 (en) Anhydrous cosmetic compositions
US6468515B1 (en) Hair conditioning composition comprising high molecular weight ester oil
AU7824798A (en) Hair conditioning composition comprising high molecular weight ester oil
EP1328240A1 (fr) Compositions de tonifiant capillaire a base de particules
WO1999062492A1 (fr) Compositions de tonifiants capillaires
WO2001008644A1 (fr) Composition de traitement capillaire contenant de l'ether de cellulose rendu hydrophobe
EP1355623B1 (fr) Compositions cosmetiques anhydres
EP1083864A1 (fr) Composition d'apres-shampoing contenant une huile de poly(alpha-olefine)
US20030215415A1 (en) Hair conditioning compositions comprising particles
AU1614100A (en) Hair conditioning composition comprising hydrophobically modified cationic cellulose
WO2001008643A1 (fr) Composition apres-shampooing contenant une emulsion de silicone cationique
CA2304275C (fr) Produit capillaire a base d'esters huiles a haute densite moleculaire
WO1999062466A1 (fr) Composition de conditionnement pour cheveux contenant une huile d'ester de citrate
WO1999062468A1 (fr) Composition d'apres-shampooing comprenant une huile primaire et une huile secondaire
WO2000064412A1 (fr) Compositions d'apres-shampoing
WO2000006094A1 (fr) Composition pour les cheveux comprenant des antioxydants
AU2704199A (en) Hair conditioning compositions comprising hydrophilically substituted cationi c surfactants and high melting point compounds
MXPA00011992A (en) HAIR CONDITIONING COMPOSITION COMPRISING POLY&agr;-OLEFIN OIL
MXPA00011991A (es) Composición acondicionadora del cabello que comprende aceite primario y aceite secundario
MXPA00002664A (en) Hair conditioning composition comprising high molecular weight ester oil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98814103.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 1999 541461

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09701800

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/011991

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1998931218

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998931218

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1998931218

Country of ref document: EP