EP1069290B1 - Kühlsystem für Fahrzeug - Google Patents
Kühlsystem für Fahrzeug Download PDFInfo
- Publication number
- EP1069290B1 EP1069290B1 EP00114597A EP00114597A EP1069290B1 EP 1069290 B1 EP1069290 B1 EP 1069290B1 EP 00114597 A EP00114597 A EP 00114597A EP 00114597 A EP00114597 A EP 00114597A EP 1069290 B1 EP1069290 B1 EP 1069290B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fan
- cooling system
- temperature sensor
- time interval
- operational state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title claims description 21
- 230000002441 reversible effect Effects 0.000 claims description 13
- 230000001419 dependent effect Effects 0.000 claims description 3
- 239000002826 coolant Substances 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241001124569 Lycaenidae Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/02—Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
- F01P5/04—Pump-driving arrangements
- F01P5/043—Pump reversing arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/02—Controlling of coolant flow the coolant being cooling-air
- F01P7/04—Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
- F01P7/048—Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/06—Cleaning; Combating corrosion
- F01P2011/063—Cleaning
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/08—Temperature
Definitions
- the invention relates to a cooling system with a heat exchanger, a fan, at least one temperature sensor and a fan control, which is operatively connected at least to the fan and the temperature sensor, and a vehicle.
- Vehicles and in particular all-terrain vehicles, usually have electric fans to cool a heat exchanger through which engine coolant circulates. Harsh environmental conditions cause an accumulation of dirt on the heat exchanger. Therefore, systems are known by which the direction of rotation of the blower is periodically reversible for a short time to free the heat exchanger or a blower filter from accumulated dirt.
- Blower controls for refrigeration systems such as shown in DE-C1-3711392, often have multiple thermostats to effect low speed fan operation until the temperature reaches a threshold, and to allow high speed operation when the temperature thereof Exceeds limit. Varying the blower operation increases efficiency, reduces noise generation, and reduces the load on the battery and alternator until the drive reaches normal operating speed.
- a cooling system is provided with a blower control, which is relatively simple and thus inexpensive to manufacture and still the features a more complex and expensive system.
- a blower control which is relatively simple and thus inexpensive to manufacture and still the features a more complex and expensive system.
- the fan is driven or rotated at a low speed in the first operating state, which it preferably occupies during the cranking or for a short time. A particularly large discharge of the battery / power source or the alternator and a good starting behavior but then arises when it is provided that the fan is deactivated in this first operating state.
- the blower In the second operating condition, which the blower occupies at a time interval following the first time interval, the blower is generally activated so that cooling of the heat exchanger by the cooling system is accomplished by air drawn in by the blower. If the second operating state is dependent on an output of the temperature sensor, then it can be effected that the fan is preferably activated only above a predefinable temperature limit, so that cooling only takes place if this is necessary, and the fan is deactivated in the remaining time or driven at a lower speed.
- the third operating state the blower preferably takes when the system to be cooled has reached its normal operating condition.
- the blower can be driven permanently in this operating state. Preferably, however, it is provided that it has a low and a high Speed can rotate.
- the output value provided by the temperature sensor in this operating state can be used to determine the speed of the fan such that the fan rotates at a low speed, if the temperature sensor delivers an output value which is below a predefinable limit value, and with a high speed rotates when this limit is reached or exceeded.
- the temperature sensor can measure the temperature and continuously emit a changing signal, for example.
- the temperature sensor comprises or is designed as a switch which closes or opens as a function of the temperature relative to a limit value.
- the fan may have a fourth operating state, which it occupies preferably at regular intervals during operation and preferably with a certain time interval from a commissioning or tempering.
- the time intervals are provided substantially the same length.
- at least the third time interval in which the blower corresponds to its third operating state which preferably corresponds to the operating state that the blower assumes during a continuous operation, is substantially longer than the first time interval, which preferably corresponds to a start phase Cooling is temporarily not necessary or in which they can be dispensed with in terms of generating noise and additional electrical load.
- time intervals can be fixed so that they are executed the same each time. However, it is also conceivable to design individual, some or all time intervals variably, for example as a function of an ambient temperature or whether a cold or warm start is carried out.
- the time intervals or the temperature sensors and the blower can be controlled manually or via timers.
- the temperature sensor and the fan are in communication with a microprocessor. The latter can determine the time intervals as a function of the time that has elapsed since starting up or activating and activates the fan depending on the values thus determined and the output of the temperature sensor or in conjunction therewith.
- Such a cooling system can be used on industrial, agricultural or even construction and forestry equipment. Preferably, however, it is used on vehicles and especially on all-terrain vehicles, since they are often exposed to harsh environmental conditions and should be designed to be cheap and robust.
- Such vehicles can be transport vehicles for people and / or loads or even industrial, agricultural or construction and forestry machinery such as trucks, tractors or harvesters or even vehicles for military purposes.
- the cooling system 12 includes a heat exchanger 14 and an electrically driven fan 16 for blowing air through the heat exchanger 14 to remove heat from a coolant circulating in the heat exchanger 14.
- the fan 16 is reversible and, as shown, has at least two speeds including low speed and high speed.
- the vehicle has a battery or a power source 18, which is equipped with a conventional ignition switch or switch 20, which has an off, an on and a start position.
- a vehicle drive starter 22 is connected to a start terminal on the switch 20.
- the positive terminal (B +) of the current source 18 is connected via a line 30 to a pair of inputs to a forward relay 34 and to a reverse relay 36, respectively.
- the other input of each of the relays 34, 36 is connected to ground.
- the relays 34 and 36 have first control terminals 44 and 46 connected to respective relay coils and a switchable output 48 of the switch 20.
- the relay coils have second terminals 54 and 56 connected to a timing control module 60 via front and rear ports 64 and 66, respectively.
- the switchable output 48 is also connected to a terminal 72 of a thermostat, temperature switch or temperature sensor 70 via a coil of a speed relay 74.
- the temperature sensor 70 is open when the coolant is below a preselected temperature, preferably about 180 degrees, and closes when the temperature of the coolant is above that temperature increases.
- the other terminal of the temperature sensor 70 is connected to ground, so that the speed relay 74 is activated when the temperature rises above the preselected level or limit.
- the terminal 72 is also connected to the timing device 60 via the terminal 76 so that a high voltage is applied to the terminal 76 when the temperature sensor 70 is open, and a low voltage is applied when the temperature sensor 70 is closed.
- the forward relay 34 has an output 84 which is directly connected to a low speed input line 86 of the blower 16.
- a line 88 leaving the blower 16 is connected to a terminal 96 of the reverse relay 36.
- the blower 16 also includes a high speed input line 100 which communicates with a switchable terminal 104 of the speed relay 74.
- Diodes D1 and 2 connected between ground and terminals 84 and 96 protect against large, reverse voltage spikes caused by switching of the inductive fan drive load.
- the timing unit 60 includes a microcontroller 110 having a terminal 1 connected to a power source Vcc, preferably a five volt source, and a terminal 8 connected to ground.
- a capacitor C1 is connected between the terminal 8 and ground.
- Terminals 64 and 66 are connected to terminals 5 and 2 of microcontroller 110 via resistors R1 and R2.
- Grounded NPN transistors T1 and T2 have collectors connected to terminals 64 and 66 and bases connected to terminals 7 and 3 of microcontroller 110 via resistors R3 and R4 and to ground via resistors R5 and R6.
- Voltage-peak-limiting diodes D3 and D4 are connected to the output of the current source 18 from the collectors of the transistors T1 and T2.
- the micro-controller 110 briefly activates the transistors T1 and T2 and tests the terminals 5 and 2 to turn on the To check collector-emitter voltage Vce of the transistors T1 and T2 via the resistors R1 and R2. If a transistor output terminal is erroneously connected directly to the current source 18, or if there is a short to terminal B +, a high voltage Vce of a saturated state will be detected during the short, activated transistor test period and the microprocessor 110 will prevent any damage causing prolonged active of the transistor.
- a resistor R7 connects the terminal 72 of the temperature sensor 70 to the input 6 of the microcontroller 110.
- a resistor R8 and a capacitor C2 are connected in parallel between the input 6 and ground.
- the temperature sensor 70 closes to ground the input 76 and provide a temperature signal to the microcontroller 110.
- Closing the temperature sensor 70 when the port 48 is energized activates the speed relay 74 to energize the high speed drive of the blower 16 and to allow high speed operation of the blower 16 after a drive start delay period.
- the fan 16 normally rotates in a forward direction to direct air through the heat exchanger 14 in a first direction.
- the forward relay 34 is active (T1 is activated) to directly connect the positive terminal of the current source 18 to the low speed input line 86 and to the speed relay 74.
- the forward relay 36 remains inactive (as shown in Fig. 1 with T2 in the off state) to connect the line 88 of the blower 16 to ground.
- T2 is activated and T1 is deactivated, so that the forward relay 34 is deactivated and the reverse relay 36 is activated, whereby the line 88 is acted upon by the positive terminal of the current source 18.
- the microcontroller 110 evaluates the vehicle start, the accumulated drive duty and the coolant temperature to automatically turn on and off the blower 16 and to automatically control the blower speed and direction.
- the timing control device 60 prevents fan operation during one first delay (122 in FIG. 3) after start (120), regardless of the position of temperature sensor 70.
- microcontroller 110 holds transistors T1 and T2 in a deactivated state (terminals 7 and 3 are low Voltage for a period of time t1, preferably about 20 seconds, so that the lines 84, 86 and 88 are grounded through the relays 34 and 36, and the fan 16 is still not driven.
- the microcontroller 110 establishes a second time interval t2 (see 124 in FIG. 3), which is preferably about four minutes, in which the blower 16 remains in its deactivated state.
- the microcontroller 110 determines the position of the temperature sensor 70 by monitoring the input 6.
- the microcontroller 110 applies high to the terminal 7 Voltage to turn on the transistor T1 and to activate the forward relay 34, so that the fan starts to work.
- the microcontroller 110 raises the port 7 to turn on the forward relay 34 and activate the blower 16 for a time interval t3 (126 in Figure 3), which is preferably about five minutes.
- the fan speed is determined by the position of the Temperature sensor 70 determined.
- the relay 74 will activate to energize the high speed input line 100.
- the relay 74 will deactivate so that only the low speed input line 86 is energized and the fan 16 rotates at a low speed until the temperature sensor 70 closes with increasing coolant temperature.
- the initial deactivated time intervals and low speed operation when the coolant is below the preselected temperature reduce noise and power requirements and provide the impression and benefits of a system having at least two thermal switches with a single temperature sensor 70.
- the microprocessor 110 initiates a short routine to reverse the blower 16 to reverse the direction of air flow through the heat exchanger 14 to help remove debris that might have accumulated.
- the power supply of the fan 16 is interrupted for a short time interval (see t4 of 128), preferably about two seconds, so that the fan 16 stops by applying a low voltage to the terminals 7 and 3 of the microcontroller 110 to stop the fan Turn off transistors T1 and T2 to disable the relays 34 and 36.
- the fan 16 is operated in the reverse direction for a time interval t5 (see 130 in Fig.
- Blower 16 reverses to remove debris from heat exchanger 14 (or a blower filter or similar debris collection device).
- the microcontroller 110 After a time interval t5, which is preferably about five seconds, the microcontroller 110 again applies a low voltage to the terminals 7 and 3, so that the relays 34 and 36 are deactivated and the fan 16 for a time interval t6 (132 in FIG ) is not driven and stops. After the time interval t6, the fan 16 is again operated in the forward direction for a time interval t3 (at 126). The forward-reverse cycle 126-132 continues until the vehicle is stopped or the power supply is interrupted for any reason.
- t5 which is preferably about five seconds
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
- Air-Conditioning For Vehicles (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Control Of Temperature (AREA)
- Motor Or Generator Cooling System (AREA)
Description
- Die Erfindung betrifft ein Kühlsystem mit einem Wärmetauscher, einem Gebläse, wenigstens einem Temperatursensor und einer Gebläsesteuerung, die zumindest mit dem Gebläse und dem Temperatursensor wirksam verbindbar ist, und ein Fahrzeug.
- Fahrzeuge und insbesondere geländegängige Fahrzeuge weisen üblicherweise elektrische Gebläse auf, um einen Wärmetauscher zu kühlen, durch den Motorkühlmittel zirkuliert. Rauhe Umweltbedingungen bewirken ein Anlagern von Verschmutzungen an dem Wärmetauscher. Es sind daher Systeme bekannt, durch die die Drehrichtung des Gebläses periodisch, kurzzeitig umkehrbar ist, um den Wärmetauscher oder einen Gebläsefilter von angesammeltem Schmutz zu befreien.
- Gebläsesteuerungen für Kühlsysteme, wie sie beispielsweise in der DE-C1-3711392 gezeigt werden, weisen oftmals mehrere Thermostate auf, um einen Gebläsebetrieb mit einer niedrigen Geschwindigkeit zu bewirken, bis die Temperatur einen Grenzwert erreicht, und einen Hochgeschwindigkeitsbetrieb zu ermöglichen, wenn die Temperatur diesen Grenzwert übersteigt. Ein Variieren des Gebläsebetriebs steigert die Effektivität, reduziert die Lärmentstehung sowie die Belastung von Batterie und Lichtmaschine, bis der Antrieb seine normale Betriebsgeschwindigkeit erreicht hat.
- Das der Erfindung zugrunde liegende Problem wird darin gesehen, daß bekannte Kühlsysteme und mit solchen ausgestattete Fahrzeuge komplex und somit teuer sind.
- Dieses Problem wird erfindungsgemäß durch die Lehre der Patentansprüche 1 und 10 gelöst, wobei in den weiteren Patentansprüchen die Lösung in vorteilhafter Weise weiterentwickelnde Merkmale aufgeführt sind.
- Auf diese Weise wird ein Kühlsystem mit einer Gebläsesteuerung zur Verfügung gestellt, das verhältnismäßig einfach und somit kostengünstig in der Herstellung ist und trotzdem die Merkmale eines komplexeren und teureren Systems aufweist. Durch eine solche Anordnung kann die Entstehung von Lärm und die Belastung einer Stromquelle bzw. einer Fahrzeugbatterie oder auch einer Lichtmaschine insbesondere während des oder kurz nach dem Anlassen eines Antriebs bzw. allgemein einer Wärmequelle verringert werden. Durch das Vorsehen verschiedener Zeitspannen bzw. -intervalle kann in vielen Anwendungsfällen auf die Verwendung mehr als eines Thermostaten, Temperaturschalters- bzw. sensors verzichtet werden.
- Es kann vorgesehen sein, daß das Gebläse in dem ersten Betriebszustand, den es vorzugsweise während des Anlassens bzw. kurzzeitig über dieses hinaus einnimmt, mit einer niedrigen Geschwindigkeit angetrieben wird bzw. rotiert. Eine besonders große Entlastung der Batterie/Stromquelle bzw. der Lichtmaschine und ein gutes Anlaßverhalten ergibt sich aber dann, wenn vorgesehen ist, daß das Gebläse in diesem ersten Betriebszustand deaktiviert ist.
- Bei dem zweiten Betriebszustand, den das Gebläse in einem Zeitintervall einnimmt, das auf das erste Zeitintervall folgt, ist das Gebläse im allgemeinen aktiviert, so daß eine Kühlung des Wärmetauschers durch das Kühlsystem mittels durch das Gebläse angesaugter bzw. abgegebener Luft erfolgt. Ist der zweite Betriebszustand von einer Ausgabe des Temperatursensors abhängig, so kann dadurch bewirkt werden, daß das Gebläse vorzugsweise nur oberhalb eines vorgebbaren Temperaturgrenzwerts aktiviert ist, so daß eine Kühlung nur erfolgt, wenn diese notwendig ist, und das Gebläse in der übrigen Zeit deaktiviert ist oder auch mit einer niedrigeren Geschwindigkeit angetrieben wird.
- Den dritten Betriebszustand nimmt das Gebläse vorzugsweise dann ein, wenn das zu kühlende System seinen normalen Betriebszustand erreicht hat. Das Gebläse kann in diesem Betriebszustand dauerhaft angetrieben werden. Vorzugsweise ist aber vorgesehen, daß es mit einer niedrigen und einer hohen Geschwindigkeit rotieren kann. Der von dem Temperatursensor bereitgestellte Ausgabewert kann in diesem Betriebszustand dazu dienen, die Geschwindigkeit des Gebläses derart zu bestimmen, daß das Gebläse mit einer niedrigen Geschwindigkeit rotiert, wenn der Temperatursensor einen Ausgabewert liefert, der unterhalb eines bzw. des vorgebbaren Grenzwertes liegt, und mit einer hohen Geschwindigkeit rotiert, wenn dieser Grenzwert erreicht bzw. überschritten wird.
- Der Temperatursensor kann die Temperatur messen und beispielsweise fortlaufend ein sich veränderndes Signal abgeben. Vorzugsweise umfaßt der Temperatursensor aber einen Schalter bzw. ist als ein solcher ausgebildet, der in Abhängigkeit von der Temperatur bezogen auf einen Grenzwert schließt bzw. öffnet.
- Ist die Drehrichtung bzw. die Wirkrichtung des Gebläses umkehrbar, so kann eine Umkehrung dazu genutzt werden, um hierdurch Verschmutzungen, die sich auf dem Wärmetauscher oder auf einem Gebläsefilter oder auch einer sonstigen Abdeckung angesammelt haben, durch einen entgegen der Betriebsrichtung gerichteten Luftstrom zu entfernen. Hierzu kann das Gebläse einen vierten Betriebszustand aufweisen, den es vorzugsweise in regelmäßigen Abständen während des Betriebs und vorzugsweise mit einem gewissen zeitlichen Abstand von einer In-Betriebnahme bzw. einem Anlassen einnimmt.
- Es wäre denkbar, daß alle oder einige der Zeitintervalle im wesentlichen gleichlang vorgesehen sind. Vorzugsweise ist aber zumindest das dritte Zeitintervall, in dem das Gebläse seinen dritten Betriebszustand, der vorzugsweise dem Betriebszustand entspricht, den das Gebläse während eines Dauerbetriebs einnimmt, wesentlich länger als das erste Zeitintervall, das vorzugsweise einer Anfangs- bzw. Anlaßphase entspricht, in der eine Kühlung kurzzeitig nicht unbedingt notwendig ist bzw. in der auf sie, im Hinblick auf die Erzeugung von Lärm und zusätzlicher elektrischer Belastung verzichtet werden kann.
- Die Zeitintervalle können fest sein, so daß sie bei jedem Betrieb gleich ausgeführt werden. Es ist aber auch denkbar, einzelne, einige oder alle Zeitintervalle variabel beispielsweise in Abhängigkeit von einer Umgebungstemperatur oder davon, ob ein Kalt- bzw. Warmstart ausgeführt wird, zu gestalten.
- Die Zeitintervalle bzw. die Temperatursensoren und das Gebläse können manuell oder auch über Zeitmesser gesteuert werden. Vorzugsweise stehen der Temperatursensor und das Gebläse aber mit einem Mikroprozessor in Verbindung. Dieser kann die Zeitintervalle in Abhängigkeit von der seit einem Anlassen bzw. In-Betriebnehmen vergangenen Zeit bestimmen und das Gebläse abhängig von den so ermittelten Werten und der Ausgabe des Temperatursensors bzw. in Verbindung mit diesem ansteuern.
- Ein solches Kühlsystem kann an industriellen, landwirtschaftlichen oder auch bau- und forstwirtschaftlichen Geräten eingesetzt werden. Vorzugsweise wird es aber an Fahrzeugen und insbesondere an geländegängigen Fahrzeugen eingesetzt, da diese oft rauhen Umwelteinflüssen ausgesetzt sind und günstig und robust ausgebildet sein sollen. Bei solchen Fahrzeugen kann es sich um Transportfahrzeuge für Personen und/oder Lasten oder auch um industrielle, landwirtschaftliche oder bau- und forstwirtschaftliche Arbeitsmaschinen wie Lastwagen, Traktoren oder Erntemaschinen oder auch um Fahrzeuge für militärische Zwecke handeln.
- In der Zeichnung ist ein nachfolgend näher beschriebenes Ausführungsbeispiel der Erfindung dargestellt. Es zeigt:
- Fig. 1
- einen schematischen Schaltplan einer Gebläsesteuerung,
- Fig. 2
- einen Schaltplan einer Zeitsteuerungseinheit für die Gebläsesteuerung aus Fig. 1 und
- Fig. 3
- einen Ablaufplan für einen Betrieb der Gebläsesteuerung.
- Es wird auf Fig. 1 Bezug genommen, in der ein Gebläsesteuerkreis bzw. eine Gebläsesteuerung 10 für ein Kühlsystem eines Fahrzeugs, das allgemein mit 12 bezeichnet ist, gezeigt wird. Das Kühlsystem 12 weist einen Wärmetauscher 14 und ein elektrisch angetriebenes Gebläse 16 auf, um Luft durch den Wärmetauscher 14 zu blasen, um Hitze von einem Kühlmittel abzuführen, das in dem Wärmetauscher 14 zirkuliert. Das Gebläse 16 ist umkehrbar und weist, wie dargestellt, zumindest zwei Geschwindigkeiten auf, die eine niedrige Geschwindigkeit und eine hohe Geschwindigkeit einschließen. Das Fahrzeug weist eine Batterie bzw. eine Stromquelle 18 auf, die mit einem üblichen Zündschloß oder Schalter 20, der eine Aus-, eine An- und eine Startstellung aufweist, ausgestattet ist. Ein Anlasser 22 für einen Fahrzeugantrieb ist mit einem Startanschluß an dem Schalter 20 verbunden.
- Der positive Anschluß (B+) der Stromquelle 18 ist über eine Leitung 30 mit einem Paar von Eingängen mit einem Vorwärtsrelais 34 bzw. mit einem Rückwärtsrelais 36 verbunden. Der andere Eingang jedes der Relais 34, 36 ist mit Masse verbunden. Die Relais 34 und 36 weisen erste Steuerterminals 44 und 46 auf, die mit jeweiligen Relaisspulen und einem schaltbaren Ausgang 48 des Schalters 20 verbunden sind. Die Relaisspulen weisen zweite Anschlüsse 54 und 56 auf, die mit einem Einstellsteuerungsmodul bzw. einer Zeitsteuerungseinrichtung 60 über vordere und rückwärtige Anschlüsse 64 und 66 verbunden sind. Der schaltbare Ausgang 48 ist ebenso mit einem Anschluß 72 eines Thermostaten, Temperaturschalters bzw. Temperatursensors 70 über eine Spule eines Geschwindigkeitsrelais 74 verbunden. Der Temperatursensor 70 ist offen, wenn das Kühlmittel unter einer vorgewählten Temperatur, vorzugsweise ungefähr 180 Grad liegt, und schließt, wenn die Temperatur des Kühlmittels über diese Temperatur ansteigt. Der andere Anschluß des Temperatursensors 70 ist mit Masse verbunden, so daß das Geschwindigkeitsrelais 74 aktiviert ist, wenn die Temperatur über das vorgewählte Niveau bzw. den vorgewählten Grenzwert ansteigt. Der Anschluß 72 ist auch mit der Zeitsteuerungseinrichtung 60 über den Anschluß 76 verbunden, so daß an dem Anschluß 76 eine hohe Spannung anliegt, wenn der Temperatursensor 70 offen ist, und eine niedrige Spannung anliegt, wenn der Temperatursensor 70 geschlossen ist.
- Das Vorwärtsrelais 34 weist einen Ausgang 84 auf, der direkt mit einer Niedriggeschwindigkeitseingangsleitung 86 des Gebläses 16 verbunden ist. Eine von dem Gebläse 16 abgehende Leitung 88 ist mit einem Terminal 96 des Rückwärtsrelais 36 verbunden. Das Gebläse 16 weist auch eine Hochgeschwindigkeitseingangsleitung 100 auf, die mit einem schaltbaren Anschluß 104 des Geschwindigkeitsrelais 74 in Verbindung steht. Dioden D1 und 2, die zwischen Masse und die Anschlüsse 84 und 96 geschaltet sind, schützen vor großen, umgekehrten Spannungsspitzen, die durch ein Schalten der induktiven Gebläseantriebslast verursacht werden.
- Die Zeitsteuerungseinheit 60 weist einen Mikrokontroller bzw. - prozessor 110 mit einem Anschluß 1, der mit einer Stromquelle Vcc, vorzugsweise einer Fünf-V-Quelle, und einem Anschluß 8, der mit Masse verbunden ist, auf. Ein Kondensator C1 ist zwischen den Anschluß 8 und Masse geschaltet. Die Anschlüsse 64 und 66 sind mit Anschlüssen 5 und 2 des Mikrokontrollers 110 über Widerstände R1 und R2 verbunden. Geerdete NPN Transistoren T1 und T2 weisen Kollektoren, die mit den Anschlüssen 64 und 66 verbunden sind, und Basen auf, die mit den Anschlüssen 7 und 3 des Mikrokontrollers 110 über Widerstände R3 und R4 und mit Masse über Widerstände R5 und R6 verbunden sind. Spannungsspitzen begrenzende Dioden D3 und D4 sind abgehend den Kollektoren der Transistoren T1 und T2 mit der Stromquelle 18 verbunden. Der Mikrokontroller 110 aktiviert die Transistoren T1 und T2 kurz und prüft die Anschlüsse 5 und 2, um die Kollektor-Emitter Spannung Vce der Transistoren T1 und T2 über die Widerstände R1 und R2 zu prüfen. Wenn ein Transistorausgangsanschluß irrtümlich direkt mit der Stromquelle 18 verbunden ist oder wenn ein Kurzschluß mit dem Anschluß B+ vorliegt, wird eine hohe Spannung Vce eines gesättigten Zustands während der kurzen, aktivierten Transistortestperiode ermittelt werden und der Mikroprozessor 110 verhindert jedes Beschädigungen hervorrufende, verlängerte Aktiv-Sein des Transistors.
- Ein Widerstand R7 verbinden den Anschluß 72 des Temperatursensors 70 mit dem Eingang 6 des Mikrokontrollers 110. Ein Widerstand R8 und ein Kondensator C2 sind parallel zwischen den Eingang 6 und Masse geschaltet. Wenn die Kühlmitteltemperatur die vorgewählte Temperatur (ungefähr 180 Grad) erreicht, schließt der Temperatursensor 70, um den Eingang 76 zu erden und um ein Temperatursignal an den Mikrokontroller 110 zu liefern. Ein Schließen des Temperatursensors 70 bei beaufschlagtem Anschluß 48 aktiviert das Geschwindigkeitsrelais 74, um den Hochgeschwindigkeitsantrieb des Gebläses 16 zu beaufschlagen und um einen Hochgeschwindigkeitsbetrieb des Gebläses 16 nach einer Verzögerungsperiode bei einem Antriebsstart zu ermöglichen. Das Gebläse 16 rotiert normalerweise in einer Vorwärtsrichtung, um Luft durch den Wärmetauscher 14 in einer ersten Richtung zu lenken. Für einen Gebläsebetrieb in Vorwärtsrichtung ist das Vorwärtsrelais 34 aktiv (T1 ist aktiviert), um den positiven Anschluß der Stromquelle 18 direkt mit der Niedriggeschwindigkeitseingangsleitung 86 und mit dem Geschwindigkeitsrelais 74 zu verbinden. Das Vorwärtsrelais 36 verbleibt inaktiv (wie es in Fig. 1 mit T2 in ausgeschaltetem Zustand dargestellt wird), um die Leitung 88 des Gebläses 16 mit Masse zu verbinden. Für einen Umkehrbetrieb des Gebläses 16 ist T2 aktiviert und T1 deaktiviert, so daß das Vorwärtsrelais 34 deaktiviert und das Rückwärtsrelais 36 aktiviert ist, wodurch die Leitung 88 von dem positiven Anschluß der Stromquelle 18 beaufschlagt wird.
- Der Mikrokontroller 110 bewertet den Fahrzeugstart, die akkumulierte Antriebsbetriebsdauer und die Kühlmitteltemperatur, um das Gebläse 16 automatisch an- und abzuschalten und die Gebläsegeschwindigkeit und -richtung automatisch zu steuern. Um die volle Leistung der Stromquelle 18 für den Startvorgang des Antriebs zu liefern, um die Antriebslast während der ersten wenigen Momente des Antriebsbetriebs zu reduzieren, bis sich der Betrieb stabilisiert hat, und um den Lärm zu reduzieren, verhindert die Zeitsteuerungseirichtung 60 einen Gebläsebetrieb während einer ersten Verzögerung (122 in Fig. 3) nach dem Start (120), unabhängig von der Stellung des Temperatursensors 70. Beim Start 120, hält der Mikrokontroller 110 die Transistoren T1 und T2 in einem deaktivierten Zustand (die Anschlüsse 7 und 3 weisen eine niedrige Spannung auf) für eine Zeitdauer bzw. einen Zeitintervall t1, vorzugsweise ungefähr 20 Sekunden, so daß die Leitungen 84, 86 und 88 über die Relais 34 und 36 geerdet sind, und das Gebläse 16 weiterhin nicht angetrieben wird. Angenommen, daß die Temperatur des Kühlmittels unter der vorgewählten Temperatur liegt, so daß der Temperatursensor 70 offen ist, begründet der Mikrokontroller 110 ein zweites Zeitintervall t2 (siehe 124 in Fig. 3), welches vorzugsweise ungefähr vier Minuten beträgt, in dem das Gebläse 16 in seinem deaktivierten Zustand verbleibt. Während dieses Zeitintervalls t2, ermittelt der Mikrokontroller 110 die Stellung des Temperatursensors 70 durch ein Überwachen des Eingangs 6. Wenn die Kühlmitteltemperatur über das vorgewählte Niveau ansteigt, so daß der Eingang 6 eine niedrige Spannung aufweist, legt der Mikrokontroller 110 an den Anschluß 7 eine hohe Spannung an, um den Transistor T1 anzuschalten und um das Vorwärtsrelais 34 zu aktivieren, so daß das Gebläse beginnt zu arbeiten. Wenn der Temperatursensor 70 offen bleibt, setzt der Mikrokontroller 110 den Anschluß 7 hoch, um das Vorwärtsrelais 34 anzuschalten und das Gebläse 16 für ein Zeitintervall t3 (126 in Fig. 3) zu aktivieren, welches vorzugsweise ungefähr fünf Minuten beträgt. Die Gebläsegeschwindigkeit wird durch die Stellung des Temperatursensors 70 bestimmt. Wenn der Temperatursensor 70 geschlossen ist, wird sich das Relais 74 aktivieren, um die Hochgeschwindigkeitseingangsleitung 100 zu beaufschlagen. Wenn die Kühlmitteltemperatur dann unter die Grenzwerttemperatur abkühlt, so daß der Temperatursensor 70 öffnet, wird sich das Relais 74 deaktivieren, so daß nur die Niedriggeschwindigkeitseingangsleitung 86 beaufschlagt ist und das Gebläse 16 mit einer niedrigen Geschwindigkeit rotiert, bis der Temperatursensor 70 mit ansteigender Kühlmitteltemperatur schließt. Die anfänglichen deaktivierten Zeitintervalle und der Niedriggeschwindigkeitsbetrieb, wenn sich das Kühlmittel unterhalb der vorgewählten Temperatur befindet, reduzieren Lärm sowie Leistungsanforderungen und liefern den Eindruck und die Vorteile eines Systems, das zumindest zwei thermische Schalter aufweist, mit einem einzelnen Temperatursensor 70.
- Nach dem Zeitintervall t3 (126) initiiert der Mikroprozessor 110 eine Kurzroutine, um das Gebläse 16 umzukehren, um die Richtung des Luftstroms durch den Wärmetauscher 14 umzukehren, um dazu beizutragen, Verschmutzungen zu entfernen, die sich angesammelt haben könnten. Zuerst wird die Stromversorgung des Gebläses 16 für ein kurzes Zeitintervall (siehe t4 von 128), vorzugsweise ungefähr zwei Sekunden, unterbrochen, so daß das Gebläse 16 anhält, indem die Anschlüsse 7 und 3 des Mikrokontrollers 110 mit einer niedrigen Spannung belegt werden, um die Transistoren T1 und T2 auszuschalten, um die Relais 34 und 36 zu deaktivieren. Nach der Verzögerung bzw. dem Zeitintervall t4 wird das Gebläse 16 in umgekehrter Richtung für ein Zeitintervall t5 (siehe 130 in Fig. 3) betrieben, wenn der Mikrokontroller 110 den Anschluß 3 mit einer hohen Spannung belegt, um den Transistor T2 anzuschalten, wodurch das Ruckwärtsrelais 36 aktiviert wird und Leistung an die Leitung 88 liefert. Das Gebläse 16 läuft in umgekehrter Richtung um Verschmutzungen von dem Wärmetauscher 14 (oder einem Gebläsefilter oder einer ähnlichen Schmutzsammeleinrichtung) zu entfernen.
- Nach einem Zeitintervall t5, welches vorzugsweise ungefähr fünf Sekunden beträgt, belegt der Mikrokontroller 110 die Anschlüsse 7 und 3 wiederum mit einer niedrigen Spannung, so daß die Relais 34 und 36 deaktiviert sind und das Gebläse 16 für ein Zeitintervall t6 (132 in Fig. 3) nicht angetrieben wird und anhält. Nach dem Zeitintervall t6 wird das Gebläse 16 für ein Zeitintervall t3 (bei 126) wieder in Vorwärtsrichtung betrieben. Der Vorwärts - Rückwärts - Zyklus 126 - 132 wird fortgesetzt bis das Fahrzeug abgestellt oder die Stromzufuhr aus irgendeinem Grund unterbrochen wird.
- Nur beispielhaft werden die folgenden Bauteilwerte angegeben, mit denen ein zuverlässiger Betrieb ermittelt wurde:
R1, R2 10 kΩ R3 bis R8 1 kΩ Cl, C2 0,01 µF Mikrokontroller 110 PIC12C508 erhältlich von Microchip Technology Inc. - Nach der Beschreibung der bevorzugten Ausführungsform, wird es deutlich werden, daß verschiedenen Modifikationen durchgeführt werden können, ohne vom Umfang der Erfindung, wie sie durch die beiliegenden Ansprüche beschrieben wird, abzuweichen.
Claims (10)
- Kühlsystem (12) mit einem Wärmetauscher (14), einem Gebläse (16), wenigstens einem Temperatursensor (70) und einer Gebläsesteuerung (10), die zumindest mit dem Gebläse (16) und dem Temperatursensor (70) wirksam verbindbar ist, dadurch gekennzeichnet, daß die Gebläsesteuerung (10) eine Zeitsteuerungseinrichtung aufweist, die wenigstens zwei Zeitintervalle (t1, t2, t3, t4, t5, t6) zur Verfügung stellt, und daß die Gebläsesteuerung (10) das Gebläse (16) bei Betriebsbeginn für ein erstes Zeitintervall (t1) in einen ersten Betriebszustand, nach Ablauf des ersten Zeitintervalls (t1) für ein zweites Zeitintervall (t2) in einen zweiten Betriebszustand und nach Ablauf des zweiten Zeitintervalls (t2) in einen dritten Betriebszustand bringt.
- Kühlsystem nach Anspruch 1, dadurch gekennzeichnet, daß das Gebläse (16) in dem ersten Betriebszustand deaktiviert ist.
- Kühlsystem nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß der zweite Betriebszustand von einer Ausgabe des Temperatursensors (70) abhängig ist und daß das Gebläse vorzugsweise zumindest im wesentlichen nur dann aktiviert wird bzw. ist, wenn der Temperatursensor (70) eine Temperatur ermittelt, die über einem vorbestimmten Wert liegt.
- Kühlsystem nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Gebläse (16) in dem dritten Betriebszustand mit wenigstens einer hohen und einer niedrigen Geschwindigkeit rotieren kann, wobei die Höhe der Geschwindigkeit vorzugsweise durch eine Ausgabe des Temperatursensors (70) bestimmt wird.
- Kühlsystem nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß der Temperatursensor (70) einen temperaturabhängigen Schalter aufweist bzw. als ein solcher ausgeführt ist.
- Kühlsystem nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Drehrichtung des Gebläses (16) umkehrbar ist, und/oder daß das Gebläse (16) durch die Gebläsesteuerung (10) in einen vierten Betriebszustand bringbar ist, in der es in einer zu der Richtung in den übrigen Betriebszuständen entgegengesetzten Richtung wirkt.
- Kühlsystem nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß zumindest ein drittes Zeitintervall (t3), in dem das Gebläse (16) seinen dritten Betriebszustand einnimmt, vorzugsweise wesentlich länger ist als das erste Zeitintervall (t1) und/oder daß ein Zeitintervall (t5), in dem sich das Gebläse (16) in seinem vierten Betriebszustand befindet, vorzugsweise wesentlich kürzer ist als das dritte Zeitintervall (t3).
- Kühlsystem nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Längen der Zeitintervalle (t1, t2, t3, t4, t5, t6) festgelegt und/oder variabel sind.
- Kühlsystem nach einem oder mehreren der vorherigen Ansprüche, gekennzeichnet durch einen Mikroprozessor (110) der mit dem Temperatursensor (70) und dem Gebläse (16) wirksam verbindbar ist.
- Fahrzeug, vorzugsweise ein geländegängiges Fahrzeug, mit einem Kühlsystem nach einem oder mehreren der vorherigen Ansprüche.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US354045 | 1999-07-15 | ||
| US09/354,045 US6126079A (en) | 1999-07-15 | 1999-07-15 | Fan control |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP1069290A2 EP1069290A2 (de) | 2001-01-17 |
| EP1069290A3 EP1069290A3 (de) | 2003-01-02 |
| EP1069290B1 true EP1069290B1 (de) | 2006-09-13 |
Family
ID=23391667
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP00114597A Expired - Lifetime EP1069290B1 (de) | 1999-07-15 | 2000-07-07 | Kühlsystem für Fahrzeug |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US6126079A (de) |
| EP (1) | EP1069290B1 (de) |
| AU (1) | AU765321B2 (de) |
| CA (1) | CA2298197C (de) |
| DE (1) | DE50013450D1 (de) |
Families Citing this family (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6298816B1 (en) | 1999-10-07 | 2001-10-09 | Siemens Canada Limited | Vacuum seal for air intake system resonator |
| JP4285866B2 (ja) * | 1999-12-22 | 2009-06-24 | 株式会社小松製作所 | 油圧駆動冷却ファン |
| FR2808739B1 (fr) * | 2000-05-15 | 2004-04-02 | Peugeot Citroen Automobiles Sa | Dispositif de regulation thermique a pompe a chaleur, pour vehicule automobile |
| US6450275B1 (en) * | 2000-11-02 | 2002-09-17 | Ford Motor Company | Power electronics cooling for a hybrid electric vehicle |
| US7008184B2 (en) * | 2002-08-14 | 2006-03-07 | Bettencourt Jr Harold Ray | Control for cooling fan |
| US6880497B1 (en) * | 2003-09-25 | 2005-04-19 | Detroit Diesel Corporation | System and method for controlling fan activation based on intake manifold air temperature and time in an EGR system |
| CA2483109C (en) | 2003-10-20 | 2012-05-01 | Flexxaire Manufacturing Inc. | Control system for variable pitch fan |
| US7131490B1 (en) * | 2005-04-15 | 2006-11-07 | T.K.M. Contracting And Metal Industry Ltd. | Fan coil controller |
| TWI308678B (en) * | 2005-11-03 | 2009-04-11 | Wistron Corp | Dust-cleaning device for computes and method using the same with a computer fan |
| US20080036567A1 (en) * | 2006-08-08 | 2008-02-14 | Steven Glassburn | Method of controlling an operating temperature of existing vehicle engine cooling fan on and off cycles |
| US7794105B2 (en) * | 2007-01-09 | 2010-09-14 | Percival Scientific, Inc. | Temperature controlled light fixture for environmental chamber |
| KR101038058B1 (ko) | 2008-10-28 | 2011-06-01 | 볼보 컨스트럭션 이큅먼트 에이비 | 건설장비의 냉각팬 회전수 가변 제어방법 |
| AU2010229238B2 (en) * | 2009-03-26 | 2014-06-26 | Crown Equipment Corporation | Working vehicle having cooling system |
| US8175757B2 (en) * | 2009-09-10 | 2012-05-08 | Avaya Inc. | Self-cleaning chassis |
| US8239074B2 (en) * | 2010-05-27 | 2012-08-07 | Standard Microsystems Corporation | Generating a nonlinear function for fan control |
| US10183547B2 (en) * | 2012-05-24 | 2019-01-22 | Honda Motor Co., Ltd | Idle stop and heater control system and method for a vehicle |
| GB201300450D0 (en) | 2013-01-10 | 2013-02-27 | Agco Int Gmbh | Control of cooling fan on current |
| US8960349B2 (en) | 2013-04-16 | 2015-02-24 | Deere & Company | Hydraulic fluid warm-up using hydraulic fan reversal |
| US9551275B2 (en) | 2014-08-07 | 2017-01-24 | Caterpillar Inc. | Cooling system having pulsed fan control |
| US10619932B2 (en) | 2015-10-23 | 2020-04-14 | Hyfra Industriekuhlanlagen Gmbh | System for cooling a fluid with a microchannel evaporator |
| US11193715B2 (en) | 2015-10-23 | 2021-12-07 | Hyfra Industriekuhlanlagen Gmbh | Method and system for cooling a fluid with a microchannel evaporator |
| US10479191B2 (en) * | 2017-12-19 | 2019-11-19 | Cnh Industrial America Llc | Cooling systems and methods for an agricultural harvester |
| WO2020000080A1 (en) * | 2018-06-29 | 2020-01-02 | Unsworth John D | System to prevent and treat the bends and blockages of blood flows |
| US11226139B2 (en) * | 2019-04-09 | 2022-01-18 | Hyfra Industriekuhlanlagen Gmbh | Reversible flow evaporator system |
| CN110107391B (zh) * | 2019-05-23 | 2020-10-16 | 浙江吉利控股集团有限公司 | 一种发动机风扇后运行控制方法、系统及电子设备 |
| US12146459B2 (en) * | 2020-02-05 | 2024-11-19 | Cnh Industrial America Llc | System and method for cleaning a grille of a work vehicle |
| US11585261B2 (en) * | 2021-05-28 | 2023-02-21 | Textron Innovations Inc. | Vehicle air intake screen maintenance systems and methods |
| DE102021124391A1 (de) * | 2021-09-21 | 2023-03-23 | Man Truck & Bus Se | Verfahren zum Reinigen einer Kühlvorrichtung durch Rütteln |
| CN115214351A (zh) * | 2022-08-02 | 2022-10-21 | 浙江吉利控股集团有限公司 | 一种用于车辆冷却模块清洁的控制方法、控制系统及车辆 |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS53138132A (en) * | 1977-05-09 | 1978-12-02 | Toyota Motor Corp | Automotive cooling fan drive control unit |
| WO1983002132A1 (en) * | 1981-12-17 | 1983-06-23 | Bianchetta, Donald, L. | Control for a fluid-driven fan |
| US4425766A (en) * | 1982-05-17 | 1984-01-17 | General Motors Corporation | Motor vehicle cooling fan power management system |
| JPH0759886B2 (ja) * | 1985-10-21 | 1995-06-28 | 本田技研工業株式会社 | エンジン冷却システム |
| DE3711392C1 (de) | 1987-04-04 | 1989-01-12 | Behr Thomson Dehnstoffregler | Kuehleinrichtung fuer eine Brennkraftmaschine und Verfahren zur Steuerung einer solchen Kuehleinrichtung |
| CA1332972C (en) * | 1987-12-28 | 1994-11-08 | Yasuyuki Aihara | Cooling control system for internal combustion engines equipped with superchargers |
| JPH0941971A (ja) * | 1995-08-01 | 1997-02-10 | Honda Motor Co Ltd | ラジエータファン駆動モータの制御装置 |
| KR0121950B1 (ko) * | 1995-08-11 | 1997-11-13 | 김광호 | 자동차 냉각팬 제어 시스템 |
| JPH1068142A (ja) * | 1996-08-28 | 1998-03-10 | Shin Caterpillar Mitsubishi Ltd | 建設機械の冷却装置 |
-
1999
- 1999-07-15 US US09/354,045 patent/US6126079A/en not_active Expired - Lifetime
-
2000
- 2000-02-08 CA CA002298197A patent/CA2298197C/en not_active Expired - Fee Related
- 2000-06-26 AU AU42667/00A patent/AU765321B2/en not_active Ceased
- 2000-07-07 EP EP00114597A patent/EP1069290B1/de not_active Expired - Lifetime
- 2000-07-07 DE DE50013450T patent/DE50013450D1/de not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| EP1069290A3 (de) | 2003-01-02 |
| CA2298197A1 (en) | 2001-01-15 |
| US6126079A (en) | 2000-10-03 |
| AU765321B2 (en) | 2003-09-18 |
| CA2298197C (en) | 2002-07-16 |
| DE50013450D1 (de) | 2006-10-26 |
| AU4266700A (en) | 2001-01-18 |
| EP1069290A2 (de) | 2001-01-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1069290B1 (de) | Kühlsystem für Fahrzeug | |
| DE69123263T2 (de) | Batterieschutzsystem | |
| DE3711392C1 (de) | Kuehleinrichtung fuer eine Brennkraftmaschine und Verfahren zur Steuerung einer solchen Kuehleinrichtung | |
| DE60226105T2 (de) | Ölzustandstendenz-Algorithmus | |
| DE3229003C2 (de) | Kühleinrichtung für den Motorraum eines Fahrzeugs | |
| DE10146556A1 (de) | Verfahren und Vorrichtung zum Erfassen des Zustandes eines Fahrzeuges | |
| DE102014224507B4 (de) | Diagnoseverfahren für Relaisgesteuerten elektrischen Lüfter mit mehreren Drehzahlen | |
| DE2843796A1 (de) | Steuerschaltung fuer den betrieb einer gluehkerze bei einem dieselmotor | |
| DE3534500C2 (de) | ||
| DE3612140A1 (de) | Verfahren zum belueften eines raums | |
| EP2609322B1 (de) | Verfahren und vorrichtung zum betreiben eines starters eines fahrzeugs | |
| DE4141946C2 (de) | Verfahren und Vorrichtung zur Steuerung des Betriebs einer Sekundärluftpumpe | |
| EP2107673B1 (de) | MOSFET als elektronischer AUS-Schalter | |
| DE112006001939T5 (de) | Automatischer Start einer Zusatzleistungseinheit | |
| DE3429052A1 (de) | Elektrisches kuehlergeblaese | |
| DE4041620C2 (de) | Einrichtung zur Spannungsversorgung bei Geräten mit Nachlauf | |
| DE3741394C2 (de) | Schaltungsanordnung zum Schutz vor Verpolungsschäden für Lastkreise mit einem MOS-FET als Schalttransistor | |
| DE10140094B4 (de) | Kühlgebläse, insbesondere für Kraftfahrzeuge | |
| DE102014208338B4 (de) | System und Verfahren zum Steuern eines Motorgebläses | |
| DE102004007181A1 (de) | Lasttreiberschaltkreis | |
| DE10320746A1 (de) | Erweiterter Lüfternachlauf | |
| DE69218955T2 (de) | Steuerschaltung für einen Gleichstrommotor | |
| DE19915973C1 (de) | Verfahren zur Regelung der Bordnetzspannung eines Kraftfahrzeugs | |
| DE2718658A1 (de) | Einrichtung zur erkennung von lagerschaeden elektrischer maschinen | |
| DE10131170C1 (de) | Vorrichtung zur Steuerung des Betriebes einer Fahrzeugbatterie |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7F 01P 7/04 A, 7F 01P 5/04 B |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| 17P | Request for examination filed |
Effective date: 20030702 |
|
| AKX | Designation fees paid |
Designated state(s): DE FR GB IT NL |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060913 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060913 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REF | Corresponds to: |
Ref document number: 50013450 Country of ref document: DE Date of ref document: 20061026 Kind code of ref document: P |
|
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20061109 |
|
| NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
| ET | Fr: translation filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20070614 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080729 Year of fee payment: 9 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100331 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150729 Year of fee payment: 16 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50013450 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170201 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190729 Year of fee payment: 20 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20200706 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20200706 |