EP1063275B1 - Wasserstoffbehandlungsverfahren von Mitteldistillat in zwei Stufen mit Zwichenstrippung - Google Patents

Wasserstoffbehandlungsverfahren von Mitteldistillat in zwei Stufen mit Zwichenstrippung Download PDF

Info

Publication number
EP1063275B1
EP1063275B1 EP00401673A EP00401673A EP1063275B1 EP 1063275 B1 EP1063275 B1 EP 1063275B1 EP 00401673 A EP00401673 A EP 00401673A EP 00401673 A EP00401673 A EP 00401673A EP 1063275 B1 EP1063275 B1 EP 1063275B1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
stripping
zone
process according
effluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00401673A
Other languages
English (en)
French (fr)
Other versions
EP1063275A1 (de
Inventor
Charles Bronner
Gérald Heinrich
Cécile Plain
Laurence Carpot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1063275A1 publication Critical patent/EP1063275A1/de
Application granted granted Critical
Publication of EP1063275B1 publication Critical patent/EP1063275B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/007Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 in the presence of hydrogen from a special source or of a special composition or having been purified by a special treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/08Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons

Definitions

  • the present invention relates to the hydrotreatment of hydrocarbon fractions and, for example, middle distillates to produce hydrocarbon fractions with a low content of sulfur, nitrogen and aromatic compounds which can be used in particular in the field of fuels for internal combustion engines.
  • These hydrocarbon fractions include jet fuel, diesel fuel, kerosene and gas oils.
  • the invention relates more particularly to the manufacture of a fuel for compression ignition engine.
  • the invention relates to a process for converting a middle distillate, and more particularly a diesel fuel fraction, in order to produce a fuel with a high cetane number, deflavored and desulphurized.
  • the gasoil cuts whether they come from the direct distillation of a crude oil or from the catalytic cracking process, still contain significant amounts of aromatic compounds, nitrogen compounds and sulfur compounds.
  • engine fuel must contain less than about 500 parts per million by weight (ppm) of sulfur.
  • ppm parts per million by weight
  • Class II diesel fuel in this country must not contain more than 50 ppm of sulfur and more than 10% by volume of aromatic compounds, and that of Class I must contain more than 10 ppm sulfur and 5% by weight. volume of aromatic compounds.
  • Class III diesel fuel must contain less than 500 ppm sulfur and less than 25% by volume of aromatic compounds. Similar limits are also to be respected for the sale of this type of fuel in California.
  • the start of the unit is facilitated when using an oven to adjust the temperature of the feedstock into the second reactor.
  • US-A-5,114,562 discloses a process for the hydrotreatment of a middle distillate in at least two consecutive steps in order to produce desulfurized and deflavored hydrocarbon cuts comprising a first hydrodesulfurization step whose effluent is sent to a stripping zone with hydrogen in order to eliminate the hydrogen sulphide that it contains, then the desulfurized liquid fraction obtained is sent to a second so-called hydrogenation zone comprising at least two reactors operating in series in which the aromatic compounds are hydrogenated.
  • the hydrogen used in the stripping zone is the additional hydrogen necessary for the process, and the hydrocarbon compounds entrained during stripping are, after condensation by cooling, reintroduced into the first hydrodesulfurization stage.
  • the gas, separated from the hydrocarbon compounds at the condensation stage, is treated by washing with an amine solution which makes it possible to eliminate the hydrogen sulphide that it contains and is then sent to the second so-called hydrogenation zone, then the effluent leaving the hydrogenation zone is separated into a desired liquid fraction and a gas fraction that is mixed with the fresh feedstock at the inlet of the first hydrodesulfurization step.
  • This way of operating has several disadvantages.
  • the hydrocarbons entrained at the top of the stripper which are light compounds and that the hydrodesulfurization step is recycled in this step and thus cause a decrease in the hydrogen partial pressure which is not favorable to good hydrodesulfurization.
  • another disadvantage is the need to have a recycling pump which increases the cost of the investment and operation of the whole.
  • US-A-5,110,444 discloses a process comprising hydrotreating a middle distillate in at least three distinct steps.
  • the effluent from the first hydrodesulphurization stage is sent to a hydrogen stripping zone to remove the hydrogen sulphide that it contains, and then the desulphurized liquid fraction obtained is sent to a first hydrogenation zone whose The effluent is in turn sent to a second stripping zone distinct from the stripping zone following the hydrodesulfurization step. Finally, the liquid portion from the second stripping zone is sent to a second hydrogenation zone.
  • the light hydrocarbons entrained at the top of the first stripper with hydrogen are recycled in the hydrodesulfurization step which is unfavorable to the good efficiency of this step since these compounds by vaporizing reduce the partial pressure of hydrogen. Moreover, this recycling involves the compulsory use of a recycling compressor which increases the cost of the investment and operation of the whole.
  • the present invention presents a solution that makes it possible to overcome, to a large extent, the disadvantages of the processes of the prior art.
  • information of the interior art and in particular that of the documents cited in the text of the present invention is an integral part of the knowledge of those skilled in the art of which all the characteristics must be considered as included in the present description.
  • the present invention therefore relates to a process for the hydrotreatment of a hydrocarbon fraction such as, for example, a middle distillate, and in particular for the conversion of a diesel fuel fraction to produce a fuel with a high cetane number, deflavored and desulfurized in at least two successive stages. It also relates to the fuel obtained by said process.
  • a hydrocarbon fraction such as, for example, a middle distillate
  • middle distillate refers to hydrocarbon fractions boiling in the range of about 130 ° C to about 385 ° C, often about 140 ° C to about 375 ° C and most often about 150 ° C to about 300 ° F. about 370 ° C determined according to the appropriate ASTM method.
  • the process of the present invention may also find application in the treatment of hydrocarbon fractions having a boiling point in the naphtha range.
  • This process can be used to produce hydrocarbon cuts that can be used as a solvent, as an additive or as fuels preferably containing a reduced content of aromatic compounds.
  • kerosene means a fraction hydrocarbon boiling in the range 130 ° C to 250 ° C.
  • diesel fuel as used herein means a hydrocarbon fraction boiling in the range from 230 ° C. to 385 ° C.
  • naphtha as used herein means a hydrocarbon fraction ranging from C5 to a final boiling point of about 210 ° C.
  • diesel denotes a hydrocarbon fraction boiling in the range 230 ° C. to 420 ° C. or heavier fractions boiling in the range 420 ° C. to 525 ° C.
  • jet fuel denotes a hydrocarbon fraction boiling in the range 130 ° C. to 290 ° C.
  • the hydrocarbon fraction which is preferably used in the present process is an initial boiling point fraction greater than about 150 ° C and having a boiling point of 90% distilled fraction, most often less than about 370 ° C. vs. This fraction usually contains nitrogen as organo-nitrogen compounds in an amount most often from about 1 ppm to about 1% by weight.
  • It also contains sulfur in the form of sulfur-containing organic compounds in an amount usually greater than about 0.1% by weight and often from about 0.15 to about 5% by weight and most often from about 0.5 to about 3.5% by weight.
  • the content of mono and / or polynuclear aromatic compounds is usually greater than about 10% by volume and often greater than about 20% by volume and usually less than about 60% by volume and often less than about 50% by volume.
  • hydrogen and hydrogen sulfide is sent to a cooling means, in which it is cooled at a temperature sufficient to form a hydrocarbon liquid fraction which is sent at least partly into the stripping zone and a hydrocarbon-depleted gas fraction that is sent, mixed with all the partially deflavored effluent from step c, in an elimination zone of the hydrogen sulphide it contains and from which purified hydrogen and a partially desulphurized and deflavored hydrocarbon liquid fraction are recovered.
  • the stripping gas is a fraction of the makeup hydrogen used in the process of the invention.
  • This fraction of the makeup hydrogen usually represents less than 90% by volume of the total makeup hydrogen used in the process, often less than 60% and most often from about 1% to about 50%.
  • the purification of hydrogen from the gaseous mixture containing hydrogen and hydrogen sulfide from the stripping zone is usually carried out according to one or the other of the conventional techniques well known to those skilled in the art and in particular by pretreating said gaseous mixture with a solution of at least one amine under conditions permitting the removal of hydrogen sulfide by absorption, said amine being most often selected from the group consisting of monoethanolamine, diethanolamine, diglycolamine, diisopropylamine, and methyldiethanolamine.
  • the gaseous mixture will be brought into contact with a basic solution, preferably an aqueous solution of an amine selected from the group mentioned above, which forms, with hydrogen sulfide, a compound of addition which makes it possible to obtain a purified gas containing proportions of hydrogen sulphide well below 500 ppm by weight and often below about 100 ppm by weight. Most often the amount of hydrogen sulfide remaining is less than about 50 ppm by weight and very often less than about 10 ppm by weight.
  • This method of purifying the gas mixture is a conventional method well known to those skilled in the art and widely described in the literature.
  • treatment with an aqueous amine solution is usually carried out at a temperature of about 10 ° C to about 100 ° C and often about 20 to about 70 ° C.
  • the amount of amine used is such that the molar ratio of hydrogen sulfide to amine is from about 0.1: 1 to about 1: 1 and often from about 0.3: 1 to about 0.8: 1 and
  • the pressure at which absorption by the amine solution of the hydrogen sulfide is carried out is usually from about 0.1 MPa to about 50 MPa, often from about 1 MPa to about 25 MPa and most often from about 1 MPa to about 10 MPa.
  • the regeneration of the amine solution is conventionally carried out by variation of pressure.
  • absorption step in a hydrogen sulphide adsorption zone comprising at least one reactor and often at least two adsorption reactors containing for example a preferably regenerable sieve or for example zinc oxide and operating by at a temperature of from about 10 ° C to about 400 ° C, and often from about 10 ° C to about 100 ° C and most often from about 20 ° C to about 50 ° C under a total pressure of 100 ° C.
  • the adsorption zone comprises two reactors, one reactor is used to treat the gas while the other is in the course of regeneration or replacement of the material that it contains allowing the drying and the desulfurization of the mixture. gaseous entering said zone.
  • the content of hydrogen sulphide in the gas is usually less than 1 ppm by weight and often of the order of a few tens of ppb by weight.
  • the gaseous effluent formed in the stripping step is cooled by at least one cooling means located inside the stripping zone near the outlet of said gaseous effluent from said stripping zone.
  • the gaseous effluent formed in the stripping step is cooled by at least one cooling means located outside the stripping zone and is at least partially condensed, the liquid obtained is then at least less partly returned to the stripping zone.
  • the gaseous effluent formed in the stripping step is cooled by at least one cooling means, at least part of the liquid hydrocarbon fraction obtained is returned to the stripping zone and optionally at least another part is sent in admixture with the hydrocarbon feedstock in step a) hydrodesulfurization.
  • the substantially pure hydrogen recovered after the stripping step is recycled to the stripping zone at at least one point of introduction located between the point of introduction of a portion of the hydrogen-containing gas used for stripping. and the point of introduction of the effluent of hydrodesulfurization step a) into said stripping zone.
  • the substantially pure hydrogen recovered after the stripping step is recycled directly and / or after mixing with the feedstock in the hydrodesulfurization zone of step a).
  • the substantially pure hydrogen, and preferably previously dried and deeply desulphurized, recovered after the stripping step is recycled directly and / or after mixing with the liquid effluent of the stripping zone and with the additional hydrogen in the hydrotreatment zone of step c).
  • step c) of hydrotreatment if it is not desired to carry out drying on all of the substantially pure hydrogen recovered from the hydrogen sulfide removal zone, it is advantageous to carry out drying and deep desulphurization of the hydrogen that is desired to be recycled in step c) of hydrotreatment.
  • the operating conditions of steps a) and c) are chosen as a function of the characteristics of the feed which may be a straight-run diesel fuel cut, a diesel fuel cut from catalytic cracking or a cut. diesel fuel from the coking or the viscosity of residues or a mixture of two or more of these cuts. They are usually chosen so as to obtain a product at the leaving step a) containing less than 100 ppm of sulfur and less than 200 ppm of nitrogen, preferably less than 100 ppm of nitrogen and most often less than 50 ppm of nitrogen and the conditions of the step c) are chosen so as to obtain a product, at the outlet of said step c), containing less than 20% by volume of aromatic compounds.
  • the conditions of step a) comprise a temperature of about 300 ° C to about 450 ° C, a total pressure of about 2 MPa to about 20 MPa and a global hourly space velocity of liquid charge d. about 0.1 to about 4 and that of step b) a temperature of about 200 ° C to about 400 ° C, a total pressure of about 3 MPa to about 15 MPa and a global hourly space velocity of charge liquid from about 0.5 to about 10.
  • the catalyst employed in step a) contains on a mineral support at least one metal or metal compound of group VIB of the periodic table of elements in an amount expressed by weight of metal relative to the weight of the finished catalyst, usually about 0.5 to 40%, at least one metal or group VIII metal compound of said periodic classification in an amount expressed by weight of metal relative to the weight of the finished catalyst usually from about 0.1 to 30%.
  • the catalyst used will contain at least one element selected from the group consisting of silicon, phosphorus and boron or compounds of this or these elements.
  • the catalyst will contain, for example, phosphorus or at least one phosphorus compound in an amount expressed by weight of phosphorus pentoxide with respect to the weight of the support of approximately 0.001 to 20%.
  • the amount of metal or group VIB metal compound expressed in weight of metal relative to the weight of the finished catalyst will preferably be about 2 to 30% and most often about 5 to 25% and that of the metal or the Group VIII metal compound will preferably be from about 0.5 to 15% and most often from about 1 to 10%.
  • step a1) When it is desired to remain in a relatively low pressure range while wishing to obtain excellent results, it is possible to perform a first step a1) under conditions making it possible to reduce the sulfur content of the product to a value of about 500 to 800 ppm and then send this product to a subsequent step a2) in which the conditions will be chosen to reduce the sulfur content to less than about 100 ppm, preferably less than about 50 ppm and the product from this step a2) is then sent to step b).
  • the conditions of step a2) are milder than when for a given load one operates in a single step a) since the product sent in this step a2) already has a greatly reduced sulfur content.
  • the catalyst of step a1) can be a conventional catalyst of the prior art such as for example that described in the text of the patent applications on behalf of the applicant FR-A-2197966 and FR-A- A-2538813 and that of step a2) is that described above for step a). It is not within the scope of the present invention using the same catalyst in steps a1) and a2).
  • the mineral support of the catalyst is preferably chosen from the group formed by alumina, silica, silica-aluminas, zeolites and mixtures of at least two of these compounds. minerals.
  • Alumina is very commonly used.
  • the catalyst of these steps a), a1), a2) will comprise at least one metal or a metal compound selected from the group consisting of molybdenum and tungsten and at least one metal or a metal compound selected from the group consisting of nickel, cobalt and iron. Most often this catalyst contains molybdenum or a molybdenum compound and at least one metal or a metal compound selected from the group consisting of nickel and cobalt.
  • the catalyst of these steps a), a1), a2) will comprise boron or at least one boron compound preferably in an amount expressed by weight of boron trioxide relative to the weight of the support from about 0 to 10%.
  • the catalyst will comprise for example silicon or a silicon compound, or a combination of silicon and boron or compounds of each of these elements possibly associated with phosphorus or to a phosphorus compound.
  • Ni-Mo-P Ni-Mo-PB, Ni-Mo-Si, Ni-Mo-Si -B, Ni-Mo-P-Si Ni-Mo-Si-BP, Co-Mo-P, Co-Mo-PB, Co-Mo-Si, Co-Mo-Si-B, Co-Mo-P- Si, Co-Mo-Si-BP, Ni-WP, Ni-WPB, Ni-W-Si, Ni-W-Si-B, Ni-WW-P-Si, Ni-W-Si-BP, WP, Co-WPB, Co-W-Si, Co-W-Si-B, Co-WP-Si, Co-W-Si-BP, Ni-Co-Mo-P, Ni-Co-Mo-PB, Ni-Co-Mo-Si, Ni-Co-Mo-Si-B, Ni-Co-Mo-Si-BP, Ni-Co-Mo-P, Ni-Co-M
  • the catalyst employed in step c) contains on a mineral support at least one noble metal or noble metal compound of group VIII of the periodic table of elements in an amount expressed by weight of metal relative to the weight of the finished catalyst of about 0.01 to 20% and preferably at least one halogen.
  • the inorganic support of the catalyst employed in step c) is chosen independently of the support used for the catalyst of step a). Most often the catalyst of step c) comprises at least one metal or a noble metal compound selected from the group consisting of palladium and platinum.
  • the inorganic support of the catalyst employed in step c) is usually selected from the group consisting of alumina, silica, silica-aluminas, zeolites and mixtures of at least two of these mineral compounds.
  • This support will preferably comprise at least one halogen chosen from the group formed by chlorine, fluorine, iodine and bromine and preferably from the group formed by chlorine and fluorine. In an advantageous embodiment, this support will comprise chlorine and fluorine.
  • the amount of halogen will most often be from about 0.5 to about 15% by weight based on the weight of the support.
  • the most commonly used support is alumina.
  • Halogen is usually introduced onto the support from the corresponding acid halides and platinum or palladium from aqueous solutions of their salts or compounds such as for example hexachloroplatinic acid in the case of platinum.
  • the hydrocarbon feedstock arriving via line 1 is mixed with substantially pure hydrogen arriving via lines 42, 42a and 26, and this mixture is introduced via line 6 into reactor R1 after exchanging heat with the effluent. of the reactor R1 in the exchanger EC1 and have been preheated in the furnace F1. Hydrogen arriving via the lines 42 and 42a is introduced into the reactor R1 via the line 27 as cooling gas (quench).
  • the effluent leaving the reactor R1 is sent after heat exchange in the exchanger EC1 with the hydrocarbon feedstock via line 7 in the extractor S1 (denominated by those skilled in the art by the Anglo-Saxon term stripper) in which it is purified by a portion of the additional hydrogen arriving via lines 2 and 4.
  • the substantially pure hydrogen recycling is also introduced in the extractor S1 by the lines 42 and 25.
  • the gaseous effluent leaving the extractor S1 via the line 28 exchanges heat in the exchanger EC4 located on the line 5 with a mixture of hydrogen recycled by the line 24 and of additional hydrogen introduced via lines 2, 3 and 5.
  • Said mixture is then introduced via line 9 into reactor R2.
  • the condensed hydrocarbon liquid fraction entering via the line 28 into the separator flask B1 exits via the line 29 and is returned using the pump P1 via the line 30 in part in the extractor S1 and possibly via the line 36 through the valve V36 and the line 6 partly in the reactor R1.
  • the liquid fraction exiting the extractor S1 passes through the level regulating valve V1, then is sent via lines 8 and 9, after mixing with hydrogen arriving via line 5, exchanging heat in the exchanger EC2 with the effluent leaving reactor R2 by line 10 and after having been reheated in furnace F2 enters reactor R2. If the pressure of the fluid exiting the extractor S1 through the line 8 is less than that prevailing in the reactor R2, a pump will be used to adjust this pressure to a level at least equal to that of the pressure in the reactor R2 . Hydrogen arriving via the lines 22, 22a, 22b and 23 is introduced into the reactor R2 as a cooling gas (quench).
  • the gaseous effluent leaving the separator tank B1 via the line 11 passes through the pressure regulating valve V2 and is then mixed with the effluent from the reactor R2 arriving via line 10, before being sent via lines 12 and 14 after mixing. with washing water arriving via line 13 and heat exchange in exchanger EC3 in a separating flask B2 from which an aqueous fraction is recovered via line 15, line 16 a hydrocarbon liquid fraction constituting the partially desulphurized effluent and deflavored desired and line 17 a gaseous fraction containing hydrogen and hydrogen sulfide, a portion of which may optionally be purged by the line 18 which comprises a valve V18 (not shown in the figures, allowing the the purge flow rate, the hydrogen leakage is the minimum purge counted on line 18) and another part, or all of it when there is no purge, is sent by the line 19 in the absorber S2 of at least partial removal of the hydrogen sulphide in which an absorption solution is introduced via the line 20 and recovered by the line 21.
  • lines 22 and 22a is recovered at least a portion purified hydrogen that can be sent through the flow control valve V3 in the drying-desulfurizing zone SE1 and then recycled to the reactor R2 via the lines 22b and 23.
  • Another part of the purified hydrogen recovered by the line 22 is sent via the lines 42 and 25 through the flow control valve V4 into the extractor S1 and / or through the lines 42, 42a, 26 and 6 into the reactor R1.
  • the line 42a usually comprises a valve V40 (not shown in the figures) for regulating the flow rate of the purified hydrogen that is sent into the reactor R1.
  • the possible recycling of the hydrogen leaving the adsorber S2 to be sent into the reactor R2 through the lines 22, 22a, 22b and 23 and / or 22, 22a, 24 and 5 requires the use of a compressor to adjust the pressure to a level at least equal to the pressure level prevailing in this reactor R2. It is the same for the hydrogen leaving the absorber S2 which is optionally recycled in the extractor S1 and / or in the reactor R1. It is therefore possible to use a single compressor to obtain a gas at the pressure required for the various recycling considered. In this case, this compressor will be located near the adsorber S2 on the line 22. It is also possible to provide the use of two compressors, one located on line 22b and the other located on line 42.
  • FIG. 2 illustrates the comparative case where only a part of the effluent leaving reactor R2 via line 10 is cooled in heat exchanger EC2; another part is sent via line 31 after mixing with the part having exchanged heat by line 32 in the hot separator B3 from which a gas is recovered via the line 34 which is mixed with the gas arriving via the line 11 and the line 33 a hydrocarbon liquid fraction constituting part of the partially desulfurized effluent and desired deflavored that is mixed with the hydrocarbon fraction leaving the separator tank B2 by line 16 to obtain the desired partially desulphurized and deflavored effluent that is recovered via line 35.
  • Figure 3 illustrating the prior art is to be directly compared to the diagram of Figure 1 illustrating the present invention which it differs in two essential points.
  • the extractor S1 used does not include a recovery tank of a liquid fraction and therefore it is not reintroduced in this extractor heavy hydrocarbons that are entrained in the gas leaving the top of the extractor S1. Since there is no recovery of the heavy hydrocarbons entrained at the top of the extractor S1, there is consequently no introduction of a fraction of these heavy hydrocarbons into the reactor R1.
  • the feedstock arriving via line 1 is mixed with the recycling gas of line 26, the whole being introduced into reactor R1 via line 6, at a pressure of 6.6 MPa and a temperature of 330.degree. C, after being heated in the exchanger EC1 and the furnace F1.
  • the increase in temperature in the reactor is limited to a range of 20 ° C using the hydrogen quench gas arriving through the line 27.
  • the reactor effluent R1 is sent via line 7, after cooling in exchanger EC1, to the head plate of the hydrogen stripper S1.
  • the overhead product of the hydrogen extractor is cooled, the cooling interval is 55 ° C, and is passed through line 28 into the flask B1.
  • This liquid charge is controlled by the level control valve V1, then it is mixed with the additional hydrogen of the line 3 and the recycling hydrogen of the line 24.
  • This mixture is sent to the reactor R2 through the exchanger EC2 and the furnace F2 via line 9 to reach the required temperature at the reactor inlet.
  • the temperature increase in the reactor R2 is controlled by the injection of a quench hydrogen gas via the line 23.
  • An amine solution, low in hydrogen sulfide, is sent to the top of the wash column through line 20, while the hydrogen sulfide rich solution is passed through line 21 to an amine regeneration section.
  • the final product has the following properties :
  • the vapor phase of the flask B3, line 34 is mixed in line 12 with the overhead product of the hydrogen extractor, line 11. In this mixture, before the exchanger EC3, a certain amount of washing water to remove ammonium sulphide formed in the reactors. After partial condensation in the exchanger EC3, the three phases in the presence are separated in the flask B2.
  • the hydrocarbon phase, line 16 is mixed in the line 35 with the liquid of the flask B3, line 33, to constitute the product of the process which is sent to a subsequent treatment for the extraction of residual hydrogen sulphide and elimination of the fractions. light.
  • the aqueous phase is withdrawn via line 15 to be sent to the water treatment.
  • the vapor phase leaves the ball B2 by the line 17 it is treated as described in connection with Figure 1 ci in front.
  • the final product has the following properties :
  • the final product has the following properties :

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Claims (18)

  1. Hydrierungsverfahren für eine Kohlenwasserstoffcharge, die schwefelhaltige Verbindungen, stickstoffhaltige Verbindungen und aromatische Verbindungen enthält, das die folgenden Schritte umfasst:
    a) mindestens einen ersten Schritt, bei dem die Charge und Wasserstoff einen Bereich zur hydrierenden Entschwefelung durchlaufen, der mindestens einen Katalysator für die hydrierende Entschwefelung umfasst, der auf einem anorganischen Trägermaterial mindestens ein Metall oder mindestens eine Metallverbindung der Gruppe VIB des Periodensystems der Elemente umfasst, wobei die Zone unter Bedingungen für die hydrierende Entschwefelung gehalten wird, die eine Temperatur von etwa 260 °C bis etwa 450 °C und einen Druck von etwa 2 MPa bis etwa 20 MPa umfassen,
    b) mindestens einen zweiten Schritt, bei dem die teilweise entschwefelte Charge aus dem Schritt der hydrierenden Entschwefelung durch Strippen im Gegenstrom durch mindestens ein wasserstoffhaltiges Gas gereinigt wird bei einem Druck, der im wesentlichen identisch ist mit dem im ersten Schritt herrschenden Druck und bei einer Temperatur von etwa 100 °C bis etwa 350°C; wobei die Bedingungen derart sind, dass sich ein gasförmiges Stripperprodukt bildet, das Wasserstoff und Schwefelwasserstoff enthält, und eine flüssige Charge, die im wesentlichen keinen Schwefelwasserstoff mehr enthält,
    c) mindestens einen dritten Schritt, bei dem die flüssige Charge aus dem Strippschritt nach Zufügen von zusätzlichem, im wesentlichen reinem Wasserstoff, und im Kreislauf geführtem Wasserstoff in eine Hydrierungszone geführt wird, die einen Hydrierungskatalysator umfasst, der auf einer anorganischen Trägersubstanz mindestens ein Edelmetall oder mindestens eine Edelmetallverbindung der Gruppe VIII umfasst, wobei die Zone auf Hydrierungsbedingungen gehalten wird, die es erlauben, ein teilweise desaromatisiertes Produkt zu erhalten,
    wobei der in der Strippzone gebildete gasförmige Strom, der unter den Bedingungen der Stripzone gasförmige Kohlenwasserstoffe, Wasserstoff und Schwefelwasserstoff enthält einem Kühlmittel zugeführt wird, in dem er auf eine ausreichende Temperatur abgekühlt wird, um eine flüssige Kohlenwasserstofffraktion zu bilden, die mindestens zum Teil in die Stripzone geführt wird, und eine gasförmige Fraktion, die an Kohlenwasserstoffen abgereichert ist, und die, gemischt mit dem gesamten teilweise desaromatisierten Produkt aus Schritt c) in eine Zone geführt wird, in der Schwefelwasserstoff, den sie enthält, eliminiert wird und daraus gereinigter Wasserstoff und eine flüssige Kohlenwasserstofffraktion gewonnen wird, die teilweise entschwefelt und desaromatisiert ist.
  2. Verfahren nach Anspruch 1, wobei das flüssige Produkt aus der Strippung nach Zufügen von zusätzlichem, im wesentlichen reinem Wasserstoff, und im Kreislauf geführtem Wasserstoff in eine Hydrierungszone geführt wird, die einen Hydrierungskatalysator umfasst, der auf einer anorganischen Trägersubstanz mindestens ein Edelmetall oder mindestens eine Edelmetallverbindung der Gruppe VIII umfasst, nachdem es durch direkten Wärmeaustausch auf eine Temperatur von etwa 220 °C bis etwa 360 °C und einen Druck von etwa 2 MPa bis etwa 20 MPa gebracht wird, wobei die Zone unter Bedingungen für die Hydrierung gehalten wird, die es erlauben, ein teilweise desaromatisiertes Produkt zu erhalten.
  3. Verfahren nach Anspruch 1 oder 2, wobei eine Fraktion des zusätzlich zugefügten Wasserstoffs im Stripschritt b) als wasserstoffhaltiges Stripgas verwendet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Betriebsbedingungen des Schrittes a) so gewählt werden, dass ein Produkt erhalten wird, das weniger als 100 ppm Schwefel und weniger als 200 ppm Stickstoff enthält, und die Bedingungen des Schrittes c) wo gewählt sind, dass ein Produkt erhalten wird, das weniger als 20 Volumenprozent aromatische Verbindungen enthält.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das gasförmige Produkt, das im Stripschritt gebildet wird, in der Nähe des Austritts des gasförmigen Produkts aus der Stripzone mit mindestens einem Kühlmittel gekühlt wird, das innerhalb der Stripzone angeordnet ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das gasförmige Produkt, das im Stripschritt gebildet wird, mit mindestens einem Kühlmittel gekühlt wird, das außerhalb der Stripzone angeordnet ist, und mindestens teilweise kondensiert wird, wobei die erhaltene Flüssigkeit in die Stripzone zurückgeführt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, wobei mindestens ein Teil des Wasserstoffs, der am Austritt der Zone, in der Schwefelwasserstoff, der im Wasserstoff enthalten ist daraus entfernt wird erhalten wird in eine Zone der entschwefelnden Trocknung geführt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei mindestens ein Teil des im wesentlichen reinen Wasserstoffs, der nach dem Stripschritt erhalten wird, an mindestens einem Einführungspunkt in die Stripzone zurückgeführt wird , wobei der Einführungspunkt zwischen dem Einführungspunkt eines Teil des wasserstoffhaltigen Gases, das für das Strippen verwendet wird und dem Einführungspunkt des im Schritt der hydrierenden Entschwefelung a) erhaltenen Produktes liegt.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei mindestens ein Teil des im Wesentlichen reinen Wasserstoffs, der nach dem Stripschritt wiedergewonnen wird, direkt und oder nach Mischen mit der Charge in die Zone der hydrierenden Entschwefelung des Schrittes a) zurückgeführt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, wobei mindestens ein Teil des im Wesentlichen reinen Wasserstoffs, der nach dem Stripschritt wiedergewonnen wird, direkt und/ oder nach Mischen mit dem flüssigen Produkt der Stripzone und mit dem zusätzlich zugefügten Wasserstoff in die Hydrierungszone des Schrittes c) zurückgeführt wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10, wobei der Katalysator des Schrittes a) mindestens ein Metall oder mindestens eine Metallverbindung umfasst, das in der Gruppe gewählt ist, die durch Molybdän und Wolfram gebildet wird, und mindestens ein Metall oder mindestens eine Metallverbindung, die aus der Gruppe gewählt ist, die von Nickel, Kobalt und Eisen gebildet wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11, wobei der Katalysator des Schrittes a) zusätzlich mindestens ein Element umfasst, das in der Gruppe gewählt wird, die von Silizium, Phosphor und Bor gebildet wird, oder eine oder mehrere Verbindungen dieses oder dieser Elemente.
  13. Verfahren nach einem der Ansprüche 1 bis 12, wobei der Katalysator des Schritts a) außerdem Phosphor oder mindestens eine Phosphorverbindung enthält.
  14. Verfahren nach einem der Ansprüche 1 bis 13, wobei der Katalysator des Schritts a) außerdem Bor oder mindestens eine Borverbindung enthält.
  15. Verfahren nach einem der Ansprüche 1 bis 14, wobei der Katalysator des Schritts a) außerdem Silizium oder mindestens eine Siliziumverbindung enthält.
  16. Verfahren nach einem der Ansprüche 1 bis 15, wobei das Trägermaterial der Katalysatoren, die im Schritt a) und im Schritt c) verwendet werden, unabhängig voneinander gewählt werden in der Gruppe, die aus Aluminiumoxyd, Silikat, Alumosilikaten, Zeolithen und Mischungen mindestens zweier dieser anorganischen Verbindungen gebildet wird.
  17. Verfahren nach einem der Ansprüche 1 bis 16, wobei das Trägermaterial des Katalysators des Schrittes c) mindestens ein Halogen umfasst, das vorzugsweise in der Gruppe gewählt wird, die von Chlor und Fluor gebildet wird.
  18. Verfahren nach einem der Ansprüche 1 bis 17, wobei der Katalysator des Schrittes c) mindestens ein Edelmetall, das aus der Gruppe gewählt ist, die aus Palladium und Platin gebildet wird, oder mindestens eine Verbindung eines solchen Edelmetalls umfasst.
EP00401673A 1999-06-25 2000-06-14 Wasserstoffbehandlungsverfahren von Mitteldistillat in zwei Stufen mit Zwichenstrippung Expired - Lifetime EP1063275B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9908277 1999-06-25
FR9908277A FR2795420B1 (fr) 1999-06-25 1999-06-25 Procede d'hydrotraitement d'un distillat moyen dans deux zones successives comprenant une zone intermediaire de stripage de l'effluent de la premiere zone avec condensation des produits lourds sortant en tete du strippeur

Publications (2)

Publication Number Publication Date
EP1063275A1 EP1063275A1 (de) 2000-12-27
EP1063275B1 true EP1063275B1 (de) 2006-08-02

Family

ID=9547412

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00401673A Expired - Lifetime EP1063275B1 (de) 1999-06-25 2000-06-14 Wasserstoffbehandlungsverfahren von Mitteldistillat in zwei Stufen mit Zwichenstrippung

Country Status (9)

Country Link
US (1) US6623628B1 (de)
EP (1) EP1063275B1 (de)
JP (1) JP2001031981A (de)
KR (1) KR100730969B1 (de)
AR (1) AR024445A1 (de)
BR (1) BR0002861B1 (de)
DE (1) DE60029686T2 (de)
ES (1) ES2269079T3 (de)
FR (1) FR2795420B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10273420B2 (en) 2014-10-27 2019-04-30 Uop Llc Process for hydrotreating a hydrocarbons stream

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020148757A1 (en) * 2001-02-08 2002-10-17 Huff George A. Hydrotreating of components for refinery blending of transportation fuels
ES2292537T3 (es) * 2001-11-22 2008-03-16 Institut Francais Du Petrole Procedimiento de hidrotratamiento de destilados medios en dos etapas que comprende dos bucles de reciclado de hidrogeno.
ATE359119T1 (de) * 2002-09-23 2007-05-15 Shell Int Research Katalysatorteilchen und ihre verwendung bei der entschwefelung
US7247235B2 (en) 2003-05-30 2007-07-24 Abb Lummus Global Inc, Hydrogenation of middle distillate using a counter-current reactor
EP1853372B1 (de) * 2005-01-21 2012-03-07 ExxonMobil Research and Engineering Company Zweistufige wasserstoffbehandlung von destillaten mit verbesserter wasserstoffverwaltung
EP1853368A1 (de) * 2005-01-21 2007-11-14 Exxonmobil Research And Engineering Company Verbesserte wasserstoffverwaltung für hydrierungsanlagen
CN101163536B (zh) * 2005-01-21 2011-12-07 埃克森美孚研究工程公司 采用精炼工艺单元如加氢处理、加氢裂化的快速循环压力摆动吸附的改进的集成
CN101970608A (zh) * 2007-12-31 2011-02-09 埃克森美孚研究工程公司 用汽提高温分离器的整合的两阶段脱硫/脱蜡
EP2196260A1 (de) * 2008-12-02 2010-06-16 Research Institute of Petroleum Industry (RIPI) Hydroentschwefelungs-Nanokatalysator, dessen Verwendung und Herstellungsverfahren dafür
JP5548257B2 (ja) 2009-04-21 2014-07-16 アルベマール・ユーロプ・エスピーアールエル リンおよびホウ素を含有する水素処理触媒
US20120103873A1 (en) * 2010-11-01 2012-05-03 Axens Procede d'hydrotraitement et/ou d'hydrocraquage de charges azotees avec stripage a l'hydrogene
US8968552B2 (en) 2011-11-04 2015-03-03 Saudi Arabian Oil Company Hydrotreating and aromatic saturation process with integral intermediate hydrogen separation and purification
RU2497585C2 (ru) * 2012-02-06 2013-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный технический университет" Катализатор гидроочистки масляных фракций и рафинатов селективной очистки и способ его приготовления
US9902912B2 (en) 2014-01-29 2018-02-27 Uop Llc Hydrotreating coker kerosene with a separate trim reactor
CN103897731B (zh) * 2014-02-24 2016-01-20 中国海洋石油总公司 一种催化裂化柴油和c10+馏分油混合生产轻质芳烃的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788976A (en) * 1970-03-04 1974-01-29 Sun Oil Co Pennsylvania Multi-stage process for producing high ur oil by hydrogenation
US4954241A (en) * 1988-02-26 1990-09-04 Amoco Corporation Two stage hydrocarbon conversion process
US5110444A (en) * 1990-08-03 1992-05-05 Uop Multi-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons
US5114562A (en) * 1990-08-03 1992-05-19 Uop Two-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons
US5498810A (en) * 1991-11-21 1996-03-12 Uop Selective isoparaffin synthesis from naphtha
FR2736063B1 (fr) * 1995-06-27 1997-08-14 Inst Francais Du Petrole Procede d'hydrogenation d'aromatiques avec injection de chlore sur des catalyseurs a base de metal noble
FR2757532B1 (fr) * 1996-12-20 1999-02-19 Inst Francais Du Petrole Procede de transformation d'une coupe gazole pour produire un carburant a haute indice de cetane, desaromatise et desulfure
US5705052A (en) * 1996-12-31 1998-01-06 Exxon Research And Engineering Company Multi-stage hydroprocessing in a single reaction vessel
EP0892032B1 (de) * 1997-07-18 2002-12-18 ExxonMobil Research and Engineering Company Verfahren zur Herstellung der Produktölen mit Aromaten-anreichung und Zweistüfen- Hydrorraffinierung
US5846405A (en) * 1997-07-18 1998-12-08 Exxon Research And Engineering Company Process oils and manufacturing process for such using aromatic enrichment and two pass hydrofinishing
US5948243A (en) * 1998-02-24 1999-09-07 Phillips Petroleum Company Catalyst comprising aluminum borate and zirconium borate and use thereof in a hydrotreating process
US6036844A (en) * 1998-05-06 2000-03-14 Exxon Research And Engineering Co. Three stage hydroprocessing including a vapor stage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10273420B2 (en) 2014-10-27 2019-04-30 Uop Llc Process for hydrotreating a hydrocarbons stream

Also Published As

Publication number Publication date
JP2001031981A (ja) 2001-02-06
KR100730969B1 (ko) 2007-06-22
ES2269079T3 (es) 2007-04-01
US6623628B1 (en) 2003-09-23
FR2795420B1 (fr) 2001-08-03
BR0002861B1 (pt) 2010-10-05
DE60029686T2 (de) 2006-12-21
EP1063275A1 (de) 2000-12-27
DE60029686D1 (de) 2006-09-14
BR0002861A (pt) 2001-01-30
KR20010066873A (ko) 2001-07-11
FR2795420A1 (fr) 2000-12-29
AR024445A1 (es) 2002-10-02

Similar Documents

Publication Publication Date Title
EP1063275B1 (de) Wasserstoffbehandlungsverfahren von Mitteldistillat in zwei Stufen mit Zwichenstrippung
EP0621334B1 (de) Verfahren zur Herstellung von Brennstoff-durch Extraktion und Wasserstoffbehandlung von Kohlenwasserstoffeinsatz und so hergestellte Gasöl
EP0849350B1 (de) Verfahren zur Umwandlung von Gasöl zur Herstellung eines desaromatisierten und entschwefelten Brennstoffes mit hoher Cetanzahl
EP1451269B1 (de) Zweistufiges verfahren zur hydrierbehandlung von mitteldestillaten mit zwei wasserstoffrückführungsschleifen
EP2256179B1 (de) Verfahren zur Herstellung einer Kohlewasserstofffraktion mit hohem Oktan- und niedrigem Schwefelgehalt
EP1849850B1 (de) Verfahren zur raffination von olefinischen benzinstoffen mit mindestens zwei verschiedenen phasen der hydroraffination
EP1451268A1 (de) Zweistufiges verffahren zur hydrierbehandlung eines kohlenwasserstoff-einsatzstoffs mit zwischenfraktionierung durch rektifikationsstrippen
EP1217061B1 (de) Verfahren zur Behandlung einer Kohlenwasserstoffbeschickung durch eine Gegenstrom-Hydrobehandlung in einem Festbett
WO2015078674A1 (fr) Procédé d'hydrotraitement d'un gazole dans des réacteurs en série avec recyclage d'hydrogène.
EP0661371B1 (de) Verfahren zur Erzeugung eines Brennstoffes für innere Verbrennungsmotoren durch Wasserstoffbehandlung und Extraktion
WO2014013154A1 (fr) Procede de desulfuration d'une essence
EP1436362B1 (de) Verfahren zur hydrodesulfurierung mit einer strippung und einer fraktionierung
EP1123961A1 (de) Verfahren und Apparat mit verschiedenen katalytischen Betten zur Erzeugung von schwefelarmen Gasölen
WO2015078675A1 (fr) Procédé d'hydrotraitement d'un gazole dans des réacteurs en parallèle avec recyclage d'hydrogène
EP1312661B1 (de) Umwandlungsverfahren für schwere Petroleumfraktionen in einem wallenden Bett zur Herstellung von Mitteldistillaten mit niedrigem Schwefelgehalt
EP1310544B1 (de) Verfahren zur Umwandlung von schweren teroleumfraktionen zur Herstellung einer Beschickung für ein katalytisches Crackverfahren und Mitteldestillate mit niedrigem Schwefelgehalt
CA2937194A1 (fr) Optimisation de l'utilisation d'hydrogene pour l'hydrotraitement de charges hydrocarbonees
EP1508609B1 (de) Verfahren zur Aufbereitung einer Zwischenfraktion von Dampfspaltungsströmen
FR2823216A1 (fr) Procede et installation utilisant plusieurs lits catalytiques en serie pour la production de gazoles a faible teneur en soufre
FR3104606A1 (fr) Procédé intégré d’hydrocraquage en lit fixe et d’hydroconversion en lit bouillonnant avec un recyclage de l’hydrogène optimisé
FR2804966A1 (fr) Procede et installation utilisant plusieurs lits catalytiques en serie pour la production de gazoles a faible teneur en souffre
FR3020373A1 (fr) Procede d'hydrotraitement dans des reacteurs co-courant ascendant presentant un contre-courant d'ensemble

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010627

AKX Designation fees paid

Free format text: DE ES IT NL

17Q First examination report despatched

Effective date: 20031111

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060802

REF Corresponds to:

Ref document number: 60029686

Country of ref document: DE

Date of ref document: 20060914

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2269079

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60029686

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160621

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160628

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160704

Year of fee payment: 17

Ref country code: IT

Payment date: 20160630

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60029686

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170614

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170615