EP1081434B1 - Device for generating a rotating gas flow - Google Patents

Device for generating a rotating gas flow Download PDF

Info

Publication number
EP1081434B1
EP1081434B1 EP00117240A EP00117240A EP1081434B1 EP 1081434 B1 EP1081434 B1 EP 1081434B1 EP 00117240 A EP00117240 A EP 00117240A EP 00117240 A EP00117240 A EP 00117240A EP 1081434 B1 EP1081434 B1 EP 1081434B1
Authority
EP
European Patent Office
Prior art keywords
nozzles
wall
incineration plant
opposite
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00117240A
Other languages
German (de)
French (fr)
Other versions
EP1081434A1 (en
EP1081434B2 (en
Inventor
Erich Vogler
Peter Straub
Gérard CAPITAINE
Jean-Pierre Budliger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Innova AG
Original Assignee
Von Roll Umwelttechnik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4213860&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1081434(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Von Roll Umwelttechnik AG filed Critical Von Roll Umwelttechnik AG
Publication of EP1081434A1 publication Critical patent/EP1081434A1/en
Publication of EP1081434B1 publication Critical patent/EP1081434B1/en
Application granted granted Critical
Publication of EP1081434B2 publication Critical patent/EP1081434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/106Combustion in two or more stages with recirculation of unburned solid or gaseous matter into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07002Injecting inert gas, other than steam or evaporated water, into the combustion chambers

Definitions

  • the invention relates to a combustion plant according to the characteristics of Preamble of claim 1.
  • the flow channels are used to by means of the media of the composition of the Flow duct of the incinerator removed Flue gas mixture and its temperature and its To regulate residence time.
  • composition, Temperature and residence time not only regulated but before everything be evened out. This way you can an optimal afterburning of the flue gas mixture ensures and can achieve the desired, low Emmisionshong be respected. For this is one complete mixing of the flue gas mixture necessary. By generating rotating currents in the flow channel by means of devices with corresponding nozzle arrangements you try this to achieve complete mixing.
  • a generic combustion system is for example off US-A-5,252,298.
  • the arranged in a plane Nozzles are tangential to one in the middle of the Flow channel imaginary circular line aligned, so that in the flow channel a rotating flow is generated.
  • incinerator is the flow rate through each other in the flow channel arranged opposite nozzles controlled so that at least two oppositely rotating currents in the Flow channel arise.
  • the problem with these known rotating currents is that in the middle the flow creates an almost vertebrate free eye, so that no complete mixing and therefore no uniform composition, temperature distribution and Residence time is obtained.
  • Object of the present invention is therefore, a economic incineration plant to provide, with the complete mixing of flue gas mixtures obtained in the flow channel of the incinerator.
  • This object is fulfilled by a combustion plant according to the features of claim 1.
  • first nozzles according to Claim 1 Due to the special arrangement of first nozzles according to Claim 1 in a Eindüsebene in at least a first Wall section per wall, the at least a first Wall section of the opposite wall at an angle and the orientation of the first nozzles so in the injection level, that in the injection level lying angle between the wall and a dive Beam is at least approximately 90 °, becomes one generates a rotating flow in the flow channel and the others a very good mixing of the flue gas mixture reached.
  • diagonally opposite is meant that the first wall sections for swirling the flowing material in the projection about in the direction of the jet flowing through the first nozzles is not or overlap only partially laterally.
  • first nozzles on first wall sections with a length 1 of 50% and more is ensured that rays of doused media to the center of the Pass flow channel.
  • Injection level in addition to the first nozzles in one second wall portion at an angle ⁇ to the first nozzles and diagonally against the center of the Flow channels aligned, provided second nozzles, which further improves the mixing.
  • each wall several first and especially also prefers several second wall sections with first or second nozzles, so that vortex areas with counterrotating vortices are generated, causing the Blending even further improved.
  • each of the second nozzles with a Eindüskomponente a different angle ⁇ over the Have injection level or nozzles all the other nozzles with a Eindüskomponente in the same by the angle ⁇ plane tilted in relation to the injection plane Flow channel. That's how the rays are These nozzles are adjustable so that they are helical ineianderfliessen.
  • first Nozzles arranged in a first wall section.
  • the first wall sections are in the circumferential direction contrary to the rotating flow at the beginning of each Wall, leaving it from the first wall section of the wall adjacent wall are spaced and not each other touch.
  • the nozzles of all four walls can also in two parallel directions of flow be arranged spaced injection levels, wherein each other opposite nozzles are arranged in a plane.
  • fresh secondary air and / or recirculated flue gas injected.
  • fresh Secondary air and recirculated flue gas are preferably provided annular gap nozzles. It exists the core jet of the annular gap nozzles from recirculated Flue gas and the ring stream of fresh secondary air.
  • control system with its Help the throughput of the media to be atomized at least for opposite walls arranged nozzles is independently controllable.
  • Figs. 1a to 4a are of a waste incineration plant in each case a section of a flue gas outlet 10 as well a combustion chamber 12 and a transition region 20 between Combustion chamber 12 and flue 10 with a flame blanket 14 shown in section along the flue gas outlet 10.
  • Flue gas mixtures is a rectangular flow channel 18th provided, the transition area 20 of the Combustion chamber 12 to the flue gas outlet 10 and the flue gas outlet 10 includes.
  • the principal flow direction of Flue gas mixture is indicated by an arrow 16.
  • FIGS. 1b to 4b sections are respectively transverse to Flow channel 18 shown in the region of a feed plane 22, in which nozzles 24 for injecting verdüsbarer media are arranged.
  • the nozzles 24 and their orientation are in all representations represented by arrows.
  • the Müllmanntechnik is indicated by an arrow 9.
  • All the embodiments shown in FIGS. 1 a to 4 b have first wall sections 28 with a length l 1 of at least approximately two opposite walls 26 of at least approximately 40% to 80% of the wall width b of a wall 26.
  • the first wall sections 28 are in each case point-symmetrical with respect to the central longitudinal axis 32 of the flow channel 18 as a geometric axis of symmetry and are bounded on one side by the adjacent wall 26.
  • first nozzles 24a are arranged in a row 22 in a row.
  • the first nozzles 24a are aligned in the injection plane 22, so that they inject into this, wherein the lying in the injection plane angle ⁇ between injected jet 30 and wall 26 is about 90 °. This arrangement of nozzles 24 allows a good mixing of the excited in the flow channel 18 for rotation and flowing in the direction 16 flue gas mixture.
  • the injection level 22 is in all examples in the range the flame blanket 14, which in the transition region 20 between Flue gas outlet 10 and combustion chamber 12 is arranged.
  • the Flammdecke 14 is penetrated either even by nozzles 24, as shown in all four examples, and / or it is via nozzles 24a ', 24b' ', which in walls (26) are arranged laterally below the flame blanket (14), with undermined media ", as shown in Figs. 2 to 4 is shown. In this way, the flame blanket 14 Cooled by the injected media.
  • first wall portions 28 are provided with a length l 1 of about 40% to 50% of the wall width b.
  • second wall section 34 with length l 2
  • the row of the first nozzles 24a in the first wall section 28 are complementary
  • second nozzles 24b which are aligned at an angle ⁇ with respect to the first nozzle 24a obliquely against the center of the flow channel 18 represented by the central longitudinal axis 32 are.
  • the angle ⁇ is in this example about 25 °, but it can be between 20 ° and 50 °.
  • the lengths l 1 and l 2 of the two wall sections 28, 34 complement each other in this example to the entire wall width b, but this need not necessarily be so.
  • the second nozzles 24b are aligned in a common plane 36, which is tilted by the angle ⁇ with respect to the injection plane 22.
  • the angle ⁇ in this example is about 10 °, but may vary and be between 5 ° and 15 °.
  • the second nozzles 24b are aligned such that the beams 30 generated by them flow into one another helically.
  • the second nozzles 24b may also be tilted at individual angles ⁇ with respect to the injection plane 22.
  • Figs. 2a to 2c is an embodiment shown in the on all four walls 26 of the Flow channel 18 first nozzles 24a in a first Wall section 28 and second nozzles 24b in a second Wall section 34 analogous to that in Figs. 1a and 1b illustrated embodiment are arranged.
  • the first Wall sections 28 are opposite in the circumferential direction the rotating flow respectively at the beginning of a wall 26th arranged.
  • the nozzles 24a, 24b and 24a ', 24a' ', 24b', 24b '' are in two parallel, in the flow direction spaced-apart injection planes 22 and 22 * arranged, with nozzles 24 at opposite ends Walls 26 in a common injection plane 22, 22 * are arranged.
  • the distance d between the injection planes 22, 22 * can be between 0.4m and 3m.
  • first wall sections 28 with first nozzles 24a are arranged in a single injection plane 22 on all four walls 26 of the flow channel 18.
  • the length l 1 of the first wall sections 28 is well above 0.5b, preferably at 0.55b to 0.75b.
  • the remainder of each wall 26 remaining on the entire wall width b is free of nozzles 24.
  • the nozzles 24a instead of in one single injection plane 22 (see Fig. 3a, 3b) in two to arrange parallel injection planes 22 and 22 *, as shown in Figs. 4a, 4b.
  • All nozzles are designed so that the media to be injected with can be injected at a pressure of 500Pa to 5000Pa.
  • annular gap nozzle 24 * is shown as they For example, for injecting fresh secondary air and recirculated flue gas is provided. Shown is a first supply line 40 for the supply of a first Medium, in this case recirculated flue gas, in one formed as a core nozzle 42 and a core jet producing nozzle part and a second supply line 44 for the supply of a second medium, in this case fresh secondary air, in an annular gap 46th trained and producing a ring beam Nozzle part.
  • a first supply line 40 for the supply of a first Medium, in this case recirculated flue gas, in one formed as a core nozzle 42 and a core jet producing nozzle part
  • a second supply line 44 for the supply of a second medium, in this case fresh secondary air, in an annular gap 46th trained and producing a ring beam Nozzle part.
  • a control system 48 Via a control system 48, as shown in Fig. 6 for Ringspaltdüsen 24 * is shown, the different conditions, as on different Sides of the flow channel 18 can prevail, better Be taken into account.
  • the throughputs of media to be injected are via the control system 48 and the valves 54 in the example shown with respect to the Garbage flow 9 upstream half 52 and the downstream half 50 of the flow channel 18th independently controllable. It would also be possible to have one separate control of the flow rates for the nozzles 24th on all four walls 26.
  • nozzles 24 are provided for secondary air and nozzles 24 for recirculated flue gas. These nozzles 24 can be arranged either mixed in a row next to each other or in two rows one above the other, so that there is a separate injection level 22 for each nozzle 24. If annular gap nozzles 24 * are provided, then the core jet consists of flue gas and the ring jet of secondary air, as described for FIG. 5.
  • the embodiments shown here give the invention not conclusively again.
  • the device also in incinerators and To use waste incineration plants, in which the Transition region 20 between the combustion chamber 12 and Flue gas outlet 10 characterized by a constriction is.
  • more injection levels 22 deeper in the Combustion chamber 12 or higher in the flue gas outlet 10th be provided.
  • flue gas and Secondary air can also use other media such as water vapor Activated carbon, hearth furnace coke (HOK), waste z. B. in the context a residue recycling, fuels u.a.m. injected become.
  • the device can be used. In the same Direction of rotation as the first nozzles 24a can burner 2m to 3m above the injection plane 22 at two each other be arranged opposite walls 26.
  • FIG. 7 shows a further embodiment of the invention in which two counter-rotating vortices 60 ', 61' are produced.
  • the device emerges from the device shown in Fig. 2b by reflection on the bottom wall 26, ie the first and second nozzles shown therein are doubled.
  • the walls 26 of the device each have two first wall sections 28a1 and 28a2 or 28b1 and 28b2 with first nozzles 24a.
  • the first nozzles 24a of the first wall sections 28a2, 28b2 in the lower half of the cross-section are arranged obliquely opposite each other and produce a clockwise-rotating first vortex 61 '. This is amplified by the second nozzles 24b of the second wall portions 34a2, 34b2.
  • the second nozzles 24b radiate in a direction offset by +/- ⁇ with respect to the jet direction of the first nozzles.
  • These second wall portions 34a2, 34b2 are also opposite each other obliquely.
  • the wall regions in the lower half of the illustrated cross-section define a first vortex region 61.
  • a second vortex region 60 is defined by the first and second wall sections 28a1, 28b1, 34a1, 34b1 in the upper part of FIG.
  • the local second vortex 60 'rotates counterclockwise.
  • the first wall sections 28a1, 28a2, 28b1, 28b2 each have a length l 1 .
  • first wall sections 28a1 and 28b1 (second swirl 60 ') and 28a2 and 28b2 (second swirl 61') define the direction of rotation of the swirl 60 ', 61'.
  • the second nozzles 24b then radiate to enhance the rotation, ie tangentially in the direction of rotation, to an imaginary circle about the center of the vortex 60 'and 61', respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Incineration Of Waste (AREA)
  • Chimneys And Flues (AREA)

Description

Die Erfindung betrifft eine Verbrennungsanlage gemäss den Merkmalen des Oberbegriffs des Anspruches 1.The invention relates to a combustion plant according to the characteristics of Preamble of claim 1.

Die Strömungskanäle werden eingesetzt, um mittels der eingedüsten Medien die Zusammensetzung des durch den Strömungskanal der Verbrennungsanlage abtransportierten Rauchgasgemisches und dessen Temperatur sowie dessen Verweilzeit zu regulieren. Jedoch sollen Zusammensetzung, Temperatur und Verweilzeit nicht nur reguliert sondern vor allem auch vergleichmässigt werden. Auf diese Weise kann eine optimale Nachverbrennung des Rauchgasgemisches gewährleistet und können die angestrebten, geringen Emmisionswerte eingehalten werden. Hierfür ist eine vollständige Durchmischung des Rauchgasgemisches notwendig. Durch die Erzeugung von rotierenden Strömungen im Strömungskanal mit Hilfe von Vorrichtungen mit entsprechenden Düsenanordnungen versucht man diese vollständige Durchmischung zu erreichen.The flow channels are used to by means of the media of the composition of the Flow duct of the incinerator removed Flue gas mixture and its temperature and its To regulate residence time. However, composition, Temperature and residence time not only regulated but before everything be evened out. This way you can an optimal afterburning of the flue gas mixture ensures and can achieve the desired, low Emmisionswerte be respected. For this is one complete mixing of the flue gas mixture necessary. By generating rotating currents in the flow channel by means of devices with corresponding nozzle arrangements you try this to achieve complete mixing.

Eine gattungsgemässe Verbrennungsanlage ist beispielsweise aus US-A-5 252 298 bekannt. Die in einer Ebene angeordneten Düsen sind tangential auf eine in der Mitte des Strömungskanals gedachte Kreislinie ausgerichtet, so dass im Strömungskanal eine rotierende Strömung erzeugt wird. Bei einer aus DE-A-19 648 639 bekannten Verbrennungsanlage, wird die Durchsatzmenge mittels im Strömungskanal einander gegenüber angeordneten Düsen derart gesteuert, dass wenigstens zwei entgegengesetzt rotierende Strömungen im Strömungskanal entstehen. Das Problem bei diesen bekannten rotierenden Strömungen besteht darin, dass in der Mitte der Strömung ein nahezu wirbelfreies Auge entsteht, so dass keine vollständige Durchmischung und damit keine gleichmässige Zusammensetzung, Temperaturverteilung und Verweilzeit erhalten wird.A generic combustion system is for example off US-A-5,252,298. The arranged in a plane Nozzles are tangential to one in the middle of the Flow channel imaginary circular line aligned, so that in the flow channel a rotating flow is generated. In one known from DE-A-19 648 639 incinerator is the flow rate through each other in the flow channel arranged opposite nozzles controlled so that at least two oppositely rotating currents in the Flow channel arise. The problem with these known rotating currents is that in the middle the flow creates an almost vertebrate free eye, so that no complete mixing and therefore no uniform composition, temperature distribution and Residence time is obtained.

Aufgabe der vorliegenden Erfindung ist es daher, eine wirtschaftliche Verbrennungsanlage zur Verfügung zu stellen, mit der eine vollständige Durchmischung von Rauchgasgemischen im Strömungskanal der Verbrennungsanlage erhalten wird. Diese Aufgabe wird erfüllt durch eine Verbrennungsanlage gemäss den Merkmalen des Anspruches 1.Object of the present invention is therefore, a economic incineration plant to provide, with the complete mixing of flue gas mixtures obtained in the flow channel of the incinerator. This object is fulfilled by a combustion plant according to the features of claim 1.

Durch die spezielle Anordnung von ersten Düsen gemäss Anspruch 1 in einer Eindüsebene in wenigstens einem ersten Wandabschnitt pro Wand, der dem wenigstens einen ersten Wandabschnitt der gegenüberliegenden Wand schräg gegenüberliegt, und durch die Ausrichtung der ersten Düsen derart in die Eindüsebene, dass der in der Eindüsebene liegende Winkel zwischen der Wand und einem eingedüsten Strahl wenigstens annähernd 90° beträgt, wird zum einen eine rotierende Strömung im Strömungskanal erzeugt und zum anderen eine sehr gute Durchmischung des Rauchgasgemisches erreicht. Mit schräg gegenüberliegend" ist dabei gemeint, dass sich die ersten Wandabschnitte zur Verwirbelung des strömenden Materials in der Projektion etwa in Richtung des durch die ersten Düsen einströmenden Strahls nicht oder nur teilweise seitlich überlappen. Insbesondere bei einer Verteilung erster Düsen auf ersten Wandabschnitten mit einer Länge 1 von 50% und mehr wird sichergestellt, dass Strahlen eingedüster Medien bis ins Zentrum des Strömungskanals gelangen. Indem die Summe L der Längen der ersten Wandabschnitte einer Wand von wenigstens annähernd 40% bis hin zu 80% der gesamten Wandbreite b beträgt, d.h. indem sich die ersten Düsen nur über einen Teilbereich der Breite b der Wand erstrecken, werden Material- und Montagekosten für die Düsen gespart, wobei die Effizienz der Durchmischung gewahrt ist.Due to the special arrangement of first nozzles according to Claim 1 in a Eindüsebene in at least a first Wall section per wall, the at least a first Wall section of the opposite wall at an angle and the orientation of the first nozzles so in the injection level, that in the injection level lying angle between the wall and a dive Beam is at least approximately 90 °, becomes one generates a rotating flow in the flow channel and the others a very good mixing of the flue gas mixture reached. With diagonally opposite "is meant that the first wall sections for swirling the flowing material in the projection about in the direction of the jet flowing through the first nozzles is not or overlap only partially laterally. Especially at a distribution of first nozzles on first wall sections with a length 1 of 50% and more is ensured that rays of doused media to the center of the Pass flow channel. By the sum L of the lengths of the first wall sections of a wall of at least approximately 40% up to 80% of the total wall width b, i. E. by the first nozzles only over a portion of the Width b of the wall will extend material and Assembly costs for the nozzles saved, with efficiency the mixing is ensured.

In einer speziellen Ausführungsform sind in der Eindüsebene zusätzlich zu den ersten Düsen in einem zweiten Wandabschnitt in einem Winkel β gegenüber den ersten Düsen und schräg gegen das Zentrum des Strömungskanals ausgerichtete, zweite Düsen vorgesehen, was die Durchmischung weiter verbessert.In a special embodiment are in the Injection level in addition to the first nozzles in one second wall portion at an angle β to the first nozzles and diagonally against the center of the Flow channels aligned, provided second nozzles, which further improves the mixing.

Vorzugsweise sind je Wand mehrere erste und besonders bevorzugt auch mehrere zweite Wandabschnitte mit ersten bzw. zweiten Düsen vorgesehen, so dass Wirbelbereiche mit gegenläufig rotierenden Wirbeln erzeugt werden, was die Durchmischung noch weiter verbessert.Preferably, each wall several first and especially also prefers several second wall sections with first or second nozzles, so that vortex areas with counterrotating vortices are generated, causing the Blending even further improved.

Besonders vorteilhaft ist es, die zweiten Düsen in einem Winkel α gegenüber der Eindüsebene mit einer Eindüskomponente in Richtung stromabwärts auszurichten. Dabei kann jede der zweiten Düsen mit einer Eindüskomponente einen anderen Winkel α gegenüber der Eindüsebene aufweisen oder aber alle zweiten Düsen düsen mit einer Eindüskomponente in die selbe um den Winkel α gegenüber der Eindüsebene verkippte Ebene in den Strömungskanal ein. Auf diese Weise sind die Strahlen dieser Düsen so einstellbar, dass sie schraubenförmig ineianderfliessen.It is particularly advantageous to use the second nozzles in one Angle α opposite to the injection plane with a Align Eindüskomponente downstream. In this case, each of the second nozzles with a Eindüskomponente a different angle α over the Have injection level or nozzles all the other nozzles with a Eindüskomponente in the same by the angle α plane tilted in relation to the injection plane Flow channel. That's how the rays are These nozzles are adjustable so that they are helical ineianderfliessen.

In einer weiteren bevorzugten Ausführungsform sind an allen vier den Strömungskanal begrenzenden Wänden erste Düsen in einem ersten Wandabschnitt angeordnet. Dabei liegen die ersten Wandabschnitte in Umfangsrichtung entgegen der rotierenden Strömung jeweils am Beginn einer Wand, so dass sie vom ersten Wandabschnitt der benachbarten Wand beabstandet sind und einander nicht berühren. Durch diese Verteilung der ersten Wandabschnitte und ihre Länge von mehr als 0,5b lässt sich eine sehr gute rotierende Strömung erzeugen und durch das Eindüsen von allen vier Seiten bis in das Zentrum des Strömungskanals eine optimale Durchmischung des Rauchgasgemisches erreichen.In a further preferred embodiment are on all four the flow channel limiting walls first Nozzles arranged in a first wall section. there the first wall sections are in the circumferential direction contrary to the rotating flow at the beginning of each Wall, leaving it from the first wall section of the wall adjacent wall are spaced and not each other touch. By this distribution of the first wall sections and its length of more than 0.5b can be a very good one generate rotating flow and by the injection of all four sides to the center of the flow channel optimal mixing of the flue gas mixture to reach.

Besonders vorteilhaft ist es, die Düsen aller vier Wände in einer Eindüsebene anzuordnen. Die Düsen können aber auch in zwei parallelen in Strömungsrichtung voneinander beabstandeten Eindüsebenen angeordnet sein, wobei einander gegenüberliegende Düsen in einer Ebene angeordnet sind.It is particularly advantageous, the nozzles of all four walls to arrange in a level of injection. But the nozzles can also in two parallel directions of flow be arranged spaced injection levels, wherein each other opposite nozzles are arranged in a plane.

Idealerweise sind einander punktsymmetrisch gegenüberliegende Wandabschnitte gleich lang.Ideally, they are point symmetrical opposite wall sections of equal length.

Mit Vorteil werden frische Sekundärluft und/oder rezirkuliertes Rauchgas eingedüst. Wenn frische Sekundärluft und rezirkuliertes Rauchgas eingedüst werden, sind vorzugsweise Ringspaltdüsen vorgesehen. Dabei besteht der Kernstrahl der Ringspaltdüsen aus rezirkuliertem Rauchgas und der Ringstrahl aus frischer Sekundärluft.Advantageously, fresh secondary air and / or recirculated flue gas injected. When fresh Secondary air and recirculated flue gas are injected, are preferably provided annular gap nozzles. It exists the core jet of the annular gap nozzles from recirculated Flue gas and the ring stream of fresh secondary air.

Besonders vorteilhaft ist ein Steuerungssystem, mit dessen Hilfe die Durchsatzmenge der zu verdüsenden Medien zumindest für an einander gegenüberliegenden Wänden angeordneten Düsen unabhängig voneinander steuerbar ist.Particularly advantageous is a control system, with its Help the throughput of the media to be atomized at least for opposite walls arranged nozzles is independently controllable.

Wird wenigstens eine Eindüsebene im Bereich einer im Übergangsbereich zwischen einer Brennkammer und dem Rauchgasabzug gelegenen Flammdecke der Verbrennungsanlage angeordnet, so wird durch das Eindüsen der zu verdüsenden Medien neben der Durchmischung und Regulierung des Rauchgasgemisches ein Kühlen der einer sehr hohen thermischen Belastung ausgesetzten Flammdecke erreicht.If at least one injection level in the region of a Transition region between a combustion chamber and the Flue gas outlet located Flammdecke the incinerator arranged, so is to be atomized by the injection of Media in addition to the mixing and regulation of Flue gas mixture a very high cooling achieved thermal stress exposed blanket.

Weitere vorteilhafte Ausgestaltungsformen sind Gegenstand weiterer abhängiger Ansprüche.Further advantageous embodiments are the subject further dependent claims.

Im Folgenden wird die Erfindung anhand einiger ausgewählter Beispiele, näher erläutert. Die Fig. 1 bis 6 zeigen rein schematisch:

Fig. 1a, b
eine erste Ausführungsform der Erfindung mit an zwei einander gegenüberliegenden Wänden eines rechteckigen Strömungskanals angeordneten ersten Düsen und zweiten Düsen, wobei Fig. 1a den Schnitt längs des Strömungskanals und Fig. 1b einen Schnitt quer zum Strömungskanal zeigt;
Fig. 2a, b, c
eine zweite Ausführungsform der Erfindung mit einer Anordnung der Düsen analog derjenigen aus den Fig. 1a und 1b, wobei jedoch an den anderen zwei Wänden des rechteckigen Strömungskanals ebenfalls Düsen angeordnet sind und zwar in einer zweiten, zur ersten Eindüsebene in Strömungsrichtung beabstandeten, parallelen Eindüsebene und die Darstellung in Fig. 2a analog zu der aus Fig. 1a und die Darstellungen in den Fig. 2b und 2c analog derjenigen aus 1b sind.;
Fig. 3a, b
eine dritte Ausführungsform der Erfindung mit ersten Düsen an allen vier Wänden des rechteckigen Strömungskanals in einer Eindüsebene mit Darstellung analog den Fig. 1a und 1b;
Fig. 4a, b,
eine vierte Ausführungsform der Erfindung mit ersten Düsen an allen vier Wänden des rechteckigen Strömungskanals, wobei die Düsen in zwei voneinander in Strömungsrichtung beabstandete, parallelen Eindüsebenen verteilt sind und zwar jeweils einander gegenüberliegende erste Düsen in einer Eindüsebene und mit Darstellung analog den Fig. 1a und 1b;
Fig. 5
ein Beispiel für eine Ringspaltdüse;
Fig. 6
ein Steuerungssystem für die getrennte Steuerung der Durchsatzmenge für an verschiedenen Wänden angeordnete Düsen;
Fig. 7
eine weitere Ausführungsform der Erfindung zur Erzeugung von wenigstens zwei gegenläufig rotierenden Wirbeln.
The invention is explained in more detail below with reference to a few selected examples. FIGS. 1 to 6 show purely schematically:
Fig. 1a, b
a first embodiment of the invention with arranged on two opposite walls of a rectangular flow channel first nozzles and second nozzles, wherein Fig. 1a shows the section along the flow channel and Figure 1b shows a section transverse to the flow channel.
Fig. 2a, b, c
a second embodiment of the invention with an arrangement of the nozzle analogous to that of FIGS. 1a and 1b, however, are also arranged on the other two walls of the rectangular flow channel nozzles and that in a second, spaced from the first injection plane in the flow direction, parallel injection plane and the illustration in Fig. 2a analogous to that of Fig. 1a and the illustrations in Figs. 2b and 2c are analogous to those of Fig. 1b .;
Fig. 3a, b
a third embodiment of the invention with first nozzles on all four walls of the rectangular flow channel in a Eindropfenbene with representation analogous to Figures 1a and 1b.
Fig. 4a, b,
a fourth embodiment of the invention with first nozzles on all four walls of the rectangular flow channel, wherein the nozzles are distributed in two mutually spaced apart in the flow direction, parallel injection planes, namely each opposing first nozzles in a Eindropfenbene and with representation analogous to Figs. 1a and 1b ;
Fig. 5
an example of an annular gap nozzle;
Fig. 6
a control system for separately controlling the flow rate for nozzles arranged on different walls;
Fig. 7
a further embodiment of the invention for generating at least two counter-rotating vertebrae.

In den Fig. 1a bis 4a sind von einer Müllverbrennungsanlage jeweils ein Abschnitt eines Rauchgasabzuges 10 sowie eine Brennkammer 12 und ein Übergangsbereich 20 zwischen Brennkammer 12 und Rauchgasabzug 10 mit einer Flammdecke 14 im Schnitt längs des Rauchgasabzuges 10 dargestellt. Für den Abzug von bei der Verbrennung entstehenden Rauchgasgemischen ist ein rechteckiger Strömungskanal 18 vorgesehen, der den Übergangsbereich 20 von der Brennkammer 12 zum Rauchgasabzug 10 und den Rauchgasabzug 10 umfasst. Die prinzipielle Strömungsrichtung des Rauchgasgemisches ist durch einen Pfeil 16 gekennzeichnet. In den Fig. 1b bis 4b sind jeweils Schnitte quer zum Strömungskanal 18 im Bereich einer Eindüsebene 22 gezeigt, in welcher Düsen 24 zum eindüsen verdüsbarer Medien angeordnet sind. Die Düsen 24 und ihre Ausrichtung sind in allen Darstellungen durch Pfeile dargestellt. Die Müllflussrichtung ist durch einen Pfeil 9 gekennzeichnet.In Figs. 1a to 4a are of a waste incineration plant in each case a section of a flue gas outlet 10 as well a combustion chamber 12 and a transition region 20 between Combustion chamber 12 and flue 10 with a flame blanket 14 shown in section along the flue gas outlet 10. For the deduction of incineration Flue gas mixtures is a rectangular flow channel 18th provided, the transition area 20 of the Combustion chamber 12 to the flue gas outlet 10 and the flue gas outlet 10 includes. The principal flow direction of Flue gas mixture is indicated by an arrow 16. In FIGS. 1b to 4b, sections are respectively transverse to Flow channel 18 shown in the region of a feed plane 22, in which nozzles 24 for injecting verdüsbarer media are arranged. The nozzles 24 and their orientation are in all representations represented by arrows. The Müllflussrichtung is indicated by an arrow 9.

Alle in den Fig. 1a bis 4b gezeigten Ausführungsformen weisen an wenigstens zwei einander gegenüberliegen Wänden 26 erste Wandabschnitte 28 mit einer Länge l1 von wenigstens annähernd 40% bis 80% der Wandbreite b einer Wand 26 auf. Die ersten Wandabschnitte 28 liegen mit der Mittellängsachse 32 des Strömungskanals 18 als geometrischer Symmetrieachse einander jeweils punktsymmetrisch gegenüber und werden auf einer Seite durch die benachbarte Wand 26 begrenzt. In den ersten, einander punktsymmetrisch gegenüberliegenden Wandabschnitten 28 sind in einer Reihe erste Düsen 24a in einer Eindüsebene 22 angeordnet. Die ersten Düsen 24a sind in die Eindüsebene 22 ausgerichtet, so dass sie in diese eindüsen, wobei der in der Eindüsebene liegende Winkel γ zwischen eingedüstem Strahl 30 und Wand 26 etwa 90° beträgt. Diese Anordnung von Düsen 24 ermöglicht eine gute Durchmischung des im Strömungskanal 18 zur Rotation angeregten und in Richtung 16 strömenden Rauchgasgemisches.All the embodiments shown in FIGS. 1 a to 4 b have first wall sections 28 with a length l 1 of at least approximately two opposite walls 26 of at least approximately 40% to 80% of the wall width b of a wall 26. The first wall sections 28 are in each case point-symmetrical with respect to the central longitudinal axis 32 of the flow channel 18 as a geometric axis of symmetry and are bounded on one side by the adjacent wall 26. In the first, each point-symmetrically opposite wall portions 28 first nozzles 24a are arranged in a row 22 in a row. The first nozzles 24a are aligned in the injection plane 22, so that they inject into this, wherein the lying in the injection plane angle γ between injected jet 30 and wall 26 is about 90 °. This arrangement of nozzles 24 allows a good mixing of the excited in the flow channel 18 for rotation and flowing in the direction 16 flue gas mixture.

Die Eindüsebene 22 liegt in allen Beispielen im Bereich der Flammdecke 14, welche im Übergangsbereich 20 zwischen Rauchgasabzug 10 und Brennkammer 12 angeordnet ist. Die Flammdecke 14 ist entweder selbst von Düsen 24 durchsetzt, wie dies in allen vier Beispielen gezeigt ist, und/oder sie wird über Düsen 24a', 24b'', welche in Wänden (26) seitlich unterhalb der Flammdecke (14) angeordnet sind, mit verdüsbaren Medien unterspült", wie dies in den Fig. 2 bis 4 gezeigt ist. Auf diese Weise ist die Flammdecke 14 durch die eingedüsten Medien kühlbar. The injection level 22 is in all examples in the range the flame blanket 14, which in the transition region 20 between Flue gas outlet 10 and combustion chamber 12 is arranged. The Flammdecke 14 is penetrated either even by nozzles 24, as shown in all four examples, and / or it is via nozzles 24a ', 24b' ', which in walls (26) are arranged laterally below the flame blanket (14), with undermined media ", as shown in Figs. 2 to 4 is shown. In this way, the flame blanket 14 Cooled by the injected media.

In den Fig. 1a und 1b ist eine Ausführungsform gezeigt, bei der an zwei einander gegenüberliegenden Wänden 26 erste Wandabschnitte 28 mit einer Länge l1 von etwa 40% bis 50% der Wandbreite b vorgesehen sind. In einem zweiten Wandabschnitt 34 mit Länge l2 liegen, die Reihe der ersten Düsen 24a im ersten Wandabschnitt 28 ergänzend, zweite Düsen 24b, die mit einem Winkel β bezüglich der ersten Düsen 24a schräg gegen das durch die Mittellängsachse 32 repräsentierte Zentrum des Strömungskanals 18 ausgerichtet sind. Der Winkel β beträgt in diesem Beispiel etwa 25°, er kann aber zwischen 20° und 50° betragen. Die Längen l1 und l2 der beiden Wandabschnitte 28, 34 ergänzen sich in diesem Beispiel zur gesamten Wandbreite b, was jedoch nicht zwingend so sein muss. Gegenüber der Eindüsebene 22 sind die zweiten Düsen 24b in eine gemeinsame Ebene 36 ausgerichtet, die um den Winkel α gegenüber der Eindüsebene 22 verkippt ist. Der Winkel α liegt in diesem Beispiel bei etwa 10°, kann aber variieren und zwischen 5° und 15° betragen. Die zweiten Düsen 24b sind so ausgerichtet, dass die durch sie erzeugten Strahlen 30 schraubenförmig ineinanderfliessen. Anstelle in eine gemeinsame Ebene 36 können die zweiten Düsen 24b auch mit individuellen Winkeln α gegenüber der Eindüsebene 22 verkippt ausgerichtet sein.1a and 1b, an embodiment is shown in which on two opposite walls 26 first wall portions 28 are provided with a length l 1 of about 40% to 50% of the wall width b. In a second wall section 34 with length l 2 , the row of the first nozzles 24a in the first wall section 28 are complementary, second nozzles 24b, which are aligned at an angle β with respect to the first nozzle 24a obliquely against the center of the flow channel 18 represented by the central longitudinal axis 32 are. The angle β is in this example about 25 °, but it can be between 20 ° and 50 °. The lengths l 1 and l 2 of the two wall sections 28, 34 complement each other in this example to the entire wall width b, but this need not necessarily be so. Opposite the injection plane 22, the second nozzles 24b are aligned in a common plane 36, which is tilted by the angle α with respect to the injection plane 22. The angle α in this example is about 10 °, but may vary and be between 5 ° and 15 °. The second nozzles 24b are aligned such that the beams 30 generated by them flow into one another helically. Instead of a common plane 36, the second nozzles 24b may also be tilted at individual angles α with respect to the injection plane 22.

In den Fig. 2a bis 2c ist eine Ausführungsform dargestellt, in der an allen vier Wänden 26 des Strömungskanals 18 erste Düsen 24a in einem ersten Wandabschnitt 28 und zweite Düsen 24b in einem zweiten Wandabschnitt 34 analog zu der in den Fig. 1a und 1b dargestellten Ausführungsform angeordnet sind. Die ersten Wandabschnitte 28 sind dabei in Umfangsrichtung entgegen der rotierenden Strömung jeweils am Beginn einer Wand 26 angeordnet. Die Düsen 24a, 24b bzw. 24a', 24a'', 24b', 24b'' sind in zwei parallelen, in Strömungsrichtung voneinander beabstandeten Eindüsebenen 22 bzw. 22* angeordnet, wobei Düsen 24 an einander gegenüberliegenden Wänden 26 in einer gemeinsamen Eindüsebene 22, 22* angeordnet sind. Der Abstand d zwischen den Eindüsebenen 22, 22* kann zwischen 0.4m und 3m betragen.In Figs. 2a to 2c is an embodiment shown in the on all four walls 26 of the Flow channel 18 first nozzles 24a in a first Wall section 28 and second nozzles 24b in a second Wall section 34 analogous to that in Figs. 1a and 1b illustrated embodiment are arranged. The first Wall sections 28 are opposite in the circumferential direction the rotating flow respectively at the beginning of a wall 26th arranged. The nozzles 24a, 24b and 24a ', 24a' ', 24b', 24b '' are in two parallel, in the flow direction spaced-apart injection planes 22 and 22 * arranged, with nozzles 24 at opposite ends Walls 26 in a common injection plane 22, 22 * are arranged. The distance d between the injection planes 22, 22 * can be between 0.4m and 3m.

In dem in Fig. 3a, 3b gezeigten Beispiel sind in einer einzigen Eindüsebene 22 an allen vier Wänden 26 des Strömungskanals 18 erste Wandabschnitte 28 mit ersten Düsen 24a angeordnet. Die Länge l1 der ersten Wandabschnitte 28 liegt deutlich über 0.5b, vorzugsweise bei 0.55b bis 0.75b. Der auf die gesamte Wandbreite b verbleibende Rest jeder Wand 26 ist frei von Düsen 24. Durch diese Anordnung und Ausrichtung der ersten Düsen 24a ist es möglich Strahlen 30 bis in das Zentrum der erzeugten rotierenden Strömung zu düsen, so dass eine vollständige Durchmischung des Rauchgasgemisches stattfindet.In the example shown in FIGS. 3a, 3b, first wall sections 28 with first nozzles 24a are arranged in a single injection plane 22 on all four walls 26 of the flow channel 18. The length l 1 of the first wall sections 28 is well above 0.5b, preferably at 0.55b to 0.75b. The remainder of each wall 26 remaining on the entire wall width b is free of nozzles 24. By this arrangement and orientation of the first nozzles 24a, it is possible to jet jets 30 into the center of the generated rotating flow so that complete mixing of the flue gas mixture takes place ,

Je nach Ausbildung des Strömungskanals 18 und der Ausgestaltung der Wände 26 kann es nötig sein, sei es für eine Optimierung der Strömung oder auch weil die vier Wände 26 nicht in einer einzigen Ebene mit Düsen 24a ausgerüstet werden können, die Düsen 24a statt in einer einzigen Eindüsebene 22 (vgl. Fig. 3a, 3b) in zwei zueinander parallelen Eindüsebenen 22 und 22* anzuordnen, wie dies in den Fig. 4a, 4b gezeigt ist.Depending on the design of the flow channel 18 and the Design of the walls 26 may be necessary, be it for an optimization of the flow or because of the four Walls 26 are not in a single plane with nozzles 24a can be equipped, the nozzles 24a instead of in one single injection plane 22 (see Fig. 3a, 3b) in two to arrange parallel injection planes 22 and 22 *, as shown in Figs. 4a, 4b.

Alle Düsen sind so ausgelegt, dass einzudüsende Medien mit einem Druck von 500Pa bis 5000Pa eingedüst werden können.All nozzles are designed so that the media to be injected with can be injected at a pressure of 500Pa to 5000Pa.

In Fig. 5 ist eine Ringspaltdüse 24* dargestellt, wie sie beispielsweise zum Eindüsen von frischer Sekundärluft und rezirkuliertem Rauchgas vorgesehen ist. Gezeigt ist eine erste Zuleitung 40 für die Zuführung eines ersten Mediums, in diesem Fall rezirkuliertes Rauchgas, in einen als Kerndüse 42 ausgebildeten und einen Kernstrahl produzierenden Düsenteil und eine zweite Zuleitung 44 für die Zuführung eines zweiten Mediums, in diesem Fall frische Sekundärluft, in einen als Ringspalt 46 ausgebildeten und einen Ringstrahl produzierenden Düsenteil.In Fig. 5, an annular gap nozzle 24 * is shown as they For example, for injecting fresh secondary air and recirculated flue gas is provided. Shown is a first supply line 40 for the supply of a first Medium, in this case recirculated flue gas, in one formed as a core nozzle 42 and a core jet producing nozzle part and a second supply line 44 for the supply of a second medium, in this case fresh secondary air, in an annular gap 46th trained and producing a ring beam Nozzle part.

Über ein Steuerungssystem 48, wie es in Fig. 6 für Ringspaltdüsen 24* dargestellt ist, kann den unterschiedlichen Bedingungen, wie sie auf verschiedenen Seiten des Strömungskanals 18 herrschen können, besser Rechnung getragen werden. Die Durchsatzmengen der einzudüsenden Medien sind über das Steuerungssystem 48 und die Ventile 54 im gezeigten Beispiel für die bezüglich des Müllflusses 9 flussaufwärts liegende Hälfte 52 und die flussabwärts liegende Hälfte 50 des Strömungskanals 18 unabhängig voneinander steuerbar. Denkbar wäre auch eine getrennte Steuerung der Durchsatzmengen für die Düsen 24 an allen vier Wänden 26.Via a control system 48, as shown in Fig. 6 for Ringspaltdüsen 24 * is shown, the different conditions, as on different Sides of the flow channel 18 can prevail, better Be taken into account. The throughputs of media to be injected are via the control system 48 and the valves 54 in the example shown with respect to the Garbage flow 9 upstream half 52 and the downstream half 50 of the flow channel 18th independently controllable. It would also be possible to have one separate control of the flow rates for the nozzles 24th on all four walls 26.

Zur Regulierung der Temperatur, des O2-Gehaltes sowie zur Erlangung einer möglichst hohen minimalen Verweilzeit des durch den Strömungskanal strömenden Rauchgasgemisches sind vorzugsweise Düsen 24 für Sekundärluft und Düsen 24 für rezirkuliertes Rauchgas vorgesehen. Diese Düsen 24 können entweder gemischt in einer Reihe nebeneinander angeordnet sein oder auch in zwei Reihen übereinander, so dass sich für jede Düsensorte 24 eine eigene Eindüsebene 22 ergibt. Sind Ringspaltdüsen 24* vorgesehen, so besteht der Kernstrahl aus Rauchgas und der Ringstrahl aus Sekundärluft, wie für Fig. 5 beschrieben. To regulate the temperature, the O 2 content and to obtain the highest possible minimum residence time of the flowing through the flow channel flue gas mixture preferably nozzles 24 are provided for secondary air and nozzles 24 for recirculated flue gas. These nozzles 24 can be arranged either mixed in a row next to each other or in two rows one above the other, so that there is a separate injection level 22 for each nozzle 24. If annular gap nozzles 24 * are provided, then the core jet consists of flue gas and the ring jet of secondary air, as described for FIG. 5.

Die hier gezeigten Ausführungsformen geben die Erfindung nicht abschliessend wieder. So ist es zum Beispiel möglich die Vorrichtung auch in Verbrennungsanlagen und Müllverbrennungsanlagen einzusetzen, bei denen der Übergangsbereich 20 zwischen Brennkammer 12 und Rauchgasabzug 10 durch eine Einschnürung gekennzeichnet ist. Auch können weitere Eindüsebenen 22 tiefer in der Brennkammer 12 oder weiter oben im Rauchgasabzug 10 vorgesehen sein. Statt bzw. zusätzlich zu Rauchgas und Sekundärluft können auch andere Medien wie Wasserdampf Aktivkohle, Herdofenkoks (HOK), Abfall z. B. im Rahmen einer Reststoffrückführung, Brennstoffe u.a.m. eingedüst werden. Auch um eine reduzierende Atmosphäre zu erhalten, kann die Vorrichtung eingesetzt werden. In gleichem Drehsinn wie die ersten Düsen 24a können Brenner 2m bis 3m oberhalb der Eindüsebene 22 an zwei einander gegenüberliegenden Wänden 26 angeordnet sein.The embodiments shown here give the invention not conclusively again. This is possible, for example the device also in incinerators and To use waste incineration plants, in which the Transition region 20 between the combustion chamber 12 and Flue gas outlet 10 characterized by a constriction is. Also, more injection levels 22 deeper in the Combustion chamber 12 or higher in the flue gas outlet 10th be provided. Instead of or in addition to flue gas and Secondary air can also use other media such as water vapor Activated carbon, hearth furnace coke (HOK), waste z. B. in the context a residue recycling, fuels u.a.m. injected become. Also, to get a reducing atmosphere, the device can be used. In the same Direction of rotation as the first nozzles 24a can burner 2m to 3m above the injection plane 22 at two each other be arranged opposite walls 26.

Figur 7 zeigt eine weitere Ausführungsform der Erfindung, bei der zwei gegenläufig rotierende Wirbel 60', 61' erzeugt werden. Die Vorrichtung geht durch Spiegelung an der unteren Wand 26 aus der in Fig. 2b gezeigten Vorrichtung hervor, d.h. die dort gezeigten ersten und zweiten Düsen sind verdoppelt. Die Wände 26 der Vorrichtung weisen jeweils zwei erste Wandabschnitte 28a1 und 28a2 bzw. 28b1 und 28b2 mit ersten Düsen 24a auf. Die ersten Düsen 24a der ersten Wandabschnitte 28a2, 28b2 in der unteren Hälfte des Querschnitts sind einander schräg gegenüber angeordnet und erzeugen einen sich im Uhrzeigersinn drehenden ersten Wirbel 61'. Dieses wird durch die zweiten Düsen 24b der zweiten Wandbereiche 34a2, 34b2 verstärkt. Die zweiten Düsen 24b strahlen in eine Richtung, die um +/-β gegenüber der Strahlrichtung der ersten Düsen versetzt ist. Diese zweiten Wandbereiche 34a2, 34b2 liegen ebenfalls einander schräg gegenüber. Die Wandbereiche in der unteren Hälfte des dargestellten Querschnitts definieren einen ersten Wirbelbereich 61. Ein zweiter Wirbelbereich 60 ist durch die ersten und zweiten Wandabschnitte 28a1, 28b1, 34a1, 34b1 im oberen Teil der Figur 7 definiert. Der dortige zweite Wirbel 60' dreht sich entgegen dem Uhrzeigersinn. Die ersten Wandabschnitte 28a1, 28a2, 28b1, 28b2 haben jeweils eine Länge l1. Pro Wand 26 ergibt sich eine Gesamtlänge L=l1 +l1 von etwa 0.5b. Die einander schräg gegenüberliegenden ersten Wandabschnitte 28a1 und 28b1 (zweiter Wirbel 60') bzw. 28a2 und 28b2 (zweiter Wirbel 61') legen die Drehrichtung des Wirbels 60', 61' fest. Die zweiten Düsen 24b strahlen dann so ein, dass sie die Rotation verstärken, d.h. tangential in Drehrichtung an einen gedachten Kreis um das Zentrum des Wirbels 60' bzw. 61'.FIG. 7 shows a further embodiment of the invention in which two counter-rotating vortices 60 ', 61' are produced. The device emerges from the device shown in Fig. 2b by reflection on the bottom wall 26, ie the first and second nozzles shown therein are doubled. The walls 26 of the device each have two first wall sections 28a1 and 28a2 or 28b1 and 28b2 with first nozzles 24a. The first nozzles 24a of the first wall sections 28a2, 28b2 in the lower half of the cross-section are arranged obliquely opposite each other and produce a clockwise-rotating first vortex 61 '. This is amplified by the second nozzles 24b of the second wall portions 34a2, 34b2. The second nozzles 24b radiate in a direction offset by +/- β with respect to the jet direction of the first nozzles. These second wall portions 34a2, 34b2 are also opposite each other obliquely. The wall regions in the lower half of the illustrated cross-section define a first vortex region 61. A second vortex region 60 is defined by the first and second wall sections 28a1, 28b1, 34a1, 34b1 in the upper part of FIG. The local second vortex 60 'rotates counterclockwise. The first wall sections 28a1, 28a2, 28b1, 28b2 each have a length l 1 . Per wall 26 results in a total length L = l1 + l1 of about 0.5b. The obliquely opposite first wall sections 28a1 and 28b1 (second swirl 60 ') and 28a2 and 28b2 (second swirl 61') define the direction of rotation of the swirl 60 ', 61'. The second nozzles 24b then radiate to enhance the rotation, ie tangentially in the direction of rotation, to an imaginary circle about the center of the vortex 60 'and 61', respectively.

Claims (16)

  1. An incineration plant, with a rectangular flow duct (18) which comprises a flue-gas outlet (10) of the incineration plant, in particular of a garbage incineration plant, with a plurality of nozzles (24) for injectable media, said nozzles being arranged in one injection plane (22) on two walls (26) of wall width b which lie opposite one another and delimit the flow duct (18), wherein the flow duct (18) comprises a transitional region (20) from a combustion chamber (12) of the incineration plant to the flue-gas outlet (10), and wherein in each case, in at least one first wall portion (28, 28a1, 28a2, 28b1, 28b2) of the two walls (26) lying opposite one another, first nozzles (24a) are aligned in a row in such a way that they inject into the injection plane (22) and the angle γ, lying in the injection plane (22), between the wall (26) and an injected jet (30) amounts to at least approximately 90°, the sum L of the lengths 1 of the first wall portions (28, 28a1, 28a2, 28b1, 28b2) amounting to at least approximately 0.4b < L < 0.8b, and the at least one first wall portion (28, 28a1, 28a2) of one wall lying obliquely opposite the at least one first wall portion (28, 28b1, 28b2) of the opposite wall, the wall portions not or only partially overlapping one another laterally in the projection approximately in the direction of the jet flowing into the first nozzles.
  2. The incineration plant as claimed in claim 1, wherein the opposite walls have in each case a first wall portion (28), said wall portions lying point-symmetrically opposite one another, with the longitudinal center axis (32) of the flow duct (18) as the axis of symmetry, and being delimited on one side by the adjacent wall (26).
  3. The incineration plant as claimed in claim 1 or 2, wherein second nozzles (24b) are arranged in each case in the injection plane (22) in at least one second wall portion (34, 34a1, 34a2, 34b1, 34b2) of the two opposite walls (26), |β|> 0°, preferably 20°<|β| < 50°, applying to the angle β, lying in the injection plane, between the jets injected by the first and the second nozzles (24, 24b), and preferably the at least one second wall portion (34, 34a1, 34a2, 34b1, 34b2) of one wall lying obliquely opposite the at least one second wall portion (34, 34a1, 34a2, 34b1, 34b2) of the opposite wall.
  4. The incineration plant as claimed in claim 3, wherein, for generating a rotating vortex, each of the two opposite walls has a first (28) and a second (34) wall portion, and the first and the second wall portions lie in each case point-symmetrically opposite one another, with the longitudinal center axis (32) in the flow duct (18) as the axis of symmetry, and are delimited on one side by the adjacent wall (26').
  5. The incineration plant as claimed in one of claims 1 to 3, wherein, for generating at least two contra-rotating vortices, each of the two opposite walls have at least two first wall portions (28, 28a1, 28a2, 28b1, 28b2).
  6. The incineration plant as claimed in claim 5, wherein each of the two opposite walls have additionally two second wall portions, in each case a first (28a1, 28a2) and a second (34a1, 34a2) wall portion of one wall forming, with the directly opposite second (34b1, 34b2) or first (28b1, 28b2) wall portions of the opposite wall, a vortex region (60, 61), and the jets injected by the second nozzles (24b) being inclined at + |β| in a first vortex region (61) and at - |β| in a second vortex region (60) in relation to the jets injected by the first nozzles (24a).
  7. The incineration plant as claimed in one of claims 3 to 6, wherein the second nozzles (24b) of the second wall portion (34) are aligned with an injection component at an angle α, which lies preferably between 5° and 15°, with respect to the injection plane (22) and preferably into a common plane (36) in the direction of flow in the flow duct (18).
  8. The incineration plant as claimed in one of the preceding claims, wherein all four walls (26) of the flow duct (18) have a first wall portion (28) with first nozzles (24a), the first wall portions (28) being arranged in a circumferential direction, counter to the rotating flow, in each case at the start of a wall (26) and so as to be spaced apart from the first wall portion (28) of the adjacent wall (26).
  9. The incineration plant as claimed in claim 8, wherein the nozzles (24) of all four walls (26) lie in the same injection plane (22).
  10. The incineration plant as claimed in claim 8, wherein the nozzles (24) are arranged in two parallel injection planes (22, 22*) spaced apart from one another in the direction of flow, nozzles lying opposite one another lying in the same injection plane (22, 22*).
  11. The incineration plant as claimed in either one of claims 5 and 6, wherein wall portions (28, 34) lying obliquely or point-symmetrically opposite one another have approximately the same length 1.
  12. The incineration plant as claimed in one of the preceding claims, wherein the feed pressure at which the injectable media enter the nozzles is between 500Pa and 5000Pa, and wherein the throughput quantities for nozzles (24) arranged on different walls (26) can be controlled preferably independently of one another by means of a control system (48).
  13. The incineration plant as claimed in one of the preceding claims, wherein the nozzles (24) provided are annular-gap nozzles (24*).
  14. The incineration plant as claimed in one of the preceding claims, wherein nozzles (24) for the injection of secondary air and of recirculated flue gas are provided.
  15. The incineration plant as claimed in claim 13, wherein the core jet of the annular-gap nozzles consists of recirculated flue gas and the annular jet consists of secondary air.
  16. The incineration plant as claimed in one of the preceding claims, wherein at least one injection plane (22) lies in the region of a flame cover (14) arranged in the transitional region (20), so that nozzles (24, 38) pass through the flame cover (14) and/or the nozzles (24, 38) are arranged in walls (26) laterally below the flame cover (14), in such a way that they cool the flame cover (14) by injection.
EP00117240A 1999-08-30 2000-08-14 Device for generating a rotating gas flow Expired - Lifetime EP1081434B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH158599 1999-08-30
CH01585/99A CH694305A5 (en) 1999-08-30 1999-08-30 Apparatus for generating a rotating flow.

Publications (3)

Publication Number Publication Date
EP1081434A1 EP1081434A1 (en) 2001-03-07
EP1081434B1 true EP1081434B1 (en) 2004-10-13
EP1081434B2 EP1081434B2 (en) 2008-12-31

Family

ID=4213860

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00117240A Expired - Lifetime EP1081434B2 (en) 1999-08-30 2000-08-14 Device for generating a rotating gas flow

Country Status (8)

Country Link
US (1) US6938561B1 (en)
EP (1) EP1081434B2 (en)
JP (1) JP3750014B2 (en)
KR (1) KR100465934B1 (en)
CH (1) CH694305A5 (en)
CZ (1) CZ297291B6 (en)
DE (1) DE50008206D1 (en)
TW (1) TW454082B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160756A1 (en) * 2001-12-11 2003-06-18 Fritz Schoppe Waste incineration method and apparatus for treating waste incineration gases
ATE343766T1 (en) * 2002-04-03 2006-11-15 Keppel Seghers Holdings Pte Lt METHOD AND DEVICE FOR CONTROLLING THE PRIMARY AND SECONDARY AIR INJECTION OF A WASTE INCINERATION PLANT
AU2003203838B2 (en) * 2002-04-26 2008-02-07 Le Mac Australia Holdings Pty Ltd Shrink sleeve
KR100657147B1 (en) * 2004-12-08 2006-12-12 두산중공업 주식회사 Mixing Promotion Structure of Pollutant Reduction and Mixing Promotion Method Using The Same
FR2910113B1 (en) * 2006-12-14 2009-02-13 Veolia Proprete Sa INCINERATION OVEN WITH OPTIMIZED ENERGY RECOVERY
US20090151609A1 (en) * 2007-12-15 2009-06-18 Hoskinson Gordon H Incinerator with pivoting grating system
KR100903778B1 (en) * 2008-12-03 2009-06-19 한국기계연구원 Apparatus for removal of sulfur oxides in flue gas
KR101032608B1 (en) * 2010-11-30 2011-05-06 현대건설주식회사 System for treating organic waste
EP2505919A1 (en) * 2011-03-29 2012-10-03 Hitachi Zosen Inova AG Method for optimising the burn-off of exhaust gases of an incinerator assembly by homogenization of the flue gases above the combustion bed by means of flue gas injection
JP2015068517A (en) * 2013-09-27 2015-04-13 日立造船株式会社 Combustion operation method in combustion furnace and combustion furnace
DE102016002899B4 (en) * 2016-03-09 2020-03-12 Johannes Kraus Firebox with improved burnout
JP6797084B2 (en) * 2017-06-27 2020-12-09 川崎重工業株式会社 Gas supply method for secondary combustion, gas supply structure for secondary combustion, and waste incinerator
CN109405276B (en) * 2018-09-30 2021-07-27 农业部规划设计研究院 Clean heating system of straw bundle burning boiler
JP6620213B2 (en) * 2018-11-28 2019-12-11 株式会社神鋼環境ソリューション Secondary combustion equipment

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788796A (en) * 1973-05-09 1974-01-29 Babcock & Wilcox Co Fuel burner
JPS55105104A (en) 1979-02-07 1980-08-12 Babcock Hitachi Kk Low-nox burner
JPS5893609U (en) * 1981-12-18 1983-06-24 三菱重工業株式会社 Fuel gas combustion equipment
US4570551A (en) * 1984-03-09 1986-02-18 International Coal Refining Company Firing of pulverized solvent refined coal
JPS6218802A (en) 1985-07-18 1987-01-27 Mitsubishi Electric Corp Circular polarized wave horn antenna system
DE3531571A1 (en) * 1985-09-04 1987-03-05 Steinmueller Gmbh L & C METHOD FOR BURNING FUELS WITH A REDUCTION IN NITROGEN OXIDATION AND FIRE FOR CARRYING OUT THE METHOD
US5020456A (en) * 1990-02-28 1991-06-04 Institute Of Gas Technology Process and apparatus for emissions reduction from waste incineration
JPH076621B2 (en) 1990-06-21 1995-01-30 株式会社クボタ Secondary air blowing method of incinerator
US5078064B1 (en) * 1990-12-07 1999-05-18 Gas Res Inst Apparatus and method of lowering no emissions using diffusion processes
US5252298A (en) 1991-04-23 1993-10-12 Noell, Inc. Device for cleaning gases
JPH0526421A (en) * 1991-07-19 1993-02-02 Sanki Eng Co Ltd Refuse combustion method in dust incinerator
JP2758090B2 (en) * 1991-10-21 1998-05-25 株式会社クボタ CO control method in incinerator
JPH06272836A (en) * 1993-03-22 1994-09-27 Takuma Co Ltd Method for reducing generation of co in incinerating furnace
JP3383959B2 (en) 1993-10-07 2003-03-10 三機工業株式会社 Waste incinerator combustion method and apparatus
SE503453C2 (en) * 1994-06-20 1996-06-17 Kvaerner Pulping Tech Soda boiler having a secondary air supply which causes a rotation of the combustion gases and a constriction of the boiler above the liquor injection and a method of such boiler
DE19648639C2 (en) 1996-10-10 1998-09-17 Steinmueller Gmbh L & C Process for burning fuel on a grate and grate firing to carry out the process
JPH10205734A (en) 1997-01-14 1998-08-04 Takuma Co Ltd Secondary air supply method in stoker type combustion furnace
DE19705938A1 (en) * 1997-02-17 1998-08-20 Abb Research Ltd Method of injecting secondary and/or tertiary air with recirculating flue gases into a boiler
JPH10288325A (en) 1997-04-16 1998-10-27 N K K Plant Kensetsu Kk Generation restraint method of dioxins contained in exhaust gas in refuse incinerator
JPH1151367A (en) 1997-08-01 1999-02-26 Suzuki Tsutomu Combustion method for incinerator and combustion chamber structure of incinerator
DE19939672B4 (en) 1999-08-20 2005-08-25 Alstom Power Boiler Gmbh Firing system and method for generating heat by combustion

Also Published As

Publication number Publication date
CZ297291B6 (en) 2006-10-11
CH694305A5 (en) 2004-11-15
US6938561B1 (en) 2005-09-06
TW454082B (en) 2001-09-11
EP1081434A1 (en) 2001-03-07
KR100465934B1 (en) 2005-01-13
CZ20003153A3 (en) 2001-08-15
DE50008206D1 (en) 2004-11-18
JP3750014B2 (en) 2006-03-01
JP2001099415A (en) 2001-04-13
EP1081434B2 (en) 2008-12-31
KR20010050249A (en) 2001-06-15

Similar Documents

Publication Publication Date Title
EP1081434B1 (en) Device for generating a rotating gas flow
DE4426351B4 (en) Combustion chamber for a gas turbine
EP0542044B1 (en) Annular combustion system
DE69831355T2 (en) Pulverized coal burner
EP0387532B1 (en) Gas turbine combustion chamber
DE19502796B4 (en) burner
EP0733861A2 (en) Combustor for staged combustion
EP0433790A1 (en) Burner
EP0675322A2 (en) Premix burner
EP0571782A1 (en) Gasturbine combustor and operating method
EP0521325B1 (en) Combustion chamber
EP0392158B1 (en) Method for operating a combustion plant for fossil fuels
CH680084A5 (en)
DE3521266C2 (en)
EP0718561A2 (en) Combustor
DE4330083A1 (en) Method of operating a premix burner
EP0394800A1 (en) Premix burner for generating a hot gas
EP0742411B1 (en) Air supply for a premix combustor
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
EP0602396A1 (en) Process heat generator
EP0961905B1 (en) Fuel combustion device and method
EP0518072A1 (en) Burner for an internal combustion engine, a combustion chamber of a gas turbine plant or a furnace
DE3712039A1 (en) Incineration boiler, in particular for incinerating wastes
DE3625397C2 (en)
EP1286115A1 (en) Thermal post-combustion installation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR IT LI NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: CH DE FR IT LI NL SE

17Q First examination report despatched

Effective date: 20030811

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

REF Corresponds to:

Ref document number: 50008206

Country of ref document: DE

Date of ref document: 20041118

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

ET Fr: translation filed
PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ALSTOM POWER BOILER GMBH

Effective date: 20050708

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALSTOM POWER BOILER GMBH

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20081231

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition

Effective date: 20081231

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170727

Year of fee payment: 18

Ref country code: IT

Payment date: 20170828

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170821

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190821

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 20

Ref country code: FR

Payment date: 20190822

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50008206

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200813