EP1069313A2 - Turboverdichter - Google Patents

Turboverdichter Download PDF

Info

Publication number
EP1069313A2
EP1069313A2 EP00810275A EP00810275A EP1069313A2 EP 1069313 A2 EP1069313 A2 EP 1069313A2 EP 00810275 A EP00810275 A EP 00810275A EP 00810275 A EP00810275 A EP 00810275A EP 1069313 A2 EP1069313 A2 EP 1069313A2
Authority
EP
European Patent Office
Prior art keywords
turbocompressor
radial
electric motor
shaft
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00810275A
Other languages
English (en)
French (fr)
Other versions
EP1069313A3 (de
EP1069313B1 (de
Inventor
Denis Grob
Jean-Claude Pradetto
Dominique Dessibourg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
Sulzer Turbo AG
MAN Turbomaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26073837&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1069313(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from EP99810640A external-priority patent/EP0990798A1/de
Priority to EP00810275A priority Critical patent/EP1069313B1/de
Application filed by Sulzer Turbo AG, MAN Turbomaschinen AG filed Critical Sulzer Turbo AG
Priority to US09/599,098 priority patent/US6390789B1/en
Priority to CA002312085A priority patent/CA2312085C/en
Priority to DE20011217U priority patent/DE20011217U1/de
Priority to JP2000192340A priority patent/JP4395242B2/ja
Priority to KR1020000039923A priority patent/KR100761917B1/ko
Priority to CNB001201123A priority patent/CN1153906C/zh
Publication of EP1069313A2 publication Critical patent/EP1069313A2/de
Publication of EP1069313A3 publication Critical patent/EP1069313A3/de
Publication of EP1069313B1 publication Critical patent/EP1069313B1/de
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system

Definitions

  • the invention relates to a turbocompressor according to the preamble of Claim 1.
  • a turbocompressor which is a radial turbocompressor and an electric motor, each of these units in one separate housing is arranged, and the shaft of the electric motor via a flexible shaft part is coupled to the shaft of the radial turbocompressor.
  • a disadvantage of this known turbocompressor is the fact that this is relatively large that a plurality of seals and Bearings are required and that the manufacturing cost of the Turbocompressors are therefore relatively high.
  • the publication DE 37 29 486 C1 discloses one in FIG Turbo compressor, which two two-stage radial turbo compressor and one Includes electric motor, which are coupled to a rigid shaft, which is supported in three places with magnetic radial bearings.
  • This Embodiment has the disadvantage that the assembly is very is complex and difficult that this arrangement for one at most two-stage radial turbocompressor is suitable, and that the Turbo compressor has relatively high dissipation losses.
  • the object of the present invention is an economically more advantageous one To propose turbocompressors.
  • the object is achieved in particular with a turbocompressor an electric motor, a multi-stage radial turbocompressor and one common shaft, with a portion of the shaft as the rotor of Electric motor is formed, and wherein a further section of the shaft is designed as a rotor of the radial turbocompressor, the rotor being a Compressor shaft and associated compressor wheels, and wherein to support the shaft several electromagnetic radial bearings in Direction of the shaft are arranged spaced, and wherein a single between the rotor of the electric motor and the compressor wheel electromagnetic radial bearing is arranged, and wherein the electric motor, the radial turbocompressor, the shaft and the radial bearings in one common, gas-tight housing are arranged to the outside, and wherein the housing consists of several sub-housings, which are fixed are interconnectable, the electric motor in a partial housing and Radial turbocompressor is arranged in a partial housing, and the rotor of the electric motor and the rotor of the
  • turbocompressor comprising an electric motor, a multi-stage radial turbocompressor and a common shaft, with a portion of the shaft as a rotor of the electric motor is formed, and wherein a further section of the Shaft is designed as a rotor of the radial turbocompressor, the rotor a compressor shaft and compressor wheels connected thereto, and with several electromagnetic radial bearings in to support the shaft Direction of the shaft are spaced, the Radial bearings are supported on a common base element.
  • turbocompressor comprising an externally gas-tight housing inside which a common shaft, an electric motor and a multi-stage Radial turbocompressors are arranged, being used to support the shaft in its Direction of electromagnetic radial bearings spaced apart are, and being between the electric motor and the radial turbocompressor a dry gas seal enclosing the shaft is arranged around the Seal electric motor with respect to the radial turbocompressor, the Electric motor has an interior, which fluidly with the Housing penetrating outlet opening is connected.
  • Fig. 1 shows a known turbocompressor, which one on both sides mounted electric motor and a bilateral Includes radial turbocompressor, wherein the shaft of the electric motor via a flexible shaft part is coupled to the shaft of the radial turbocompressor.
  • turbocompressor for the complete storage of the entire shaft, opposite the 1, three radial bearings, in particular configured as an electromagnetic radial bearing, suffice by between the Electric motor and the compressor a single radial bearing is arranged. This makes the turbocompressor cheaper to manufacture.
  • the entire shaft can be designed in one piece.
  • a very rigid coupling is allowed to form an overall shaft, which one in the direction of the wave largely homogeneous stiffness curve.
  • the total wave or the entire rotatable components of the As a result, turbo compressors behave like a compact shaft has a positive effect on the stable running behavior of the turbocompressor. In addition this enables the entire shaft in with the help of a single thrust bearing to store in the axial direction.
  • a radial turbocompressor If only on one side of the electric motor a radial turbocompressor is arranged, three are sufficient spaced in the direction of the shaft arranged electromagnetic radial bearings for complete storage of the entire wave. Is on each side of the electric motor Arranged radial turbocompressors, four are sufficient in the direction of the Shaft spaced electromagnetic radial bearings for complete storage of the entire shaft.
  • Dispensing with a radial bearing between the electric motor and the Radial turbo compressor also has the advantage that the length of the entire wave is shorter, which is advantageous in terms of rotor dynamics, an easier one Allows to form wave, and also a more compact design of the Turbo compressor results.
  • electromagnetic Radial bearings in comparison to hydrodynamic radial bearings an essential have less bearing force, so that is due to the shorter shaft gained, more advantageous rotor dynamic behavior and the lower Weight is critical to keep the turbocompressor safe and operate trouble-free by means of electromagnetic bearings.
  • the motor and the Radial turbocompressors in a common, hermetically sealed Housing, in particular a pressure housing, wherein a fluid-conducting inlet and outlet penetrate the housing or on the housing are flanged to compress the radial turbocompressor Supply and discharge fluid.
  • the radial turbocompressor with a hermetically sealed to the outside
  • the motor-compressor system according to the invention allows pressure housings also operate at locations that were previously used to operate a Radial turbo compressor were unsuitable, for example under water or in an environment with high levels of pollutants and high levels of pollution or high risk of explosion.
  • turbocompressor Another advantage of the turbocompressor according to the invention is therein see that this can also be operated very securely by remote control.
  • the Turbocompressors for example, do not have a complex oil system Storage of the rotor. In addition, there are no seals or only a few required. The turbocompressor therefore has no components whose operation requires a specialist on site, or components which require regular checks at relatively short intervals.
  • the turbocompressor can be started and stopped remotely run, whereby the states of the turbocompressor from Can be monitored remotely and when an irregularity is detected appropriate measures, such as stopping, are automatically initiated can be.
  • a turbocompressor is included in the design hermetically sealed pressure housing has the further advantage that the The risk of external interference is very low.
  • part of the compressed Fluids or process gases for longitudinal gas cooling of the engine and the Radial bearing used is an advantage.
  • Electric motor is preferably one for suction pressure or standstill pressure designed motor used.
  • the electric motor has a separate one from the radial turbocompressor separate cooling circuit.
  • the inventive Turbo compressor has a common base element, which for example, is plate-shaped, and on which some, preferably all radial bearings are supported.
  • the arrangement of the Radial bearings on a common base element have the advantage that they are aligned with each other in a defined position, and that due to tensile, compressive or shear stresses or mutual due to temperature influences Displacements in the radial bearings can be kept to a minimum. So is a mutually precisely arranged alignment of the radial bearings different operating conditions guaranteed.
  • the radial bearings are arranged on the base element but also the other elements such as the electric motor, the radial turbocompressor etc.
  • the turbocompressor as a whole Ready to assemble the module in the manufacturing plant.
  • This module can be Application site can be put into operation very quickly since it is no longer the radial turbocompressor and the electric motor are required separately anchoring a document and exactly the mutual position adjust.
  • the turbocompressor is arranged within a housing, part of the housing, for example, the inner wall of the housing arranged below, at the same time forms the common basic element.
  • the turbocompressor Radial turbo compressor and the motor in a common housing arranged, the housing consisting of several interconnectable Part housing, or consists of a substantially single housing.
  • the entire drive device is advantageously in one partial housing and in a further partial housing the entire radial turbocompressor arranged, these partial housings preferably mutually are adapted to be directly centerable and mutually are firmly connectable.
  • this is common housing designed so stiff that the entire Turbocompressor comprising the radial turbocompressor, the engine, etc. the common housing mutually essentially free of displacement is mounted so that the common housing, for example, designed as a pipe, without external support, or with only one or two Supports can be supported on a surface.
  • the turbocompressor known from FIG. 1 consists of a separate motor with its own housing, as well as with a radial turbocompressor another, own housing.
  • the mutual movement of the housing or the displacement of the individual waves is a significant problem, which is caused by this is that each housing is individually anchored to the floor. By different thermal expansions or other acting forces the individual housings change their position.
  • the inventive Arrangement of engine and radial turbocompressor on a common Base element, in particular in a common housing has the Advantage that the base element or the housing Reference for storage forms, and therefore a mutual change the position of the engine and radial turbocompressor largely excluded is.
  • Fig. 1 shows schematically a known turbocompressor 1, which one Radial turbocompressor 3 with a shaft 3a and a driving one Includes electric motor 2 with a shaft 2a.
  • the wave 3a of the Radial turbocompressor 3 is supported on both sides by two radial bearings 5.
  • the shaft 2a of the electric motor 2 is likewise formed by two radial bearings 5 each stored on both sides.
  • the two shafts 2a, 3a are via a coupling 4 comprising two coupling parts 4a and a flexible intermediate piece 4b connected so that the electric motor 2 via the shaft 2a and the clutch 4th drives the shaft 3a of the radial turbocompressor 3.
  • Fig. 2 shows a turbocompressor 1, which is in a hermetic sealed pressure housing 6 is arranged, each one Pressure housing 6 penetrating supply line 6c and discharge line 6d provided is fluid-conducting to the radial turbocompressor 3 with an outside of the To connect pressure housing 6 arranged device.
  • the electric motor 2 comprises the rotor 2b and the stator 2c, the rotor 2b being part of the Motor shaft 2a is, and the motor shaft 2a on both sides in the electromagnetic Radial bearing 5, each comprising a support device 5a and one electromagnetic coil 5b, is mounted in the radial direction.
  • the Motor shaft 2a has an axial bearing 7 against radial centrifugal compressor 3 on, which forms part of the motor shaft 2a disc 2d and includes electromagnetic coils 7a.
  • the motor shaft 2a is on the other End section via a clutch 4 with the rotor 3a of the Radial turbocompressor 3 connected, the opposite End portion of the rotor 3a is mounted in a radial bearing 5.
  • the Motor shaft 2a and rotor 3a form a common shaft 13.
  • two compressor wheels 3b are arranged, which has a first compression stage 3c and a second compression stage Train 3d.
  • the guide vanes 3f of the are not shown Radial turbo compressor 3.
  • the main mass flow 8 of the to be compressed Fluid passes through the inlet opening 6a and the feed line 6c into the first compression stage 3c subsequently to the second compression stage 3d and subsequently via the Discharge 6d directed to the outlet opening 6b.
  • a small fraction of the The main mass flow 8 is at the exit point of the first Compression stage 3c derived via a connecting line 11 and as Cooling gas mass flow 9 fed to a filter device 10, which the Cooling gas mass flow 9 cleans of impurities, and the cleaned Cooling gas mass flow 9 as a coolant to the electromagnetic radial bearings 5 and the electric motor 2 feeds.
  • the cooling gas mass flow 9 flows in the longitudinal direction of the housing, the radial bearing 5 and subsequently the electric motor 2 and the other Radial bearing 5 supplied, the cooling gas preferably between the Wave 2a and the respective magnet 5b, 2c is performed.
  • the Cooling gas mass flow 9 opens to the suction side of the first Compression level 3c, which is in turn compressed by this, and is called Main mass flow 8 and / or further promoted as a cooling gas mass flow 9.
  • the connecting line 11 and the filter device 10 can be inside or be arranged outside the pressure housing 6 extending.
  • the Turbo compressor 1 according to the embodiment shown in FIG. 2 has the advantage that no seal of the motor shaft 2a or Runner 3a versus atmosphere is required. In addition, there is no seal between between the engine 2 and the first compression stage 3c required.
  • the electric motor 2 is to be designed in such a way that it also has Suction pressure or can be operated with standstill pressure.
  • the turbocompressor 1 could of course have a plurality in the direction of travel of the rotor 3a have spaced-apart compressor wheels 3b, so for example, a total of four, six, eight or ten compressor wheels 3b.
  • the compression pressure to be achieved is largely open upwards, with a corresponding number connected in series Compressor wheels 3b, for example, a compression pressure of 600 bar is achievable.
  • the turbocompressor 1 could also have one or more others Radial turbocompressors 3 and / or electric motors 2, which in Direction of the runner 3a; 2a are arranged, with all runs 3a; 2a form a common wave.
  • This common wave could go through Radial bearings, in particular magnetic radial bearings 5, can be mounted preferably a single one between each radial turbocompressor 3 Radial bearing 5 is arranged. All radial turbocompressors 3 are preferably third together with the electric motor 2 or the electric motors 2 in one common, single pressure housing 6 arranged.
  • the electromagnetic radial bearings 5 and the radial bearings 5 assigned sections of the shafts 2a and 3a have further, for one Components which are obvious to a person skilled in the art and therefore not shown to form an electromagnetic radial bearing 5, such as electrical Coils, ferromagnetic parts etc.
  • Fig. 3 shows a longitudinal section of a further embodiment of a Turbocompressor 1 comprising two radial turbocompressors 3, each on Side of the electric motor 2 each arranged a radial turbocompressor 3 and whose rotor 3a is connected to the motor shaft 2a via a coupling 4. Only the upper half of the turbocompressor 1 is shown. It will only be the essential compared to the embodiment of FIG. 2 Differences described in detail.
  • the entire wave encompassing the Motor shaft 2a and the two rotor 3a is by four, in the longitudinal direction electromagnetic radial bearings 5 distributed over the entire shaft stored.
  • the radial turbocompressor 3 arranged on the left is as Low pressure part connected and has six compressor wheels 3b.
  • the radial turbocompressor 3 arranged on the right is a high-pressure part connected and has five compressor wheels 3b. Also shown are the guide vanes 3f.
  • the main mass flow 8 occurs via the feed line 6c into the low-pressure part, and after compressing it via a Connection line 12 fed to the high pressure part, the Main mass flow 8 the high pressure part after compression via the Lead 6d leaves.
  • a small part of the main mass flow 8 is after the first compression stage 3c as cooling gas mass flow 9 in the Connection line 11 passed, this cooling gas mass flow 9 after the flow through the filter 10 on the right side of the electric motor 2 arranged interior 9c is fed, and then in the longitudinal direction of the motor shaft 2a flowing over the interior 9b of the suction opening flows to the first compression stage 3c.
  • part of the Radial turbocompressor 3 located process gas for cooling the Electric motor 2 derived and used.
  • the electric motor 2 is in turn designed to to be operable at a suction pressure or a standstill pressure.
  • the Connecting line 12 and / or the connecting line 11 as well Filter device 10 could also be entirely within the housing 6 be arranged progressively.
  • the radial turbocompressors 3 can for example also in a “back to back “arrangement, in other words such that the forces caused by the two radial turbocompressors 3 on the shaft in act in the opposite direction, so that in the direction of the Motor shaft 2a to compensate and reduce acting thrust forces.
  • the housing 6 settles in the embodiments according to FIGS. 3 and 4 from the three sub-housings 6e, 6f, 6g together, the sub-housings 6e, Form 6g part of the radial turbocompressor 3 and the partial housing 6f part of the Motors 2 forms.
  • the sub-housings 6e, 6f, 6g are mutually adapted in this way configured that they, as shown in Figures 3 and 4, fixed can be connected to one another, for example by means of screws.
  • connection points can also be such mutually adapted to be arranged that are arranged adjacent Part housing when pushing together and connecting with respect to Center the longitudinal axis of the turbocompressor 1 automatically.
  • the two partial housings 6e, 6g each have an opening 23a in the outer wall on, which can be closed gas-tight with a cover 23b.
  • 3 is the in the partial housing 6g arranged opening 23a shown with cover 23b.
  • the Turbocompressor 1 is preferably prefabricated such that the Radial turbocompressor 3 is installed in the respective partial housing 6e, 6g and the electric motor 2 is installed in the sub-housing 6f.
  • the so Pre-configured sub-housings 6e, 6f, 6g are assembled Condition transported to the application site.
  • the assembly of the Turbocompressor 1 is as follows: After the partial housing 6e, 6f, 6g over the Flanges 6k, 61 are firmly connected, the shaft 3a and the rotor 2b on the one accessible from the outside through the opening 23a Coupling 4 firmly connected. Then the opening 23a with the lid 23b closed tightly and gas-tight.
  • the on the clutch 4 Fasteners used, such as screws, are in themselves known and therefore not shown in detail.
  • the turbocompressor 1 shown in FIG. 4 essentially has otherwise configured in the housing part 6e the same as the turbocompressor according to FIG. 3 an outlet opening 6h connected to the interior 9b in a fluid-conducting manner, and an adjoining lead 6i through which the Cooling gas mass flow 9 and a small proportion of the Main mass flow 9a emerges and, for example, a plant foreign Process source is fed.
  • This arrangement points towards the 3 has the advantage that the pressure in the Derivation 6i subsequent device regardless of the pressure in Radial turbocompressor 3, which pressure is preferably chosen in this way is that the engine cooling takes place at a lower pressure level than in the Embodiment according to FIG.
  • the Derivation 6i can be fed to a compressor 24, for example, which compresses the mass flow 9, 9a again the inlet opening 6a feeds.
  • the suction pressure generated by the compressor in the discharge line 6i can for example lower than 50 bar.
  • a control device 17 which at least to control the electromagnetic radial bearings 5 and the motor 2 serves.
  • the sensors 16a, 16b, 16c, 16d arranged, which the position of the entire shaft 13 or the partial shafts 2a, 3a with respect to the radial bearings 5, the sensors 16a, 16b, 16c, 16d via electrical lines 16e, 16f, 16g, 16h with the control device 17 are connected.
  • electrical lines 15a, 15b, 15c, 15d which are connected to the control device 17.
  • one electrical line 15e is provided, which the control device 17 a power electronics, not shown, with the winding of the Electric motor 2 connects.
  • Fig. 5 shows a longitudinal section through a housing 6, the Junction of two sub-housings 6e, 6f is shown.
  • the flange 6k of the first partial housing 6e has a recess designed in this way, that the flange 61 of the second partial housing 6f is accommodated therein, the mutual position of the two sub-housings 6e, 6f at Joining by the flanges 6k, 61 are mutually centered.
  • the Flanges 6k, 61 are distributed by several in the circumferential direction arranged screws 6m held together with nut 6n, on the Front of the flanges 6k, 61 a groove running in the circumferential direction is provided, in which a sealing element 6o is arranged, around which the two sub-housings 6e, 6f limited interior to the outside to seal.
  • FIG. 6 shows a longitudinal section of a schematically represented housing 6 consisting of three sub-housings 6e, 6f, 6g with flanges 6k, 61 and one Lead 6c and a lead 6d.
  • the housing 6 is over two Support elements 18a, 18b are supported on a base 14.
  • Within the A base element 6p is arranged in the housing, which has a rigid, in Support extending in the longitudinal direction of the housing 6, in particular a support Forms support surface on which the electromagnetic radial bearing 5th are arranged.
  • the function of the basic element 6p is one if possible stable and preferably temperature-insensitive reference plane form on which at least some radial bearings 5 are arranged.
  • the Base element 6p can be designed in a variety of embodiments be, for example as a solid, solid plate, as a support or as Grating. On the base element 6p, other components such as the Electric motor 2 or the radial turbocompressor 3 can be anchored.
  • the Using a base element 6p enables the electromagnetic Radial bearings 5 mutually very precise and in particular exactly aligned to arrange.
  • the common arrangement of the radial bearing 5 on the Base element 6p has the advantage that the attacking Tensile, compressive or shear forces or due to temperature influences mutual displacements of the radial bearings are very small. In addition this arrangement can be set up ready for operation very quickly.
  • the bearing force that can be generated by electromagnetic radial bearings is much lower than that of known hydrodynamic bearings Generatable bearing force. That is why the exact mutual Alignment of the electromagnetic radial bearings as well as preventing one mutual displacement of the radial bearings of central importance.
  • the Electromagnetic radial bearings are usually operated in such a way that the Shaft is held in the geometric center of the radial bearing. On mutual displacement of the radial bearings has the consequence that the Radial bearing has to exert considerable forces to keep the shaft in the keep geometric center. Because the electromagnetic radial bearing is relative soon reaches a state of magnetic saturation, that has Radial bearings in this situation have less, to support the shaft Available forces.
  • the two central radial bearings 5 have a relatively low one mutual distance, so that when there is a mutual offset this two central radial bearings 5 the problem may arise that this in radial forces produce opposing forces, which causes that the residual force of the electromagnetic radial bearing is less or not at all Available.
  • Fig. 7 shows a turbocompressor 1 with a compared to 4 separately cooled electric motor 2 between the pressure part of the radial turbocompressor 3 and the electric motor 2 each a system with a double seal, including one Dry gas seal 19 and subsequently a seal 20, arranged, an outlet 21 between the two seals 19, 20, as a vent (Leak to the atmosphere without gas combustion) or flare (leak to the Atmosphere with gas combustion) designed, which is arranged by the housing wall 6 runs.
  • the electric motor 2 has a separate, separated by the seals 19, 20 from the radial turbocompressor 3 Cooling circuit on which a connecting line 11 and a cooler 22nd includes.
  • a feed line 9d leads additional Cooling gas to, for example, those flowing off via the discharge line 21 To compensate for cooling gas.
  • a cooling gas in particular is not aggressive gas such as nitrogen.
  • the cooling circuit of the Electric motor 2 can be designed such that it has a pressure in the Range of atmospheric pressure or slightly above. As in 7, the cooling circuit can be designed such that a Small proportion of the cooling gas mass flow 9 via the seal 20 for Outlet 21 arrives. This ensures that the Cooling gas mass flow 9 is not contaminated by foreign gases. in the 7 also flows a small proportion of the Process gas 8 via the seal 19 to the outlet 21.
  • the outlet 21 can a so-called flare or vent can be subordinated to the from the Discharge exhaust gases 21 unburned (Vent) or via a to discharge subsequent combustion (flare), especially to the environment to deliver.
  • cooling gas 9 has a low pressure and / or that as a cooling gas inexpensive or easily manageable gas can be used, in particular a gas with no aggressive properties.
  • turbocompressor 1 An advantage of the turbocompressor 1 according to the invention can be seen in the fact that that the electric motor 2 and the radial turbocompressor 3 together with the corresponding housing parts 6e, 6f can be preassembled so that the Turbo compressor 1 as a housing 6 or as a unit for Installation site can be transported and set up there.
  • Lines 11, 12 and the associated components 22 can in a further embodiment also within the housing 6 be arranged progressively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Der Turboverdichter (1) umfasst ein nach aussen gasdichtes Gehäuse (6) innerhalb welchem auf einer gemeinsamen Welle (13) ein Elektromotor (2) sowie ein mehrstufiger Radialturboverdichter (3) angeordnet sind, wobei zum Lagern der Welle (13) in deren Verlaufsrichtung elektromagnetische Radiallager (5) beabstandet angeordnet sind, und wobei zwischen dem Elektromotor (2) und dem Radialturboverdichter (3) eine die Welle (13) umschliessende Gasdichtung (19) angeordnet ist, um den Elektromotor (2) bezüglich dem Radialturboverdichter (3) abzudichten, wobei der Elektromotors (2) einen Innenraum (9b, 9c) aufweist, welcher fluidleitend mit einer das Gehäuse durchdringenden Austrittsöffnung (6h; 21) verbunden ist. <IMAGE>

Description

Die Erfindung betrifft einen Turboverdichter gemäss dem Oberbegriff von Anspruch 1.
Es ist ein Turboverdichter bekannt, welcher einen Radialturboverdichter sowie einen Elektromotor umfasst, wobei jede dieser Einheiten in einem separaten Gehäuse angeordnet ist, und die Welle des Elektromotors über ein flexibles Wellenteil an die Welle des Radialturboverdichters gekuppelt ist.
Nachteilig an diesem bekannten Turboverdichter ist die Tatsache, dass dieser relativ gross ausgestaltet ist, dass eine Mehrzahl von Dichtungen und Lagern erforderlich sind, und dass die Herstellungskosten des Turboverdichters daher relativ hoch sind.
Die Druckschrift DE 37 29 486 C1 offenbart in Figur 1a einen Turboverdichter, welcher zwei zweistufige Radialturboverdichter sowie einen Elektromotor umfasst, wobei diese an eine starre Welle gekoppelt sind, welche an drei Stellen mit magnetischen Radiallagern gelagert ist. Diese Ausführungsform weist den Nachteil auf, dass der Zusammenbau sehr aufwändig und schwierig ist, dass diese Anordnung für einen höchstens zweistufigen Radialturboverdichter geeignet ist, und dass der Turboverdichter relativ hohe Dissipationsverluste aufweist.
Es ist Aufgabe der vorliegenden Erfindung einen wirtschaftlich vorteilhafteren Turboverdichter vorzuschlagen.
Diese Aufgabe wird gelöst mit einem Turboverdichter aufweisend die Merkmale von Anspruch 1. Die Unteransprüche 2 bis 10 betreffen weitere, vorteilhaft gestaltete Ausbildungen des erfindungsgemässen Turboverdichters.
Die Aufgabe wird insbesondere gelöst mit einem Turboverdichter umfassend einen Elektromotor, einen mehrstufigen Radialturboverdichter sowie eine gemeinsame Welle, wobei ein Teilabschnitt der Welle als Rotor des Elektromotors ausgebildet ist, und wobei ein weiterer Teilabschnitt der Welle als Läufer des Radialturboverdichters ausgebildet ist, wobei der Läufer eine Verdichterwelle sowie damit verbundene Verdichterräder umfasst, und wobei zum Lagern der Welle mehrere elektromagnetische Radiallager in Verlaufsrichtung der Welle beabstandet angeordnet sind, und wobei zwischen dem Rotor des Elektromotors und dem Verdichterrad ein einziges elektromagnetisches Radiallager angeordnet ist, und wobei der Elektromotor, der Radialturboverdichter, die Welle sowie die Radiallager in einem gemeinsamen, nach aussen gasdichten Gehäuse angeordnet sind, und wobei das Gehäuse aus mehreren Teilgehäusen besteht, welche fest miteinander verbindbar sind, der Elektromotor in einem Teilgehäuse und der Radialturboverdichter in einem Teilgehäuse angeordnet ist, und der Rotor des Elektromotors sowie der Läufer des Radialturboverdichters über eine zwischen dem Rotor des Elektromotors und dem Verdichterrad angeordnete Kupplung zu einer gemeinsamen Welle verbindbar sind.
Die Aufgabe wird weiter insbesondere gelöst mit einem Turboverdichter umfassend einen Elektromotor, einen mehrstufigen Radialturboverdichter sowie eine gemeinsame Welle, wobei ein Teilabschnitt der Welle als Rotor des Elektromotors ausgebildet ist, und wobei ein weiterer Teilabschnitt der Welle als Läufer des Radialturboverdichters ausgebildet ist, wobei der Läufer eine Verdichterwelle sowie damit verbundene Verdichterräder umfasst, und wobei zum Lagern der Welle mehrere elektromagnetische Radiallager in Verlaufsrichtung der Welle beabstandet angeordnet sind, wobei die Radiallager auf einem gemeinsamen Basiselement abgestützt sind.
Die Aufgabe wird weiter insbesondere gelöst mit einem Turboverdichter umfassend ein nach aussen gasdichtes Gehäuse innerhalb welchem auf einer gemeinsamen Welle ein Elektromotor sowie ein mehrstufiger Radialturboverdichter angeordnet sind, wobei zum Lagern der Welle in deren Verlaufsrichtung elektromagnetische Radiallager beabstandet angeordnet sind, und wobei zwischen dem Elektromotor und dem Radialturboverdichter eine die Welle umschliessende Trockengasdichtung angeordnet ist, um den Elektromotor bezüglich dem Radialturboverdichter abzudichten, wobei der Elektromotor einen Innenraum aufweist, welcher fluidleitend mit einer das Gehäuse durchdringenden Austrittsöffnung verbunden ist.
Fig. 1 zeigt einen bekannten Turboverdichter, welcher einen beidseitig gelagerten Elektromotor sowie einen beidseitig gelagerten Radialturboverdichter umfasst, wobei die Welle des Elektromotors über ein flexibles Wellenteil an die Welle des Radialturboverdichters gekuppelt ist.
Ein Vorteil des erfindungsgemässen Turboverdichters ist darin zu sehen, dass zur vollständigen Lagerung der gesamten Welle, gegenüber der Ausführungsform gemäss Fig. 1, drei Radiallager, insbesondere ausgestaltet als elektromagnetische Radiallager, genügen, indem zwischen dem Elektromotor und dem Verdichter ein einziges Radiallager angeordnet ist. Somit ist der Turboverdichter günstiger herstellbar.
Die gesamte Welle kann einstückig ausgestaltet sein. In einer vorteilhaften Ausgestaltung ist die Welle des Elektromotors sowie die Welle des Radialturboverdichters über eine Kupplung, insbesondere eine Kupplung mit möglichst hoher Steifigkeit, verbunden. Eine sehr steife Kupplung erlaubt eine Gesamtwelle zu bilden, welche in Verlaufsrichtung der Welle einen weitgehend homogenen Steifigkeitsverlauf aufweist. Die Gesamtwelle beziehungsweise die gesamten rotierbaren Komponenten des Turboverdichters verhalten sich dadurch wie eine kompakte Welle, was sich positiv auf ein stabiles Laufverhalten des Turboverdichter auswirkt. Zudem ermöglicht dies die gesamte Welle mit Hilfe eines einzigen Axiallagers in axialer Richtung zu lagern. In der aus Fig. 1 bekannten Ausführungsform ist für den Elektromotor sowie den Radialturboverdichter je ein separates Axiallager erforderlich.
Wenn nur an einer Seite des Elektromotors ein Radialturboverdichter angeordnet ist, so genügen drei in Verlaufsrichtung der Welle beabstandet angeordnete elektromagnetische Radiallager zur vollständigen Lagerung der gesamten Welle. Ist an beiden Seiten des Elektromotors je ein Radialturboverdichter angeordnet, so genügen vier in Verlaufsrichtung der Welle beabstandet angeordnete elektromagnetische Radiallager zur vollständigen Lagerung der gesamten Welle.
Der Verzicht auf ein Radiallager zwischen dem Elektromotor und dem Radialturboverdichter weist zudem den Vorteil auf, dass die Länge der gesamten Welle kürzer ist, was rotordynamisch vorteilhaft ist, eine leichtere Welle zu bilden ermöglicht, und zudem eine kompaktere Bauweise des Turboverdichters ergibt. Dabei ist zu beachten, dass elektromagnetische Radiallager im Vergleich zu hydrodynamischen Radiallagern eine wesentlich geringere Lagerkraft aufweisen, sodass das durch die kürzere Welle gewonnene, vorteilhaftere rotordynamische Verhalten sowie das geringere Gewicht von entscheidender Bedeutung ist, um den Turboverdichter sicher und störungsfrei mittels elektromagnetischer Lager zu betreiben. Dieser Aspekt ist insbesondere von Bedeutung bei Radialturboverdichtern, welche ein Fluid auf einen hohen Druck von beispielsweise 600 Bar verdichten, weil bei einem derart hochverdichteten Fluid eine Strömungsstörung relativ hohe radiale und axiale Kräfte bewirkt, die von dem eine begrenzte Tragfähigkeit aufweisenden elektromagnetischen Lager nur dann aufgefangen werden könne, wenn das rotordynamische Verhalten des Gesamtsystems optimiert ist.
In einer besonders vorteilhaften Ausgestaltung sind der Motor sowie der Radialturboverdichter in einem gemeinsamen, hermetisch abgedichteten Gehäuse, insbesondere einem Druckgehäuse angeordnet, wobei eine fluidleitende Zu- und Ableitung das Gehäuse durchdringen oder am Gehäuse angeflanscht sind, um dem Radialturboverdichter das zu komprimierenden Fluid zu- und abzuführen. Diese Anordnung weist den entscheidenden Vorteil auf, dass an der Welle keine Dichtungen gegen aussen, insbesondere gegen Atmosphäre mehr erforderlich sind, was nebst dem Kostenvorteil die weiteren Vorteile ergibt, dass durch Dichtungsprobleme verursachte Stillstandzeiten nicht mehr auftreten, und dass die Gesamtlänge der Welle zusätzlich reduziert werden kann, was wiederum das Gesamtgewicht der Welle sowie die Stabilität der durch elektromagnetische Radiallager gehaltenen Welle erhöht.
Der Radialturboverdichter mit einem nach Aussen hermetisch abgedichteten Druckgehäuse erlaubt die erfindungsgemässe Motor-Kompressor-Anlage auch an Standorten zu betreiben, welche bisher für den Betrieb eines Radialturobverdichters ungeeignet waren, beispielsweise unter Wasser oder in einer Umgebung mit hohem Schadstoffanteil, hohem Verschmutzungsgrad oder hoher Explosionsgefahr.
Ein weiterer Vorteil des erfindungsgemässen Turboverdichters ist darin zu sehen, dass dieser auch ferngesteuert sehr sicher betreibbar ist. Der Turboverdichter weist beispielsweise kein aufwendiges Ölsystem zur Lagerung des Rotors auf. Zudem sind keine oder nur wenige Dichtungen erforderlich. Der Turboverdichter weist daher keine Komponenten auf, zu deren Betrieb ein Fachmann vor Ort erforderlich ist, oder Komponenten welche eine regelmässige Kontrolle in relativ kurzen Zeitabständen erfordern. Ein Start- und Stoppvorgang des Turboverdichters kann ferngesteuert ablaufen, wobei mittels Sensoren die Zustände des Turboverdichters von Ferne überwachbar sind, und beim Feststellen einer Unregelmässigkeit geeignete Massnahmen, zum Beispiel ein Stoppen, automatisch eingeleitet werden können. Ein Turboverdichter weist in der Ausführungform mit hermetisch abgedichtetem Druckgehäuse den weiteren Vorteil auf, dass die Gefahr für von Aussen einwirkenden Störeinflüssen sehr gering ist.
Um das Fluid auf einen hohen Enddruck zu komprimieren war es bisher erforderlich den Turboverdichter mit sehr teuren Trockengasdichtungen zu versehen, wobei diese Trockengasdichtungen nebst dem hohen Preis den weiteren Nachteil aufweisen, dass sie eine erhebliche Wartung erfordern und zudem eine Risikokomponente darstellen, sind doch die meisten unvorhersehbaren Stillstandzeiten eines Turboverdichters durch Schäden an der Trockengasdichtung bedingt.
In einer weiteren vorteilhaften Ausgestaltung wird ein Teil des komprimierten Fluides bzw. Prozessgases zur Längsgaskühlung des Motors sowie der Radiallager verwendet. Dies ist insbesondere bei der Verwendung eines gemeinsamen, hermetisch abgedichteten Druckgehäuses von Vorteil. Als Elektromotor wird dabei vorzugsweise ein für Saugdruck oder Stillstanddruck ausgelegter Motor verwendet. In einer weiteren vorteilhaften Ausgestaltung weist der Elektromotor einen separaten, vom Radialturboverdichter getrennten Kühlkreislauf auf.
In einer vorteilhaften Ausgestaltung des erfindungsgemässen Turboverdichters weist dieser ein gemeinsames Basiselement auf, welches beispielsweise plattenförmig ausgestaltet ist, und auf welchem einige, vorzugsweise alle Radiallager abgestützt sind. Die Anordnung der Radiallager auf einem gemeinsamen Basiselement weist den Vorteil auf, dass diese in einer definierten Lage gegeneinander ausgerichtet sind, und dass die auf Grund von Zug-, Druck- oder Scherspannungen beziehungsweise durch Temperatureinflüsse bedingten gegenseitigen Verschiebungen der Radiallager minimal gehalten werden können. Somit ist eine gegenseitig präzis angeordnete Ausrichtung der Radiallager bei unterschiedlichsten Betriebsbedingungen gewährleistet. Vorteilhafterweise werden auf dem Basiselement nicht nur die Radiallager angeordnet sonder auch die übrigen Elemente wie der Elektromotor, der Radialturboverdichter usw. Dies ermöglicht, nicht zuletzt auch dank der kompakten Bauweise des erfindungsgemässen Turboverdichters, den Turboverdichter als gesamtes Modul fertig im Herstellungswerk zu montieren. Dieses Modul kann am Anwendungsort sehr schnell in Betrieb genommen werden, da es nicht mehr erforderlich ist den Radialturboverdichter sowie den Elektromotor separat auf einer Unterlage zu verankern und dabei deren gegenseitige Lage genau einzustellen. In einer vorteilhaften Ausgestaltung ist der Turboverdichter innerhalb eines Gehäuses angeordnet, wobei ein Teil des Gehäuses, beispielsweise die unten angeordnete Innenwand des Gehäuses, zugleich das gemeinsame Basiselement ausbildet.
In einer vorteilhaften Ausgestaltung des Turboverdichters sind der Radialturboverdichter sowie der Motor in einem gemeinsamen Gehäuse angeordnet, wobei das Gehäuse aus mehreren miteinander verbindbaren Teilgehäusen, oder aus einem im wesentlichen einzigen Gehäuse besteht. Vorteilhafterweise ist im einen Teilgehäuse die gesamte Antriebsvorrichtung und in einem weiteren Teilgehäuse der gesamte Radialturboverdichter angeordnet, wobei diese Teilgehäuse vorzugsweise derart gegenseitig angepasst ausgestaltet sind, dass diese direkt gegenseitig zentrierbar und fest verbindbar sind. In einer vorteilhaften Ausführungsform ist das gemeinsame Gehäuse derart steif ausgestaltet, dass der gesamte Turboverdichter umfassend den Radialturboverdichter, den Motor usw. durch das gemeinsame Gehäuse gegenseitig im wesentlichen verschiebungsfrei gelagert ist, sodass das gemeinsame Gehäuse, beispielsweise ausgestaltet als ein Rohr, ohne äusserliche Abstützung, oder mit nur einer oder zwei Abstützungen auf einem Untergrund abstützbar ist. Diese Anordnung weist den Vorteil auf, dass die Möglichkeit stationärer und/oder instationärer Verlagerungen der Lagerstellen weitgehendst unterbunden sind, weshalb auch eine Lagereinstellung vor Ort entfällt, sodass die Herstellung und die Inbetriebsetzung des Turboverdichters kostengünstiger erfolgt. Sollte im gemeinsamen Gehäuse trotzdem eine geringfügige Verlagerung der einzelnen Wellen beziehungsweise der statisch angeordneten Teile des Motors oder des Radialturboverdichters im gemeinsamen Gehäuse auftreten, so besteht auch die Möglichkeit diese Abweichung dank der Verwendung elektromagnetischer Radiallager zu kompensieren.
Der aus Fig. 1 bekannte Turboverdichter besteht aus einem separaten Motor mit einem eigenen Gehäuse, sowie aus einem Radialturboverdichter mit einem weiteren, eigenen Gehäuse. Bei dieser bekannten Anordnung stellt die gegenseitige Bewegung der Gehäuse beziehungsweise die Verlagerung der einzelnen Wellen ein erhebliches Problem dar, welches dadurch verursacht wird, dass jedes Gehäuse individuell am Boden verankert ist. Durch unterschiedliche thermische Dehnungen oder sonstige einwirkende Kräfte auf die einzelnen Gehäuse verändert sich deren Lage. Die erfindungsgemässe Anordnung von Motor und Radialturboverdichter auf einem gemeinsamen Basiselement, insbesondere in einem gemeinsamen Gehäuse, weist den Vorteil auf, dass das Basiselement beziehungsweise das Gehäuse die Referenz für die Lagerung bildet, und daher eine gegenseitige Veränderung der Lage von Motor und Radialturboverdichter weitgehend ausgeschlossen ist.
Der Turboverdichter umfassend eine Mehrzahl von Teilgehäusen weist die Vorteile auf:
  • dass der Zusammenbau des gesamten Turboverdichters sehr einfach ist,
  • dass in jedem Teilgehäuse eine rotierbaren Einheit angeordnet ist, welche separat balanciert und ausgewuchtet werden kann,
  • dass jedes Teilgehäuse mit der sich darin befindlichen rotierbaren Einheit auch von unterschiedlichen Lieferanten bezogen werden kann. Insbesondere kann der Elektromotor und der Radialturboverdichter von unterschiedlichen Lieferanten bezogen werden.
  • dass der Unterhalt des Turboverdichters einfacher und kostengünstiger ist.
Die Erfindung wird im weiteren an Hand mehrerer Ausführungsbeispiele beschrieben, wobei dieselben Bezugszeichen dieselben Gegenstände betreffen. Es zeigen:
Fig. 1
eine schematische Anordnung eines bekannten Turboverdichters;
Fig. 2
ein Längsschnitt eines Turboverdichters mit einem Elektromotor sowie einem Radialturboverdichter;
Fig. 3
ein Längsschnitt eines Turboverdichters mit beidseitig angeordneten Radialturboverdichtern;
Fig. 4
ein weiterer Längsschnitt eines Turboverdichters mit beidseitig angeordneten Radialturboverdichtern;
Fig. 5
ein Längsschnitt durch die Verbindungsstelle zweier Teilgehäuse;
Fig. 6
ein Längsschnitt eines schematisch dargestellten Gehäuses bestehend aus drei Teilgehäusen;
Fig. 7
ein Längsschnitt eines Turboverdichters mit separatem Kühlsystem.
Fig. 1 zeigt schematisch einen bekannten Turboverdichter 1, welcher einen Radialturboverdichter 3 mit einer Welle 3a sowie einen antreibenden Elektromotor 2 mit einer Welle 2a umfasst. Die Welle 3a des Radialturboverdichters 3 ist durch zwei Radiallager 5 beidseitig gelagert. Ebenso ist die Welle 2a des Elektromotors 2 durch je zwei Radiallager 5 beidseitig gelagert. Die beiden Wellen 2a, 3a sind über eine Kupplung 4 umfassend zwei Kupplungsteile 4a und ein flexibles Zwischenstück 4b verbunden, sodass der Elektromotor 2 über die Welle 2a und die Kupplung 4 die Welle 3a des Radialturboverdichters 3 antreibt.
Fig. 2 zeigt einen Turboverdichter 1, welcher in einem hermetisch abgedichteten Druckgehäuse 6 angeordnet ist, wobei je eine das Druckgehäuse 6 durchdringende Zuleitung 6c und Ableitung 6d vorgesehen ist, um den Radialturboverdichter 3 fluidleitend mit einer ausserhalb des Druckgehäuses 6 angeordneten Vorrichtung zu verbinden. Der Elektromotor 2 umfasst den Rotor 2b sowie den Stator 2c, wobei der Rotor 2b Teil der Motorwelle 2a ist, und die Motorwelle 2a beidseitig im elektromagnetischen Radiallager 5, umfassend je eine Abstützvorrichtung 5a sowie eine elektromagnetische Spule 5b, in radialer Richtung gelagert ist. Die Motorwelle 2a weist gegen den Radialturboverdichter 3 hin ein Axiallager 7 auf, welches eine Teil der Motorwelle 2a bildende Scheibe 2d sowie elektromagnetische Spulen 7a umfasst. Die Motorwelle 2a ist an deren Endabschnitt über eine Kupplung 4 mit dem Läufer 3a des Radialturboverdichters 3 verbunden, wobei der gegenüberliegende Endabschnitt des Läufers 3a in einem Radiallager 5 gelagert ist. Die Motorwelle 2a sowie der Läufer 3a bilden eine gemeinsame Welle 13. In Verlaufsrichtung des Läufers 3a sind zwei Verdichterräder 3b angeordnet, welche eine erste Verdichtungsstufe 3c sowie eine zweite Verdichtungsstufe 3d ausbilden. Nicht dargestellt sind die Leitschaufeln 3f des Radialturboverdichters 3. Der Hauptmassenstrom 8 des zu komprimierenden Fluides, vorzugsweise in Form eines Gases, tritt über die Eintrittsöffnung 6a und die Zuleitung 6c in die erste Verdichtungsstufe 3c ein und wird nachfolgend zur zweiten Verdichtungsstufe 3d und nachfolgend über die Ableitung 6d zur Austrittsöffnung 6b geleitet. Ein geringer Bruchteil des Hauptmassenstroms 8 wird an der Austrittsstelle der ersten Verdichtungsstufe 3c über eine Verbindungsleitung 11 abgeleitet und als Kühlgasmassenstrom 9 einer Filtervorrichtung 10 zugeleitet, welche den Kühlgasmassenstrom 9 von Verunreinigungen reinigt, und den gereinigten Kühlgasmassenstrom 9 als Kühlmittel den elektromagnetischen Radiallagern 5 sowie dem Elektromotor 2 zuführt. Im dargestellten Ausführungsbeispiel wird der Kühlgasmassenstrom 9 in Längsrichtung des Gehäuses fliessend, dem Radiallager 5 und nachfolgend dem Elektromotor 2 sowie dem weiteren Radiallager 5 zugeführt, wobei das Kühlgas vorzugsweise zwischen der Welle 2a und dem jeweiligen Magnet 5b, 2c durchgeführt wird. Der Kühlgasmassenstrom 9 mündet zur Ansaugseite der ersten Verdichtungsstufe 3c, wir von dieser wiederum komprimiert, und wird als Hauptmassenstrom 8 und/oder als Kühlgasmassenstrom 9 weiter gefördert. Die Verbindungsleitung 11 und die Filtervorrichtung 10 können innerhalb oder ausserhalb des Druckgehäuses 6 verlaufend angeordnet sein. Der Turboverdichter 1 gemäss der in Fig. 2 dargestellten Ausführungsform weist den Vorteil auf, dass keine Dichtung der Motorwelle 2a beziehungsweise des Läufers 3a gegenüber Atmosphäre erforderlich ist. Zudem ist keine Dichtung zwischen zwischen dem Motor 2 und der ersten Verdichtungsstufe 3c erforderlich. Der Elektromotor 2 ist dabei derart auszulegen, dass dieser mit Saugdruck oder mit Stillstanddruck betreibbar ist.
Der Turboverdichter 1 könnte natürlich eine Mehrzahl von in Verlaufsrichtung des Läufers 3a beabstandet angeordneten Verdichterräder 3b aufweisen, so beispielsweise auch gesamthaft vier, sechs, acht oder zehn Verdichterräder 3b. Der zu erzielende Kompressionsdruck ist nach oben weitgehend offen, wobei durch eine entsprechende Anzahl in Serie geschalteter Verdichterräder 3b beispielsweise ein Kompressionsdruck von 600 Bar erreichbar ist. Der Turboverdichter 1 könnte auch einen oder mehrere weitere Radialturboverdichter 3 und/oder Elektromotoren 2 umfassen, welche in Verlaufsrichtung des Läufers 3a;2a angeordnet sind, wobei alle Läufe 3a;2a eine gemeinsame Welle ausbilden. Diese gemeinsame Welle könnte durch Radiallager, insbesondere magnetische Radiallager 5 gelagert sein, wobei zwischen je einem Radialturboverdichter 3 vorzugsweise ein einziges Radiallager 5 angeordnet ist. Vorzugsweise sind alle Radialturboverdichter 3 gemeinsam mit dem Elektromotor 2 oder den Elektromotoren 2 in einem gemeinsamen, einzigen Druckgehäuse 6 angeordnet.
Die elektromagnetischen Radiallager 5 sowie die den Radiallagern 5 zugeordneten Abschnitte der Wellen 2a und 3a weisen weitere, für einen Fachmann selbstverständliche und daher nicht dargestellte Komponenten auf, um ein elektromagnetisches Radiallager 5 auszubilden, wie elektrische Spulen, ferromagnetische Teile usw. Dasselbe gilt für den Elektromotor 2, welcher ebenfalls nur schematisch dargestellt ist.
Fig. 3 zeigt einen Längsschnitt eines weiteren Ausführungsbeispiels eines Turboverdichters 1 umfassend zwei Radialturboverdichter 3, wobei an jeder Seite des Elektromotors 2 je ein Radialturboverdichter 3 angeordnet und dessen Läufer 3a über eine Kupplung 4 mit der Motorwelle 2a verbunden ist. Es ist nur die obere Hälfte des Turboverdichters 1 dargestellt. Es werden nur die gegenüber der Ausführungsform gemäss Fig. 2 wesentlichen Unterschiede im Detail beschrieben. Die gesamte Welle umfassend die Motorwelle 2a sowie die beiden Läufer 3a ist durch vier, in Längsrichtung der gesamten Welle verteilt angeordnete elektromagnetische Radiallager 5 gelagert. Der links angeordnete Radialturboverdichter 3 ist als Niederdruckteil angeschlossen und weist sechs Verdichterräder 3b auf. Der rechts angeordnete Radialturboverdichter 3 ist als Hochdruckteil angeschlossen und weist fünf Verdichterräder 3b auf. Ebenfalls dargestellt sind die Leitschaufeln 3f. Der Hauptmassenstrom 8 tritt über die Zuleitung 6c in den Niederdruckteil ein, und wird nach dem Komprimieren über eine Verbindungsleitung 12 dem Hochdruckteil zugeführt, wobei der Hauptmassenstrom 8 den Hochdruckteil nach dem Komprimieren über die Ableitung 6d verlässt. Ein geringer Teil des Hauptmassenstroms 8 wird nach der ersten Verdichtungsstufe 3c als Kühlgasmassenstrom 9 in die Verbindungsleitung 11 geleitet, wobei dieser Kühlgasmassenstrom 9 nach dem Durchfliessen des Filters 10 dem an der rechten Seite des Elektromotors 2 angeordneten Innenraum 9c zugeführt wird, und danach in Längsrichtung der Motorwelle 2a strömend über den Innenraum 9b der Saugöffnung der ersten Verdichtungsstufe 3c zufliesst. Somit wird ein Teil des sich im Radialturboverdichters 3 befindlichen Prozessgases zur Kühlung des Elektromotors 2 abgeleitet und verwendet.
Zwischen dem rechts angeordneten Radialturboverdichter 3 sowie dem Elektromotor 2 ist am Läufer 3a eine berührungsfreie Dichtung 19 angeordnet, um den Innendruck an der rechten Seite des Elektromotors 2 entsprechend tief zu halten. Der Elektromotor 2 ist wiederum ausgelegt, um bei einem Saugdruck oder einem Stillstanddruck betreibbar zu sein. Die Verbindungsleitung 12 und/oder die Verbindungsleitung 11 als auch die Filtervorrichtung 10 könnten auch vollständig innerhalb des Gehäuses 6 verlaufend angeordnet sein.
Die Radialturboverdichter 3 können beispielsweise auch in einer "back to back" Anordnung angeordnet sein, mit anderen Worten derart, dass die durch die beiden Radialturboverdichter 3 auf die Welle bewirkten Kräfte in entgegengesetzter Richtung wirken, um derart die in Verlaufsrichtung der Motorwelle 2a wirkenden Schubkräfte zu kompensieren und zu reduzieren.
Das Gehäuse 6 setzt sich in den Ausführungsformen gemäss Fig. 3 und 4 aus den drei Teilgehäusen 6e, 6f, 6g zusammen, wobei die Teilgehäuse 6e, 6g Teil des Radialturboverdichters 3 bilden und das Teilgehäuse 6f Teil des Motors 2 bildet. Die Teilgehäuse 6e, 6f, 6g sind derart gegenseitig angepasst ausgestaltet, dass sie, wie in den Figuren 3 und 4 dargestellt, fest miteinander verbindbar sind, beispielsweise mittels Schrauben. An diesen Verbindungsstellen können zudem Dichtungen angeordnet sein, um den Innenraum des Gehäuses 6 hermetisch abzudichten, sodass nur noch über die vorgesehenen Leitungen 6c, 6d, 11, 12 oder entsprechende Flansche eine Fluid leitende Verbindung zwischen dem Innenraum des Gehäuses 6 und dem Aussenraum besteht, wobei bedingt durch die in Fig. 3 und 4 dargestellte Anordnung der Leitungen 11 und 12 nur durch die Leitungen 6c, 6d und gegebenenfalls durch die Ableitung 6i eine fluidleitende Verbindung zum Aussenraum besteht. Die Verbindungsstellen können zudem derart gegenseitig angepasst ausgestaltet sein, dass sich benachbart angeordnete Teilgehäuse beim Zusammenschieben und Verbinden bezüglich der Längsachse des Turboverdichters 1 selbsttätig gegenseitig zentrieren. Die beiden Teilgehäuse 6e, 6g weisen in der Aussenwand je eine Öffnung 23a auf, welche mit einem Deckel 23b gasdicht verschliessbar ist. In Fig. 3 ist die im Teilgehäuse 6g angeordnete Öffnung 23a mit Deckel 23b dargestellt. Der Turboverdichter 1 wird vorzugsweise derart vorgefertigt, dass der Radialturboverdichter 3 in das jeweilige Teilgehäuse 6e, 6g eingebaut wird und der Elektromotor 2 in das Teilgehäuse 6f eingebaut wird. Die derart vorkonfigurierten Teilgehäuse 6e, 6f, 6g werden im zusammengesetzten Zustand zum Anwendungsort transportiert. Der Zusammenbau des Turboverdichters 1 ist wie folgt: Nachdem die Teilgehäuse 6e, 6f, 6g über die Flansche 6k, 61 fest miteinander verbunden sind, werden die Welle 3a und der Rotor 2b an der von Aussen durch die Öffnung 23a zugänglichen Kupplung 4 fest miteinander verbunden. Danach wird die Öffnung 23a mit dem Deckel 23b fest und gasdicht verschlossen. Die an der Kupplung 4 verwendeten Befestigungsmittel, wie beispielsweise Schrauben, sind an sich bekannt und daher nicht im Detail dargestellt.
Der in Fig. 4 dargestellte Turboverdichter 1 weist, an sonst im wesentlichen gleich ausgestaltet wie der Turboverdichter gemäss Fig. 3, im Gehäuseteil 6e eine mit den Innenraum 9b fluidleitend verbundene Austrittsöffnung 6h sowie eine daran anschliessend angeordnete Ableitung 6i auf, durch welche der Kühlgasmassenstrom 9 sowie ein geringfügiger Anteil des Hauptmassenstroms 9a austritt und beispielsweise einer Anlage fremden Prozessquelle zugeführt wird. Diese Anordnung weist gegenüber dem Ausführungsbeispiel gemäss Fig. 3 den Vorteil auf, dass der Druck in der der Ableitung 6i nachfolgenden Vorrichtung unabhängig vom Druck im Radialturboverdichter 3 ist, wobei dieser Druck vorzugsweise derart gewählt ist, dass die Motorkühlung auf einem tieferen Druckniveau erfolgt als in der Ausführungsform gemäss Fig. 3, was den Vorteil ergibt, dass die zwischen den rotierenden und den statischen Teilen auftretenden Dissipationsverluste im Motor 2 vermindert sind. Zwischen dem Motor 2 und dem Radialturboverdichter 3 ist beidseitig eine Dichtung 19 angeordnet. Die Ableitung 6i kann beispielsweise einem Kompressor 24 zugeführt werden, welcher den Massenstrom 9, 9a komprimiert wieder der Eintrittsöffnung 6a zuführt. Der vom Kompressor in der Ableitung 6i erzeugte Saugdruck kann beispielsweise tiefer als 50 Bar sein.
In Fig. 4 ist zudem eine Regelvorrichtung 17 dargestellt, welche zumindest zum Ansteuern der elektromagnetischen Radiallager 5 sowie des Motors 2 dient. Im Bereich der Radiallager 5 sind Sensoren 16a, 16b, 16c, 16d angeordnet, welche die Lage der gesamten Welle 13 bzw. der Teilwellen 2a, 3a bezüglich der Radiallager 5 erfassen, wobei die Sensoren 16a, 16b, 16c, 16d über elektrische Leitungen 16e, 16f, 16g, 16h mit der Regelvorrichtung 17 verbunden sind. Zur Ansteuerung der magnetischen Spulen der Radiallager 5 sind elektrische Leitungen 15a, 15b, 15c, 15d angeordnet, welche mit der Regelvorrichtung 17 verbunden sind. Zudem ist eine elektrische Leitung 15e vorgesehen, welche die Regelvorrichtung 17 über eine nicht dargestellte Leistungselektronik mit der Wicklung des Elektromotors 2 verbindet.
Fig. 5 zeigt einen Längsschnitt durch ein Gehäuse 6, wobei die Verbindungsstelle zweier Teilgehäuse 6e, 6f dargestellt ist. Der Flansch 6k des ersten Teilgehäuses 6e weist eine derart ausgestaltete Ausnehmung auf, dass der Flansch 61 des zweiten Teilgehäuses 6f darin eine Aufnahme findet, wobei die gegenseitige Lage der beiden Teilgehäuse 6e, 6f beim Zusammenfügen durch die Flansche 6k, 61 gegenseitig zentriert werden. Die Flansche 6k, 61 werden durch mehrere in Umfangsrichtung verteilt angeordnete Schrauben 6m mit Mutter 6n zusammengehalten, wobei an der Stirnseite der Flansche 6k, 61 eine in Umfangsrichtung verlaufende Nut vorgesehen ist, in welcher ein Dichtelement 6o angeordnet ist, um den durch die beiden Teilgehäuse 6e, 6f begrenzten Innenraum gegen aussen abzudichten.
Fig. 6 zeigt einen Längsschnitt eines schematisch dargestellten Gehäuses 6 bestehend aus drei Teilgehäusen 6e, 6f, 6g mit Flanschen 6k, 61 sowie einer Zuleitung 6c und einer Ableitung 6d. Das Gehäuse 6 ist über zwei Abstützelemente 18a, 18b auf einen Untergrund 14 abgestützt. Innerhalb des Gehäuses ist ein Basiselement 6p angeordnet, welches eine steife, in Längsrichtung des Gehäuses 6 verlaufende Abstützung, insbesondere eine Abstützfläche ausbildet, auf welchem die elektromagnetischen Radiallager 5 angeordnet sind. Die Funktion des Basiselemente 6p ist eine möglichst stabile und vorzugsweise Temperatur unempfindliche Referenzebene zu bilden, auf welcher zumindest einige Radiallager 5 angeordnet sind. Das Basiselement 6p kann in einer Vielzahl von Ausführungsformen ausgestaltet sein, so beispielsweise als feste, massive Platte, als Träger oder als Gitterrost. Auf dem Basiselement 6p können weitere Komponenten wie der Elektromotor 2 oder der Radialturboverdichter 3 verankert sein. Die Verwendung eines Basiselemente 6p ermöglicht die elektromagnetischen Radiallager 5 gegenseitig sehr präzise und insbesondere genau fluchtend anzuordnen. Die gemeinsame Anordnung der Radiallager 5 auf dem Basiselement 6p weist den Vorteil auf, dass die auf Grund von angreifenden Zug-, Druck- oder Scherkräften oder durch Temperatureinflüsse bedingten gegenseitigen Verschiebungen der Radiallager sehr gering ausfallen. Zudem kann diese Anordnung sehr schnell betriebsbereit aufgestellt werden. Bei der aus Fig. 1 bekannten Anordnung war es erforderlich die beiden separaten Vorrichtungen Elektromotor 2 und Radialturboverdichter 3 getrennt aufzustellen und in einem zeitaufwendigen Verfahren genau gegenseitig auszurichten, damit die Wellen 2a, 3a fluchtend angeordnet sind. Trotz dieses Aufwandes können sich der Elektromotor 2 und/oder der Radialturboverdichter 3 beziehungsweise deren Radiallager bedingt beispielsweise durch einwirkende Kräfte, eine Verschiebung des Untergrundes oder Temperaturänderungen gegenseitig verschieben.
Die durch elektromagnetische Radiallager erzeugbare Lagerkraft ist wesentlich geringer als die durch bekannte, hydrodynamische Lager erzeugbare Lagerkraft. Deshalb ist auch die genaue gegenseitige Ausrichtung der elektromagnetischen Radiallager sowie das Verhindern einer gegenseitigen Verschiebung der Radiallager von zentraler Bedeutung. Das elektromagnetische Radiallager wird üblicherweise derart betrieben, dass die Welle in der geometrischen Mitte des Radiallagers gehalten wird. Ein gegenseitige Verschieben der Radiallager hat zur Folge, dass das Radiallager erhebliche Kräfte aufzuwenden hat, um die Welle trotzdem in der geometrischen Mitte zu halten. Da das elektromagnetische Radiallager relativ bald in den Zustand einer magnetischen Sättigung gelangt, verfügt das Radiallager in dieser Situation über geringere, zum Tragen der Welle zur Verfügung stehende Kräfte. Dieser Effekt verringert die Betriebssicherheit des Turboverdichters, wobei das elektromagnetische Radiallager im Extremfall nicht mehr in der Lage ist die Welle zu tragen. Daher ist es bei der Verwendung von elektromagnetischen Radiallagern von zentraler Bedeutung, dass diese möglichst genau fluchtend angeordnet sind, und dass sie derart angeordnet sind, dass ein gegenseitiges Verschieben der Radiallager auch während dem Betrieb des Turboverdichters nach Möglichkeit verhindert wird. Daher ist es auch vorteilhaft, wenn die elektromagnetischen Radiallager in Verlaufsrichtung der gemeinsamen Welle 13 einen grösseren gegenseitigen Abstand aufweisen. Bei der bekannten Ausführungsform gemäss Fig. 1 weisen die beiden mittleren Radiallager 5 einen relativ geringen gegenseitigen Abstand auf, sodass bei einem gegenseitigen Versatz dieser beiden mittleren Radiallager 5 das Problem auftreten kann, dass diese in radialer Richtung gegeneinander wirkende Kräfte erzeugen, was bewirkt, dass die noch zum Tragen zur Verfügung stehende Restkraft des elektromagnetischen Radiallagers geringer ist oder gar nicht mehr zur Verfügung steht.
Fig. 7 zeigt einen Turboverdichter 1 mit einem im Vergleich zur Ausführungsform gemäss Fig. 4 separat gekühlten Elektromotor 2. Dabei ist zwischen dem Druckteil des Radialturboverdichters 3 und dem Elektromotor 2 je ein System mit einer Doppeldichtung, umfassend eine Trockengasdichtung 19 und nachfolgend eine Dichtung 20, angeordnet, wobei zwischen den beiden Dichtungen 19, 20 ein Auslass 21, als Vent (Austritt an die Atmosphäre ohne Gasverbrennung) oder Flare (Austritt an die Atmosphäre mit Gasverbrennung) ausgestaltet, angeordnet ist, welcher durch die Gehäusewand 6 verläuft. Der Elektromotor 2 weist einen separaten, durch die Dichtungen 19, 20 vom Radialturboverdichter 3 getrennten Kühlkreislauf auf, welcher eine Verbindungsleitung 11 sowie einen Kühler 22 umfasst. Der den Elektromotor 2 kühlende Kühlgasmassenstrom 9 fliesst zwischen dem Stator 2c und dem Rotor 2b in Längsrichtung, wird im Bereich des einen Endes 9b des Elektromotors 2 aus dem Gehäuse 6 in die Verbindungsleitung 11 geleitet, und wird nach dem Durchströmen des Kühlers 22 und der nachfolgend angeordneten Verbindungsleitung 11 am anderen Ende 9c des Elektromotors 2 wieder in das Gehäuse 6 geleitet. Nicht dargestellt sind weitere Komponenten dieses Kreislaufes, wie eine das Kühlgas antreibende Vorrichtung. Eine Zuleitung 9d führt zusätzliches Kühlgas zu, um beispielsweise die über die Ableitung 21 abfliessenden Kühlgasanteile zu kompensieren. Als Kühlgas ist insbesondere ein nicht aggressives Gas wie Stickstoff geeignet. Die Anordnung gemäss Fig. 7 ist beispielsweise dann vorteilhaft, wenn kein Prozessgas auf einem tiefen Druckniveau zur Kühlung des Elektromotors 2 zur Verfügung steht, oder wenn das Prozessgas aggressive Eigenschaften aufweist oder verschmutzt ist, beispielsweise durch flüssige Gasunreinheiten, sodass dieses beispielsweise Teile des Elektromotors 2, wie die Welle 2a oder die elektrische Isolation, beschädigen könnte. Der Kühlkreislauf des Elektromotors 2 kann derart ausgelegt sein, dass dieser einen Druck im Bereich des atmosphärischen Druckes oder leicht darüber aufweist. Wie in Fig. 7 dargestellt kann der Kühlkreislauf derart ausgelegt sein, dass ein geringer Anteil des Kühlgasmassenstroms 9 über die Dichtung 20 zum Auslass 21 gelangt. Dadurch bleibt gewährleistet, dass der Kühlgasmassenstrom 9 nicht durch Fremdgase verunreinigt wird. Im Ausführungsbeispiel gemäss Fig. 7 fliesst zudem ein geringer Anteil des Prozessgases 8 über die Dichtung 19 zum Auslass 21. Dem Auslass 21 kann ein sogenanntes Flare oder Vent nachgeordnet sein, um die aus dem Auslass 21 austretenden Gase unverbrannt abzuführen (Vent) oder über eine nachfolgende Verbrennung (Flare) abzuführen, insbesondere an die Umwelt abzugeben.
Ein Vorteil des Ausführungsbeispiels gemäss Fig. 7 ist darin zu sehen, dass das Kühlgas 9 einen geringen Druck aufweist und/oder dass als Kühlgas ein günstiges oder problemlos handhabbares Gas verwendbar ist, insbesondere ein Gas ohne aggressive Eigenschaften.
Ein Vorteil des erfindungsgemässen Turboverdichters 1 ist darin zu sehen, dass der Elektromotor 2 und der Radialturboverdichter 3 zusammen mit den entsprechenden Gehäuseteilen 6e, 6f vormontierbar sind, sodass der Turboverdichter 1 als ein Gehäuse 6 beziehungsweise als eine Einheit zum Aufstellungsort transportierbar und dort aufstellbar ist.
Die in den Figuren 3, 4 und 7 ausserhalb des Gehäuses 6 verlaufenden Leitungen 11, 12 sowie die dazu gehörenden Komponenten 22, können in einer weiteren Ausgestaltungsform auch innerhalb des Gehäuses 6 verlaufend angeordnet sein.

Claims (10)

  1. Turboverdichter (1) umfassend ein nach aussen gasdichtes Gehäuse (6) innerhalb welchem auf einer gemeinsamen Welle (13) ein Elektromotor (2) sowie ein mehrstufiger Radialturboverdichter (3) angeordnet sind, wobei zum Lagern der Welle (13) in deren Verlaufsrichtung elektromagnetische Radiallager (5) beabstandet angeordnet sind, und wobei zwischen dem Elektromotor (2) und dem Radialturboverdichter (3) eine die Welle (13) umschliessende Gasdichtung (19) angeordnet ist, um den Elektromotor (2) bezüglich dem Radialturboverdichter (3) abzudichten, dadurch gekennzeichnet, dass der Elektromotors (2) einen Innenraum (9b, 9c) aufweist, welcher fluidleitend mit einer das Gehäuse durchdringenden Austrittsöffnung (6h; 21) verbunden ist.
  2. Turboverdichter (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Innenraum (9b, 9c) den Spalt des Elektromotors (2) umfasst, welcher zwischen dem Stator (2c) und dem Rotor (2b) ausgebildet ist.
  3. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beidseitig des Elektromotors (2) je ein Radialturboverdichter (3) angeordnet ist.
  4. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Innenraum (9b) des einen Endabschnittes des Elektromotors (2) fluidleitend mit einer Kompressorstufe verbunden ist, und dass der Innenraum (9c) des anderen Endabschnittes fluidleitend mit der Austrittsöffnung (21) verbunden ist.
  5. Turboverdichter (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass beide Endabschnitte des Elektromotors (2) je einen Innenraum (9b, 9c) aufweisen, welche über eine Verbindungsleitung (11) derart fluidleitend verbunden sind, dass über den Spalt des Elektromotors (2) und die Verbindungsleitung (11) ein geschlossener Fluidkreislauf (9) ausgebildet ist.
  6. Turboverdichter (1) nach Anspruch 5, dadurch gekennzeichnet, dass der geschlossene Fluidkeislauf (9) einen Kühler (22) umfasst.
  7. Turboverdichter (1) nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass zwischen dem Innenraum (9b, 9c) des Endabschnittes des Elektromotors (2) und der Austrittsöffnung (21) an der Welle (13) eine Dichtung (20) angeordnet ist.
  8. Turboverdichter (1) nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der geschlossene Kreislauf (9) mit einer Zuführleitung (9d) fluidleitend verbunden ist, um dem Kreislauf (9) ein separates Fluid, insbesondere Stickstoff, zuzuführen.
  9. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Austrittsöffnung (21) in einen Flare oder Vent mündet, oder fluidleitend mit der Saugseite eines Kompressors (24) verbunden ist.
  10. Anlage umfassend einen Turboverdichter nach einem der vorhergehenden Ansprüche.
EP00810275A 1999-07-16 2000-03-31 Turboverdichter Expired - Lifetime EP1069313B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP00810275A EP1069313B1 (de) 1999-07-16 2000-03-31 Turboverdichter
US09/599,098 US6390789B1 (en) 1999-07-16 2000-06-20 Cooling means for the motor of a turbocompressor
CA002312085A CA2312085C (en) 1999-07-16 2000-06-21 Cooling means for the motor of a turbocompressor
DE20011217U DE20011217U1 (de) 1999-07-16 2000-06-26 Turboverdichter
JP2000192340A JP4395242B2 (ja) 1999-07-16 2000-06-27 ターボ圧縮機
KR1020000039923A KR100761917B1 (ko) 1999-07-16 2000-07-12 터보압축기
CNB001201123A CN1153906C (zh) 1999-07-16 2000-07-17 涡轮压缩机装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP99810640A EP0990798A1 (de) 1999-07-16 1999-07-16 Turboverdichter
EP99810640 1999-07-16
EP00810275A EP1069313B1 (de) 1999-07-16 2000-03-31 Turboverdichter

Publications (3)

Publication Number Publication Date
EP1069313A2 true EP1069313A2 (de) 2001-01-17
EP1069313A3 EP1069313A3 (de) 2002-05-15
EP1069313B1 EP1069313B1 (de) 2005-09-14

Family

ID=26073837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00810275A Expired - Lifetime EP1069313B1 (de) 1999-07-16 2000-03-31 Turboverdichter

Country Status (7)

Country Link
US (1) US6390789B1 (de)
EP (1) EP1069313B1 (de)
JP (1) JP4395242B2 (de)
KR (1) KR100761917B1 (de)
CN (1) CN1153906C (de)
CA (1) CA2312085C (de)
DE (1) DE20011217U1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071139A1 (en) * 2002-02-21 2003-08-28 Alpha Thames Ltd Gas seal system for the shaft of an electric compressor motor
EP1467104A1 (de) * 2003-04-11 2004-10-13 Thermodyn Verdichtereinheit mit unterstützter Kühlung
WO2007110281A1 (de) * 2006-03-24 2007-10-04 Siemens Aktiengesellschaft Verdichtereinheit
DE102010041210A1 (de) * 2010-09-22 2012-03-22 Siemens Aktiengesellschaft Gehäuse
US8221095B2 (en) 2006-06-30 2012-07-17 Aker Subsea As Method and apparatus for protection of compressor modules against influx of contaminated gas
RU2670993C1 (ru) * 2017-08-02 2018-10-29 Василий Сигизмундович Марцинковский Компрессорный агрегат компримирования азото-водородной смеси в производстве аммиака (варианты)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1018212C2 (nl) * 2001-06-05 2002-12-10 Siemens Demag Delaval Turbomac Compressoreenheid omvattende een centrifugaalcompressor en een elektromotor.
JP2003201993A (ja) * 2001-11-02 2003-07-18 Mitsubishi Heavy Ind Ltd 流体圧縮機
TW200406547A (en) * 2002-06-05 2004-05-01 Sanyo Electric Co Internal intermediate pressure multistage compression type rotary compressor, manufacturing method thereof and displacement ratio setting method
WO2004094833A1 (fr) * 2003-04-11 2004-11-04 Thermodyn Groupe moto-compresseur centrifuge
DE502004002264D1 (de) * 2003-07-05 2007-01-25 Man Turbo Ag Schweiz Kompressorvorrichtung und Verfahren zum Betrieb derselben
GB2410982A (en) * 2004-02-14 2005-08-17 Richard Julius Gozdawa Turbomachinery electric generator arrangement with component cooling
DE102004023148A1 (de) * 2004-05-07 2005-11-24 Atlas Copco Energas Gmbh Turbomaschine für Tieftemperaturanwendungen
US8021127B2 (en) * 2004-06-29 2011-09-20 Johnson Controls Technology Company System and method for cooling a compressor motor
DE102005002702A1 (de) * 2005-01-19 2006-07-27 Man Turbo Ag Mehrstufiger Turbokompressor
US7811068B2 (en) * 2005-11-16 2010-10-12 General Electric Company Methods and apparatus for transporting natural gas through a pipeline
ITMI20060294A1 (it) * 2006-02-17 2007-08-18 Nuovo Pignone Spa Motocompressore
US8156757B2 (en) * 2006-10-06 2012-04-17 Aff-Mcquay Inc. High capacity chiller compressor
US20080199326A1 (en) * 2007-02-21 2008-08-21 Honeywell International Inc. Two-stage vapor cycle compressor
GB2453313B (en) * 2007-08-04 2012-06-27 Waukesha Bearings Ltd Motor compressor
US8092158B2 (en) * 2007-08-16 2012-01-10 Johnson Controls Technology Company Method of positioning seals in turbomachinery utilizing electromagnetic bearings
EP2065555B1 (de) 2007-11-30 2012-09-12 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Verdichtervorrichtung und zugehörige Verdichtervorrichtung
FI121800B (fi) * 2008-01-10 2011-04-15 Waertsilae Finland Oy Mäntämoottorin ahdinjärjestely
FI122036B (fi) * 2008-01-10 2011-07-29 Waertsilae Finland Oy Mäntämoottorin turboahdinjärjestely
CN102016326B (zh) * 2008-03-13 2013-09-11 Aaf-麦克维尔公司 大容量制冷机压缩机
EP2103810A1 (de) * 2008-03-19 2009-09-23 Siemens Aktiengesellschaft Kompressoreinheit
EP2113671A1 (de) 2008-04-28 2009-11-04 Siemens Aktiengesellschaft Anordnung mit einem elektrischen Motor und einer Pumpe
DE102008031994B4 (de) * 2008-04-29 2011-07-07 Siemens Aktiengesellschaft, 80333 Fluidenergiemaschine
DE102008038787A1 (de) 2008-08-13 2010-02-18 Siemens Aktiengesellschaft Fluidenergiemaschine
DE102009004376B4 (de) * 2009-01-12 2016-06-16 Man Diesel & Turbo Se Verfahren und System zur Steuerung eines Turbokompressorverbundes
IT1399171B1 (it) * 2009-07-10 2013-04-11 Nuovo Pignone Spa Unita' di compressione ad alta pressione per fluidi di processo di impianti industriali e relativo metodo di funzionamento
EP2290241A1 (de) 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Turbokompressoreinheit mit einem Kühlsystem
BE1019030A5 (nl) 2009-08-03 2012-01-10 Atlas Copco Airpower Nv Turbocompressorsysteem.
IT1395822B1 (it) * 2009-10-12 2012-10-26 Nuovo Pignone Spa Metodo e macchinario con combinazione di dispositivi di separazione particelle e di regolazione flusso
DE102009045633A1 (de) 2009-10-13 2011-04-14 Man Diesel & Turbo Se Unterwasser-Kompressoranordnung und damit ausgerüstete Unterwasser-Prozessfluidförderanordnung
EP2322805A1 (de) * 2009-11-11 2011-05-18 Siemens Aktiengesellschaft Gasverdichteranordnung
DE102010064061A1 (de) 2009-12-28 2011-08-11 Volkswagen AG, 38440 Turboverdichter und Verfahren zur Verdichtung von Gas
US20110315230A1 (en) * 2010-06-29 2011-12-29 General Electric Company Method and apparatus for acid gas compression
US8931304B2 (en) * 2010-07-20 2015-01-13 Hamilton Sundstrand Corporation Centrifugal compressor cooling path arrangement
US9200643B2 (en) * 2010-10-27 2015-12-01 Dresser-Rand Company Method and system for cooling a motor-compressor with a closed-loop cooling circuit
EP2466144B1 (de) 2010-12-16 2013-02-20 FIMA Maschinenbau GmbH Vorrichtung zum Verdichten eines Prozessgases
FR2969722B1 (fr) 2010-12-22 2013-01-04 Thermodyn Groupe motocompresseur a accouplement torsible place dans un arbre creux du compresseur
EP2659277B8 (de) 2010-12-30 2018-05-23 Dresser-Rand Company Verfahren zur online-erkennung von bodenwiderstandsfehlern in aktiven magnetlagersystemen
US8994237B2 (en) 2010-12-30 2015-03-31 Dresser-Rand Company Method for on-line detection of liquid and potential for the occurrence of resistance to ground faults in active magnetic bearing systems
WO2012138545A2 (en) 2011-04-08 2012-10-11 Dresser-Rand Company Circulating dielectric oil cooling system for canned bearings and canned electronics
WO2012145486A2 (en) * 2011-04-20 2012-10-26 Dresser-Rand Company Magnetic bearing system for heavy loaded compressor
US8876389B2 (en) 2011-05-27 2014-11-04 Dresser-Rand Company Segmented coast-down bearing for magnetic bearing systems
WO2012166325A1 (en) 2011-05-31 2012-12-06 Carrier Corporation Compressor windage mitigation
US8851756B2 (en) 2011-06-29 2014-10-07 Dresser-Rand Company Whirl inhibiting coast-down bearing for magnetic bearing systems
DE102012016844A1 (de) * 2011-08-30 2013-02-28 Ksb Aktiengesellschaft Turbokompressor und Verwendung
FR2980538B1 (fr) 2011-09-27 2013-10-25 Thermodyn Groupe moto-compresseur a cartouche amovible
DE102012204403A1 (de) * 2012-03-20 2013-09-26 Man Diesel & Turbo Se Radialverdichtereinheit
RU2485354C1 (ru) * 2012-04-26 2013-06-20 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Компрессорная установка
DE102012012540A1 (de) * 2012-06-26 2014-01-02 Robert Bosch Gmbh Turboverdichter
ITCO20130069A1 (it) * 2013-12-18 2015-06-19 Nuovo Pignone Srl Compressore centrifugo multistadio
KR20150074625A (ko) * 2013-12-24 2015-07-02 삼성테크윈 주식회사 압축 장치 코어용 지지대 및 이를 구비한 압축 장치 모듈
EP3161320B1 (de) * 2014-06-24 2021-02-24 Sterling Industry Consult GmbH Seitenkanalpumpe
DE102014218945A1 (de) * 2014-09-19 2016-03-24 Siemens Aktiengesellschaft Gehäusegussmodell, Gehäusebaureihe, Verfahren zur Erzeugung eines gegossenen Gehäuses einer Radialturbofluidenergiemaschine
JP6460773B2 (ja) * 2014-12-19 2019-01-30 株式会社マーレ フィルターシステムズ ターボチャージャ
DE102015207341B4 (de) * 2015-04-22 2019-02-14 Ford Global Technologies, Llc Verdichter und Kraftfahrzeug
US10215190B2 (en) * 2016-05-31 2019-02-26 GE Oil & Gas, Inc. Refrigerant compressing process with cooled motor
EP3521632B1 (de) * 2016-11-08 2020-08-26 Mitsubishi Heavy Industries Compressor Corporation Drehmaschine
CN109996966A (zh) * 2016-12-14 2019-07-09 开利公司 两级离心压缩机
BR102017009824B1 (pt) * 2017-05-10 2023-12-19 Fmc Technologies Do Brasil Ltda Sistema para circulação de gás em espaços anulares de máquinas rotativas
CN108425859A (zh) * 2018-01-29 2018-08-21 固耐重工(苏州)有限公司 磁悬浮大功率高速离心机多级压缩结构
US11156231B2 (en) * 2018-03-23 2021-10-26 Honeywell International Inc. Multistage compressor having interstage refrigerant path split between first portion flowing to end of shaft and second portion following around thrust bearing disc
CN108930655B (zh) * 2018-09-06 2023-11-03 东营市深蓝新材料有限公司 一种具有防堵塞功能的油田用离心泵
KR20210043045A (ko) * 2019-10-10 2021-04-21 한온시스템 주식회사 차량용 공기 압축기
CN110953250B (zh) * 2019-12-03 2020-12-18 珠海格力电器股份有限公司 一种磁悬浮轴承转子结构、电机和空调器
CN111043069A (zh) * 2019-12-18 2020-04-21 沈阳透平机械股份有限公司 离心压缩机用干气密封控制系统
CN114458608B (zh) * 2022-02-10 2024-01-30 瑞希特(浙江)科技股份有限公司 一种冷却效果突出的管道屏蔽电泵

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3729486C1 (de) 1987-09-03 1988-12-15 Gutehoffnungshuette Man Kompressoreinheit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE571216A (de) * 1956-12-21
FR1178519A (fr) * 1957-06-04 1959-05-12 Commissariat Energie Atomique Garnitures étanches pour arbres de compresseurs de fluides corrosifs
CH663644A5 (de) 1982-02-22 1987-12-31 Bbc Brown Boveri & Cie Turboverdichter.
FR2528127A1 (fr) * 1982-06-04 1983-12-09 Creusot Loire Moto-compresseur centrifuge electrique integre a grande vitesse
EP0297691A1 (de) 1987-06-11 1989-01-04 Acec Energie S.A. Motor- Kompressor-Aggregat
JP2741863B2 (ja) * 1988-04-15 1998-04-22 株式会社日立製作所 ターボ真空ポンプ
GB9404436D0 (en) 1994-03-08 1994-04-20 Welsh Innovations Ltd Compressor
IL109967A (en) 1993-06-15 1997-07-13 Multistack Int Ltd Compressor
JP3799121B2 (ja) * 1997-03-19 2006-07-19 株式会社 日立インダストリイズ 2段遠心圧縮機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3729486C1 (de) 1987-09-03 1988-12-15 Gutehoffnungshuette Man Kompressoreinheit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071139A1 (en) * 2002-02-21 2003-08-28 Alpha Thames Ltd Gas seal system for the shaft of an electric compressor motor
EP1467104A1 (de) * 2003-04-11 2004-10-13 Thermodyn Verdichtereinheit mit unterstützter Kühlung
FR2853700A1 (fr) * 2003-04-11 2004-10-15 Thermodyn Groupe moto-compresseur centrifuge a refrigeration assistee.
NO342391B1 (no) * 2003-04-11 2018-05-14 Thermodyn Kombinert motor og sentrifugalkompressor med kjøling
WO2007110281A1 (de) * 2006-03-24 2007-10-04 Siemens Aktiengesellschaft Verdichtereinheit
CN101410624B (zh) * 2006-03-24 2011-03-02 西门子公司 压缩机单元
US8221095B2 (en) 2006-06-30 2012-07-17 Aker Subsea As Method and apparatus for protection of compressor modules against influx of contaminated gas
DE102010041210A1 (de) * 2010-09-22 2012-03-22 Siemens Aktiengesellschaft Gehäuse
US9291073B2 (en) 2010-09-22 2016-03-22 Siemens Aktiengesellschaft Centering attachment of a compressor housing cover
RU2670993C1 (ru) * 2017-08-02 2018-10-29 Василий Сигизмундович Марцинковский Компрессорный агрегат компримирования азото-водородной смеси в производстве аммиака (варианты)

Also Published As

Publication number Publication date
KR20010015306A (ko) 2001-02-26
CA2312085C (en) 2003-10-21
CN1281100A (zh) 2001-01-24
JP4395242B2 (ja) 2010-01-06
EP1069313A3 (de) 2002-05-15
JP2001041199A (ja) 2001-02-13
US6390789B1 (en) 2002-05-21
EP1069313B1 (de) 2005-09-14
CA2312085A1 (en) 2001-01-16
DE20011217U1 (de) 2000-09-07
CN1153906C (zh) 2004-06-16
KR100761917B1 (ko) 2007-09-28

Similar Documents

Publication Publication Date Title
EP1074746B1 (de) Turboverdichter
EP1069313A2 (de) Turboverdichter
DE3729486C1 (de) Kompressoreinheit
EP1993893B1 (de) Kompressoranordnung
EP2017435A2 (de) Turbomaschine mit elektrischer Maschine und Magnetlagern
DE3600124A1 (de) Geblaese zum umwaelzen grosser gasmengen, insbesondere fuer hochleistungs-laser
WO2008074428A1 (de) Fluidarbeitsmaschine
EP0408791A1 (de) Reibungspumpe mit glockenförmigem Rotor
DE102010064061A1 (de) Turboverdichter und Verfahren zur Verdichtung von Gas
DE102006060865B4 (de) Vorrichtung
EP0990798A1 (de) Turboverdichter
DE10003018B4 (de) Turboverdichter
WO1992014060A1 (de) Trockenlaufende zweiwellenvakuumpumpe
DE602004001156T2 (de) Verdichtereinheit mit unterstützter Kühlung
EP0653566B1 (de) Getriebeverdichter für die Verdichtung von Sauerstoff
DE2100690B2 (de) Einbaublock zum einbau in einen mehrstufigen radialverdichter
EP0942172B1 (de) Mehrwellenvakuumpumpe
DE102012207019B4 (de) Strömungsmaschine sowie Verfahren zur Kühlen einer solchen
EP0814268B1 (de) Modularer Bausatz zur Herstellung einer Pumpe, insbes. einer Permanentmagnetkupplungspumpe
DE2330286A1 (de) Kupplungsgehaeuse
EP0763675A2 (de) Gehäusegestaltung eines Automatgetriebes
EP0789815B1 (de) Reibungsvakuumpumpe mit kühlung
DE19633559A1 (de) Durchflußregler
EP0713001B1 (de) Gas-Expansionsmaschine
DE10232100A1 (de) Ölfreier Kompressor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG GHH BORSIG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 04D 25/06 A, 7F 04D 17/12 B, 7F 04D 29/58 B, 7F 04D 29/04 B, 7F 04D 29/12 B, 7F 04D 17/16 B

17P Request for examination filed

Effective date: 20020419

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBO AG

17Q First examination report despatched

Effective date: 20041126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50011150

Country of ref document: DE

Date of ref document: 20051020

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050914

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT ABT. CT IP PG

Effective date: 20060612

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AKTIENGESELLSCHAFT ABT. CT IP PG

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: MAN TURBO A.G.

Effective date: 20060331

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAN DIESEL & TURBO SE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 50011150

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20131213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 50011150

Country of ref document: DE

Effective date: 20131213

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50011150

Country of ref document: DE

Owner name: MAN ENERGY SOLUTIONS SE, DE

Free format text: FORMER OWNER: MAN DIESEL & TURBO SE, 86153 AUGSBURG, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: MAN ENERGY SOLUTIONS SE; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: MAN TURBO AG

Effective date: 20181221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190322

Year of fee payment: 20

Ref country code: IT

Payment date: 20190325

Year of fee payment: 20

Ref country code: DE

Payment date: 20190321

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190320

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50011150

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200330