EP1063470B1 - Procédé et dispositif pour la purification thermique d'un gaz d'échappement - Google Patents

Procédé et dispositif pour la purification thermique d'un gaz d'échappement Download PDF

Info

Publication number
EP1063470B1
EP1063470B1 EP20000112856 EP00112856A EP1063470B1 EP 1063470 B1 EP1063470 B1 EP 1063470B1 EP 20000112856 EP20000112856 EP 20000112856 EP 00112856 A EP00112856 A EP 00112856A EP 1063470 B1 EP1063470 B1 EP 1063470B1
Authority
EP
European Patent Office
Prior art keywords
gas
heat storage
raw gas
raw
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20000112856
Other languages
German (de)
English (en)
Other versions
EP1063470A3 (fr
EP1063470A2 (fr
Inventor
Matthias Hänel
Ulrich Speck
Rainer Simon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LTG Mailander GmbH
Original Assignee
LTG Mailander GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LTG Mailander GmbH filed Critical LTG Mailander GmbH
Publication of EP1063470A2 publication Critical patent/EP1063470A2/fr
Publication of EP1063470A3 publication Critical patent/EP1063470A3/fr
Application granted granted Critical
Publication of EP1063470B1 publication Critical patent/EP1063470B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/70601Temporary storage means, e.g. buffers for accumulating fumes or gases, between treatment stages

Definitions

  • the invention relates to a method for the thermal cleaning of a raw gas supplied by means of a raw gas supply in a regenerative process.
  • a raw gas for example a solvent-laden exhaust air stream of a drying or painting plant
  • a regenerative reactor in order to transfer the raw gas into clean gas, so that the latter can be safely delivered to the outside atmosphere in compliance with environmental regulations.
  • the loaded raw gas passes a first heat storage, so that it is heated. It then enters a combustion chamber. There, if necessary, with the supply of auxiliary fuel, the solvent residues are burned, so that produced by oxidation of the raw gas clean gas.
  • This clean gas which is strongly heated by the combustion, is subsequently passed through a second heat storage chamber and then fed to an exhaust air chimney.
  • heat storage chambers are provided, which are alternately heated by clean gas and are alternately flowed through in the heated state of raw gas to its heating.
  • each one forms in the inlet area in the heat-absorbing or heat-emitting mass Heat storage chamber Condensates that have to be removed from time to time by "burnout” (bakeout).
  • This "burn-out” is carried out by heating the mass to a temperature, the so-called “over-temperature / evaporation temperature", which is above the normal operating temperature, so that in the so-called “burn-out process” the condensates burn or decomposed by cracking processes and thus be driven out of the crowd.
  • auxiliary burner for example, act on the formed as a bed mass from below, so that adjusts the elevated temperature level in the mass bed.
  • the normal operating state can not be maintained, that is, the known system should be shut down or continue to operate only with worse clean gas values.
  • the heat storage chambers are burned out one after the other.
  • US-A-5,839,894 describes a process for the thermal purification of a raw gas in a regenerative process.
  • the raw gas is passed through a heated with clean gas first heat storage chamber in a combustion chamber and the clean gas formed is passed through a second heat storage chamber to be heated.
  • the gas flow is switched over after certain switching periods.
  • the burn-out procedure is carried out without stopping or reducing the raw gas consumption.
  • gas from the combustion chamber is fed into a third heat storage chamber and then returned to the raw gas supply.
  • Buffering of mixed gas formed upon switching by entering raw gas into the clean gas is known from DE-A-196.17.790 and EP-A-0.587.064.
  • the invention has for its object to provide a method of the type mentioned, in which without a stop or a reduction in the decrease of the raw gas, the burn-out process is feasible and in any operating condition, ie in normal operation and in the burn-out Operation no exceeding of exhaust emission limits occurs.
  • the emission values are therefore optimally adhered to and at the same time the production process, for example the operation of the drying ovens, etc., from which the raw gas originates, must not be interrupted or restricted because the raw gas purchase remains unchanged.
  • the method according to the invention makes it possible for two heat storage chambers thereof to alternately serve to heat up the raw gas or to be heated by the clean gas.
  • the third heat storage chamber is subject during this time a regeneration process, the so-called burn-out process to remove condensates and the like from the heat-absorbing or heat-emitting mass.
  • very hot gas is taken, which consists essentially of clean gas. Since it flows for a relatively long time through the third heat storage chamber, it is able to bring them to a correspondingly high temperature, so that the burn-out process takes place.
  • the two other heat storage chambers are operated alternately as heat absorption or heat release chamber, so that they do not assume the correspondingly high temperature, but adjust the optimum gas temperature of the raw gas to burn this with the best possible cleaning efficiency in the combustion chamber.
  • the gas used for heating the heat storage chamber underlying the chamber storage is fed (fed back) in the raw gas supply, it is ensured that even during the burn-out process no or virtually no raw gas enters the clean gas outlet.
  • the exhaust air is composed only of clean gas, so that the environmental regulations are maintained.
  • the gas serving the chamber regeneration is returned to the raw gas supply, can not be excluded that during the switching processes, ie during the switching of the Gas flows, raw gas enters the clean gas side.
  • the raw gas supply is connected via actuators with the respective heat storage chamber in connection.
  • actuators are designed for example as flap valves. In their open state, they introduce the raw gas into the appropriate heat chamber. They are closed when the corresponding heat storage chamber no raw gas supplied, but should be discharged from their clean gas, the clean gas then passes corresponding actuators that lead to clean gas removal. If there is a change of direction, then closes during the Um Kunststoffphase the actuator that supplies raw gas while at the same time the associated actuator opens to dissipate the resulting in the subsequent operating cycle clean gas.
  • both actuators of each heat storage chamber are in an intermediate state, which does not exclude that still not flowing through the corresponding actuator raw gas into the associated heat storage chamber, but "short circuit" flows to the clean gas actuator and passes from this in the clean gas discharge.
  • the buffering is provided according to the invention, that is, it is the mixed gas, which is composed of raw and clean gas, fed to the buffer, so that it does not get into the outside atmosphere. From the buffer, the mixed gas is returned to the raw gas supply, so that it can participate again in the cleaning process. By the burn-out process, it could lead to an excessive temperature increase of the relevant heat storage chamber come.
  • the constant clean gas flowing out of the combustion chamber over a relatively long time flows through the bed.
  • the temperature can be regulated and stabilized by the flushing of the bed with the cooler gas of the buffer loop and the hot gas of the burn-out process.
  • the buffering takes place by introducing the mixed gas into a buffer loop line.
  • the buffer is a buffer line which is formed so that its volume is so large that it can absorb the amount of mixed gas flowing during the time of switching.
  • the buffer loop line fills with mixed gas during the switching without the mixing gas head getting into the exhaust chimney.
  • outside atmosphere exists, however, to allow the flow of the mixed gas, without a pressure increase occurs.
  • the actuator is closed and the mixed gas introduced via a corresponding line in the raw gas, so that the mixed gas is again subjected to the cleaning effect of the regenerative reactor.
  • the invention further relates to a device for the thermal cleaning of a raw gas supplied by means of a raw gas supply in a regenerative process, with at least three heat storage chambers, which are connectable via switchable actuators with the raw gas supply and / or a clean gas discharge and which are further associated with at least one combustion chamber, wherein the clean gas discharge for storing the mixing gas formed by switching of the actuators by the entry of raw gas into the clean gas can be connected to a gas buffer which can be connected on the output side to the raw gas supply and / or to at least one of the heat storage chambers.
  • a buffering of mixed gas is possible. This buffering can also be used during the burn-out operation, so that in each operating state the Environmental regulations are adhered to and an uninterrupted operation, ie a steady and equal decrease in raw gas volume, is possible.
  • the gas buffer is designed as a buffer loop line.
  • a gas generator in particular a burn-out fan, is arranged. This ensures that the chamber regeneration underlying heat storage chamber is continuously flowed through by hot gas. Further, it ensures that the gas serving the chamber regeneration is fed back into the raw gas supply line.
  • the buffer loop line opens into the return line upstream of the gas flow generator. This has the consequence that the buffered mixed gas by means of one and the same fan, ie by means of the burn-out fan, which also maintains the burn-out process, is introduced into the raw gas supply.
  • a regenerative reactor 1 which has three heat storage chambers 2, 3 and 4, in each of which there is a heat-absorbing or heat-emitting mass or bed 5, 6 and 7.
  • the upper part 8, 9 and 10 of the chambers 2, 3 and 4 is in communication with a common combustion chamber 11, in which two burners 12 are arranged, which have a fuel supply, not shown, and have flames 13.
  • the lower parts 14, 15 and 16 of the heat storage chambers 2, 3 and 4 are connected to lines 17, 18 and 19 leading to connection points 20, 21 and 22.
  • Crude gas is supplied by means of a line 23 to a connection point 24 and passed from there to a distribution line 25.
  • the distribution line 25 is connected to actuators 26, 27 and 28, which lead via branch lines 29, 30 and 31 to the connection points 20, 21 and 22. Furthermore, go from the connection points 20, 21 and 22 stub lines 32, 33 and 34, which lead to actuators 35, 36 and 37.
  • the actuators 35, 36 and 37 are on a manifold 38 is connected, which leads to an exhaust fan 39, the output side has a line 40 which is connected to a connection point 41. At the connection point 41, an actuator 42 is connected, whose output leads to an exhaust chimney 43.
  • a gas buffer 44 is connected, which is designed as a buffer loop line 45 and leads to a connection point 46.
  • an actuator 47 is connected, which is in communication with the exhaust chimney 43.
  • a return line 48 leads, which leads to an actuator 49, which is connected to a connection point 50.
  • the connection point 50 is connected via a line 51 to a further connection point 52 in connection.
  • the connection point 52 is connected via stubs 53, 54 and 55 with actuators 56, 57 and 58, which in turn communicate with the connection points 20, 21 and 22 in connection.
  • the connection point 50 is connected to an actuator 59, which is also in communication with a gas flow generator 60.
  • the gas flow generator 60 is designed as a burn-out fan 61, whose output side 62 leads via a line 63 to the connection point 24.
  • the clean gas passes to the connection point 41 and from there via the actuator 42 located in the open position into the exhaust chimney 43, which discharges the clean gas to the outside atmosphere.
  • the bed 5 has a high temperature level. This is achieved by cyclically switching the flow path described above through the various heat storage chambers 2 to 4 of the regenerative reactor 1, so that at least one of the heat storage chambers 2 to 4 is heated by the hot clean gas, while at least one other of the heat storage chambers 2 to 4 of Crude gas is flowed through, wherein the associated bed 5 to 7 has previously been heated by the clean gas.
  • the actuators 26 to 28, 35 to 37, 42, 47, 49, 56 to 58 and 59 are preferably designed as adjusting flaps, that is, a displaceable flap releases the flow path in one position and closes the passage in another position.
  • the clean gas flowing through the heat storage chamber 3 flows via the connection point 21 through the actuator 57 located in the open position and the actuator 59 located in the open position.
  • the burn-out fan 61 drives the aforementioned gas flow, the burn-out fan 61 communicating downstream with the connection point 24, so that the hot clean gas flowing through the bed 6 is fed back into the line 23.
  • the line 23 forms a crude gas supply 64 and the manifold 38 a clean gas discharge 65.
  • FIG. 3 clarifies that in normal operation or in burnout operation by means of the gas buffer 44, a mixed gas can be buffered in order to prevent it from reaching the outside atmosphere.
  • the mixed gas is formed by the actuators 26 and 35 or 27 and 36 or 28 and 37 are operated simultaneously. That is, for example, when the actuator 26 closes, the actuator 35 opens when the gas flow path is to be switched accordingly.
  • FIG. 4 illustrates an operating state in which a burn-out process has taken place in the heat storage chamber 3 and the normal operation should be resumed as quickly as possible with the heat storage chamber 3. Since the bed 6 has the above-mentioned overtemperature, it is therefore necessary to cool it as quickly as possible to the normal temperature. This can be done by the hot raw gas is passed through the heat storage chamber 4 and thus gives off heat. It then passes through the actuator 37 and the exhaust fan 39 in the buffer loop line 45 and from there partially via the actuator 47 in the exhaust stack 43. Another part of the raw gas via the connection point 46 and the return line 48 and the actuator located in the open position 49 led to connection point 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Gas Separation By Absorption (AREA)

Claims (5)

  1. Procédé de purification thermique d'un gaz brut fourni au moyen d'un système d'adduction de gaz brut dans un processus régénératif, comprenant les étapes suivantes:
    - transfert du gaz brut vers une chambre de combustion en le faisant passer par une première chambre d'accumulation thermique préalablement chauffée au moyen d'un gaz propre;
    - évacuation, vers un système d'évacuation de gaz propre, du gaz propre obtenu à partir du gaz brut par combustion dans la chambre de combustion, en le faisant passer par une deuxième chambre d'accumulation thermique à chauffer;
    - inversion de l'écoulement de gaz susvisé pendant un état de fonctionnement de régénération des chambres de manière telle que le gaz brut traverse la deuxième chambre d'accumulation thermique et le gaz propre, la première chambre d'accumulation thermique,
    - du gaz provenant de la chambre de combustion traversant, pendant l'état de fonctionnement de régénération des chambres, une troisième chambre d'accumulation thermique pour la régénération de celle-ci [processus de combustion complète (burn out)] et étant injecté dans le système d'adduction de gaz brut,
    - accumulation du gaz mixte obtenu lors de l'inversion par l'entrée de gaz brut dans le gaz propre et retour du gaz mixte accumulé dans le système d'adduction de gaz brut et/ou dans la troisième chambre d'accumulation thermique,
    - l'accumulation se produisant par introduction du gaz mixte dans une conduite en boucle d'accumulation dont le volume est réalisé avec une taille telle qu'il peut accueillir la quantité de gaz mixte qui s'écoule pendant le temps de l'inversion.
  2. Dispositif de purification thermique d'un gaz brut fourni au moyen d'un système d'adduction de gaz brut dans un processus régénératif, en particulier pour la mise en oeuvre du procédé selon une ou plusieurs des revendications précédentes, avec au moins trois chambres d'accumulation thermique (2, 3, 4) qui peuvent être reliées, par l'intermédiaire d'organes de réglage inversibles (26 à 28, 35 à 37), au système d'adduction de gaz brut (64) et/ou à un système d'évacuation de gaz propre (65) et qui sont en outre reliées à au moins une chambre de combustion (11), le système d'évacuation de gaz propre (65) pouvant être relié à un réservoir de gaz (44) pour stocker le gaz mixte obtenu lors de l'inversion des organes de réglage (26 à 28, 35 à 37) par l'entrée de gaz brut dans le gaz propre, lequel réservoir peut être relié, côté sortie, au système d'adduction de gaz brut (64) et/ou à au moins l'une des chambres d'accumulation thermique, le réservoir de gaz (44) étant réalisé en tant que conduite en boucle d'accumulation (45).
  3. Dispositif selon l'une des revendications précédentes, caractérisé en ce que respectivement au moins l'une des chambres d'accumulation thermique (2, 3, 4) peut, pendant un état de fonctionnement de régénération des chambres, être reliée à une conduite de retour conduisant au système d'adduction de gaz brut (64).
  4. Dispositif selon la revendication 3, caractérisé en ce qu'est situé, dans la conduite de retour, un générateur de courant de gaz (60), en particulier un ventilateur de combustion complète (burn out) (61).
  5. Dispositif selon la revendication 4, caractérisé en ce que la conduite en boucle d'accumulation (45) débouche, en amont du générateur de courant de gaz (60), dans la conduite de retour.
EP20000112856 1999-06-19 2000-06-17 Procédé et dispositif pour la purification thermique d'un gaz d'échappement Expired - Lifetime EP1063470B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19928214 1999-06-19
DE1999128214 DE19928214C2 (de) 1999-06-19 1999-06-19 Verfahren und Vorrichtung zur thermischen Reinigung eines Rohgases

Publications (3)

Publication Number Publication Date
EP1063470A2 EP1063470A2 (fr) 2000-12-27
EP1063470A3 EP1063470A3 (fr) 2001-10-24
EP1063470B1 true EP1063470B1 (fr) 2006-12-06

Family

ID=7911912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000112856 Expired - Lifetime EP1063470B1 (fr) 1999-06-19 2000-06-17 Procédé et dispositif pour la purification thermique d'un gaz d'échappement

Country Status (3)

Country Link
EP (1) EP1063470B1 (fr)
DE (2) DE19928214C2 (fr)
ES (1) ES2276650T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303415A (ja) * 2001-04-03 2002-10-18 Chugai Ro Co Ltd 蓄熱燃焼式排ガス処理装置での高沸点物質の除去方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10149807B4 (de) * 2001-10-09 2007-12-27 Herhof Verwaltungsgesellschaft Mbh Verfahren und Vorrichtung zum Reinigen von Abgasen, die heizwerthaltige Substanzen, insbesondere Schadstoffpartikel und/oder Geruchspartikel, enthalten
DE102006034032B4 (de) * 2006-07-22 2019-10-17 Dürr Systems Ag Thermische Abgasreinigungsvorrichtung und Verfahren zur thermischen Abgasreinigung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1259150B (it) * 1992-09-07 1996-03-11 Orv Spa Termodistruttore perfezionato
EP0702195A3 (fr) * 1994-08-17 1997-05-14 Grace W R & Co Distributeur d'air annulaire pour système d'oxydation thermique à régénération de chaleur
AT402697B (de) * 1995-08-17 1997-07-25 Schedler Johannes Verfahren zur thermischen abreinigung von regenerativen nachverbrennungsanlage ohne schastoffreisetzung und ohne unterbrechung des hauptgasstrommes
DE19611226C1 (de) * 1996-03-21 1997-10-02 Fhw Brenntechnik Gmbh Vorrichtung zur thermischen Abgasbehandlung, insbesondere von oxidierbaren Schwelgasen
DE19617790A1 (de) * 1996-05-03 1997-11-13 Freimut Joachim Marold Verfahren und Vorrichtung zur regenerativen Nachverbrennung und schaltbarer Verteiler für Fluide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303415A (ja) * 2001-04-03 2002-10-18 Chugai Ro Co Ltd 蓄熱燃焼式排ガス処理装置での高沸点物質の除去方法

Also Published As

Publication number Publication date
ES2276650T3 (es) 2007-07-01
DE19928214A1 (de) 2000-12-28
EP1063470A3 (fr) 2001-10-24
DE19928214C2 (de) 2001-09-13
DE50013827D1 (de) 2007-01-18
EP1063470A2 (fr) 2000-12-27

Similar Documents

Publication Publication Date Title
EP0714428B1 (fr) Installation d'elimination thermique de dechets et procede permettant le fonctionnement d'une installation de ce type
DE4236785C2 (de) Durchlaufofen
EP0218047B1 (fr) Dispositif de régénération d'un filtre à suie
DE69530296T2 (de) Hochtemperatur gasgenerator
EP0839301B1 (fr) Procede d'incineration de materiaux a traiter thermiquement
EP0666412A1 (fr) Méthode pour refroidir l'air de refroidissement pour une turbine à gaz
EP1063470B1 (fr) Procédé et dispositif pour la purification thermique d'un gaz d'échappement
DE102006058696B4 (de) Vorrichtung zur regenerativen Nachverbrennung von klebrigen Schadstoffpartikeln in Abgas und Verfahren zum Betreiben einer solchen
EP0617231A1 (fr) Brûleur à évaporation de mazout et procédé pour sa mise en oeuvre
DE102007005331A1 (de) Dynamischer Wärmespeicher sowie Verfahren zum Speichern von Wärme
EP0830814A2 (fr) Four de cuisson continu
DE102015003856A1 (de) Vorrichtung zur Temperierung von Gegenständen
DE2809567A1 (de) Verfahren und vorrichtung zum thermischen regenrieren von beladenem aktivkoks- oder aktivkohlegranulat
EP1182413B1 (fr) Procédé pour le traitement de bandes continues
EP0498257A2 (fr) Procédé et dispositif pour le chauffage d'un four rotatif de carbonisation
EP0797063A2 (fr) Procédé et système modulaire de chauffage d'un four industriel avec des brûleurs à régénérateur
EP1771683B1 (fr) Dispositif de postcombustion thermique et procede d'exploitation correspondant
EP0049328B1 (fr) Dispositif de récupération de chaleur des gaz d'échappement de plusieurs installations
EP4327039A1 (fr) Installation de traitement de pièces et procédé de production et de fonctionnement d'une telle installation de traitement de pièces
DE2656616A1 (de) Vorrichtung zum erhitzen von zur glasschmelze bestimmten rohmaterialien
DE60105561T2 (de) Vorrichtung zur zufuhr von brennstoff und verbrennungsluft zu einer oder mehreren gruppen von brennern
EP0391146A1 (fr) Installation de combustion pour brûler un matériau de combustion, en particulier des ordures
DE102022206343B3 (de) Holzbefeuerter Backofen
DE4418885A1 (de) Rostkühler für Brenngut und Verfahren zum Betrieb desselben
DE19926405C2 (de) Verfahren zur thermischen Regeneration des Wärmetauschermaterials einer regenerativen Nachverbrennungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): DE ES GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SIMON, RAINER

Inventor name: HAENEL, MATTHIAS

Inventor name: SPECK, ULRICH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020424

AKX Designation fees paid

Free format text: DE ES GB IT

17Q First examination report despatched

Effective date: 20050224

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50013827

Country of ref document: DE

Date of ref document: 20070118

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070307

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2276650

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090624

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090618

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090627

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100617

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110705

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100618