EP1072340B1 - Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen - Google Patents

Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen Download PDF

Info

Publication number
EP1072340B1
EP1072340B1 EP99810679A EP99810679A EP1072340B1 EP 1072340 B1 EP1072340 B1 EP 1072340B1 EP 99810679 A EP99810679 A EP 99810679A EP 99810679 A EP99810679 A EP 99810679A EP 1072340 B1 EP1072340 B1 EP 1072340B1
Authority
EP
European Patent Office
Prior art keywords
thixoforming
time
die casting
injection piston
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99810679A
Other languages
English (en)
French (fr)
Other versions
EP1072340A1 (de
Inventor
Grégoire Arnold
Christoph Bagnoud
Miroslaw Plata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alcan Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT99810679T priority Critical patent/ATE251514T1/de
Application filed by Alcan Technology and Management Ltd filed Critical Alcan Technology and Management Ltd
Priority to DE59907298T priority patent/DE59907298D1/de
Priority to ES99810679T priority patent/ES2209369T3/es
Priority to EP99810679A priority patent/EP1072340B1/de
Priority to JP2001512049A priority patent/JP2003505246A/ja
Priority to CZ2002294A priority patent/CZ2002294A3/cs
Priority to US10/048,276 priority patent/US6554057B1/en
Priority to SI200020045A priority patent/SI20683A/sl
Priority to PCT/CH2000/000394 priority patent/WO2001007184A1/de
Priority to AU56702/00A priority patent/AU5670200A/en
Priority to CA002380055A priority patent/CA2380055A1/en
Publication of EP1072340A1 publication Critical patent/EP1072340A1/de
Priority to NO20020414A priority patent/NO20020414L/no
Application granted granted Critical
Publication of EP1072340B1 publication Critical patent/EP1072340B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/004Thixotropic process, i.e. forging at semi-solid state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S164/00Metal founding
    • Y10S164/90Rheo-casting

Definitions

  • the invention relates to a method for process monitoring in die casting or thixoforms of metals according to the preamble of claim 1.
  • the invention further relates to a die casting or thixoforming device accordingly the preamble of claim 12.
  • An essential factor for achieving high reproducibility and Process stability is the condition of the thixotropic metal bolt or the die-casting alloy when inserted into the casting chamber, the temperature of the thixotropic bolt or die casting alloy is a very important size.
  • Temperature measurements in the alloy melt or inside the thixotropic metal studs are made during the heating process, the temperature distribution, for example by means of thermocouples at different Melt or bolt positions (inside the bolt and on Bolt edge) is determined. It is usually for the individual Relevant heating curve, i.e. Temperature as a function of heating time, determined.
  • the measurement forms during electrical heating energy supplied to the preheating is another possibility for monitoring the stud condition during thixoforming.
  • thixotropic Bolt metallographic tests For monitoring a thixoforming process, you can also use the thixotropic Bolt metallographic tests to determine the distribution of the liquid content be carried out, for example by the bolt on different Cut longitudinal positions transverse to its longitudinal axis and the liquid portion in the cross section of the bolt, for example as a function of the distance from the center of the bolt, is determined.
  • the aim of such investigations is to optimize the heating curves in such a way that a predetermined proportion of liquid is as short as possible is achieved homogeneously throughout the thixotropic bolt.
  • the invention has for its object a method for process monitoring in die casting or thixoforming of metals with which to manufacture of die cast or thixiform parts reliably under production conditions can be monitored.
  • the solution to this object according to the invention is that the time profile of the pressing pressure p (t) is measured and the time-dependent speed of the casting piston v (t) is determined, and the energy E (t) supplied by the casting piston as a function of the process time t, and the during the pressure casting or thixoforming process, total energy E tot supplied by the casting piston is calculated on the basis of the time-dependent course of the pressing pressure p (t) and the casting piston speed v (t), and the total energy E tot is used as a characteristic value for monitoring the pressure casting or thixoforming process becomes.
  • the method according to the invention is particularly suitable for die casting or thixoforming of aluminum, Aluminum alloys or magnesium alloys.
  • the method according to the invention is particularly suitable for horizontal thixoforming devices and horizontal die casting systems, i.e. Devices, at which the casting chamber is horizontal.
  • the method according to the invention is based on the knowledge that the Total energy supplied to the plunger is a very relevant control parameter the entire die casting or thixoforming process.
  • the inventive Method for determining the energy supplied by the casting piston and the use in particular of the total energy value as a parameter for Process monitoring is also called RTIM (Real Time Injection Monitoring).
  • the preheating temperature and the corresponding temperature distribution are particularly relevant in the metal bolt as well as the amount of that supplied by the casting piston Energy in thixoforming because it has a certain range of variation liquid content in the thixotropic material got to. For example, in the case of thixoforming from a large one, through the casting piston total energy supplied can be concluded that the viscosity of the thixotropic material is too deep, which is either due to a too deep liquid portion or too little shear during the thixoforming process.
  • the method according to the invention allows better process stability, one Optimizing process parameters, improving product quality and a reduction in the reject rate.
  • the method according to the invention is particularly preferred for thixoforming Application. It is used in particular to determine the optimal liquid content of the thixotropic metal bolt under production conditions.
  • the optimal the average liquid content in the thixotropic metal bolt is 40-55% by weight. If the liquid content is too high, thixoforming of thixotropic material occurs almost under the same conditions as the die-casting of liquid Metal alloys, so for example the advantage of low shrinkage of thixotropic material is lost in the mold cavity when cooling, or that Shear the oxide skin surrounding the thixotropic metal bolt difficult or is impossible.
  • the dimensionally stable insertion of a thixotropic bolt into the casting chamber with a high liquid content difficult and mostly not reproducible.
  • thixoforming Another important factor in thixoforming is the homogeneity of the thixotropic Condition, i.e. the distribution of the liquid portion over the bolt length and Bolt cross section, this homogeneity is generally better the slower the preheating process is carried out; on the other hand, it becomes business As short a heating-up time as possible.
  • the method according to the invention is particularly suitable for monitoring the preheating furnaces, i.e. by determining the total energy for everyone Shot, i.e. for every complete die casting or thixoforming process, with thixotropic bolts or die-cast material from a specific preheating furnace the regularity of this furnace can be determined and checked. moreover can by determining the total energy for each shot with thixotropic Bolts or die-cast material from various preheating furnaces ensure regularity the heating output of the respective stoves compared and monitored become.
  • Pre-solidification i.e. early solidification of material
  • the temperatures of the casting chamber can also be indirectly affected by pre-solidification and check the mold.
  • statements can also be made indirectly do the design of the mold cavity.
  • the determination of the total energy for each shot also enables Investigations of pressure losses during the shot as a result, for example tribological properties and thus enables the receipt of information about the friction of the casting piston, the mechanical condition of the casting piston and / or the casting chamber, the piston lubrication and the release agent influence. Accordingly, the determination of those fed into the system by the casting piston serves Total energy during a shot also to monitor the tribological Relationship with the casting piston and casting chamber.
  • the calculation of the speed of the casting piston based on the position measurement s (t) is expediently carried out at discrete, for example equidistant, times.
  • the speed is expediently calculated at 50 to 800, preferably at 180 to 500 and in particular at 250 to 400 discrete process times.
  • the discrete speed values determined in this way are preferably filtered by numerical methods.
  • a continuous speed curve v (t) is preferably calculated using numerical interpolation methods.
  • the pressure on the die casting or thixoform compound is usually maintained for a while even after t 4 , so that the casting piston undergoes a further translational movement can perform, then the plunger speed can drop to zero again.
  • the time-dependent speed profile v (t) can be measured directly and used to calculate the energy E (t) supplied by the casting piston or the total energy E tot .
  • the measurements s (t) and p (t), or v (t) and p (t), and the calculation of v (t), E (t) and E tot on-line during the process sequence be carried out so that the parameters are available immediately after the shot for corresponding corrective measures, ie the measurements of s (t) or v (t) and p (t), and the determination of v (t) and E (t) takes place in real time.
  • a process window is available between two shots, which allows intervention by taking corrective measures, because immediately after the shot the molded part must be cooled further, the mold opened, the molded part removed from the die casting or thixoforming device and the casting chamber re-die-casted - or loaded with thixoform material.
  • Loading the casting chamber with a thixotropic metal bolt is preferably done by a robot.
  • the casting chamber is loaded with a liquid metal alloy for die casting, for example by opening a valve or stopper in a casting trough, so that the liquid metal can flow into the casting chamber.
  • the determination of the partial energy E 1 allows the determination of pre-solidifications of die casting or thixoform material in the casting chamber.
  • E1 in particular also provides information about the general tribological conditions, e.g. pressure losses due to friction, wear and tear and lubrication, and thus serves, for example, to assess the influence of separating agents and lubricants and also provides information about the friction of the casting piston and its lubrication.
  • the casting piston of pressure die casting or thixoforming devices is usually driven by hydraulic means.
  • the time-dependent pressure profile p (t) is particularly advantageous by simultaneously measuring the time-dependent pressure profile p GK (t) on the casting piston surface directed against the die casting or thixoform material and by measuring the pressure profile p hyd (t) in the Hydraulic fluid is determined, wherein the pressure pressure curve p GK (t) is preferably used to calculate the energy supplied to the die-casting or thixoform material by the casting piston.
  • the pressure pressure curve p hyd (t) can also be used to calculate the energy values E (t), E 1 to E 4 and E tot .
  • p hyd (t) describes the total pressure exerted on the casting piston. However, this does not correspond to the pressure exerted on the die-casting or thixoform material, since the casting piston itself is exposed to a certain amount of friction in the casting chamber.
  • the partial energy values E 1 to E 4 provide information about certain process parameters, as was described in the case of E1 for example for the above-described tribological conditions or for the determination of solidifications.
  • E 2 is suitable, for example, for obtaining information regarding the required deformation energy and, in the case of thixoforming, provides information, for example, about the state of the stud, ie whether the thixotropic stud is too hard or too soft, or whether the liquid content is too high or too deep.
  • E 3 and E 4 are suitable, for example, for monitoring the filling behavior of the pouring channels or the mold cavity and thus, for example, provide information about the influence of the release agent and, in the case of thixoforming, also about the shear forces acting on the thixotropic material.
  • a protocol is preferably printed out per working shift, which is usually of the order of 8 hours, the number of cast or thixoform parts manufactured, ie the number of shots n, the partial energies E1 to preferably E4 and the total energy E tot are calculated for each shot and shown on the log printout.
  • the average total energy E tot, m and the standard deviation ⁇ n for all n shots with die-cast or thixoform material from the same preheating furnace are more preferably determined and printed out.
  • the average total energy E tot, m for a number n of shots with thixoform or die-cast material from the same furnace k is calculated, for example, as an arithmetic mean:
  • the standard deviation can then be too be calculated.
  • a setpoint range can be defined for the thixoform or die casting process, which can be used as a parameter for a process interruption, a change of a preheating furnace, a calibration of the heating output of a preheating furnace, a correction of the casting curve or the triggering of a monitoring alarm can be used.
  • the present invention is based on the object to provide a thixoform or die casting device for monitoring of the manufacturing process under production conditions allowed.
  • a die casting or thixoforming device is preferred, where the measuring devices have a continuous detection the time-dependent pressing pressure p (t) and a continuous position measurement Allow s (t).
  • the measuring device for determining the position s (t) can further preferably also have a device for measuring the time-dependent speed v (t) of the casting piston, the position of the casting piston s (t x ) increasing at time t x is determined.
  • the device according to the invention is particularly suitable for thixoforming or die casting using the method according to the invention for Process monitoring.
  • Figures 1 to 5 show a vertical longitudinal section along the longitudinal axis through the casting chamber of a horizontal thixoforming device.
  • the casting chamber 10 is arranged horizontally and contains a casting piston 12, a radially symmetrical oxide pocket 22, a sprue opening 24, two sprue channels 26 and 28 as well as two mold cavities 16 and 18th
  • FIG. 1 shows an example of a pressure sensor 30 attached to the casting piston surface directed against the thixotropic metal pin 14.
  • FIG. 1 also shows a position or speed measuring device 32.
  • FIG. 2 shows the thixoforming device at the time t 1 , at which the thixotropic metal bolt 14 hits the mold-side end 11 of the casting chamber 10. Since the cross-sectional area of the cylindrical, thixotropic metal pin 14 is smaller than the cross-sectional area of the casting chamber 10, the thixotropic pin 14 does not yet fill the entire casting chamber cross section at the time t 1 .
  • FIG. 3 shows the thixoforming device at time t 2 .
  • the thixotropic metal bolt has lost its geometric shape and is now in the form of a thixoform compound 15.
  • the point in time t 2 thus denotes the point in time at which the thixoforming compound or the thixoforming material 15 fills the entire cross-section of the casting chamber over its entire length, that is to say the thixoforming compound 15 fills the entire space between the casting piston 12 and the mold-side end 11 of the casting chamber 10, at the point in time t 2 essentially no thixotropic material has flowed through the pouring opening 24 or oxidic edge material into the oxide pocket 22.
  • FIG. 4 shows the thixoforming device at time t 3 .
  • the time t 3 denotes the time at which the sprue opening 24 and the sprue channels 26 and 28 are completely filled with thixoform material 15.
  • the oxide pocket 22, which receives the oxide material located in the edge layer of the thxotropic metal bolt 14, is already largely filled.
  • FIG. 5 shows the thixoforming device at time t 4 .
  • the time t 4 denotes the final state of the actual thixoforming process, ie the time before the mold is opened.
  • the mold cavities 16 and 18 are completely filled with thixoform 15 and the speed of the casting piston 12 has dropped to zero.
  • the casting piston pressure can be maintained for a short time in order to compensate for shrinkage during the cooling process by replenishing thixotropic material, so that the casting piston can carry out an additional movement after time t 4 .
  • the radially symmetrical oxide pocket 22 is also completely filled with oxidic components of the original edge layer of the thixotropic bolt 14.
  • FIG. 6 shows, by way of example, the calculated total energy values of thixoforming processes of individual thixotropic metal bolts from the same preheating furnace, ie the total energy values of individual shots, in such a way that the respective total energy is plotted on the ordinate and the shot number in the form of the corresponding shot times on the abscissa ; the shot number of a shot corresponds to a specific point in time t x , so that the ordinate corresponds to a time axis.
  • the specific point in time t x can be predefined as desired, ie it can be defined, for example, as the starting point in time at which the casting piston for the thixoforming process is started.
  • any other, precisely definable point in time during a thixoforming process can also be defined as a specific point in time t x .
  • t x the start of the casting piston at the beginning of each thixoforming process was chosen.
  • the partial figures a to h of FIG. 6 each give the total energy values determined for a number of shots again, the values for the thixotropic Metal studs of a particular preheater are shown separately, i.e. the Representations a to h give the values for thixotropic metal bolts from the same Preheat again.
  • FIG. 6 a shows the total energies of 32 shots with thixotropic bolts which were heated in a No. 1 oven.
  • the start of the casting piston at the beginning of each thixoforming process was selected as the specific point in time t x .
  • the display includes shots from 7.47 p.m. until 2.37 p.m. the following day.
  • the total energy averaged over all 32 shots is 26.01 kJ with a relative spread of ⁇ 16%.
  • 6b shows the total energies of 46 shots with thixotropic bolts, which were heated in a No. 5 oven.
  • the illustration includes Shots in a period from 7:06 p.m. to 2:21 p.m. the following Day.
  • the total energy averaged over all 46 shots is 31.97 kJ a relative spread of ⁇ 10%.
  • 6 c shows the total energies of 47 shots with thixotropic bolts, which were heated in a No. 6 oven.
  • the illustration includes Shots in a period from 6:59 p.m. to 2:34 p.m. the following Day.
  • the total energy averaged over all 47 shots is 23.91 kJ a relative measure of scatter of ⁇ 9%.
  • 6d shows the total energies of 48 shots with thixotropic bolts, which were heated in a No. 7 oven.
  • the illustration includes Shots from 7:00 p.m. to 2:36 p.m. the following Day.
  • the total energy averaged over all 48 shots is 30.58 kJ a relative spread of ⁇ 15%.
  • 6e shows the total energies of 42 shots with thixotropic bolts, which were heated in a No. 9 oven.
  • the illustration includes Shots in a period from 7:01 p.m. to 2:28 a.m. the following Day.
  • the total energy averaged over all 42 shots is 23.53 kJ a relative spread of ⁇ 16%.
  • 6 f shows the total energies of 49 shots with thixotropic bolts, which were heated in a No. 10 oven.
  • the illustration includes Shots in a period from 7:00 p.m. to 2:47 p.m. the following Day.
  • the total energy averaged over all 49 shots is 23.03 kJ with a relative spread of ⁇ 12%.
  • 6 g shows the total energies of 47 shots with thixotropic bolts, which were heated in a No. 11 oven.
  • the illustration includes Shots in a period from 7:04 p.m. to 2:39 a.m. the following Day.
  • the total energy averaged over all 47 shots is 20.38 kJ with a relative spread of ⁇ 8%.
  • 6 h shows the total energies of 51 shots with thixotropic bolts, which were heated in a No. 12 oven.
  • the illustration includes Shots in a period from 7:05 p.m. to 2:32 p.m. the following Day.
  • the total energy averaged over all 51 shots is 46.15 kJ with a relative spread of ⁇ 7%.
  • Each bar in FIG. 7 thus represents the total energy E tot, i averaged over all shots of a working shift for thixotropic metal bolts from furnace no. i represents.
  • an overall energy setpoint range can be defined, for example, with respect to E tot as a parameter for the thixoform or die casting process.
  • the setpoint range can then be used as a further parameter, whereby if the total energy value of a shot or a number of shots falls below or falls below, for example, a process interruption, a change in a preheating oven or a recalibration of the heating output of a preheating oven can be carried out.
  • the assessment of the molded parts using the thixofom method relating to FIG shows that in this case the total energy per Shot must be between 35 kJ ⁇ Etot ⁇ 10 kJ so that the required molding quality can be achieved. Near the energy thresholds determined in this way can both molded parts with the required molded part properties as well Molded parts with inadequate molded part properties result. Is the Total energy value of a shot outside the determined energy band, the risk of producing a non-conforming molded part increases, i.e. a molded part that does not meet the required molded part properties Structure, dimensions, etc. having. Accordingly, the determination of the Total energy for a shot is a measure of the probability of one good or bad molding production, i.e. a measure of the reject probability.
  • the log display shown in FIG. 8 also contains a speed curve v (t), which is obtained by numerical filtering and smoothing of the discrete Velocity values ds (t) / dt is calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen gemäss dem Oberbegriff von Anspruch 1. Die Erfindung betrifft weiter eine Druckgiess- oder Thixoformeinrichtung entsprechend dem Oberbegriff des Anspruchs 12.
Insbesondere von der Automobilindustrie werden immer höhere Anforderungen an die Toleranzen und an die mechanischen Eigenschaften von Druckguss- und Thixoformteilen gestellt. Zur Erzielung dieser hohen Qualitätsanforderungen ist eine möglichst vollständige Überwachung der Verfahrensparameter sowie deren Reproduzierbarkeit von grosser Bedeutung.
Für die Kontrolle eines Druckgiess- oder Thixoformprozesses sind einerseits der Zustand des in die Giesskammer eingefügten Metalles und andererseits die Parameter des Druckgiess- oder Thixoformprozesses massgebend. Um den Druckgiess- oder Thixoformprozess zu optimieren bzw. allfällige, für die Prozessstabilität und Reproduzierbarkeit kritischen Parameter zu evaluieren, müssen möglichst alle Parameter erfasst werden, welche den Prozess beeinflussen können.
Ein wesentlicher Faktor für die Erreichung einer hohen Reproduzierbarkeit und Prozessstabilität ist der Zustand des thixotropen Metallbolzens bzw. der Druckgusslegierung beim Einführen in die Giesskammer, wobei die Temperatur des thixotropen Bolzens bzw. der Druckgusslegierung eine sehr wichtige Grösse darstellt.
Zur Kontrolle und Überwachung des Druckgiess- oder Thixoform-Prozesses können Temperaturmessungen in der Legierungsschmelze bzw. im Innern des thixotropen Metallbolzens während dem Aufheizprozess vorgenommen werden, wobei die Temperaturverteilung beispielsweise mittels Thermoelementen an verschiedenen Schmelzen- bzw. Bolzen-Positionen (innerhalb des Bolzens und am Bolzenrand) bestimmt wird. Dabei werden üblicherweise die für die einzelnen Messpositionen relevanten Aufheizkurven, d.h. Temperatur in Funktion der Aufheizzeit, ermittelt.
Während für die Überwachung von Legierungsschmelzen für das Druckgiessen im wesentlichen die Temperaturmessung verwendet wird, bildet die Messung der während dem Vorheizen zugeführten, elektrischen Heizenergie eine weitere Möglichkeit zur Überwachung des Bolzenzustandes beim Thixoformen.
Für die Überwachung eines Thixoformprozesses können zudem am thixotropen Bolzen metallographische Prüfungen zur Bestimmung der Verteilung des Flüssiganteils durchgeführt werden, beispielsweise indem der Bolzen an verschiedenen Längspositionen quer zu seiner Längsachse aufgeschnitten und der Flüssiganteil im Bolzenquerschnitt, beispielsweise in Funktion des Abstandes von der Bolzenmitte, bestimmt wird. Ziel solcher Untersuchungen ist die Optimierung der Aufheizkurven derart, dass in möglichst kurzer Zeit ein vorbestimmter Flüssiganteil möglichst homogen im ganzen thixotropen Bolzen erreicht wird. Im Weiteren können zur Bestimmung des gemittelten Flüssiganteils kalorimetrische Messungen durchgeführt werden.
Hinsichtlich der Parameter des Druckgiess- oder Thixoformprozesses werden üblicherweise die Temperaturen der Giesskammer, der Eingusskanäle und der Formkavität gemessen, sowie der Druck und die Feuchtigkeit in der evakuierten Formkavität ermittelt.
Die bisher übliche Bestimmung der Parameter bezüglich des Druckguss- bzw. Thixoform-Materials und des Druckgiess- bzw. Thixoformprozesses sind aufwendig und eignen sich nicht für die Überwachung des Druckgiess- oder Thixoformprozesses unter Produktionsbedingungen.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen zu schaffen, mit dem die Herstellung von Druckguss- oder Thixoformteilen unter Produktionsbedingungen zuverlässig überwacht werden kann.
Zur erfindungsgemässen Lösung dieser Aufgabe führt, dass der zeitliche Verlauf des Pressdruckes p(t) gemessen und die zeitabhängige Geschwindigkeit des Giesskolbens v(t) bestimmt wird, und die durch den Giesskolben zugeführte Energie E(t) in Funktion der Prozesszeit t, sowie die während dem Druckgiess- bzw. Thixoformprozess durch den Giesskolben zugeführte Gesamtenergie Etot aufgrund des zeitabhängigen Verlaufes des Pressdruckes p(t) und der Giesskolbengeschwindigkeit v(t) berechnet wird, und die Gesamtenergie Etot als Kennwert für die Überwachung des Druckgiess- oder Thixoformprozesses verwendet wird.
Weitere Ausführungsformen des erfindungsgemässen Verfahrens sind in den abhängigen Ansprüchen 2 bis 10 beschrieben. Das erfindungsgemässe Verfahren eignet sich insbesondere für das Druckgiessen oder Thixoformen von Aluminium, Aluminiumlegierungen oder Magnesiumlegierungen.
Das erfindungsgemässe Verfahren eignet sich besonders für Horizontal-Thixoformeinrichtungen und Horizontal-Druckgiessanlagen, d.h. Vorrichtungen, bei welchen die Giesskammer horizontal liegt.
Das erfindungsgemässe Verfahren beruht auf der Erkenntnis, dass die durch den Giesskolben zugeführte Gesamtenergie einen sehr relevanter Kontrollparameter des ganzen Druckgiess- oder Thixoformprozesses darstellt. Das erfindungsgemässe Verfahren zur Bestimmung der durch den Giesskolben zugeführten Energie und die Verwendung insbesondere des Gesamtenergiewertes als Kenngrösse für die Prozessüberwachung wird auch als RTIM-Verfahren (Real Time Injection Monitoring) bezeichnet.
Besonders relevant ist die Vorheiztemperatur und die entsprechende Temperaturverteilung im Metallbolzen sowie das Mass der durch den Giesskolben zugeführten Energie beim Thixoformen, da dabei ein bestimmter, in einem engen Variationsbereich sich befindlicher Flüssiganteil im thixotropen Material eingehalten werden muss. Beispielsweise kann beim Thixoformen aus einer grossen, durch den Giesskolben zugeführten Gesamtenergie geschlossen werden, dass die Viskosität des thixotropen Materials zu tief ist, was entweder durch einen zu tiefen Flüssiganteil oder zu geringe Scherkräfte während dem Thixoformprozess bedingt sein kann.
Das erfindungsgemässe Verfahren erlaubt eine bessere Prozessstabilität, eine Optimierung der Prozessparameter, eine Verbesserung der Produktequalität und eine Verringerung der Ausschussrate.
Besonders bevorzugt findet das erfindungsgemässe Verfahren für das Thixoformen Anwendung. Dabei dient es insbesondere zur Festlegung des optimalen Flüssiganteils des thixotropen Metallbolzens unter Produktionsbedingungen. Der optimale, gemittelte Flüssiganteil im thixotropen Metallbolzen beträgt dabei 40-55 Gew.-%. Ist der Flüssiganteil zu hoch, geschieht das Thixoformen von thixotropem Material beinahe unter den gleichen Bedingungen wie das Druckgiessen von flüssigen Metalllegierungen, so dass beispielsweise der Vorteil einer geringen Schrumpfung von thixotropem Material beim Abkühlen in der Formkavität verloren geht, oder das Abscheren der den thixotropen Metallbolzen umgebenden Oxidhaut erschwert oder verunmöglicht wird. Zudem ist das formstabile Einlegen eines thixotropen Bolzens in die Giesskammer mit einem hohen Flüssiganteil schwierig und meistens nicht reproduzierbar.
Ein weiterer wichtiger Faktor beim Thixoformen ist die Homogenität des thixotropen Zustandes, d.h. die Verteilung des Flüssiganteils über die Bolzenlänge und den Bolzenquerschnitt, wobei diese Homogenität im Allgemeinen besser ist, je langsamer der Vorheizprozess durchgeführt wird; andererseits wird aus betriebswirtschaftlichen Gründen eine möglichst kurze Aufheizzeit gewünscht.
Im Rahmen der erfinderischen Tätigkeit wurde nun für das Thixoformen gefunden, dass mittels Bestimmung der durch den Giesskolben dem Thixoformmaterial zugeführten Gesamtenergie während eines Thixoformprozesses der nach der Vorheizung vorliegende Flüssiganteil sowie dessen Homogenität im thixotropen Bolzen indirekt überwacht werden kann.
Im weiteren eignet sich das erfindungsgemässe Verfahren insbesondere zur Überwachung der Vorheizöfen, d.h. durch die Bestimmung der Gesamtenergie für jeden Schuss, d.h. für jeden vollständigen Druckgiess- oder Thixoformprozess, mit thixotropen Bolzen oder Druckgussmaterial aus einem bestimmten Vorheizofen kann die Regelmässigkeit dieses Ofens eruiert und kontrolliert werden. Zudem kann durch die Bestimmung der Gesamtenergie für jeden Schuss mit thixotropen Bolzen oder Druckgussmaterial aus verschiedenen Vorheizöfen die Regelmässigkeit der Heizleistung der entsprechenden Öfen miteinander verglichen und überwacht werden.
Die Bestimmung der Gesamtenergie für jeden Schuss ermöglicht im Weiteren die Kontrolle von Vorerstarrungen. Vorerstarrungen, d.h. frühzeitige Material-Erstarrungen, können beispielsweise durch eine zu tiefe Giesskammer- und/oder Formtemperatur bedingt sein und sind der dadurch bedingten, üblicherweise schlechten Formteileigenschaften wegen unerwünscht. Durch die Möglichkeit der Eruierung von Vorerstarrungen lassen sich indirekt auch die Temperaturen der Giesskammer und der Giessform kontrollieren. Zudem lassen sich indirekt auch Aussagen über das Design der Formkavität machen.
Im Weiteren ermöglicht die Bestimmung der Gesamtenergie für jeden Schuss auch Untersuchungen von Druckverlusten während dem Schuss infolge beispielsweise tribologischer Eigenschaften und ermöglicht somit den Erhalt von Informationen über die Reibung vom Giesskolben, den mechanischen Zustand von Giesskolben und/oder der Giesskammer, die Kolbenschmierung und den Trennmitteleinfluss. Demnach dient die Bestimmung der durch den Giesskolben dem System zugeführten Gesamtenergie während einem Schuss auch zur Überwachung der tribologischen Verhältnisse bezüglich Giesskolben und Giesskammer.
Erfindungsgemäss kann die prozesszeitabhängige Geschwindigkeit v(t) des Giesskolbens entweder direkt gemessen oder durch Messung der prozesszeitabhängigen Giesskolbenposition s(t) ermittelt werden.
Aufgrund der zeitabhängigen Positionsmessung s(t) des Giesskolbens lässt sich die zeitabhängige Geschwindigkeit v(t) des Giesskolbens gemäss der Funktion v(t) = ds(t)/dt berechnen, d.h. durch Ableitung der zeitabhängigen Giesskolbenposition s(t) nach der Zeit t. Die Berechnung der Geschwindigkeit des Giesskolbens aufgrund der Positionsmessung s(t) wird zweckmässigerweise zu diskreten, beispielsweise äquidistanten Zeitpunkten vorgenommen. Zweckmässigerweise wird die Geschwindigkeit an 50 bis 800, bevorzugt an 180 bis 500 und insbesondere an 250 bis 400 diskreten Prozesszeitpunkten berechnet. Die derart bestimmten, diskreten Geschwindigkeitswerte werden bevorzugt durch numerische Verfahren gefiltert. Zudem wird vorzugsweise durch numerische Interpolationsmethoden eine stetige Geschwindigkeitskurve v(t) berechnet.
Die durch den Giesskolben während zwei Prozesszeitpunkten tx und ty, wobei tx<ty, zugeführte, zeitabhängige Energie Ex,y(t) kann dann gemäss der Integral-Funktion
Figure 00050001
berechnet werden, wobei A die gegen das Strangguss- oder Thixoformmaterial gerichtete Fläche des Giesskolbens bezeichnet.
Die durch den Giesskolben zugeführte Energie E(t) in Funktion der Prozesszeit t lässt sich gemäss der Integral-Funktion
Figure 00060001
und die während dem Druckgiess- bzw. Thixoformprozess durch den Giesskolben zugeführte Gesamtenergie Etot durch die Integral-Funktion
Figure 00060002
berechnen, wobei A die gegen das Druckguss- oder Thixoformmaterial gerichtete Fläche des Giesskolbens, t0 den Anfangszeitpunkt t=0 des Druckgiess- oder Thixoformverfahrens und t4 den Zeitpunkt bezeichnet, an dem der Giesskolben zum ersten Mal nach t0 die Geschwindigkeit v(t)=0 annimmt. Zum Zeitpunkt t4 ist der eigentliche Druckgiess- bzw. Thixoformprozess abgeschlossen und die Formkavität ist gefüllt. Um während dem Abkühlen des Formteils in der Formkavität eine Materialschrumpfung auszugleichen und eine entsprechende, unvollständige Formfüllung zu vermeiden, wird der Druck auf die Druckguss- bzw. Thixoformmasse üblicherweise auch nach t4 noch für eine Weile aufrechterhalten, so dass der Giesskolben eine weitere translatorische Bewegung ausführen kann, wobei dann die Giesskolbengeschwindigkeit ein weiteres Mal auf Null fallen kann.
Anstelle der Messung der zeitabhängigen Giesskolbenposition s(t) kann der zeitabhängige Geschwindigkeitsverlauf v(t) direkt gemessen und für die Berechnung der durch den Giesskolben zugeführten Energie E(t) oder der Gesamtenergie Etot verwendet werden.
Bevorzugt werden die Kolbenposition s(t) oder die Kolbengeschwindigkeit v(t) und der Verlauf des Pressdruckes p(t) während des ganzen Druckgiess- oder Thixoformverfahrens kontinuierlich gemessen.
Erfindungswesentlich ist weiter, dass die Messungen s(t) und p(t), oder v(t) und p(t), sowie die Berechnung von v(t), E(t) und Etot on-line während dem Prozessablauf vorgenommen werden, so dass die Kenngrössen unmittelbar nach dem Schuss für entsprechende Korrekturmassnahmen zur Verfügung stehen, d.h. die Messungen von s(t) oder v(t) und p(t), sowie die Bestimmung von v(t) und E(t) erfolgt in Echtzeit. Zwischen zwei Schüssen steht ein Prozessfenster zur Verfügung, welches ein Eingreifen durch die Vornahme von Korrekturmassnahmen erlaubt, denn unmittelbar nach dem Schuss muss das Formteil weiter abgekühlt, die Form geöffnet, das Formteil aus der Druckgiess- oder Thixoformeinrichtung entnommen und die Giesskammer neu mit dem Druckguss- oder Thixoformmaterial beladen werden. Das Beladen der Giesskammer mit einem thixotropen Metallbolzen geschieht vorzugsweise mittels einem Roboter. Das Beladen der Giesskammer mit einer flüssigen Metalllegierung zum Druckgiessen geschieht beispielsweise durch Öffnen eines Ventils oder Stopfens in einer Giessrinne, so dass das flüssige Metall in die Giesskammer fliessen kann.
Bevorzugt werden - neben der Gesamtenergie Etot - auch die durch den Giesskolben zugeführten partiellen Energien E1 bis E4 für die folgenden Verfahrensschritte bestimmt:
  • beim Thixoformen die durch den Giesskolben während der Dauer vom Zeitpunkt to bis zum Zeitpunkt t1 zugeführte partielle Energie E1 für die Verschiebung des thixotropen Metallbolzens in der Giesskammer bis zum Anschlag des Matallbolzens am formseitigen Ende der Giesskammer, wobei t1 den Zeitpunkt bezeichnet, an dem der Metallbolzen am Ende der Giesskammer auftrifft; für einen Druckgiessprozess beträgt die partielle Energie E1 stets Null;
  • beim Druckgiessen oder Thixoformen die durch den Giesskolben während der Dauer vom Zeitpunkt t1 bis zum Zeitpunkt t2 zugeführte partielle Energie E2 für die Verformung des thixotropen Metallbolzens bzw. der Druckgussmaterials, wobei t2 den Zeitpunkt bezeichnet, an dem das Druckguss- oder Thixoformmaterial auf seiner ganzen Länge den ganzen Giesskammerquerschnitt ausfüllt;
  • beim Druckgiessen oder Thixoformen die durch den Giesskolben während der Dauer vom Zeitpunkt t2 bis zum Zeitpunkt t3 zugeführte partielle Energie E3 für die Füllung der Eingusskanäle, wobei t3 den Zeitpunkt bezeichnet, an dem die zwischen der Giesskammer und der Formkavität befindlichen Eingusskanäle allesamt vollständig gefüllt sind;
  • beim Druckgiessen oder Thixoformen die durch den Giesskolben während der Dauer vom Zeitpunkt t3 bis zum Zeitpunkt t4 zugeführte partielle Energie E4 für die Füllung der Formkavität, wobei t4 den Zeitpunkt bezeichnet, an dem alle Teile der Formkavität vollständig gefüllt sind und die Geschwindigkeit des Giesskolbens auf Null gesunken ist, d.h. v(t4)=0.
Insbesondere die Bestimmung der partiellen Energie E1 erlaubt die Feststellung von Vorerstarrungen von Druckguss- oder Thixoformmaterial in der Giesskammer. Im weiteren gibt insbesondere E1 auch Auskunft über die allgemeinen tribologischen Verhältnisse, d.h. beispielsweise Druckverluste aufgrund von Reibung, Verschleisserscheinungen und Schmierung, und dient somit beispielsweise zur Beurteilung des Trenn- und Schmiermitteleinflusses und ergibt zudem Informationen über die Reibung des Giesskolbens und dessen Schmierung.
Üblicherweise wird der Giesskolben von Druckgiess- oder Thixoformeinrichtungen durch hydraulische Mittel angetrieben. Bei derart ausgebildeten Druckgiess- oder Thixoformeinrichtungen wird der zeitabhängige Pressdruckverlauf p(t) besonders vorteilhaft durch gleichzeitige Messung des zeitabhängigen Pressdruckverlaufes pGK(t) an der gegen das Druckguss- oder Thixoformmaterial gerichteten Giesskolbenfläche und durch Messung des Pressdruckverlaufes phyd(t) in der Hydraulikflüssigkeit bestimmt, wobei für die Berechnung der durch den Giesskolben dem Druckguss- oder Thixoformmaterial zugeführten Energie bevorzugt der Pressdruckverlauf pGK(t) verwendet wird.
Da für die erfindungsgemässe Überwachung des Druckgiess- oder Thixoformprozesses und die entsprechende Prozesskontrolle nicht die absoluten Energiemengen E(t), Etot, E1 bis E4 wichtig sind, sondern im wesentlichen die entsprechenden Energiewerte für verschiedene Thixoformbolzen oder Druckgussmaterialmengen aus demselben Vorheizofen bzw. aus verschiedenen Vorheizöfen miteinander verglichen werden, kann für die Berechnung der Energiewerte E(t), E1 bis E4 und Etot auch der Pressdruckverlauf phyd(t) verwendet werden.
phyd(t) beschreibt den auf den Giesskolben ausgeübte Gesamt-Pressdruck. Dieser entspricht jedoch nicht dem auf das Druckguss- oder Thixoformmaterial ausgeübten Pressdruck, da der Giesskolben selbst einer gewissen Reibung in der Giesskammer ausgesetzt ist.
Deshalb erlaubt die gleichzeitige Messung von phyd(t) und pGK(t) die Bestimmung des Druckverlustes Δp=phyd(t)-pGK(t) infolge der Reibung des Giesskolbens und erlaubt deshalb eine Aussage über den mechanischen Zustand der Giesskammer bzw. des Giesskolbens und der Schmierung des Giesskolbens.
Während Etot die globale Kontrolle des gesamten Thixoform- oder Druckgiessprozesses erlaubt, liefern die partiellen Energiewerte E1 bis E4 Informationen über bestimmte Prozessparameter, wie dies im Falle von E1 beispielsweise für vorstehend erläuterte tribologische Verhältnisse oder für die Feststellung von Vorerstarrungen beschrieben wurde. E2 eignet sich beispielsweise für den Erhalt von Information bezüglich der erforderlichen Verformungsenergie und gibt beim Thixoformen beispielsweise Auskunft über den Bolzenzustand, d.h. ob der thixotrope Bolzen zu hart bzw. zu weich ist, bzw. ob der Flüssiganteil zu hoch oder zu tief ist. E3 und E4 andererseits eignen sich beispielsweise für die Überwachung des Einfüllverhaltens der Eingusskanäle bzw. der Formkavität und geben damit beispielsweise Auskunft über den Trennmittel-Einfluss und beim Thixoformen zusätzlich über die auf das thixotrope Material wirkenden Scherkräfte.
Bei Thixoform- oder Druckgiessprozessen mit einer erfindungsgemässen RTIM-Prozessüberwachung wird bevorzugt ein Protokoll pro Arbeitsschicht, welche üblicherweise in der Grössenordnung von 8 Stunden liegt, ausgedruckt, wobei bevorzugt die Anzahl fabrizierter Guss- oder Thixoformteile, d.h. die Schusszahl n, die partiellen Energien E1 bis E4 und die Gesamtenergie Etot für jeden Schuss berechnet und auf dem Protokollausdruck ausgewiesen werden. Weiter bevorzugt werden die gemittelte Gesamtenergie Etot,m und die Standartabweichung σn für alle n Schüsse mit Druckguss- oder Thixoformmaterial aus demselben Vorheizofen ermittelt und ausgedruckt.
Die gemittelte Gesamtenergie Etot,m für eine Anzahl n von Schüssen mit Thixoformoder Druckgussmaterial aus demselben Ofen k berechnet sich beispielsweise als arithmetischer Mittelwert zu:
Figure 00090001
Die Standartabweichung kann dann zu
Figure 00090002
berechnet werden.
Weiter bevorzugt kann auch das relative Streuungsmass gemäss σrel = 100% · σn 2/ Etot,m berechnet werden.
Anhand einer Begutachtung der resultierenden Formteile und dem entsprechenden Vergleich der Energiewerte Etot und E1 bis E4, sowie des Mittelwertes und der Standartabweichung kann dann geschlossen werden, welcher Energiebereich für den Erhalt einer ausreichenden Formteilqualität zulässig ist. Somit kann bezüglich der Energiewerte Etot und E1 bis E4 je ein Sollwertbereich für den Thixoform- oder Druckgiessprozess festgelegt werden, welcher als Kenngrösse beispielsweise für einen Prozessunterbruch, einen Wechsel eines Vorheizofens, eine Kalibrierung der Heizleistung eines Vorheizofens, eine Korrektur der Giesskurve oder die Auslösung eines Überwachungs-Alarms verwendet werden kann.
Hinsichtlich der Vorrichtung liegt vorliegender Erfindung die Aufgabe zugrunde, eine Thixoform- oder Druckgiessvorrichtung bereitzustellen, welche die Überwachung des Herstellungsprozesses unter Produktionsbedingungen erlaubt.
Erfindungsgemäss wird dies durch eine Vorrichtung mit den Merkmalen gemäss Anspruch 12 erreicht. Bevorzugte Weiterbildungen der erfindungsgemässen Vorrichtung werden in den abhängigen Ansprüchen 13 und 14 beschrieben.
Bevorzugt wird insbesondere eine erfindungsgemässe Druckgiess- oder Thixoformeinrichtung, bei welcher die Messvorrichtungen eine kontinuierliche Erfassung des zeitabhängigen Pressdruckes p(t) und eine kontinuierliche Positionsmessung s(t) erlauben.
Die Messvorrichtung zur Bestimmung der Position s(t) kann weiter bevorzugt auch eine Vorrichtung zur Messung der zeitabhängige Geschwindigkeit v(t) des Giesskolbens aufweisen, wobei die Position des Giesskolbens s(tx) zum Zeitpunkt tx zu
Figure 00100001
bestimmt wird.
Die erfindungsgemässe Vorrichtung eignet sich insbesondere zum Thixoformen oder Druckgiessen unter Verwendung des erfindungsgemässen Verfahrens zur Prozessüberwachung.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung der Figuren 1 bis 8 am Beispiel des Thixoformens, sowie anhand der Zeichnungen; diese zeigen schematisch in
  • Fig.1 bis 5 den zeitlichen Verfahrensablauf beim Thixoformen in einer Horizontal-Thixoformanlage;
  • Fig. 6 und 7 Protokollausdrucke einer erfindungsgemässen RTIM-Prozessüberwachung;
  • Fig. 8 eine graphische Protokolldarstellung der gemessenen und berechneten Werte für das erfindungsgemässe RTIM-Verfahren.
Die Figuren 1 bis 5 zeigen einen vertikalen Längsschnitt entlang der Längsachse durch die Giesskammer einer Horizontal-Thixoformeinrichtung. Dabei ist die zylinderförmige Giesskammer 10 horizontal angeordnet und enthält einen Giesskolben 12, eine radialsymmetrische Oxidtasche 22, eine Eingussöffnung 24, zwei Eingusskanäle 26 und 28 sowie zwei sich daran anschliessende Formkavitäten 16 und 18.
Figur 1 zeigt die Thixoformeinrichtung zum Zeitpunkt t0=0, wobei ein in einem Vorheizofen (nicht eingezeichnet) auf die erforderliche Temperatur gebrachter, thixotroper Metallbolzen 14 in die horizontal liegende Giesskammer eingelegt und der Giesskolben 12 an den Bolzen herangeführt ist. In Figur 1 ist beispielhaft ein an die gegen den thixotropen Metallbolzen 14 gerichteten Giesskolbenfläche angebrachter Drucksensor 30 gezeigt. Zudem zeigt Figur 1 eine Positions- oder Geschwindigkeitsmessvorrichtung 32.
Figur 2 zeigt die Thixoformeinrichtung zum Zeitpunkt t1, an dem der thixotrope Metallbolzen 14 am formseitigen Ende 11 der Giesskammer 10 auftrifft. Da die Querschnittsfläche des zylinderförmigen, thixotropen Metallbolzens 14 kleiner als die Querschnittsfläche der Giesskammer 10 ist, füllt der thixotrope Bolzen 14 zum Zeitpunkt t1 noch nicht den ganzen Giesskammerquerschnitt aus.
Figur 3 zeigt die Thixoformeinrichtung zum Zeitpunkt t2. Zu diesem Zeitpunkt hat der thixotrope Metallbolzen seine geometrische Gestalt verloren und liegt nun in Form einer Thixoformmasse 15 vor. Der Zeitpunkt t2 bezeichnet somit den Zeitpunkt, an dem die Thixoformmasse oder das Thixoformmaterial 15 auf seiner ganzen Länge den ganzen Giesskammerquerschnitt ausfüllt, d.h. die Thixoformmasse 15 füllt den gesamten Raum zwischen Giesskolben 12 und dem formseitigen Ende 11 der Giesskammer 10 aus, wobei zum Zeitpunkt t2 im wesentlichen noch kein thixotropes Material durch die Eingussöffnung 24, oder oxidisches Randmaterial in die Oxidtasche 22 geflossen ist.
Figur 4 zeigt die Thixoformeinrichtung zum Zeitpunkt t3. Der Zeitpunkt t3 bezeichnet den Zeitpunkt, an dem die Eingussöffnung 24 sowie die Eingusskanäle 26 und 28 vollständig mit Thixoformmaterial 15 gefüllt sind. Die Oxidtasche 22, welche das in der Randschicht des thxotropen Metallbolzens 14 befindliche Oxidmaterial aufnimmt, ist bereits zum grössten Teil gefüllt.
Figur 5 zeigt die Thixoformeinrichtung zum Zeitpunkt t4. Der Zeitpunkt t4 bezeichnet den Endzustand des eigentlichen Thixoformprozesses, d.h. den Zeitpunkt vor dem Öffnen der Form. Zum Zeitpunkt t4 sind die Formkavitäten 16 und 18 vollständig mit Thixoformmasse 15 gefüllt und die Geschwindigkeit des Giesskolbens 12 ist auf Null gesunken. Während der nachfolgenden Abkühlungs- und Verfestigungsphase des Thixiformteiles kann der Giesskolbendruck für kurze Zeit aufrechterhalten werden, um eine Schrumpfung während dem Abkühlvorgang durch Nachschub von thixotropem Material auszugleichen, so dass der Giesskolben nach dem Zeitpunkt t4 noch eine zusätzliche Bewegung ausführen kann. Zum Zeitpunkt t4 ist in vorliegendem Beispiel auch die radialsymmetrisch ausgebildete Oxidtasche 22 vollständig mit oxidischen Bestandteilen der ursprünglichen Randschicht des thixotropen Bolzens 14 gefüllt.
In Figur 6 sind beispielhaft die berechneten Gesamtenergie-Werte von Thixoformprozessen einzelner thixotroper Metallbolzen aus demselben Vorheizofen, d.h die Gesamtenergie-Werte einzelner Schüsse, derart dargestellt, dass auf der Ordinate die jeweilige Gesamtenergie und auf der Abszisse die Schussnummer in Form der entsprechenden Schusszeiten aufgetragen sind; die Schussnummer eines Schusses entspricht einem bestimmten Zeitpunkt tx, so dass die Ordinate einer Zeitachse entspricht. Der bestimmte Zeitpunkt tx kann dabei beliebig vordefiniert werden, d.h. er kann beispielsweise als Anfangszeitpunkt, an dem der Giesskolben für den Thixoformprozess gestartet wird, definiert werden. Als bestimmter Zeitpunkt tx kann auch jeder beliebige andere, genau definierbare Zeitpunkt während eines Thixoformprozesses definiert werden. Für die in Figur 6 dargestellten Werte wurde der Start des Giesskolbens zu Beginn eines jeden Thixoformprozesses gewählt.
Die Teilfiguren a bis h von Figur 6 geben jeweils die ermittelten Gesamtenergiewerte für eine Anzahl von Schüssen wieder, wobei die Werte für die thixotropen Metallbolzen eines bestimmten Vorheizofens getrennt dargestellt sind, d.h. die Darstellungen a bis h geben jeweils die Werte für thixotrope Metallbolzen aus demselben Vorheizofen wieder.
In Figur 6 a sind die Gesamtenergien von 32 Schüssen mit thixotropen Bolzen, welche in einem Ofen Nr. 1 aufgeheizt wurden, dargestellt. Als bestimmter Zeitpunkt tx wurde der Start des Giesskolbens zu Beginn eines jeden Thixoformprozesses gewählt. Die Darstellung umfasst Schüsse in einem Zeitraum von 19.47 Uhr abends bis um 2.37 Uhr des folgenden Tages. Die über alle 32 Schüsse gemittelte Gesamtenergie beträgt 26.01 kJ mit einem relativen Streuungsmass von ± 16 %.
In Figur 6 b sind die Gesamtenergien von 46 Schüssen mit thixotropen Bolzen, welche in einem Ofen Nr. 5 aufgeheizt wurden, dargestellt. Die Darstellung umfasst Schüsse in einem Zeitraum von 19.06 Uhr abends bis um 2.51 Uhr des folgenden Tages. Die über alle 46 Schüsse gemittelte Gesamtenergie beträgt 31.97 kJ mit einem relativen Streuungsmass von ± 10 %.
In Figur 6 c sind die Gesamtenergien von 47 Schüssen mit thixotropen Bolzen, welche in einem Ofen Nr. 6 aufgeheizt wurden, dargestellt. Die Darstellung umfasst Schüsse in einem Zeitraum von 18.59 Uhr abends bis um 2.34 Uhr des folgenden Tages. Die über alle 47 Schüsse gemittelte Gesamtenergie beträgt 23.91 kJ mit einem relativen Streuungsmass von ± 9 %.
In Figur 6 d sind die Gesamtenergien von 48 Schüssen mit thixotropen Bolzen, welche in einem Ofen Nr. 7 aufgeheizt wurden, dargestellt. Die Darstellung umfasst Schüsse in einem Zeitraum von 19.00 Uhr abends bis um 2.36 Uhr des folgenden Tages. Die über alle 48 Schüsse gemittelte Gesamtenergie beträgt 30.58 kJ mit einem relativen Streuungsmass von ± 15 %.
In Figur 6 e sind die Gesamtenergien von 42 Schüssen mit thixotropen Bolzen, welche in einem Ofen Nr. 9 aufgeheizt wurden, dargestellt. Die Darstellung umfasst Schüsse in einem Zeitraum von 19.01 Uhr abends bis um 2.28 Uhr des folgenden Tages. Die über alle 42 Schüsse gemittelte Gesamtenergie beträgt 23.53 kJ mit einem relativen Streuungsmass von ± 16 %.
In Figur 6 f sind die Gesamtenergien von 49 Schüssen mit thixotropen Bolzen, welche in einem Ofen Nr. 10 aufgeheizt wurden, dargestellt. Die Darstellung umfasst Schüsse in einem Zeitraum von 19.03 Uhr abends bis um 2.47 Uhr des folgenden Tages. Die über alle 49 Schüsse gemittelte Gesamtenergie beträgt 23.03 kJ mit einem relativen Streuungsmass von ± 12 %.
In Figur 6 g sind die Gesamtenergien von 47 Schüssen mit thixotropen Bolzen, welche in einem Ofen Nr. 11 aufgeheizt wurden, dargestellt. Die Darstellung umfasst Schüsse in einem Zeitraum von 19.04 Uhr abends bis um 2.39 Uhr des folgenden Tages. Die über alle 47 Schüsse gemittelte Gesamtenergie beträgt 20.38 kJ mit einem relativen Streuungsmass von ± 8 %.
In Figur 6 h sind die Gesamtenergien von 51 Schüssen mit thixotropen Bolzen, welche in einem Ofen Nr. 12 aufgeheizt wurden, dargestellt. Die Darstellung umfasst Schüsse in einem Zeitraum von 19.05 Uhr abends bis um 2.32 Uhr des folgenden Tages. Die über alle 51 Schüsse gemittelte Gesamtenergie beträgt 46.15 kJ mit einem relativen Streuungsmass von ± 7 %.
Figur 7 zeigt ein Balkendiagramm der gemittelten Gesamtenergien Etot,i (i=1...12, wobei i die Ofen-Nr. kennzeichnet) für die in Figur 6 dargestellten Thixoformversuche während einer Arbeitsschicht von ca. 8 Stunden, wobei jeweils noch die Standartabweichungen eingetragen sind. Jeder Balken in Figur 7 stellt somit die über alle Schüsse einer Arbeitsschicht gemittelte Gesamtenergie Etot,i pro Schuss für thixotrope Metallbolzen aus Ofen-Nr. i dar.
Anhand der Begutachtung der resultierenden Formteile und dem entsprechenden Vergleich mit der gemittelten Gesamtenergie Etot,i bzw. Etot kann dann geschlossen werden, welcher Energiebereich für eine ausreichende Formteilqualität zulässig ist. Die Begutachtung der resultierenden Formteile kann beispielsweise durch optische oder mikroskopische Beurteilung, oder durch Werkstoffprüfung, materialspezifische Untersuchungen mittels beispielsweise Schliffbilder, Material-Analysen, Gefügeuntersuchungen u.s.w. vorgenommen werden. Aufgrund der Begutachtung der Formteile und der für ihre Herstellung bekannten Gesamtenergiewerte Etot, sowie der Werte für die partiellen Energien E1 bis E4, kann beispielsweise bezüglich Etot ein Gesamtenergie-Sollwertbereich als Kenngrösse für den Thixoform- oder Druckgiessprozess festgelegt werden. Der Sollwertbereich kann dann als weitere Kenngrösse verwendet werden, wobei bei Über- oder Unterschreiten des Gesamtenergiewertes eines Schusses bzw. einer Anzahl von Schüssen beispielsweise ein Prozessunterbruch, ein Wechsel eines Vorheizofens oder eine Neukalibrierung der Heizleistung eines Vorheizofens vorgenommen werden kann.
Die Begutachtung der Formteile, welche mit den die Figur 6 betreffenden Thixofomverfahren hergestellt wurden, zeigt, dass für diesen Fall die Gesamtenergie pro Schuss zwischen 35 kJ ≥ Etot ≥ 10 kJ liegen muss, damit die erforderliche Formteilqualität erreicht werden kann. Nahe der derart ermittelten Energieschwellen können sowohl Formteile mit den erforderlichen Formteileigenschaften wie auch Formteile mit unzureichenden Formteileigenschaften resultieren. Befindet sich der Gesamtenergiewert eines Schusses ausserhalb des ermittelten Energiebandes, erhöht sich das Risiko für die Herstellung eines nicht konformen Formteiles, d.h. eines Formteiles, welches nicht die erforderlichen Formteileigenschaften hinsichtlich Gefüge, Abmessungen u.s.w. aufweist. Demgemäss stellt die Bestimmung der Gesamtenergie für einen Schuss ein Mass dar für die Wahrscheinlichkeit einer guten bzw. schlechten Formteilherstellung, d.h. ein Mass für die Ausschuss-Wahrscheinlichkeit.
Figur 8 zeigt beispielhaft eine graphische Protokolldarstellung der gemessenen und berechneten Werte für das erfindungsgemässe RTIM-Verfahren, wobei einerseits der durch den Giesskolben 12 zurückgelegte, gemessene Weg s(t) und andererseits der gemessene, durch den Giesskolben 12 ausgeübte, zeitabhängige Pressdruck p(t) während eines Thixoformprozesses, d.h. während eines Schusses, dargestellt sind, sowie die durch Punkte dargestellten, zu diskreten Zeitpunkten ermittelten Geschwindigkeitswerte v(t)=ds(t)/dt des Giesskolbens 12 eingetragen sind. Im Weiteren enthält die in Figur 8 gezeigte Protolldarstellung auch eine Geschwindigkeitskurve v(t), welche durch numerische Filterung und Glättung der diskreten Geschwindigkeitswerte ds(t)/dt berechnet ist.

Claims (14)

  1. Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen (14, 15) in einer Druckgiess- oder Thixoformeinrichtung, welche eine Giesskammer (10), einen Giesskolben (12) und eine Form mit einer Formkavität (16, 18) enthält,
    dadurch gekennzeichnet, dass
    der zeitliche Verlauf des Pressdruckes p(t) gemessen und die zeitabhängige Geschwindigkeit des Giesskolbens v(t) bestimmt wird, und die durch den Giesskolben zugeführte Energie E(t) in Funktion der Prozesszeit t, sowie die während dem Druckgiess- bzw. Thixoformprozess durch den Giesskolben (12) zugeführte Gesamtenergie Etot aufgrund des zeitabhängigen Verlaufes des Pressdruckes p(t) und der Giesskolbengeschwindigkeit v(t) berechnet wird, und die Gesamtenergie Etot als Kennwert für die Überwachung des Druckgiess- oder Thixoformprozesses verwendet wird.
  2. Verfahren zur Prozessüberwachung einer Druckgiess- oder Thixoformeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Bestimmung des Pressdruck-Verlaufes p(t) durch Messung des Druckes pGK(t) an der gegen das Druckguss- oder Thixoformmaterial (14, 15) gerichteten Giesskolben-Fläche erfolgt.
  3. Verfahren zur Prozessüberwachung einer Druckgiess- oder Thixoformeinrichtung nach Anspruch 1, wobei der Giesskolben (12) hydraulisch angetrieben wird, dadurch gekennzeichnet, dass die Bestimmung des Pressdruck-Verlaufes p(t) durch Messung des Druckes phyd(t) in der Hydraulikflüssigkeit erfolgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die durch den Giesskolben (12) zugeführte Energie E(t) in Funktion der Prozesszeit t gemäss der Integral-Funktion
    Figure 00160001
    und die während dem Druckgiess- bzw. Thixoformprozess durch den Giesskolben (12) zugeführte Gesamtenergie Etot durch die Integral-Funktion
    Figure 00170001
    berechnet wird, wobei A die gegen das Druckguss- oder Thixoformmaterial (14, 15) gerichtete Fläche des Giesskolbens (12), t0 den Anfangszeitpunkt t=0 des Druckgiess- oder Thixoformverfahrens und t4 den Zeitpunkt bezeichnet, an dem der Giesskolben zum ersten Mal nach t0 die Geschwindigkeit v(t)=0 annimmt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zeitabhängige Position des Giesskolbens s(t) gemessen und die Geschwindigkeit des Giesskolbens v(t) als Ableitung der zeitabhängigen Giesskolbenposition s(t) nach der Zeit t zu diskreten Zeitpunkten gemäss der Funktion v(t)=ds(t)/dt bestimmt wird, wobei die Geschwindigkeit v(t) bevorzugt an 180 bis 500, insbesondere an 250 bis 400 diskreten Prozesszeitpunkten während dem Druckgiess- bzw. Thixoformprozess bestimmt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die durch den Giesskolben (12) während zwei Prozesszeitpunkten tx und ty, wobei tx<ty, zugeführte, zeitabhängige Energie Ex,y(t) gemäss der Integral-Funktion
    Figure 00170002
    berechnet wird, wobei A die gegen das Druckguss- oder Thixoformmaterial (14, 15) gerichtete Fläche des Giesskolbens (12) bezeichnet.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die partiellen Energien E1 bis E4 für die folgenden Verfahrensschritte berechnet werden:
    a) beim Thixoformen die durch den Giesskolben (12) während der Dauer vom Zeitpunkt t0 bis zum Zeitpunkt t1 zugeführte partielle Energie E1 für die Verschiebung des thixotropen Metallbolzens (14) in der Giesskammer (10) bis zum Anschlag des Matallbolzens (14) am formseitigen Ende (11) der Giesskammer (10), wobei t1 den Zeitpunkt bezeichnet, an dem der thixotrope Metallbolzen (14) am Ende der Giesskammer (11) auftrifft;
    b) beim Druckgiessen und Thixoformen die durch den Giesskolben (12) während der Dauer vom Zeitpunkt t1 bis zum Zeitpunkt t2 zugeführte partielle Energie E2 für die Verformung des thixotropen Metallbolzens (14) bzw. des Druckgussmaterials (15), wobei t2 den Zeitpunkt bezeichnet, an dem das Druckguss- oder Thixoformmaterial (15) auf seiner ganzen Länge den ganzen Giesskammerquerschnitt ausfüllt;
    c) beim Druckgiessen und Thixoformen die durch den Giesskolben (12) während der Dauer vom Zeitpunkt t2 bis zum Zeitpunkt t3 zugeführte partielle Energie E3 für die Füllung der Eingusskanäle (26, 28), wobei t3 den Zeitpunkt bezeichnet, an dem die zwischen der Giesskammer (10) und der Formkavität (16, 18) befindlichen Eingusskanäle (26, 28) allesamt vollständig gefüllt sind;
    d) beim Druckgiessen und Thixoformen die durch den Giesskolben (12) während der Dauer vom Zeitpunkt t3 bis zum Zeitpunkt t4 zugeführte partielle Energie E4 für die Füllung der Formkavität (16, 18), wobei t4 den Zeitpunkt bezeichnet, an dem die Formkavität (16, 18) vollständig gefüllt ist und die Geschwindigkeit des Giesskolbens (12) auf Null gesunken ist, d.h. v(t4)=0.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Gesamtenergie Etot zu Etot=E1+ E2+ E3+ E4 berechnet wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei der Giesskolben (12) hydraulisch angetrieben wird, dadurch gekennzeichnet, dass der Pressdruck-Verlauf p(t) durch Messung des Druckes phyd(t) in der Hydraulikflüssigkeit und gleichzeitig durch Messung des Druckes pGK(t) an der gegen das Druckgussoder Thixoformmaterial (14, 15) gerichteten Giesskolben-Fläche erfolgt, wobei für die Berechnung der durch den Giesskolben (12) zugeführten Energiewerte der Pressdruckverlauf pGK(t) verwendet wird, und der durch die Reibung verursachte Energieverlust bis zum Zeitpunkt t durch Berechnung der Integral-Funktion
    Figure 00180001
    bestimmt wird, wobei A die gegen das Druckguss- oder Thixoformmaterial (14, 15) gerichtete Fläche des Giesskolbens (12) und t0 den Anfangszeitpunkt des Druckgiess- oder Thixoformprozesses bezeichnen.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Gesamtenergie Etot für eine Vielzahl von Druckgiess- oder Thixoformprozessen mit Druckguss- oder Thixoformmaterial (14, 15) eines bestimmten Vorheizofens ermittelt und daraus der entsprechende Mittelwert und die Standartabweichung berechnet werden, wobei der Mittelwert und die Standartabweichung als weitere Kennwerte verwendet werden.
  11. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 10 für das Druckgiessen oder Thixoformen von Aluminium- oder Magnesiumlegierungen.
  12. Druckgiess- oder Thixoformeinrichtung, insbesondere eine Druckgiess- oder Thixoformeinrichtung zum Druckgiessen oder Thixoformen von Aluminiumlegierungen, wobei die Druckgiess- oder Thixoformeinrichtung eine Giesskammer (10), einen Giesskolben (12) und eine Form mit wenigstens einer Formkavität (16, 18) enthält, dadurch gekennzeichnet, dass die Druckgiess- oder Thixoformeinrichtung entweder Messvorrichtungen (30, 32) zur gleichzeitigen Bestimmung des prozesszeitabhängigen Pressdruckes p(t) und der prozesszeitabhängigen Positionsbestimmung s(t) des Giesskolbens (12) oder Messvorrichtungen (30, 32) zur gleichzeitigen Bestimmung des prozesszeitabhängigen Pressdruckes p(t) und der prozesszeitabhängigen Geschwindigkeitsbestimmung v(t) des Giesskolbens (12) aufweist.
  13. Druckgiess- oder Thixoformeinrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Messvorrichtung zur Bestimmung des prozesszeitabhängigen Pressdruckes p(t) einen an der gegen das Druckguss- oder Thixoformmaterial (14, 15) gerichteten Giesskolben-Fläche angebrachten oder eingebauten Drucksensor (30) enthält.
  14. Druckgiess- oder Thixoformeinrichtung nach einem der Ansprüche 12 oder 13, bei welcher der Giesskolben (12) hydraulisch angetrieben wird, dadurch gekennzeichnet, dass die Messvorrichtung zur Bestimmung des prozesszeitabhängigen Pressdruckes p(t) einen Drucksensor zur Bestimmung des Druckes in der Hydraulikflüssigkeit enthält.
EP99810679A 1999-07-27 1999-07-27 Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen Expired - Lifetime EP1072340B1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE59907298T DE59907298D1 (de) 1999-07-27 1999-07-27 Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen
ES99810679T ES2209369T3 (es) 1999-07-27 1999-07-27 Procedimiento para vigilar el proceso de colada a presion o tixomoldeo de metales.
EP99810679A EP1072340B1 (de) 1999-07-27 1999-07-27 Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen
AT99810679T ATE251514T1 (de) 1999-07-27 1999-07-27 Verfahren zur prozessüberwachung beim druckgiessen oder thixoformen von metallen
CZ2002294A CZ2002294A3 (cs) 1999-07-27 2000-07-20 Způsob kontroly procesu při tlakovém lití nebo vstřikování kovů v polotekutém stavu
US10/048,276 US6554057B1 (en) 1999-07-27 2000-07-20 Method for monitoring a process during metal die casting or thixotropic moulding
JP2001512049A JP2003505246A (ja) 1999-07-27 2000-07-20 金属のダイカスト中又はチキソトロープ成形中に、プロセスを監視するための方法
SI200020045A SI20683A (sl) 1999-07-27 2000-07-20 Postopek za nadzorovanje dogajanja pri tlačnem ulivanju ali tiskooblikovanju kovin
PCT/CH2000/000394 WO2001007184A1 (de) 1999-07-27 2000-07-20 Verfahren zur prozessüberwachung beim druckgiessen oder thixoformen von metallen
AU56702/00A AU5670200A (en) 1999-07-27 2000-07-20 Method for monitoring a process during metal die casting or thixotropic moulding
CA002380055A CA2380055A1 (en) 1999-07-27 2000-07-20 Method for monitoring a process during metal die casting or thixotropic moulding
NO20020414A NO20020414L (no) 1999-07-27 2002-01-25 Fremgangsmåte for prosessovervåking ved trykkstöping eller tiksoforming av metaller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP99810679A EP1072340B1 (de) 1999-07-27 1999-07-27 Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen

Publications (2)

Publication Number Publication Date
EP1072340A1 EP1072340A1 (de) 2001-01-31
EP1072340B1 true EP1072340B1 (de) 2003-10-08

Family

ID=8242945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99810679A Expired - Lifetime EP1072340B1 (de) 1999-07-27 1999-07-27 Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen

Country Status (12)

Country Link
US (1) US6554057B1 (de)
EP (1) EP1072340B1 (de)
JP (1) JP2003505246A (de)
AT (1) ATE251514T1 (de)
AU (1) AU5670200A (de)
CA (1) CA2380055A1 (de)
CZ (1) CZ2002294A3 (de)
DE (1) DE59907298D1 (de)
ES (1) ES2209369T3 (de)
NO (1) NO20020414L (de)
SI (1) SI20683A (de)
WO (1) WO2001007184A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8376026B2 (en) * 2010-01-29 2013-02-19 National Research Council Of Canada Thixotropic injector with improved annular trap
AT512229B1 (de) * 2011-11-10 2014-10-15 Mold Thix Consulting Bueltermann Gmbh Vorrichtung, anlage und verfahren zum druckgiessen von metallischem material im thixotropen zustand
US8948889B2 (en) 2012-06-01 2015-02-03 Blackberry Limited Methods and apparatus for tuning circuit components of a communication device
AU2012389954B2 (en) * 2012-09-12 2018-02-15 Aluminio Tecno Industriales Orinoco C.A. Process and plant for producing components made of an aluminium alloy for vehicles and white goods, and components obtained thereby
WO2015112726A1 (en) 2014-01-24 2015-07-30 United Technologies Corporation Monitoring material solidification byproducts during additive manufacturing
DE102017002818A1 (de) * 2017-03-23 2018-09-27 Cosateq Gmbh Verfahren zum Betrieb einer Druckgusspresse mit Lagenregelung und Druckgusspresse zur Ausführung des Verfahrens
CZ308669B6 (cs) * 2019-08-13 2021-02-03 ŠKODA AUTO a.s. Lisovací linka a pracovní postup kontroly výlisků na této lisovací lince

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1081421A (en) * 1975-01-31 1980-07-15 Toyoaki Ueno Method of injecting a molten material under pressure and an apparatus performing the same
DE3043369C2 (de) * 1980-11-17 1984-08-23 Mannesmann Demag Kunstofftechnik Zweigniederlassung der Mannesmann Demag AG, 8500 Nürnberg Einer Spritzgießmaschine zugeordnetes Meßgerät zur Messung und Anzeige des Verbrauches an elektrischer Energie je Spritzzyklus
EP0228799A3 (de) * 1985-11-18 1988-08-03 The Japan Steel Works, Ltd. Verfahren zum Steuern eines Spritzgiessvorgangs und Vorrichtung dazu
US5052468A (en) * 1989-09-20 1991-10-01 Diecasting Machinery & Rebuilding Co. Method and apparatus for die casting shot control
JPH0655383B2 (ja) * 1990-03-19 1994-07-27 住友電装株式会社 射出成形機における成形評価装置および成形評価方法
US5758707A (en) * 1995-10-25 1998-06-02 Buhler Ag Method for heating metallic body to semisolid state
JP3255609B2 (ja) * 1998-06-05 2002-02-12 東芝機械株式会社 電動射出成形機の射出速度切換制御方法

Also Published As

Publication number Publication date
ATE251514T1 (de) 2003-10-15
WO2001007184A1 (de) 2001-02-01
SI20683A (sl) 2002-04-30
NO20020414D0 (no) 2002-01-25
CA2380055A1 (en) 2001-02-01
EP1072340A1 (de) 2001-01-31
US6554057B1 (en) 2003-04-29
CZ2002294A3 (cs) 2002-08-14
AU5670200A (en) 2001-02-13
DE59907298D1 (de) 2003-11-13
ES2209369T3 (es) 2004-06-16
NO20020414L (no) 2002-03-26
JP2003505246A (ja) 2003-02-12

Similar Documents

Publication Publication Date Title
DE69508581T3 (de) Verfahren und vorrichtung für das spritzgiessen von metallen in halbfesten zustand
DE69916708T2 (de) Verfahren und Vorrichtung zum Spritzgiessen halbflüssiger Metalle
DE60009783T2 (de) Druckgiessteile aus einer kriechbeständigen Magnesiumlegierung
EP0718059B1 (de) Oxidabstreifer
DE102005061668B4 (de) Verwendung einer Aluminiumlegierung zur Herstellung von Druckgußstücken
DE69327195T2 (de) Verfahren zum Giessen von Aluminiumlegierungen und Gusstücken
DE69807277T2 (de) Verfahren und Vorrichtung zum Spritzgiessen halbflüssiger Metalle
EP1815124B1 (de) Verfahren zur herstellung eines kolbens fuer einen verbrennungsmotor
DE60304920T2 (de) Verfahren zur Herstellung von Magnesiumlegierungsprodukten
DE2953474C2 (de) Druckgießverfahren mit Nachverdichtung
EP1072340B1 (de) Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen
DE69523720T2 (de) Verfahren zur Herstellung eines metallischen Rohblocks für die plastische Umformung
DE2929845C2 (de)
DE69034025T2 (de) Aluminiumlegierungsgussstück
DE69916707T2 (de) Verfahren und Vorrichtung zum Spritzgiessen halbflüssiger Metalle
DE69308263T2 (de) Schätzung der Metalltemperatur über die Abnutzung des Tauchrohres auf Grund des Eintauchens in Metallschmelze
DE69809166T2 (de) Verfahren zum Spritzgiessen einer Leichtmetalllegierung
DE19634494A1 (de) Aluminium-Gußlegierung mit hoher Festigkeit und Zähigkeit erhältlich durch ein Hochdruck-Gießverfahren und Verfahren zu deren Herstellung
DE112010001446B4 (de) Verfahren zur Herstellung einer Zylinderlaufbuchse aus Metallmatrix-Verbundwerkstoffund Verfahren zur Herstellung derselben
DE69808295T2 (de) Verfahren und vorrichtung zur oberflächentemperaturkontrolle eines blockes während des giessens und insbesondere während des angiessens
DE3851593T2 (de) Verfahren zur Herstellung einer faserverstärkten Metallzusammensetzung.
EP2187196A2 (de) Vorrichtung zur Bestimmung der Heißrissempfindlichkeit von metallischen Schmelzen
DE2953435T1 (de) Die-casting method and apparatus
DE10352453A1 (de) Verfahren zur Herstellung von Metall-Matrix-Verbundwerkstoffen
EP1105237B1 (de) Verfahren zur prozessüberwachung beim druckgiessen oder thixoformen von metallen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010731

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AXX Extension fees paid

Free format text: SI PAYMENT 20010731

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031008

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59907298

Country of ref document: DE

Date of ref document: 20031113

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030405285

Country of ref document: GR

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2209369

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040727

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040727

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040728

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040709

BERE Be: lapsed

Owner name: *ALCAN TECHNOLOGY & MANAGEMENT A.G.

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050203

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050727

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040728

BERE Be: lapsed

Owner name: *ALCAN TECHNOLOGY & MANAGEMENT A.G.

Effective date: 20040731