EP1063655B1 - Carriers bearing functionalised organoorganooxysilanes in cable compositions - Google Patents

Carriers bearing functionalised organoorganooxysilanes in cable compositions Download PDF

Info

Publication number
EP1063655B1
EP1063655B1 EP00109631A EP00109631A EP1063655B1 EP 1063655 B1 EP1063655 B1 EP 1063655B1 EP 00109631 A EP00109631 A EP 00109631A EP 00109631 A EP00109631 A EP 00109631A EP 1063655 B1 EP1063655 B1 EP 1063655B1
Authority
EP
European Patent Office
Prior art keywords
functional
carrier
organylorganyloxysilane
use according
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00109631A
Other languages
German (de)
French (fr)
Other versions
EP1063655A1 (en
Inventor
Helmut Dr. Mack
Dieter Barfurth
Roland Edelmann
Albert-Johannes Dr. Frings
Michael Dr. Horn
Peter Dr. Jenkner
Ralf Dr. Laven
Jaroslaw Dr. Monkiewicz
Burkhard Dr. Standke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of EP1063655A1 publication Critical patent/EP1063655A1/en
Application granted granted Critical
Publication of EP1063655B1 publication Critical patent/EP1063655B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31801Of wax or waxy material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the invention relates to the use of functional Organylorganyloxysilanen on carriers in cable compounds containing certain thermoplastic base polymers and fillers.
  • the invention further relates to a mixture for producing a cable compound
  • EP 0 518 057 B1 discloses liquid mixtures containing vinyl groups of chain-shaped and cyclic siloxanes or siloxane oligomers and their use as crosslinking agents, eg. B. for high pressure polyethylene, known in cable compositions.
  • liquid additives are problematic for users in that the usual means for weighing and dosing small amounts of additives are designed for solids only. Therefore, liquid small components must be manually be weighed and dosed. This is usually associated with higher costs and represents an additional source of error.
  • DE-A 22 37 354 describes an insulating material for whose production a mixture of polymer material and a filler coated with chemically bonded silane is used.
  • the insulating material is u. a. for cable use.
  • EP 0 428 073 B1 discloses a process comprising mixing (i) a base polymer, (ii) a sponge-like polymer or swellable polymer with a (meth) acryloxy-functional organosilane contained therein, and (iii) a free-radical producing substance; the mixture melts and homogenizes. Again, this method is not directed to the use of the homogenized blends for cable compounds.
  • WO 97/07165 it is stated in WO 97/07165 that the solid mixtures of functional organosilanes described there and certain large surface area silicas with low surface energy u. a. can be used in the insulation of wires and cables.
  • One of the objects of the present invention is the use of (1) a liquid functional organylorganyloxysilane reversibly bound to a carrier, or reversible to a carrier bonded liquid (co) condensate of an organylorganyloxysilane functional product for the preparation of cable compounds containing a (2) thermoplastic, polar functional group-bearing base polymer and (3) a reinforcing or extending mineral filler.
  • the functional organylorganyloxysilanes contain at least one hydrolyzable radical, preferably three hydrolyzable radicals, eg. B. one or more alkoxy or Alkoxyalkoxyreste each having 1 to 6 carbon atoms.
  • the functional Organylorganyloxysilane can further one or two further, non-functional and non-hydrolyzable Contain residues, eg. Example, a hydrocarbon radical having up to 8 carbon atoms, such as methyl, propyl or n-hexyl.
  • suitable functional organylorganyloxysilanes are vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, 3-mercaptopropyltrimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane and methacryloxypropyltris (2-methoxyethoxy) silane.
  • the base polymer of the cable compounds is thermoplastic and carries polar groups.
  • Such base polymers give z. B. improved fire performance (i.e., lower flammability and smoke density) and increase filler uptake capability.
  • Polar groups are z. As hydroxyl, nitrile, carbonyl, carboxyl, acyl, acyloxy, carboalkoxy or amino groups and halogen atoms, in particular chlorine atoms.
  • Non-polar are olefinic double bonds or C-C triple bonds.
  • Suitable polymers are in addition to polyvinyl chloride copolymers of one or more olefins and one or more comonomers containing polar groups, for.
  • vinyl acetate vinyl propionate, (meth) acrylic acid, (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl ester, acrylonitrile.
  • the polar groups are generally found in amounts of from 0.1 to 50 mol%, preferably from 5 to 30 mol%, based on the polyolefin units.
  • Highly suitable base polymers are ethylene-vinyl acetate copolymers.
  • a suitable commercial copolymer contains 19 mole% vinyl acetate and 81 mole% ethylene building blocks.
  • the fillers are mineral (or inorganic) and may be reinforcing or merely stretching. They at least bear on their surfaces Groups which react with the organyloxy groups of the functional organylorganyloxysilane. As a result, the silicon atom with the functional organyl group attached thereto is chemically fixed on the surface. Such groups on the surface of the filler are especially hydroxyl groups. Accordingly, preferred fillers are metal hydroxides with a stoichiometric proportion or, in their different dehydration stages, with a substoichiometric proportion of hydroxyl groups up to oxides with comparatively few remaining hydroxyl groups which can be detected by DRIFT-IR spectroscopy. Examples of suitable fillers are aluminum trihydroxide (ATH), alumina hydrate (AlOOH), magnesium hydroxide, brucite, huntite, hydromagnesite, mica and montmorillonite.
  • ATH aluminum trihydroxide
  • AlOOH alumina hydrate
  • magnesium hydroxide brucite,
  • the ratio of functional Organylorganyloxysilan to carrier may, depending on the nature and the capacity of the carrier and depending on the particular silane, vary within wide limits. By orienting experiments can be easily determined what amounts of the desired functional Organylorganyloxysilan a bestimm ter carrier can absorb without losing its free-flowing properties. In general, from 20 to 80% by weight of functional organylorganyloxysilane, based on the carrier, is used.
  • the proportion of the filler depends on its type, the respective base polymer and the stresses to which the compounds are exposed when used as intended.
  • the filler is used in an amount of from 5 to 80% by weight, advantageously from 50 to 70% by weight, based on the compound.
  • the amount of functional Organylorganyloxysilans must be such that the surface of the filler is sufficiently occupied and hydrophobed.
  • the cable compounds according to the invention may contain the usual additives for compounds in the usual amounts.
  • these additives include UV and heat stabilizers, lubricants, extruding aids and peroxides. Their proportion of the compound is generally below 5 wt.%.
  • the cable compounds are prepared by mixing the components in the melt, expediently with exclusion of moisture.
  • the usual heatable homogenizers, z. As kneader or, advantageously in continuous operation, extruder, in particular twin-screw extruder.
  • the components are continuously, in each case or in part mixtures, supplied in the predetermined quantity ratio to the extruder heated to a temperature above the melting point of the base polymer.
  • the temperature is expediently allowed to increase towards the end of the screw in order to set a lower viscosity and thus to allow intimate mixing.
  • the extrudates can still be fed liquid to a device for sheathing of electrical conductors. Alternatively, they may be allowed to solidify and then chopped to suitable particle sizes.
  • Example 1 “Dry Liquid” of 3-aminopropyl-triethoxysilane and flame-silica
  • the base polymer EVA is dried in an air circulating oven at 60 ° C for one hour. When using liquid silane, this is added to the dried EVA and absorbed therein within one hour. If the silane is used as a "dry liquid", the EVA is mixed with it. The stabilizer is mixed with the ATH. EVA / silane on the one hand and ATH / stabilizer on the other hand are dosed gravimetrically into the extruder.
  • the extruder temperature increases from the addition to the screw end of 135 to 170 ° C.
  • the residence time is a maximum of 150 seconds. Strips are extruded from which test specimens are produced.
  • Table 2 shows the proportions and the results obtained.
  • the parts are parts by weight.
  • Table 2 ⁇ / b> silane liq. [Tle.] "Dry Liquid" test results Silane content [%] Quantity [Tl.]

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

Cable composition (I) comprises: (A) a liquid functional organylorganyloxysilane or a corresponding (co)condensate bonded to a support material, (B) a thermoplastic, polar functional group containing base polymer and (C) a reinforcing or extending mineral filler. An Independent claim is included for a cable comprising a metallic conductor sheathed in (I).

Description

Die Erfindung betrifft die Verwendung von funktionellen Organylorganyloxysilanen auf Trägerstoffen in Kabelcompounds, die bestimmte thermoplastische Basispolymere sowie Füllstoffe enthalten. Die Erfindung betrifft weiterhin ein Gemisch zur Herstellung eines KabelcompoundsThe invention relates to the use of functional Organylorganyloxysilanen on carriers in cable compounds containing certain thermoplastic base polymers and fillers. The invention further relates to a mixture for producing a cable compound

Stand der TechnikState of the art

Unter Kabelcompounds versteht man Stoffmischungen, die ein Basispolymer sowie mineralische (oder anorganische) verstärkende, streckende oder flammschützende Füllstoffe enthalten und verwendet werden, um metallische Leiter elektrisch isolierend zu umhüllen. Es ist bekannt, daß ein Zusatz von funktionellen Organylorganyloxysilanen das Dispergieren des Füllstoffs im Basispolymer erleichtert und die Haftung zwischen Basispolymer und Füllstoff verbessert. Funktionelle Organylorganyloxysilane sind in diesem Zusammenhang solche Silane, die einen über ein Kohlenstoffatom an das Siliciumatom gebundenen organischen Rest tragen, der seinerseits eine funktionelle Gruppe enthält. Die leichtere Dispergierung und die bessere Haftung dürften auf eine durch das Silan bewirkte Hydrophobierung der Oberfläche der Füllstoffteilchen zurückzuführen sein. Die bessere Haftung führt zu besseren mechanischen Eigenschaften der Kabelumhüllung.Cable compounds are mixtures of substances which comprise a base polymer and mineral (or inorganic) reinforcing, extending or flameproof fillers and are used to enclose metallic conductors in an electrically insulating manner. It is known that addition of functional organylorganyloxysilanes facilitates dispersion of the filler in the base polymer and improves adhesion between base polymer and filler. Functional organylorganyloxysilanes in this context are those silanes which carry an organic radical bonded via a carbon atom to the silicon atom, which in turn contains a functional group. The easier dispersion and the better adhesion are probably due to a silane-induced hydrophobization of the surface of the filler particles. The better adhesion leads to better mechanical properties of the cable sheath.

Beispielsweise sind aus EP 0 518 057 B1 flüssige, vinylgruppenhaltige Gemische aus kettenförmigen und cyclischen Siloxanen bzw. Siloxan-Oligomeren und deren Verwendung als Vernetzungsmittel, z. B. für Hochdruckpolyethylen, in Kabelmassen bekannt. Flüssige Additive sind jedoch für die Verwender insofern problematisch, als die üblichen Einrichtungen zum Wiegen und Dosieren kleiner Mengen von Additiven nur für Feststoffe ausgelegt sind. Flüssige Kleinkomponenten müssen deshalb manuell verwogen und dosiert werden. Dies ist in der Regel mit höheren Kosten verbunden und stellt eine zusätzliche Fehlerquelle dar.For example, EP 0 518 057 B1 discloses liquid mixtures containing vinyl groups of chain-shaped and cyclic siloxanes or siloxane oligomers and their use as crosslinking agents, eg. B. for high pressure polyethylene, known in cable compositions. However, liquid additives are problematic for users in that the usual means for weighing and dosing small amounts of additives are designed for solids only. Therefore, liquid small components must be manually be weighed and dosed. This is usually associated with higher costs and represents an additional source of error.

Eine bekannte Lösung dieses Problems besteht darin, flüssige funktionelle Organosilane an hochadsorbierende oder -absorbierende Feststoffe zu binden, die dann als "trockene Flüssigkeiten" (oder "Dry Liquids") mit den üblichen Einrichtungen ohne weiteres gewogen und zudosiert werden können. So beschreibt DE 195 03 779 A1 eine Kombination aus Kieselsäure und trans-Polyoctenamer als Trägerstoff für flüssige Kautschukchemikalien, darunter Vinyl- und Mercaptosilane sowie Schwefelsilane. In DE 44 35 311 A1 werden sogenannte Verstärkungsadditive aus oligomeren und/oder polymeren schwefelhaltigen Organylorganyloxysilanen und halbaktiven, aktiven und/oder hochaktiven Rußen als Trägerstoff beschrieben, die sich zur Verwendung in Kautschukmischungen oder -massen sowie in Kunststoffmischungen eignen. In beiden genannten Schriften werden allerdings Kabelcompounds nicht erwähnt. DE-A 22 37 354 beschreibt ein Isoliermaterial, für dessen Herstellung ein Gemisch aus Polymermaterial und einem mit chemisch gebundendem Silan umhüllten Füllstoff eingesetzt wird. Das Isoliermaterial findet u. a. für Kabel Verwendung. EP 0 428 073 B1 offenbart ein Verfahren, bei dem man (i) ein Basispolymer, (ii) ein schwammartiges Polymer oder ein quellbares Polymer mit einem darin enthaltenen (Meth)acryloxy-funktionellen Organosilan und (iii) einen freie Radikale liefernden Stoff mischt und die Mischung aufschmilzt und homogenisiert. Auch dieses Verfahren ist nicht auf die Verwendung der homogenisierten Mischungen für Kabelcompounds gerichtet. Dagegen heißt es in WO 97/07165, daß die dort beschriebenen festen Mischungen aus funktionellen Organosilanen und bestimmten großoberflächigen Kieselsäuren mit niedriger Oberflächenenergie u. a. bei der Isolierung von Drähten und Kabeln eingesetzt werden können.A known solution to this problem is to bind liquid functional organosilanes to highly adsorbing or absorbing solids which can then be readily weighed and metered as "dry liquids" (or "dry liquids") with the usual facilities. Thus, DE 195 03 779 A1 describes a combination of silica and trans-polyoctenamer as a carrier for liquid rubber chemicals, including vinyl and mercaptosilanes and sulfur silanes. In DE 44 35 311 A1 so-called reinforcing additives of oligomeric and / or polymeric sulfur-containing organylorganyloxysilanes and semi-active, active and / or highly active carbon blacks are described as the carrier, which are suitable for use in rubber mixtures or compounds and in plastic mixtures. In both mentioned writings, however, cable compounds are not mentioned. DE-A 22 37 354 describes an insulating material for whose production a mixture of polymer material and a filler coated with chemically bonded silane is used. The insulating material is u. a. for cable use. EP 0 428 073 B1 discloses a process comprising mixing (i) a base polymer, (ii) a sponge-like polymer or swellable polymer with a (meth) acryloxy-functional organosilane contained therein, and (iii) a free-radical producing substance; the mixture melts and homogenizes. Again, this method is not directed to the use of the homogenized blends for cable compounds. In contrast, it is stated in WO 97/07165 that the solid mixtures of functional organosilanes described there and certain large surface area silicas with low surface energy u. a. can be used in the insulation of wires and cables.

Einer der Gegenstände der gegenwärtigen Erfindung ist die Verwendung (1) eines an einen Trägerstoff reversibel gebundenen flüssigen funktionellen Organylorganyloxysilans oder eines an einen Trägerstoff reversibel gebundenen flüssigen (Co)kondensats eines funktionellen Organylorganyloxysilans zur Herstellung von Kabelcompounds, die ein (2) thermoplastisches, polare funktionelle Gruppen tragendes Basispolymer und (3) einen verstärkenden oder streckenden mineralischen Füllstoff enthalten.One of the objects of the present invention is the use of (1) a liquid functional organylorganyloxysilane reversibly bound to a carrier, or reversible to a carrier bonded liquid (co) condensate of an organylorganyloxysilane functional product for the preparation of cable compounds containing a (2) thermoplastic, polar functional group-bearing base polymer and (3) a reinforcing or extending mineral filler.

Ein anderer Gegenstand der Erfindung sind Gemische für die Herstellung von Kabelcompounds, die (1) ein an einen Trägerstoff reversibel gebundenes flüssiges funktionelles Organylorganyloxysilan oder ein an einen Trägerstoff reversibel gebundenes flüssiges (Co)kondensat eines funktionellen Organylorganyloxysilans, (2) ein thermoplastisches, polare funktionelle Gruppen tragendes Basispolymer und (3) einen verstärkenden, streckenden oder flammschützenden mineralischen Füllstoff enthalten.Another object of the invention are mixtures for the preparation of cable compounds, (1) a reversibly bound to a carrier liquid functional organylorganyloxysilane or reversibly bound to a carrier liquid (co) condensate of an organylorganyloxysilane functional, (2) a thermoplastic, polar functional Group-bearing base polymer and (3) a reinforcing, extending or flame-retardant mineral filler.

Funktionelle OrganylorganyloxysilaneFunctional organylorganyloxysilanes

Funktionelle Organylorganyloxysilane im Sinne der Erfindung enthalten mindestens einen über ein Kohlenstoffatom an ein Siliciumatom gebundenen organischen Rest (Organylrest), z. B. einen geradkettigen oder verzweigten Alkylenrest mit 2 bis 6 Kohlenstoffatomen, der mindestens eine funktionelle Gruppe trägt. Die funktionelle Gruppe kann z. B. eine Hydroxyl-, Nitril-, Carbonyl-, Carboxyl-, Acyl-, Acyloxy-, Carboalkoxy-, Mercapto-, Sulfan- (Xx), Epoxy- oder eine gegebenfalls durch ein oder zwei Kohlenwasserstoffreste mit 1 bis 6 Kohlenstoffatomen substituierte Aminogruppe sowie ein Halogenatom, insbesondere ein Chloratom oder eine olefinische Doppel- oder eine C-C-Dreifachbindung sein. Der organische Rest kann auch mehrere gleiche oder verschiedene funktionelle Gruppen enthalten, z. B. zwei Aminogruppen oder einen Acylrest mit olefinischer Doppelbindung, wie den (Meth)acryloxyrest. Die funktionellen Organylorganyloxysilane enthalten andererseits mindestens einen hydrolysierbaren Rest, vorzugsweise drei hydrolysierbare Reste, z. B. einen oder mehrere Alkoxy- oder Alkoxyalkoxyreste mit jeweils 1 bis 6 Kohlenstoffatomen. Die funktionellen Organylorganyloxysilane können weiterhin ein oder zwei weitere, nichtfunktionelle und nichthydrolysierbare Reste enthalten, z. B. einen Kohlenwasserstoffrest mit bis zu 8 Kohlenstoffatomen, wie Methyl, Propyl oder n-Hexyl.Functional Organylorganyloxysilane in the context of the invention contain at least one bonded via a carbon atom to a silicon atom organic radical (organyl radical), for. B. a straight-chain or branched alkylene radical having 2 to 6 carbon atoms, which carries at least one functional group. The functional group may, for. Example, a hydroxyl, nitrile, carbonyl, carboxyl, acyl, acyloxy, carboalkoxy, mercapto, sulfane (X x ), epoxy or optionally substituted by one or two hydrocarbon radicals having 1 to 6 carbon atoms Amino group and a halogen atom, in particular a chlorine atom or an olefinic double or a C-C triple bond. The organic radical may also contain several identical or different functional groups, for. B. two amino groups or an acyl radical having an olefinic double bond, such as the (meth) acryloxyrest. On the other hand, the functional organylorganyloxysilanes contain at least one hydrolyzable radical, preferably three hydrolyzable radicals, eg. B. one or more alkoxy or Alkoxyalkoxyreste each having 1 to 6 carbon atoms. The functional Organylorganyloxysilane can further one or two further, non-functional and non-hydrolyzable Contain residues, eg. Example, a hydrocarbon radical having up to 8 carbon atoms, such as methyl, propyl or n-hexyl.

Beispiele für geeignete funktionelle Organylorganyloxysilane sind Vinyltrimethoxysilan, Vinyltriethoxysilan, Vinyltris(2-methoxy-ethoxy)silan, 3-Mercaptopropyl-trimethoxysilan, 3-Glycidyloxypropyl-trimethoxysilan, 3-Glycidyloxypropyltriethoxysilan, 3-Methacryloxypropyl-triethoxysilan, 3-Methacryloxypropyl-trimethoxysilan und 3-Methacryloxypropyltris(2-methoxyethoxy)silan. Bevorzugte funktionelle Organylorganyloxysilane sind gegebenfalls durch 1 oder 2 Alkylreste mit jeweils 1 bis 6 Kohlenstoffatomen N-substituierte Aminoorganylorganyloxysilane, weil die Umhüllungen aus den entsprechenden Compounds herausragende mechanische Eigenschaften (wie Zugfestigkeit, Bruchdehnung, Reißfestigkeit und E-Modul) und elektrische Eigenschaften (wie elektrischer Veriustfaktor, Dielektrizitätskonstante) aufweisen. Von den geeigneten Aminoorganylorganyloxysilanen seien z. B. 3-Aminopropyl-trimethoxysilan, 3-Aminopropyltriethoxysilan, 3-Aminopropylmethyl-diethoxysilan, N-Aminoethyl-3-aminopropyltrimethoxysilan, triaminofunktionelles Propyltrimethoxysilan (N-Trimethoxysilylpropyl-diethylentriamin, auch als DYNASYLAN® TRIAMO bezeichnet) und (N'-Aminoethyl)-N-aminoethyl-3-aminopropylsilan genannt.Examples of suitable functional organylorganyloxysilanes are vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, 3-mercaptopropyltrimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane and methacryloxypropyltris (2-methoxyethoxy) silane. Optionally functional organylorganyloxysilanes are optionally N-substituted aminoorganylorganyloxysilanes by 1 or 2 alkyl radicals each having 1 to 6 carbon atoms, because the coatings of the corresponding compounds have outstanding mechanical properties (such as tensile strength, elongation at break, tear strength and modulus of elasticity) and electrical properties (such as electrical loss factor , Dielectric constant). Of the suitable Aminoorganylorganyloxysilanen z. 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, N-aminoethyl-3-aminopropyltrimethoxysilane, triaminofunctional propyltrimethoxysilane (N-trimethoxysilylpropyl-diethylenetriamine, also referred to as DYNASYLAN® TRIAMO) and (N'-aminoethyl) - N-aminoethyl-3-aminopropylsilane called.

Anstelle eines funktionellen Organylorganyloxysilans kann man auch ein Gemisch aus einem oder mehreren dieser Stoffe einsetzen. Weiterhin lassen sich mit gleichem Erfolg (Co)kondensate der funktionellen Organylorganyloxysilane mit gewichtsdurchschnittlichen Molgewichten bis zu etwa 10.000 erfindungsgemäß verwenden. Hierunter werden Kondensate (oder Oligomere) der funktionellen Organylorganyloxysilane bzw. Cokondensate dieser Stoffe mit anderen, nichtfunktionellen Organylorganyloxysilanen oder Organyloxysilanen verstanden. Von diesen seien beispielsweise Methyltrimethoxysilan, Methyltriethoxysilan, n-Propyltrimethoxysilan, n-Propyltriethoxysilan, i-Butyltrimethoxysilan, i-Butyltriethoxysilan, Octyltriethoxysilan, Hexadecyltrimethoxysilan und Tetraethoxysilan genannt. Man stellt die (Co)kondensate z. B. in bekannter Weise durch Hydrolyse bzw. Cohydrolyse der Silane mit begrenzten Mengen Wasser und anschließender Kondensation der Silanole her. In den Cokondensaten sollte der Anteil der (Amino)-funktionellen Organylorganyloxysilane mindestens 10 Gew.-%, vorteilhaft mindestens 50 Gew.-% betragen.Instead of a functional organylorganyloxysilane, it is also possible to use a mixture of one or more of these substances. Furthermore, it is equally possible to use (co) condensates of the functional organylorganyloxysilanes having weight-average molar weights of up to about 10,000 according to the invention. These are understood to mean condensates (or oligomers) of the functional organylorganyloxysilanes or cocondensates of these substances with other non-functional organylorganyloxysilanes or organyloxysilanes. Among these, for example, methyltrimethoxysilane, methyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, i-butyltrimethoxysilane, i-butyltriethoxysilane, octyltriethoxysilane, hexadecyltrimethoxysilane and Called tetraethoxysilane. You put the (co) condensates z. B. in a known manner by hydrolysis or cohydrolysis of the silanes with limited amounts of water and subsequent condensation of the silanols ago. In the cocondensates, the proportion of (amino) -functional organylorganyloxysilanes should be at least 10% by weight, advantageously at least 50% by weight.

Weiterhin ist es möglich, statt eines Cokondensats das funktionelle Organylorganyloxysilan zusammen mit einem nichtfunktionellen Organylorganyloxysilan oder Organyloxysilan in dem für die Cokondensate angegebenen Mengenverhältnis einzu setzen.It is also possible, instead of a cocondensate, to place the functional organylorganyloxysilane together with a nonfunctional organylorganyloxysilane or organyloxysilane in the ratio specified for the cocondensates.

Wenn in der Folge vereinfachend von funktionellen Organylorganyloxysilanen gesprochen wird, sind immer bei Raumtemperatur flüssige Stoffe gemeint, wobei die erwähnten (Co)kondensate eingeschlossen sind.When the following is simplified for the discussion of functional organylorganyloxysilanes, it is meant substances which are always liquid at room temperature, the mentioned (co) condensates being included.

Trägerstoffe für die funktionellen OrganylorganyloxysilaneCarriers for the functional organylorganyloxysilanes

Als Trägerstoffe eignen sich eine Vielzahl von an sich als Trägerstoffe bekannten Materialien. Im einzelnen seien erwähnt:

  • Flammkieselsäure, die im großtechnischen Maßstab durch kontinuierliche Hydrolyse von Siliciumtetrachlorid in einer Knallgasflamme hergestellt wird. Dabei wird das Siliciumtetrachlorid verdampft und reagiert anschließend innerhalb der Flamme mit dem aus der Knallgasreaktion stammenden Wasser spontan und quantitativ. Die Flammkieselsäure ist eine amorphe Modifikation des Siliciumdioxids in Form eines lockeren, bläulichen Pulvers. Die Teilchengröße liegt im Bereich von wenigen Nanometem, die spezifische Oberfläche ist daher groß und beträgt im allgemeinen 50 bis 600 m2/g. Die Teilchen sind nicht porös, die Aufnahme der funktionellen Organylorganyloxysilane beruht allein auf Adsorption.
  • Fällungskieselsäuren werden im allgemeinen aus Natronwasserglas-Lösungen durch Neutralisation mit anorganischen Säuren unter kontrollierten Bedingungen hergestellt. Nach Abtrennung von der flüssigen Phase, Auswaschen und Trocknen wird das Rohprodukt feingemahlen, z. B. in Dampfstrahlmühlen. Auch Fällungskieselsäure ist ein amorphes Siliciumdioxid, das aber in der Regel eine kleinere spezifische Oberfläche hat, meist im Bereich von 50 bis 150 m2/g. Fällungskieselsäure weist im Gegensatz zur Flammkieselsäure eine gewisse Porosität auf (ca. 10 %). Die Aufnahme der funktionellen Organylorganyloxysilane erfolgt daher sowohl durch Adsorption an der Oberfläche als auch durch Absorption in den Poren.
  • Calciumsilikat wird technisch durch Zusammenschmelzen von Quarz oder Kieselgur mit Calciumcarbonat bzw. -oxid oder durch Fällung von wäßrigen Natriummetasilikat-Lösungen mit wasserlöslichen Calciumverbindungen hergestellt. Das sorgfältig getrocknete Produkt ist porös und kann Wasser oder Öle bis zur fünffachen Gewichtsmenge aufnehmen.
  • Poröses Polyethylen wird durch spezielle Polymerisationstechniken und -verfahren hergestellt und z. B. von AKZO und DSM in technischen Mengen angeboten. Die Teilchengrößen liegen zwischen 3 und < 1 mm, die Porosität beträgt über 50 %, so daß die Produkte große Mengen an funktionellen Organylorganyloxysilanen zu absorbieren vermögen, ohne ihre Freifließ-Eigenschaften zu verlieren.
  • Als Wachse eignen sich insbesondere Polyolefinwachse auf Basis von LDPE (verzweigt, mit langen Seitenketten). Der Schmelz- und Erstarrungspunkt liegt in der Regel zwischen 90 und 120 °C. Die Wachse lassen sich in der niedrigviskosen Schmelze gut mit den funktionellen Organylorganyloxysilanen mischen. Die erstarrte Mischung ist hinreichend hart, so daß sie granuliert werden kann.
  • Ruß in seinen verschiedenen Handelsformen eignet sich z. B. zur Herstellung von schwarzen Kabelummantelungen. Ruß wird hauptsächlich in Verbindung mit schwefelhaltigen Silanen verwendet.
Suitable carriers are a variety of materials known per se as carriers. In particular, it should be mentioned:
  • Flame silica, which is produced on an industrial scale by continuous hydrolysis of silicon tetrachloride in a blast gas flame. The silicon tetrachloride is vaporized and then reacts spontaneously and quantitatively within the flame with the water resulting from the oxyhydrogen gas reaction. The flame silica is an amorphous modification of the silica in the form of a loose, bluish powder. The particle size is in the range of a few nanometers, the specific surface area is therefore large and is generally from 50 to 600 m 2 / g. The particles are not porous, the uptake of the functional Organylorganyloxysilane is based solely on adsorption.
  • Precipitated silicas are generally prepared from soda water solutions by neutralization with inorganic acids under controlled conditions. After separation from the liquid phase, washing and drying, the crude product is finely ground, z. B. in steam jet mills. Precipitated silica is also an amorphous silica, but usually has a smaller specific surface area, usually in the range of 50 to 150 m 2 / g. Precipitated silica, in contrast to flame silica, has a certain porosity (about 10%). The uptake of the functional Organylorganyloxysilane therefore takes place both by adsorption on the surface and by absorption in the pores.
  • Calcium silicate is produced industrially by fusing quartz or diatomaceous earth together with calcium carbonate or oxide or by precipitating aqueous sodium metasilicate solutions with water-soluble calcium compounds. The carefully dried product is porous and can absorb water or oils up to five times the weight.
  • Porous polyethylene is produced by special polymerization techniques and processes, and e.g. B. offered by AKZO and DSM in technical quantities. The particle sizes are between 3 and <1 mm, the porosity is over 50%, so that the products are able to absorb large amounts of functional Organylorganyloxysilanen without losing their free-flow properties.
  • As waxes are particularly suitable polyolefin waxes based on LDPE (branched, with long side chains). The melting and solidification point is usually between 90 and 120 ° C. The waxes can be mixed well with the functional Organylorganyloxysilanen in the low-viscosity melt. The solidified mixture is sufficiently hard so that it can be granulated.
  • Soot in its various forms of trade is suitable for. B. for the production of black cable sheathing. Carbon black is mainly used in conjunction with sulfur-containing silanes.

Herstellung der "Dry Liquids" aus funktionellen Organylorganyloxysilanen und TrägerstoffenProduction of "Dry Liquids" from Functional Organylorganyloxysilanes and Carriers

Zur Herstellung der "Dry Liquids" stehen unter anderem folgende Methoden zur Verfügung:

  • Mineralische Träger oder poröse Polymere werden vorgewärmt, z. B. in einem Wärmeschrank auf 60°C, und in einen zylindrischen Behälter gegeben, der mit trockenem Stickstoff gespült und gefüllt wurde. Anschließend wird das funktionelle Organylorganyloxysilan zugegeben und der Behälter in eine Rollvorrichtung gelegt, durch die er ca. 30 min lang in Rotation versetzt wird. Nach dieser Zeit hat sich aus dem Trägerstoff und dem flüssigen funktionellen Organylorganyloxysilan ein rieselfähiges, oberflächlich trockenes Granulat gebildet, das zweckmäßig unter Stickstoff in lichtundurchlässigen Behältern gelagert wird.
    Alternativ kann man den erwärmten Trägerstoff in einen mit trockenem Stickstoff gespülten und gefüllten Mischer, z. B. einen Pflugscharmischer vom Typ LÖDIGE oder einen Propellermischer vom Typ HENSCHEL. Das Mischwerk wird in Betrieb genommen und das funktionelle Organylorganyloxysilan nach Erreichen der maximalen Mischleistung □ber eine Düse eingesprüht. Nach beendeter Zugabe wird noch ca. 30 min homogenisiert und danach das Produkt, z. B. mittels einer mit trockenem Stickstoff betriebenen pneumatischen Förderung, in lichtundurchlässige, mit Stickstoff gefüllte Behälter abgefüllt.
  • Wachs/Polyethylenwachs in pelletierter Form mit einem Schmelzpunkt von 90 bis 120 °C wird in einem beheizbaren Gefäß mit Rührer, Rückflußkühler und Flüssigkeitszugabevorrichtung portionsweise aufgeschmolzen und im schmelzflüssigen Zustand gehalten. Während des gesamten Herstellprozesses wird trockener Stickstoff durch die Apparatur geleitet. Über die Flüssigkeitszugabevorrichtung wird nach und nach das flüssige funktionelle Organylorganyloxysilan in die Schmelze gegeben und durch intensives Rühren mit dem Wachs vermischt. Danach wird die Schmelze zum Erstarren in Formen abgelassen, und das erstarrte Produkt wird granuliert. Alternativ kann man die Schmelze auf ein gekühltes Formband auftropfen lassen, auf dem sie in gebrauchsfreundlicher Pastillenform erstarrt.
The following methods are available for the production of "dry liquids":
  • Mineral carriers or porous polymers are preheated, e.g. B. in a heating cabinet at 60 ° C, and placed in a cylindrical container, which was purged and filled with dry nitrogen. Subsequently, the functional organylorganyloxysilane is added and the container placed in a rolling device, by which it is rotated for about 30 minutes. After this time, a free-flowing, superficially dry granulate has formed from the carrier and the liquid functional Organylorganyloxysilan, which is expediently stored under nitrogen in opaque containers.
    Alternatively, the heated carrier may be placed in a dry nitrogen purged and filled mixer, e.g. As a ploughshare mixer type LÖDIGE or a propeller mixer type HENSCHEL. The mixer is put into operation and sprayed the functional Organylorganyloxysilan after reaching the maximum mixing power □ via a nozzle. After completion of the addition is homogenized for about 30 min and then the product, for. B. filled by means of a dry nitrogen operated pneumatic conveying, in opaque, filled with nitrogen containers.
  • Wax / polyethylene wax in pelleted form with a melting point of 90 to 120 ° C is in a heatable vessel with a stirrer, reflux condenser and Flüssigkeitszugabevorrichtung in portions melted and kept in the molten state. Throughout the manufacturing process, dry nitrogen is passed through the apparatus. The liquid functional organylorganyloxysilane is gradually added to the melt via the liquid addition device and mixed with the wax by vigorous stirring. Thereafter, the melt is allowed to solidify in molds, and the solidified product is granulated. Alternatively, the melt can be dropped onto a chilled forming belt, on which it solidifies in a convenient pastille mold.

Basispolymerebase polymers

Es ist ein wichtiges Merkmal der Erfindung, daß das Basispolymer der Kabelcompounds thermoplastisch ist und polare Gruppen trägt. Derartige Basispolymere ergeben z. B. ein verbessertes Brandverhalten (d. h. geringere Entflammbarkeit und Rauchgasdichte) und erhöhen das Füllstoffaufnahmevermögen. Polare Gruppen sind z. B. Hydroxyl-, Nitril-, Carbonyl-, Carboxyl-, Acyl-, Acyloxy-, Carboalkoxygruppen oder Aminogruppen sowie Halogenatome, insbesondere Chloratome. Nicht polar sind olefinische Doppelbindungen oder C-C-Dreifachbindungen. Geeignete Polymere sind neben Polyvinylchlorid Copolymere aus einem oder mehreren Olefinen und einem oder mehreren Comonomeren, die polare Gruppen enthalten, z. B. Vinylacetat, Vinylpropionat, (Meth)acrylsäure, (Meth)acrylsäuremethylester, (Meth)acrylsäureethylester, (Meth)acrylsäurebutylester, Acrylnitril. In den Copolymeren finden sich die polaren Gruppen im allgemeinen in Mengen von 0,1 bis 50 Mol-%, vorzugsweise von 5 bis 30 Mol-%, bezogen auf die Polyolefinbausteine. Gut geeignete Basispolymere sind Ethylen-Vinylacetat-Copolymere. Beispielsweise enthält ein geeignetes handelsübliches Copolymer 19 Mol-% Vinylacetat- und 81 Mol-% Ethylenbausteine.It is an important feature of the invention that the base polymer of the cable compounds is thermoplastic and carries polar groups. Such base polymers give z. B. improved fire performance (i.e., lower flammability and smoke density) and increase filler uptake capability. Polar groups are z. As hydroxyl, nitrile, carbonyl, carboxyl, acyl, acyloxy, carboalkoxy or amino groups and halogen atoms, in particular chlorine atoms. Non-polar are olefinic double bonds or C-C triple bonds. Suitable polymers are in addition to polyvinyl chloride copolymers of one or more olefins and one or more comonomers containing polar groups, for. As vinyl acetate, vinyl propionate, (meth) acrylic acid, (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl ester, acrylonitrile. In the copolymers, the polar groups are generally found in amounts of from 0.1 to 50 mol%, preferably from 5 to 30 mol%, based on the polyolefin units. Highly suitable base polymers are ethylene-vinyl acetate copolymers. For example, a suitable commercial copolymer contains 19 mole% vinyl acetate and 81 mole% ethylene building blocks.

Füllstoffefillers

Die Füllstoffe sind mineralisch (oder anorganisch) und können verstärkend oder lediglich streckend sein. Sie tragen zumindest auf ihren Oberflächen Gruppen, die mit den Organyloxygruppen des funktionellen Organylorganyloxysilans reagieren. Im Ergebnis wird dadurch das Siliciumatom mit dem daran gebundenen funktionellen Organylrest auf der Oberfläche chemisch fixiert. Solche Gruppen auf der Oberfläche des Füllstoffs sind insbesondere Hydroxylgruppen. Bevorzugte Füllstoffe sind dementsprechend Metallhydroxide mit stöchiometrischem Anteil oder, in ihren unterschiedlichen Entwässerungsstufen, mit substöchiometrischem Anteil an Hydroxylgruppen bis hin zu Oxiden mit vergleichsweise wenigen restlichen, aber durch DRIFT-IR-Spektroskopie nachweisbaren Hydroxylgruppen. Beispiele für geeignete Füllstoffe sind Aluminiumtrihydroxid (ATH), Aluminiumoxidhydrat (AlOOH), Magnesiumhydroxid, Brucit, Huntit, Hydromagnesit, Glimmer und Montmorillonit.The fillers are mineral (or inorganic) and may be reinforcing or merely stretching. They at least bear on their surfaces Groups which react with the organyloxy groups of the functional organylorganyloxysilane. As a result, the silicon atom with the functional organyl group attached thereto is chemically fixed on the surface. Such groups on the surface of the filler are especially hydroxyl groups. Accordingly, preferred fillers are metal hydroxides with a stoichiometric proportion or, in their different dehydration stages, with a substoichiometric proportion of hydroxyl groups up to oxides with comparatively few remaining hydroxyl groups which can be detected by DRIFT-IR spectroscopy. Examples of suitable fillers are aluminum trihydroxide (ATH), alumina hydrate (AlOOH), magnesium hydroxide, brucite, huntite, hydromagnesite, mica and montmorillonite.

Mengenverhältnisse der verschiedenen Komponenten in den KabelcompoundsQuantity ratios of the various components in the cable compounds

Das Mengenverhältnis von funktionellem Organylorganyloxysilan zu Trägerstoff kann, je nach der Art und dem Aufnahmevermögen des Trägerstoffs und abhängig von dem jeweiligen Silan, in weiten Grenzen schwanken. Durch orientierende Versuche läßt sich unschwer ermitteln, welche Mengen an dem gewünschten funktionellen Organylorganyloxysilan ein bestimm ter Trägerstoff aufzunehmen vermag, ohne seine freifließenden Eigenschaften zu verlieren. Im allgemeinen wendet man 20 bis 80 Gew.-% funktionelles Organylorganyloxysilan, bezogen auf den Trägerstoff, an.The ratio of functional Organylorganyloxysilan to carrier may, depending on the nature and the capacity of the carrier and depending on the particular silane, vary within wide limits. By orienting experiments can be easily determined what amounts of the desired functional Organylorganyloxysilan a bestimm ter carrier can absorb without losing its free-flowing properties. In general, from 20 to 80% by weight of functional organylorganyloxysilane, based on the carrier, is used.

Der Anteil des Füllstoffs hängt von dessen Art, dem jeweiligen Basispolymer und den Beanspruchungen ab, denen die Compounds bei bestimmungsgemäßer Verwendung ausgesetzt sind. Im allgemeinen wird der Füllstoff in einer Menge von 5 bis 80 Gew.-%, vorteilhaft von 50 bis 70 Gew.-%, bezogen auf das Compound, angewandt.The proportion of the filler depends on its type, the respective base polymer and the stresses to which the compounds are exposed when used as intended. In general, the filler is used in an amount of from 5 to 80% by weight, advantageously from 50 to 70% by weight, based on the compound.

Die Menge des funktionellen Organylorganyloxysilans muß so bemessen sein, daß die Oberfläche des Füllstoffs hinreichend belegt und hydrophobiert wird.The amount of functional Organylorganyloxysilans must be such that the surface of the filler is sufficiently occupied and hydrophobed.

Dazu genügen verhältnismäßig kleine Mengen. Im allgemeinen setzt man 0,1 bis 5 Gew.-% und zweckmäßig 0,5 bis 2 Gew.-% funktionelles Organylorganyloxysilan, bezogen auf den Füllstoff, ein.These are relatively small quantities. In general, from 0.1 to 5% by weight and advantageously from 0.5 to 2% by weight of functional organylorganyloxysilane, based on the filler, is used.

Für alle genannten Mengenverhältnisse gilt, daß sich die optimalen Werte für einen gegebenen Verwendungszweck und gegebene Komponenten durch orientierende Versuch unschwer ermitteln lassen.For all mentioned quantitative ratios, the optimum values for a given purpose of use and given components can be determined easily by an orientation experiment.

Weitere Komponenten in den KabelcompoundsOther components in the cable compounds

Die Kabelcompounds nach der Erfindung können die für Compounds üblichen Zusatzstoffe in den üblichen Mengen enthalten. Von diesen Zusatzstoffen seien beispielsweise UV- und Hitzestabilisatoren, Gleitmittel, Extrudierhilfsmittel und Peroxide genannt. Ihr Anteil an dem Compound liegt im allgemeinen unter 5 Gew.%.The cable compounds according to the invention may contain the usual additives for compounds in the usual amounts. Examples of these additives include UV and heat stabilizers, lubricants, extruding aids and peroxides. Their proportion of the compound is generally below 5 wt.%.

Herstellung der Kabelcompounds aus Basispolymer, Füllstoff und "Dry Liquid"Production of Cable Compounds from Base Polymer, Filler and "Dry Liquid"

Die Kabelcompounds werden durch Mischen der Komponenten in der Schmelze hergestellt, zweckmäßig unter Feuchtigkeitsausschluß. Dafür eignen sich die üblichen heizbaren Homogenisierapparate, z. B. Kneter oder, vorteilhaft bei kontinuierlichem Betrieb, Extruder, insbesondere Doppelschneckenextruder. Die Komponenten werden, jeweils für sich oder in Teilmischungen, in dem vorgegebenen Mengenverhältnis laufend dem auf eine Temperatur oberhalb des Schmelzpunkts des Basispolymers erhitzen Extruder zugeführt. Zweckmäßig läßt man die Temperatur zum Schneckenende hin ansteigen, um eine niedrigere Viskosität einzustellen und dadurch eine innige Durchmischung zu ermöglichen. Die Extrudate können noch flüssig einer Vorrichtung zur Ummantelung von elektrischen Leitern zugeführt werden. Alternativ kann man sie erstarren lassen, um sie dann auf zweckentsprechende Teilchengrößen zu zerkleinern.The cable compounds are prepared by mixing the components in the melt, expediently with exclusion of moisture. For this purpose, the usual heatable homogenizers, z. As kneader or, advantageously in continuous operation, extruder, in particular twin-screw extruder. The components are continuously, in each case or in part mixtures, supplied in the predetermined quantity ratio to the extruder heated to a temperature above the melting point of the base polymer. The temperature is expediently allowed to increase towards the end of the screw in order to set a lower viscosity and thus to allow intimate mixing. The extrudates can still be fed liquid to a device for sheathing of electrical conductors. Alternatively, they may be allowed to solidify and then chopped to suitable particle sizes.

Die folgenden Beispiele sollen die Erfindung weiter erläutern, nicht aber ihren Anwendungsbereich begrenzen, wie er in den Patentansprüchen dargelegt ist.The following examples are intended to further illustrate the invention, but not to limit its scope, as set forth in the claims.

Beispiel 1 - "Dry Liquid" aus 3-Aminopropyl-triethoxysilan und FlammkieselsäureExample 1 - "Dry Liquid" of 3-aminopropyl-triethoxysilane and flame-silica

In einen Labormischer vom Typ HENSCHEL FM/A 10 mit einem Fassungsvermögen von ca. 9 Liter werden 500 g Flammkieselsäure (AEROSIL® 200) gegeben, und der Mischer wird in Gang gesetzt. Die Drehzahl des Mischwerkzeugs wird auf 400 U/min eingestellt. Man ersetzt zunächst über die Dosiervorrichtung die Luft durch trockenen Stickstoff. Danach wird die Flammkieselsäure über den Doppelmantel des Mischgefäßes mittels Thermostat und Wärmeträgeröl auf 50 °C temperiert. Nach ca. 30 min wird über die Dosiervorrichtung des Mischers 3-Aminopropyl-triethoxysilan (DYNASYLAN® AMEO von DEGUSSA-HÜLS AG) zudosiert, und zwar 50 g/min, insgesamt 1.500 g. Nach Beendigung der Zugabe wird die Wärmezufuhr eingestellt und das Mischgut noch 30 min gemischt. Danach wird das Mischgut, das "Dry Liquid", dem Mischer entnommen und unter Stickstoff in lichtundurchlässige Behälter abgefüllt.In a laboratory mixer of type HENSCHEL FM / A 10 with a capacity of about 9 liters of 500 g of flame silica (AEROSIL® 200) are given, and the mixer is set in motion. The speed of the mixing tool is set to 400 rpm. First, the air is replaced by dry nitrogen via the metering device. Thereafter, the flame silica is heated to 50 ° C via the double jacket of the mixing vessel by means of a thermostat and heat transfer oil. After about 30 minutes, 3-aminopropyltriethoxysilane (DYNASYLAN® AMEO from DEGUSSA-HÜLS AG) is metered in via the metering device of the mixer, namely 50 g / min, a total of 1,500 g. After completion of the addition, the heat is adjusted and the mix is mixed for another 30 minutes. Thereafter, the mix, the "dry liquid", the mixer is removed and filled under nitrogen in opaque containers.

Beispiel 2 - "Dry Liquid" aus Fällungskieselsäure und N-Aminoethyl-3-aminopropyl-trimethoxysilanExample 2 - "Dry Liquid" from precipitated silica and N-aminoethyl-3-aminopropyltrimethoxysilane

In ein zylindrisches Gefäß mit einem Außendurchmesser von 20 cm und einer Länge von 35 cm werden 800 g Fällungskieselsäure (ULTRASIL® VN3 von DEGUSSA-HÜLS AG) eingefüllt. Die Füllung wird mit trockenem Stickstoff überlagert und das Gefäß verschlossen. In einem Wärmeschrank wird der Ansatz 1 h auf 60 °C erwärmt. Das erwärmte Gefäß wird geöffnet und der Inhalt mit 1.200 g N-Aminoethyl-3-aminpropyl-trimethoxysilan (DYNASYLAN® DAMO von DEGUSSA-HÜLS AG) versetzt. Das Gefäß wird wieder geschlossen und anschließend auf einer Walzenvorrichtung 30 min in Rotation versetzt. Das so erhaltene Produkt ist oberflächlich trocken und rieselfähig. Es wird unter trockenem Stickstoff in lichtundurchlässige Behälter abgefüllt.800 g of precipitated silica (ULTRASIL® VN3 from DEGUSSA-HÜLS AG) are introduced into a cylindrical vessel having an outer diameter of 20 cm and a length of 35 cm. The filling is overlaid with dry nitrogen and the vessel is closed. In a heating cabinet, the mixture is heated to 60 ° C for 1 h. The heated vessel is opened and the contents are mixed with 1,200 g of N-aminoethyl-3-aminopropyltrimethoxysilane (DYNASYLAN® DAMO from DEGUSSA-HÜLS AG). The vessel is closed again and then placed on a roll device for 30 min in rotation. The product thus obtained is superficially dry and free-flowing. It is filled under dry nitrogen into opaque containers.

Beispiel 3 - Bestimmung des extrahierbaren Anteils eines "Dry Liquids"Example 3 - Determination of Extractable Content of a "Dry Liquids"

In die Extraktionshülse einer 100-ml-Soxhlet-Extraktionsapparatur werden jeweils 30 g des "Dry Liquid" gegeben, und in den Kolben werden 180 ml trockenes, analysenreines Methylethylketon gefüllt. Das Methylethylketon wird zum Sieden erhitzt und das "Dry Liquid" über 2 h extrahiert. Die Extraktionshülse mit dem Extraktionsrückstand wird getrocknet und gewogen. Der Gewichtsverlust wird als "extrahierbares Silan" berechnet. Die Ergebnisse gehen aus der folgenden Tabelle 1 hervor. Tabelle 1 "Dry Liquid" Silan-Gehalt im "Dry Liquid" Extraktionsrückstand "Extrahierbares Silan" [%] [g/30 g] [g/30 g] [g/30 g] [%] Beispiel 1 75 22,5 7,9 22,1 98,2 Beispiel 2 60 18,0 12,8 17,2 95,6 Into the extraction sleeve of a 100 ml Soxhlet extraction apparatus, 30 g each of the "dry liquid" are added, and 180 ml of dry, analytically pure methyl ethyl ketone are introduced into the flask. The methyl ethyl ketone is heated to boiling and the "dry liquid" extracted over 2 h. The extraction tube with the extraction residue is dried and weighed. The weight loss is calculated as "extractable silane". The results are shown in the following Table 1. <b> Table 1 </ b> "Dry Liquid" Silane content in "Dry Liquid" extraction residue "Extractable silane" [%] [g / 30 g] [g / 30 g] [g / 30 g] [%] example 1 75 22.5 7.9 22.1 98.2 Example 2 60 18.0 12.8 17.2 95.6

Aus der Tabelle geht hervor, daß das Silan praktisch vollständig reversibel an den Trägerstoff gebunden ist.From the table it can be seen that the silane is bound almost completely reversibly to the carrier.

Beispiel 4 - Verarbeitung von "Dry Liquids" zu Kabelcompounds / Vergleich von Flüssigsilan mit Silan auf TrägerstoffExample 4 - Processing of "Dry Liquids" to Cable Compounds / Comparison of Liquid Silane with Silane on Vehicle

Zur Herstellung von halogenfreien Kabelcompounds mit flammwidrigen Eigenschaften ("Halogen-Free Flame-Retardant" [HFFR] Compounds) wurden die folgenden Komponenten verwendet: Komponente Menge Aluminiumhydroxid (ATH) 160 Teile Ethylen-Vinylacetat-Copolymer (EVA, 19 % VA) 100 Teile IRGANOX® 1010 (UV-Stabilisator) 1 Teil For the production of halogen-free cable compounds with flame-retardant properties ("halogen free flame retardant" [HFFR] compounds), the following components were used: component amount Aluminum hydroxide (ATH) 160 parts Ethylene-vinyl acetate copolymer (EVA, 19% VA) 100 parts IRGANOX® 1010 (UV stabilizer) Part 1

Funktionelle Organylorganyloxysilane:

  1. (1) 3-Aminopropyltriethoxysilan (DYNASYLAN® AMEO)
  2. (2) N-Ethylamino-3-aminopropyl-trimethoxysilan (DYNASYLAN® DAMO)
  3. (3) DYNASYLAN® 1291 (Mischung aus 3-Aminopropyl-trimethoxysilan und Methyltriethoxysilan im Gewichtsverhältnis 2 : 1)
    • als Flüssigkeit lt. Tabelle
    • als "Dry Liquid" mit Fällungskieselsäure It. Tabelle (ULTRASIL® VN3) als Trägerstoff
Functional organylorganyloxysilanes:
  1. (1) 3-aminopropyltriethoxysilane (DYNASYLAN® AMEO)
  2. (2) N-ethylamino-3-aminopropyltrimethoxysilane (DYNASYLAN® DAMO)
  3. (3) DYNASYLAN® 1291 (Mixture of 3-aminopropyltrimethoxysilane and methyltriethoxysilane in a weight ratio of 2: 1)
    • as a liquid according to the table
    • as "Dry Liquid" with precipitated silica It. Table (ULTRASIL® VN3) as carrier

Die Compoundierung wird in einem Zweischnecken-Extruder, Typ ZE 25, Fa. Berstorff, Hannover, DE, vorgenommen (UD-Verhältnis = 33, Schneckendurchmesser 25 mm, 125 U/min). Zunächst wird das Basispolymer EVA in einem Umluftofen bei 60 °C eine Stunde getrocknet. Bei Verwendung von flüssigem Silan wird dieses auf das getrocknete EVA gegeben und darin innerhalb einer Stunde absorbiert. Wird das Silan als "Dry Liquid" eingesetzt, so wird das EVA damit vermischt. Der Stabilisator wird mit dem ATH vermischt. EVA/Silan einerseits und ATH/Stablisator andererseits werden gravimetrisch in den Extruder dosiert. Die Extruder-Temperatur steigt von der Zugabe bis zum Schneckenende von 135 auf 170 °C. Die Verweilzeit beträgt maximal 150 sec. Es werden Bänder extrudiert, aus denen Prüfkörper hergestellt werden.The compounding is carried out in a twin-screw extruder, type ZE 25, Berstorff, Hannover, DE (UD ratio = 33, screw diameter 25 mm, 125 rpm). First, the base polymer EVA is dried in an air circulating oven at 60 ° C for one hour. When using liquid silane, this is added to the dried EVA and absorbed therein within one hour. If the silane is used as a "dry liquid", the EVA is mixed with it. The stabilizer is mixed with the ATH. EVA / silane on the one hand and ATH / stabilizer on the other hand are dosed gravimetrically into the extruder. The extruder temperature increases from the addition to the screw end of 135 to 170 ° C. The residence time is a maximum of 150 seconds. Strips are extruded from which test specimens are produced.

An den Prüfkörpern wurden folgende Werte nach folgenden Vorschriften ermittelt: Zugfestigkeit [N/mm], bestimmt nach EN ISO 527 Bruchdehnung [%], bestimmt nach EN ISO 527 Reißfestigkeit [N/mm], bestimmt nach EN ISO 527 Wasseraufnahme [mg/cm2], bestimmt durch Wägung The following values were determined on the test specimens according to the following instructions: tensile strenght [N / mm], determined after EN ISO 527 elongation [%] determined after EN ISO 527 tear strength [N / mm], determined after EN ISO 527 water absorption [mg / cm 2 ], determined by weighing

Die folgende Tabelle 2 zeigt die Mengenverhältnisse und die erhaltenen Ergebnisse. Die Teile sind Gewichtsteile. Tabelle 2 Silan flüss. [Tle.] "Dry Liquid" Testergebnisse Silan- gehalt [%] Menge [Tle.] Zugfe- stigkeit [N/mm] Bruch- dehnung [%] Reißfe- stigkeit [N/mm] Wasser-aufnahme [mg/cm2] (1) 1,5 - - 16,3 210 10,2 4,02 (1) - 75 2 16,5 215 10,0 3,96 (2) 1,5 - - 17,3 220 10,9 3,85 (2) - 60 2,5 17,7 215 10,5 3,81 (3) 1,5 - - 16,6 226 12,4 3,40 (3) - 75 2 16,8 222 12,7 3,34 The following Table 2 shows the proportions and the results obtained. The parts are parts by weight. <b> Table 2 </ b> silane liq. [Tle.] "Dry Liquid" test results Silane content [%] Quantity [Tl.] Tensile strength [N / mm] Elongation at break [%] Tear strength [N / mm] Water uptake [mg / cm 2 ] (1) 1.5 - - 16.3 210 10.2 4.02 (1) - 75 2 16.5 215 10.0 3.96 (2) 1.5 - - 17.3 220 10.9 3.85 (2) - 60 2.5 17.7 215 10.5 3.81 (3) 1.5 - - 16.6 226 12.4 3.40 (3) - 75 2 16.8 222 12.7 3.34

Die mit flüssigem Silan erhaltenen Werte und die Werte mit Silan auf Trägerstoff sind vergleichbar. Der Vorteil der leichteren Handhabung der "Dry Liquids" wird also nicht mit schlechteren Eigenschaften der Kabelcompounds erkauft.The values obtained with liquid silane and the values with silane on carrier are comparable. The advantage of the easier handling of the "dry liquids" is therefore not paid for by worse characteristics of the cable compounds.

Claims (11)

  1. The use of (1) a liquid functional organylorganyloxysilane reversibly bound to a carrier, or of a liquid (co)condensate derived from a functional organylorganyloxysilane and reversibly bound to a carrier for preparing cable compounds which comprise (2) a thermoplastic base polymer having polar functional groups and (3) a reinforcing or extending mineral filler.
  2. The use according to claim 1,
    characterized in that
    the carrier is pyrogenic silica.
  3. The use according to claim 1,
    characterized in that
    the carrier is precipitated silica.
  4. The use according to claim 1,
    characterized in that
    the carrier is calcium silicate.
  5. The use according to claim 1,
    characterized in that
    the carrier is a wax.
  6. The use according to claim 5,
    characterized in that
    the wax is an LDPE-based polyolefin wax.
  7. The use according to any one of claims 1 to 6,
    characterized in that the functional organylorganyloxysilane is an aminoorganylorganyloxysilane, if desired N-substituted by one or two alkyl radicals each having from 1 to 6 carbon atoms.
  8. The use according to claim 7,
    characterized in that
    the functional organylorganyloxysilane is used in the form of a (co)condensate with nonfunctional organylorganyloxysilanes with a weight-average molecular weight of up to 10,000.
  9. The use according to any one of claims 1 to 8,
    characterized in that
    the base polymer is polyvinyl chloride or a copolymer made from one or more olefins and one or more comonomers which contain polar groups.
  10. The use according to any one of claims 1 to 8,
    characterized in that the mineral filler is a metal hydroxide having a stoichiometric or substoichiometric proportion of hydroxyl groups or a metal oxide with residual hydroxyl groups.
  11. A mixture for preparing a cable compound which comprises (1) a liquid functional organylorganyloxysilane reversibly bound to a carrier, or a liquid (co)condensate derived from a functional organylorganyloxysilane and reversibly bound to a carrier, (2) a thermoplastic base polymer having polar functional groups and (3) a reinforcing or extending mineral filler.
EP00109631A 1999-06-25 2000-05-05 Carriers bearing functionalised organoorganooxysilanes in cable compositions Expired - Lifetime EP1063655B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19929021A DE19929021A1 (en) 1999-06-25 1999-06-25 Functional organylorganyloxysilanes on carriers in cable compounds
DE19929021 1999-06-25

Publications (2)

Publication Number Publication Date
EP1063655A1 EP1063655A1 (en) 2000-12-27
EP1063655B1 true EP1063655B1 (en) 2006-03-15

Family

ID=7912425

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00109631A Expired - Lifetime EP1063655B1 (en) 1999-06-25 2000-05-05 Carriers bearing functionalised organoorganooxysilanes in cable compositions

Country Status (5)

Country Link
US (1) US6403228B1 (en)
EP (1) EP1063655B1 (en)
JP (1) JP2001057109A (en)
AT (1) ATE320657T1 (en)
DE (2) DE19929021A1 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541671B1 (en) 2002-02-13 2003-04-01 The Regents Of The University Of California Synthesis of 2H- and 13C-substituted dithanes
DE19961972A1 (en) 1999-12-22 2001-06-28 Degussa Organosilane and / or organosiloxane-containing agent for filled polyamide
EP1195416A3 (en) * 2000-10-05 2005-12-28 Degussa AG Polymerisable silicone-organic nanocapsules
EP1195417B1 (en) 2000-10-05 2009-10-14 Evonik Degussa GmbH Silicone-organic nanocapsules
DE10056343A1 (en) 2000-11-14 2002-05-16 Degussa Continuous process for the production of organoalkoxysiloxanes
DE10056344A1 (en) * 2000-11-14 2002-05-16 Degussa n-Propylethoxysiloxanes, process for their preparation and their use
DE10100384A1 (en) * 2001-01-05 2002-07-11 Degussa Process for modifying the functionality of organofunctional substrate surfaces
EP1249470A3 (en) * 2001-03-30 2005-12-28 Degussa AG Highly filled pasty siliconorganic nano and/or microhybridcapsules containing composition for scratch and/or abrasion resistant coatings
DE10141687A1 (en) 2001-08-25 2003-03-06 Degussa Agent for coating surfaces containing silicon compounds
DE10142555A1 (en) 2001-08-30 2003-03-20 Degussa Means for improving the scorch conditions in the production of grafted and / or crosslinked polymers and filled plastics
US20030059613A1 (en) * 2001-09-04 2003-03-27 Diego Tirelli Self-extinguishing cable and flame-retardant composition used therein
DE10151264A1 (en) 2001-10-17 2003-04-30 Degussa Aminoalkylalkoxysiloxane-containing mixtures, their preparation and their use
DE10153803A1 (en) 2001-11-05 2003-05-15 Degussa Corrosion inhibitor for reinforced concrete
DE10159952A1 (en) 2001-12-06 2003-06-18 Degussa Use of liquid or unsaturated organosilane / mixtures applied on carrier material for the production of moisture-crosslinked and filled cable compounds
EP1331238A3 (en) * 2002-01-23 2004-01-14 Degussa AG Mixture of chain-forming and cyclic siloxane oligomers, their preparation and their use
DE10238369A1 (en) 2002-08-22 2004-03-04 Degussa Ag Agent as an adhesion promoter for filled and peroxidically cross-linked rubber compounds
DE10240756A1 (en) * 2002-08-30 2004-03-11 Degussa Ag Desiccant containing alkoxysiloxane for cross-linkable polymer compositions
DE10321320A1 (en) 2003-05-13 2004-12-02 Degussa Ag Organofunctional siloxane mixtures
DE10330020A1 (en) * 2003-07-03 2005-01-20 Degussa Ag Highly filled silane preparation
DE10334574A1 (en) * 2003-07-28 2005-02-24 Degussa Ag Silicon compounds containing polymer dispersions
DE10362060B4 (en) * 2003-10-21 2009-07-09 Altana Coatings & Sealants Gmbh Packaging material with a barrier layer for gases
DE102004007456A1 (en) * 2004-02-13 2005-09-01 Degussa Ag Highly filled polyolefin compounds
DE102004025767A1 (en) * 2004-05-26 2005-12-22 Degussa Ag Stable solutions of N-substituted aminopolysiloxanes, their preparation and use
DE102004030737A1 (en) 2004-06-25 2006-01-12 Degussa Ag Method and device for extracting substances from silane-modified fillers
DE102004037044A1 (en) * 2004-07-29 2006-03-23 Degussa Ag Agent for equipping cellulose-based and / or starch-based substrates with water-repellent and, at the same time, fungus, bacteria, insect and algae-deficient properties
DE102004037045A1 (en) * 2004-07-29 2006-04-27 Degussa Ag Aqueous silane nanocomposites
DE102004049427A1 (en) 2004-10-08 2006-04-13 Degussa Ag Polyether-functional siloxanes, polyethersiloxane-containing compositions, processes for their preparation and their use
DE102004053384A1 (en) * 2004-11-02 2006-05-04 Degussa Ag Liquid, viscous agent based on an organofunctional silane system for the production of weather-resistant protective coatings to prevent contamination of surfaces
DE102005004872A1 (en) * 2005-02-03 2006-08-10 Degussa Ag Aqueous emulsions of functional alkoxysilanes and their condensed oligomers, their preparation and use for surface treatment
DE102005004871A1 (en) 2005-02-03 2006-08-10 Degussa Ag Highly viscous aqueous emulsions of functional alkoxysilanes, their condensed oligomers, organopolysiloxanes, their preparation and their use for the surface treatment of inorganic materials
DE102005020535B3 (en) 2005-05-03 2006-06-08 Degussa Ag Preparation of mercapto organyl(alkoxysilane) comprises reaction of bis(alkoxysilylorganyl)polysulfide with hydrogen in the presence of an alcohol and a doped metal catalyst (containing e.g. (iron) compound and a doping component)
DE102005038791A1 (en) 2005-08-17 2007-02-22 Degussa Ag New organosilicon compounds based on triethanolamine, useful as components of rubber mixtures for making e.g. tires, tubes and cable coatings
DE102006006656A1 (en) * 2005-08-26 2007-03-01 Degussa Ag Silane-containing binder for composites
DE102006006655A1 (en) * 2005-08-26 2007-03-01 Degussa Ag Cellulose- or lignocellulose-containing composites based on a silane-based composite as binder
DE102006006654A1 (en) 2005-08-26 2007-03-01 Degussa Ag Composite materials based on wood or other plant materials, e.g. chipboard, fibreboard, plywood or plant pots, made by using special aminoalkyl-alkoxy-silane compounds or their cocondensates as binders
DE102005060122A1 (en) 2005-12-16 2007-06-21 Degussa Gmbh Process for the preparation of (mercaptoorganyl) alkyl polyether silanes
DE102006003956A1 (en) * 2006-01-26 2007-08-02 Degussa Gmbh Production of a corrosion protection layer on a metal surface e.g. vehicle structure comprises applying a sol-gel composition to the metal surface, drying and/or hardening and applying a further layer and drying and/or hardening
DE102006003957A1 (en) * 2006-01-26 2007-08-02 Degussa Gmbh Water-dilutable sol-gel for coating paper, cardboard, wood, presspahn, plastics, lacquer, stone, ceramics, metal or alloy or as primer is obtained by reacting glycidyloxypropylalkoxysilane, aqueous silica sol, organic acid and crosslinker
DE102006013090A1 (en) * 2006-03-20 2007-09-27 Georg-August-Universität Göttingen Composite material made of wood and thermoplastic material
DE102006027235A1 (en) 2006-06-09 2008-01-17 Evonik Degussa Gmbh rubber compounds
US20070287773A1 (en) * 2006-06-13 2007-12-13 Ramdatt Philbert E Surface-modified non-halogenated mineral fillers
ES2725499T3 (en) * 2007-04-20 2019-09-24 Evonik Degussa Gmbh Mixture containing an organosilicon compound and its use
DE102007038314A1 (en) * 2007-08-14 2009-04-16 Evonik Degussa Gmbh Process for the controlled hydrolysis and condensation of epoxy-functional organosilanes and their condensation with further organofunctional alkoxysilanes
DE102007038313A1 (en) * 2007-08-14 2009-02-19 Evonik Degussa Gmbh Inorganically-modified polyester binder composition, process for its preparation and its use
DE102007040246A1 (en) 2007-08-25 2009-02-26 Evonik Degussa Gmbh Radiation-curable formulations
DE102007045186A1 (en) * 2007-09-21 2009-04-09 Continental Teves Ag & Co. Ohg Residue-free, layer-forming, aqueous sealing system for metallic silane-based surfaces
US8703288B2 (en) * 2008-03-21 2014-04-22 General Cable Technologies Corporation Low smoke, fire and water resistant cable coating
EP2119737B1 (en) * 2008-05-15 2011-05-04 Evonik Degussa GmbH Electronic packaging
DE102008001855A1 (en) * 2008-05-19 2009-11-26 Evonik Degussa Gmbh Two-component composition for the production of flexible polyurethane gelcoats
DE102008041918A1 (en) * 2008-09-09 2010-03-11 Evonik Degussa Gmbh Silanol condensation catalysts for the crosslinking of filled and unfilled polymer compounds
DE102008041919A1 (en) * 2008-09-09 2010-03-11 Evonik Degussa Gmbh Use of silicon-containing precursor compounds of an organic acid as a catalyst for crosslinking filled and unfilled polymer compounds

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1425575A (en) * 1972-04-28 1976-02-18 Raychem Ltd Adhesive
US3983070A (en) * 1968-08-01 1976-09-28 Raychem Corporation Polymeric adhesive
BE786958A (en) * 1969-01-22 1973-01-29 Raychem Corp HIGH TENSION INSULATION.
US4349605A (en) * 1980-09-09 1982-09-14 National Distillers & Chemical Corp. Flame retardant radiation curable polymeric compositions
EP0158057B1 (en) 1984-03-01 1989-04-26 ASTA Pharma AG Salts of oxazaphosphorine derivatives
US4826899A (en) * 1987-06-15 1989-05-02 E. I. Du Pont De Nemours And Company Low smoke generating, high char forming, flame resistant thermoplastic multi-block copolyesters
US4998167A (en) 1989-11-14 1991-03-05 Jaqua Douglas A High resolution translation of images
JP2841115B2 (en) * 1990-09-03 1998-12-24 新東工業株式会社 Masterbatch for antibacterial and antifungal resin and antifungal and antifungal resin composition
DE4435311A1 (en) 1994-10-01 1996-04-04 Huels Silicone Gmbh Reinforcement additives
DE19503779C2 (en) 1995-02-04 2000-05-11 Degussa Chemical batch with trans-polyoctenamer as carrier material for polymer-bound liquid rubber chemicals and process for its production
IL117216A (en) * 1995-02-23 2003-10-31 Martinswerk Gmbh Surface-modified filler composition
WO1997007165A1 (en) * 1995-08-16 1997-02-27 Osi Specialties, Inc. Stable silane compositions on silica carrier

Also Published As

Publication number Publication date
ATE320657T1 (en) 2006-04-15
US6403228B1 (en) 2002-06-11
EP1063655A1 (en) 2000-12-27
DE19929021A1 (en) 2000-12-28
JP2001057109A (en) 2001-02-27
DE50012392D1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
EP1063655B1 (en) Carriers bearing functionalised organoorganooxysilanes in cable compositions
EP1318526B1 (en) Use of liquid unsaturated organosilane (mixtures) or unsaturated organosilane mixtures applied to a carrier for producing moisture-crosslinked and filled cablecompounds
DE69636246T2 (en) POLYETHYLENE GLYCOL TREATED SOIL AND COMPOUNDS THEREOF
EP1581587B1 (en) Master batches based on pre-exfoliated nanoclays and the use of the same
EP2279226B1 (en) Surface modified silicon dioxide particles
DE102004007456A1 (en) Highly filled polyolefin compounds
EP2465897B1 (en) Master kit containing silanol condensation catalysts for integrating filled and unfilled polymer compounds
DE2523434C3 (en) Molding compounds and their manufacture
DE102006048508A1 (en) Surface-modified silicic acids
DE60222959T2 (en) Silane-crosslinked polymer composition, process for its preparation and for the preparation of a cable coated with this composition
EP0127052B2 (en) Electric insulating coverings
DE69701654T3 (en) Silicone rubber compound for use as an electrical insulator
DE69722927T2 (en) METHOD FOR THE PRODUCTION OF SURFACE-TREATED SOOT AND RUBBER COMPOSITION
EP3036280B1 (en) Tinfree and catalyst containing composition useful in a monosil-process
DE102011001658A1 (en) Rubber mixture, useful for manufacturing technical rubber article, preferably straps, comprises a polar or non-polar rubber and a carbon black and an ionic liquid and/or a carbon black modified with an ionic liquid, and further additives
DE1806194C3 (en) Process for the pressureless curing of ethylene polymers
DE2403303B2 (en) Process for the preparation of organopolysiloxane polyols
DE19581920B4 (en) Crystalline polyolefin resin composition and electrical insulating member containing this composition
DE3309272A1 (en) METHOD FOR THE PRODUCTION OF PELLETIC ACID
EP0017781A1 (en) Organopolysiloxane compositions curable to elastomers
DE2856381A1 (en) Prepn. of filled polyethylene compsn. crosslinking with silane - by diffusion of silane into dry granulate of filler and polymer
DE112011100431B4 (en) Flame retardant, flame retardant resin composition and their use in the manufacture of an insulated wire
EP0192955B1 (en) Electrical isolations
EP3036281B1 (en) Tin-free composition for crosslinking thermoplastic polyolefines
DE2237354C3 (en) Insulating materials suitable for high voltage purposes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEGUSSA AG

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030922

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060505

REF Corresponds to:

Ref document number: 50012392

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060615

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060315

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061218

BERE Be: lapsed

Owner name: DEGUSSA A.G.

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130522

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130603

Year of fee payment: 14

Ref country code: IT

Payment date: 20130529

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012392

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012392

Country of ref document: DE

Effective date: 20141202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602