EP1082733B1 - Herstellungsverfahren für ein magnetmaterial durch schmieden und magnetmaterial in pulverform - Google Patents

Herstellungsverfahren für ein magnetmaterial durch schmieden und magnetmaterial in pulverform Download PDF

Info

Publication number
EP1082733B1
EP1082733B1 EP99922227A EP99922227A EP1082733B1 EP 1082733 B1 EP1082733 B1 EP 1082733B1 EP 99922227 A EP99922227 A EP 99922227A EP 99922227 A EP99922227 A EP 99922227A EP 1082733 B1 EP1082733 B1 EP 1082733B1
Authority
EP
European Patent Office
Prior art keywords
forging
alloy
process according
rare earth
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99922227A
Other languages
English (en)
French (fr)
Other versions
EP1082733A1 (de
Inventor
Daniel Fruchart
René Perrier De la Bathie
Sophie Rivoirard
Patricia De Rango
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku America Inc filed Critical Santoku America Inc
Publication of EP1082733A1 publication Critical patent/EP1082733A1/de
Application granted granted Critical
Publication of EP1082733B1 publication Critical patent/EP1082733B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Definitions

  • the present invention relates to the preparation of a magnetic material by forging as well as a magnetic material in powder form.
  • Permanent magnets based on iron, boron and rare earths are good known. Their importance in the electrical or electronic industry is growing.
  • the first uses powder metallurgy for the preparation of dense magnets or sintered.
  • Another method consists in melting an alloy and then subjecting it to wheel, anneal it and hot press or coat the powder thus obtained with a resin or a polymer. This process allows bonded magnets to be obtained.
  • the powder and the magnet obtained by the implementation of this process are most often isotropic. To obtain an anisotropic powder or magnet, it is currently necessary to use expensive, low-yielding processes or whose results are insufficient.
  • the object of the invention is the development of such a method.
  • the invention also relates to a magnetic material in powder form, characterized in that it has a coercivity of at least 9kOe and a remanence of at least minus 9kG.
  • the present invention applies, according to its first variant, to the preparation of magnetic materials based on at least one rare earth, at least one metal of transition and at least one other element chosen from boron and carbon.
  • the process of the invention therefore starts in this case from alloys having the composition required for get the desired material.
  • This composition can be variable both by the nature of its constituents only by the respective proportions thereof.
  • alloys comprising at least one rare earth and at least one metal of transition and which additionally contain at least one other element chosen from boron and carbon. Such alloys are well known.
  • rare earth is meant, for the whole description, the elements of the group consisting of yttrium and the elements of the periodic table number atomic inclusive between 57 and 71.
  • the periodic classification of elements referred to for the entire description is that published in the Supplement to the Bulletin de la cios Chimique de France n ° 1 (January 1966).
  • the rare earth of the alloy can be neodymium or even praseodymium.
  • transition elements is meant the elements of columns IIIa to VIIa, VIII, Ib and llb. These transition elements can be more particularly here those chosen in the group comprising iron, cobalt, copper, niobium, vanadium, molybdenum and nickel, these elements can be taken alone or in combination. according to a preferred variant, the transition element is iron or even iron in combination with at least one element from the aforementioned group, iron being the majority.
  • the alloy may include additives such as gallium, aluminum, silicon, tin, bismuth, germanium, zirconium or titanium taken alone or in combination.
  • the respective proportions of rare earth, transition metal and the other above can vary widely. So the rare earth content can be at least 1% (the percentages given here are percentages atomic) and it can vary between 1% and 30% approximately, more particularly between 1% and about 20%.
  • the content of third element, in particular boron can be at least minus 0.5% and it can vary between 0.5 and 30% approximately, more particularly between 2 and About 10%.
  • their content can be at least 0.05% and it can vary from about 0.05 to 5%.
  • alloys By way of example of alloys, mention may very particularly be made of neodymium / iron / boron alloys, in particular those comprising also copper. Mention may also be made, as alloys which can be used more particularly in the context of the present invention, of those which have a phase corresponding to the formula TR 2 Fe 14 B, TR designating at least one rare earth, very particularly neodymium.
  • the invention also applies, according to its second variant, to the preparation of magnetic materials based on at least one rare earth, at least one metal of transition and nitrogen.
  • the process used in this case starts from alloys having the required composition of rare earth and transition metal to obtain the material wish. All that has been said above concerning the rare earth, the element of transition as well as any additives also applies here. However, we can cite more particularly the alloys based on samarium and iron from which will obtain magnetic materials based on samarium, iron and nitrogen.
  • alloys used as starting materials do not have or very few magnet properties. In particular, they have little or no coercivity and anisotropy.
  • the alloys that are generally used consist of mainly monocrystalline grains, of large size, of at least 10 ⁇ m approximately. Here and for the whole description, the sizes are measured by SEM. Alloys can be in a massive form or in the form of a powder. The alloys are generally heterogeneous in terms of grain size, nature of the phases and of the particle size in the case of a powder.
  • the alloy may undergo, prior to the treatment of the invention, annealing at a temperature of at least 500 ° C under an inert atmosphere.
  • the alloy as described above is placed in a sheath.
  • a sheath We use advantageously a cylindrical sheath.
  • the height of this sheath is preferably at less equal to the height of the alloy to be treated. Its wall thickness is chosen in such a way so that it does not burst during forging but this thickness must remain relatively small.
  • the material of the sheath must be as plastic as possible at the temperature at which forging takes place.
  • a sheath is generally used metal.
  • the sheath is made of steel.
  • the introduction of the alloy into the sheath can be done by casting the molten alloy in it or by any mechanical means starting from an ingot or powder.
  • the alloy-sheath assembly is then brought to a temperature of at least 500 ° C.
  • the maximum temperature not to be exceeded is that beyond which there is a risk of produce a significant fusion of the grains of the alloy.
  • This temperature is more precisely between 600 ° C and 1100 ° C, more particularly between 800 ° C and 1000 ° C.
  • the alloy is brought to the temperature indicated under an inert atmosphere, by example under argon.
  • the next step of the process of the invention consists in subjecting a forging to the alloy in the sheath.
  • Forging consists of a percussion, one gives indeed one or several hammer blows on the alloy / sheath assembly.
  • Forging takes place on the alloy / sheath assembly at the temperature indicated above.
  • the alloy / sheath assembly is placed in a sealed chamber surrounding the anvil of the forge. This chamber is connected to a source of inert gas and it includes an opening through which the forge hammer can pass through a seal.
  • the number of hammer blows is between 1 and 10.
  • the mechanical power of the hammer blow must be such that the grains constituting the alloy are broken. It can also be such that part of this power is used for heating the material, allowing several successive forges, without external heating of the alloy.
  • this power can be for example at least about 1 kilowatt per gram of material (kW / g), more particularly at least 5kW / g.
  • Such a power corresponds to a material deformation speed of at least 8 s -1 , in particular of at least 10 s -1 , more particularly of at least 50s -1 and even more particularly of at least 100s -1 .
  • the rate of deformation of the material is defined by the expression (dh / h) / dt, dh / h designating the ratio (initial height-final height) / initial height, the height being that of the alloy / sheath assembly, dt designating the duration of the crushing which is equal to dh / (v / 2), v being the speed of the hammer at the time of the impact and v / 2 being considered, as a first approximation, as the average speed during the crushing, this average speed can indeed be defined as the ratio (initial speed-final speed) / 2 i.e. (v-0) / 2.
  • Such a power corresponds to devices in which the speed of the hammer is at least 0.3 ms -1 , in particular at least 0.5 m.s -1 , more particularly at least 1m.s -1 , and even more particularly at least 4m.s -1 .
  • Forging can be carried out with a reduction rate of at least 2.
  • the rate of reduction is defined by the ratio initial height (before forging) / final height (after forging) of the alloy / sheath assembly. This rate can be more particularly at least minus 5.
  • forging is carried out in a direction perpendicular to an axis of easy growth of the crystallites of the alloy.
  • this easy growth axis is the a or b axis of the quadratic mesh.
  • Forging in this case allows the axes c to pass from an equatorial distribution to a substantially unidirectional distribution.
  • the product obtained after forging is in a flat form cylindrical, or possibly in the form of a capsule when a sealed envelope as described above, the internal part of which comprises the alloy starting metal and the peripheral or external part the starting sheath.
  • the alloy is now made up of monocrystalline grains whose average size is at most 30 ⁇ m, more particularly at most 10 ⁇ m.
  • the alloy has coercivity and it is anisotropic.
  • the magnetization axes are aligned parallel to the direction of the forging.
  • the product from the forging is subjected to a nitriding treatment.
  • the nitriding treatment is done in a known manner.
  • the nitrogen content of the material obtained can be of the same order as that given above for boron, more in particular, it can be between 2 and 15%.
  • the method of the invention can also comprise, after the forging step, other complementary steps implementing treatments which will be described below.
  • the additional treatments are implemented preferably work before this nitriding step.
  • a first type takes place at a temperature which can be between 700 ° C. and 1100 ° C.
  • the treatment is preferably carried out under an inert atmosphere, for example under argon.
  • the duration of treatment can be between a few minutes and a few hours.
  • Another type of annealing treatment can be conducted at a temperature between 400 ° C and 700 ° C, preferably also under an inert atmosphere of the type argon.
  • the duration of treatment can be between a few minutes and a few hours.
  • Hydriding and dehydrating treatments are known. Hydriding the material can be done under a hydrogen atmosphere (for example at least equal to 0.1MPa) at room temperature or by thermally activating the material in an atmosphere containing hydrogen. For example, we can thermally activate the material up to a temperature below 500 ° C, preferably below 300 ° C. Dehydriding can be achieved by heating the hydrated material to a temperature of at least 500 ° C under vacuum. The temperature and the heating time are chosen so as to obtain complete dehydriding. The treatment of dehydriding can be optionally followed by annealing of the first and / or second aforementioned type.
  • a material is obtained in the form of a powder. having interesting magnetic properties. So this material has a coercivity of at least 9kOe, more particularly at least 9.5kOe and even more particularly at least 10kOe in combination with a remanence of at least 9kG, more particularly at least 9.5kG and even more particularly at least 10kg.
  • the material can have each of the coercivity values given above in combination with each of the remanence values also given above, by example a coercivity of 9kOe in combination with a remanence of 9.5kG.
  • the material has a crystalline texture which makes it magnetically anisotropic.
  • the particles that make up the powder themselves are made up of not just one monocrystalline grain but of several monocrystalline grains with an average size of at least minus 0.1 ⁇ m. So, for example, the particles can have a size of a few tens of microns, in particular between approximately 10 and approximately 200 ⁇ m, more particularly between around 10 ⁇ m and around 100 ⁇ m, and be made up of ten grains of a few microns each.
  • the material consists of the elements components which have been given above for the alloy and what has been described thereon also applies here, the material being in particular based on at least one rare earth, at least at least one transition metal and at least one other element chosen from boron, carbon and nitrogen.
  • the alloy used corresponds to the formula Nd 15.3 Fe 76.8 B 4.9 Cu 1.5 Al 1.5 for examples 1 and 2, to the formula Nd 15.5 Fe 78 B 5 Cu 1.5 for example 3 and with the formula Nd 15.3 Fe 76.9 B 4.9 Cu 1.5 Nb 0.5 Al 0.9 for example 4.
  • the tests are carried out in a cylindrical steel sheath. In some cases the alloy undergoes two hammer blows (first forging and second forging).
  • the characteristics of the starting material are given in table 1, the forging conditions in tables 2 and 3 and the magnetic properties of the solid materials obtained in table 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Claims (18)

  1. Verfahren zur Herstellung eines magnetischen Materials, dadurch gekennzeichnet, dass es die folgenden Schritte umfasst:
    man gibt eine Legierung auf der Grundlage von mindestens einem Seltenerdmetall, mindestens einem Übergangsmetall und mindestens einem anderen Element, das aus Bor und Kohlenstoff ausgewählt ist, in ein Rohr;
    man bringt die Zusammenstellung auf eine Temperatur von mindestens 500 °C;
    man unterzieht die Zusammenstellung einem Schmieden mit einer Geschwindigkeit der Verformung des Materials von mindestens 8 s-1.
  2. Verfahren zur Herstellung eines magnetischen Materials auf der Grundlage von mindestens einem Seltenerdmetall, mindestens einem Übergangsmetall und von Stickstoff, dadurch gekennzeichnet, dass es die folgenden Schritte umfasst:
    man gibt eine Legierung auf der Grundlage von mindestens einem Seltenerdmetall und mindestens einem Übergangsmetall in ein Rohr;
    man bringt die Zusammenstellung auf eine Temperatur von mindestens 500 °C;
    man unterzieht die Zusammenstellung einem Schmieden mit einer Geschwindigkeit der Verformung des Materials von mindestens 8 s-1;
    man unterzieht das Produkt, das aus dem Schmieden hervorgegangen ist, einer Nitrierungsbehandlung.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man das Schmieden mit einer Geschwindigkeit der Verformung des Materials von mindestens 10 s-1, spezieller mindestens 50 s-1 und noch spezieller mindestens 100 s-1 bewirkt.
  4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass man das Schmieden mit einem Reduktionsgrad von mindestens 2 bewirkt.
  5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man das Schmieden in einer Richtung senkrecht zu einer Achse des leichten Wachstums der Kristallite der Legierung bewirkt.
  6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Legierung auf der Grundlage von mindestens einem Seltenerdmetall, bei dem es sich um Neodym oder Samarium handelt, vorliegt.
  7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Legierung auf der Grundlage von mindestens einem Übergangsmetall, bei dem es sich um Eisen handelt, vorliegt.
  8. Verfahren nach einem der Ansprüche 1 oder 3 bis 7, dadurch gekennzeichnet, dass die Legierung auf der Grundlage von mindestens einem Seltenerdmetall, mindestens einem Übergangsmetall und von Bor vorliegt.
  9. Verfahren nach einem der Ansprüche 1 oder 3 bis 8, dadurch gekennzeichnet, dass die Legierung darüber hinaus Kupfer enthält.
  10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Rohr aus Metall ist.
  11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Rohr aus Stahl ist.
  12. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man das nach dem Schmieden und gegebenenfalls vor der Nitrierungsbehandlung erhaltene Material mindestens einer Temperbehandlung unterzieht.
  13. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man das nach dem Schmieden und gegebenenfalls nach mindestens einer Temperbehandlung erhaltene Material einer Hydrierung, dann einer Dehydrierung unterzieht, wobei der Dehydrierung gegebenenfalls mindestens eine Temperbehandlung und gegebenenfalls eine Nitrierungsbehandlung folgen kann.
  14. Magnetisches Material in Pulverform auf der Grundlage mindestens eines Seltenerdmetalls, mindestens eines Übergangsmetalls und mindestens eines anderen Elements, das aus Bor und Kohlenstoff ausgewählt ist, erhalten durch das Verfahren nach einem der Ansprüche 1, 3 bis 13, dadurch gekennzeichnet, dass es eine Koerzitiv-Feldstärke von mindestens 9 kOe und eine Remanenz von mindestens 9 kG aufweist.
  15. Metallisches Material in Pulverform auf der Grundlage von mindestens einem Seltenerdmetall, mindestens einem Übergangsmetall und von Stickstoff, erhalten durch das Verfahren nach einem der Ansprüche 2 bis 13, dadurch gekennzeichnet, dass es eine Koerzitiv-Feldstärke von mindestens 9 kOe und eine Remanenz von mindestens 9 kG aufweist.
  16. Material nach einem der Ansprüche 14 oder 15, dadurch gekennzeichnet, dass es in Form eines Pulvers vorliegt, das aus Teilchen von 10 bis 200 µm zusammengesetzt ist.
  17. Material nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass es in Form eines Pulvers vorliegt, dessen Teilchen aus monokristallinen Körnern mit einer mittleren Größe von mindestens 0,1 µm zusammengesetzt ist.
  18. Material nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass es magnetisch anisotrop ist.
EP99922227A 1998-05-28 1999-05-26 Herstellungsverfahren für ein magnetmaterial durch schmieden und magnetmaterial in pulverform Expired - Lifetime EP1082733B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9806745A FR2779267B1 (fr) 1998-05-28 1998-05-28 Procede de preparation d'un materiau magnetique par forgeage et materiau magnetique sous forme de poudre
FR9806745 1998-05-28
PCT/FR1999/001234 WO1999062080A1 (fr) 1998-05-28 1999-05-26 Procede de preparation d'un materiau magnetique par forgeage et materiau magnetique sous forme de poudre

Publications (2)

Publication Number Publication Date
EP1082733A1 EP1082733A1 (de) 2001-03-14
EP1082733B1 true EP1082733B1 (de) 2003-04-02

Family

ID=9526820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99922227A Expired - Lifetime EP1082733B1 (de) 1998-05-28 1999-05-26 Herstellungsverfahren für ein magnetmaterial durch schmieden und magnetmaterial in pulverform

Country Status (10)

Country Link
US (1) US6592682B1 (de)
EP (1) EP1082733B1 (de)
JP (1) JP3668134B2 (de)
CN (1) CN1142562C (de)
AT (1) ATE236450T1 (de)
AU (1) AU3935399A (de)
DE (1) DE69906513T2 (de)
FR (1) FR2779267B1 (de)
TW (1) TW558469B (de)
WO (1) WO1999062080A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2948688B1 (fr) 2009-07-31 2012-02-03 Centre Nat Rech Scient Procede et dispositif de traitement d'un materiau sous l'effet d'un champ magnetique
TWI558066B (zh) 2011-06-10 2016-11-11 艾克西弗洛克斯控股私營有限公司 電機
CN103031414B (zh) * 2012-12-28 2014-03-05 哈尔滨工业大学 一种定向凝固钕铁硼磁性合金的制备方法
DE102016217138A1 (de) 2016-09-08 2018-03-08 Robert Bosch Gmbh Verfahren und zugehörige Schmiedehohlform zur Herstellung eines heißumgeformten Magneten
WO2018209681A1 (en) * 2017-05-19 2018-11-22 Robert Bosch Gmbh Hot deformed magnet, and a method for preparing said hot deformed magnet
DE102018105250A1 (de) * 2018-03-07 2019-09-12 Technische Universität Darmstadt Verfahren zur Herstellung eines Permanentmagnets oder eines hartmagnetischen Materials

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136099A (en) * 1985-08-13 2000-10-24 Seiko Epson Corporation Rare earth-iron series permanent magnets and method of preparation
JPH01175207A (ja) * 1987-12-28 1989-07-11 Seiko Epson Corp 永久磁石の製造方法
FR2648948B1 (fr) * 1989-06-23 1993-12-31 Baikowski Pierre Synthetique Procede perfectionne pour la preparation d'aimants permanents a hautes performances a base de neodyme-fer-bore
US5580396A (en) * 1990-07-02 1996-12-03 Centre National De La Recherche Scientifique (Cnrs) Treatment of pulverant magnetic materials and products thus obtained
JPH0491403A (ja) * 1990-08-02 1992-03-24 Fuji Elelctrochem Co Ltd 異方性永久磁石
JP2580066B2 (ja) * 1990-08-02 1997-02-12 富士電気化学株式会社 異方性永久磁石
JPH04134806A (ja) * 1990-09-27 1992-05-08 Seiko Epson Corp 永久磁石の製造方法
JP3084748B2 (ja) * 1991-04-25 2000-09-04 セイコーエプソン株式会社 希土類永久磁石の製造方法
JPH05135924A (ja) * 1991-11-14 1993-06-01 Seiko Epson Corp 希土類永久磁石の製造方法
JPH05175027A (ja) * 1991-12-25 1993-07-13 Aichi Steel Works Ltd 永久磁石材料
US5516371A (en) * 1994-09-22 1996-05-14 Korea Research Institute Of Standard And Science Method of manufacturing magnets

Also Published As

Publication number Publication date
DE69906513D1 (de) 2003-05-08
FR2779267B1 (fr) 2000-08-11
DE69906513T2 (de) 2004-02-19
CN1310849A (zh) 2001-08-29
EP1082733A1 (de) 2001-03-14
FR2779267A1 (fr) 1999-12-03
US6592682B1 (en) 2003-07-15
JP2002516925A (ja) 2002-06-11
CN1142562C (zh) 2004-03-17
TW558469B (en) 2003-10-21
WO1999062080A1 (fr) 1999-12-02
AU3935399A (en) 1999-12-13
JP3668134B2 (ja) 2005-07-06
ATE236450T1 (de) 2003-04-15

Similar Documents

Publication Publication Date Title
FR2632766A1 (fr) Aimant permanent et son procede de fabrication
JP7416476B2 (ja) 磁石製造
WO2017089488A1 (fr) Aimant permanent fritte
US20130323111A1 (en) Method of production of rare earth magnet
EP0601943B1 (de) Magnetpulver vom Typ SE-Fe-B, Sintermagnete daraus und Herstellungsverfahren
EP1082733B1 (de) Herstellungsverfahren für ein magnetmaterial durch schmieden und magnetmaterial in pulverform
EP0538320B1 (de) Behandlung von magnetpulvermaterialien und so erhaltene gegenstände
EP0478674B1 (de) Verfahren zur herstellung von dauermagneten auf neodymium-eisen-bor-basis
KR950013978B1 (ko) 알니코계 영구자석의 제조방법
WO2016097366A1 (fr) Aimant permanent fritte
JPH09124372A (ja) 希土類磁石の製造法
JPS6350469A (ja) スパツタリング用合金タ−ゲツトの製造方法
CH674593A5 (en) Hard magnets
Nd-Fe-B IR Harris
FR2688233A1 (fr) Alliages de magnesium elabores par solidification rapide possedant une haute resistance mecanique a chaud.
JPH02102504A (ja) 希土類−鉄−ほう素系異方性磁石粉の製造方法
JPH10154610A (ja) 異方性磁石粉末の製造方法、異方性磁石粉末および異方性ボンド磁石
FR2698999A1 (fr) Poudre magnétique de type Fe-TR-B et aimants frittés correspondants et leur méthode de préparation.
JPS63226007A (ja) 希土類磁石とその製造方法
JP2980254B2 (ja) 異方性永久磁石及びその製造方法
WO1997042640A1 (fr) Procede d'obtention de materiau magnetiquement anisotrope a base de terres rares et metaux de transition par solidification d'un alliage liquide sous champ orienteur
FR2491499A1 (fr) Alliage magnetique anisotrope et procede de fabrication
FR2707421A1 (fr) Poudre additive pour la fabrication d'aimants frittés type Fe-Nd-B, méthode de fabrication et aimants correspondants.
JPH09139306A (ja) 高強度希土類磁石
JPH04321206A (ja) 希土類元素−Fe−B系磁石の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FI FR GB

17Q First examination report despatched

Effective date: 20020322

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SANTOKU AMERICA, INC.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE FI FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030402

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SANTOKU CORPORATION

REF Corresponds to:

Ref document number: 69906513

Country of ref document: DE

Date of ref document: 20030508

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060515

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060522

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070526

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180522

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180522

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69906513

Country of ref document: DE