EP1056788A1 - Reticulation d'hydrogels avec des esters phosphoriques - Google Patents

Reticulation d'hydrogels avec des esters phosphoriques

Info

Publication number
EP1056788A1
EP1056788A1 EP99911687A EP99911687A EP1056788A1 EP 1056788 A1 EP1056788 A1 EP 1056788A1 EP 99911687 A EP99911687 A EP 99911687A EP 99911687 A EP99911687 A EP 99911687A EP 1056788 A1 EP1056788 A1 EP 1056788A1
Authority
EP
European Patent Office
Prior art keywords
acid
water
crosslinking
polymer
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99911687A
Other languages
German (de)
English (en)
Inventor
Rüdiger Funk
Volker Frenz
Uwe Stüven
Fritz Engelhardt
Thomas Daniel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1056788A1 publication Critical patent/EP1056788A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/40Introducing phosphorus atoms or phosphorus-containing groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels

Definitions

  • the present invention relates to a process for gel or surface post-crosslinking of water-absorbing hydrogels with phosphoric acid esters as crosslinking agents, polymers which can be obtained by this process, and the use of the polymers in hygiene articles and as packaging materials.
  • Hydrophilic, highly swellable hydrogels are in particular polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers, crosslinked carboxymethyl cellulose, partially crosslinked polyalkylene oxide or in aqueous Liquid-swellable natural products, such as guar derivatives.
  • Such hydrogels are used as products which absorb aqueous solutions for the production of diapers, tampons, sanitary napkins and other hygiene articles, but also as water-retaining agents in agricultural horticulture.
  • hydrophilic, highly swellable hydrogels are generally surface or gel crosslinked. This postcrosslinking is known per se to the person skilled in the art and is preferably carried out in the aqueous gel phase or as surface postcrosslinking of the ground and sieved polymer particles.
  • Crosslinkers suitable for this purpose are compounds which contain at least two groups which can form covalent bonds with the carboxyl groups of the hydrophilic polymer.
  • Suitable crosslinkers are, for example, di- or polyglycidyl compounds, such as phosphonic acid diglycidyl ester, alkoxysilyl compounds, polyaziridines, polyamines or polyamidoamines, it being possible to use the compounds mentioned in mixtures with one another (see, for example, EP-A-0 083 022, EP-A-0 543 303 and EP-A-0 530 438).
  • Polyamidoamines suitable as crosslinkers are described in particular in EP-A-0 349 935.
  • crosslinkers A major disadvantage of these crosslinkers is their high reactivity. Although this is desirable in terms of chemical turnover, it has a higher toxicological potential. The processing of such crosslinkers in production operations requires special protective measures to meet the requirements of the applicable 2
  • Polyfunctional alcohols are also known as crosslinkers.
  • EP-A-0 372 981, US-A-4 666 983 and US-A-5 385 983 teach the use of hydrophilic polyalcohols or the use of polyhydroxy surfactants.
  • the reaction is then carried out at temperatures of 120-250 ° C.
  • the process has the disadvantage that the esterification reaction leading to crosslinking proceeds relatively slowly even at these temperatures.
  • the task was to achieve a gel or surface postcrosslinking that is just as good or better than that of the prior art, using compounds which are relatively unreactive but nevertheless reactive with carboxyl groups.
  • This problem was solved in such a way that the reaction time was as short as possible and the reaction temperature was as low as possible.
  • the same reaction conditions should apply as when using highly reactive epoxides.
  • esters of phosphoric acid with di- or polyols and amino alcohols are outstandingly suitable for solving this problem.
  • the invention relates to a method for surface post-crosslinking of water-absorbing polymers, characterized in that (i) the polymer is treated with a surface post-crosslinking solution which, as crosslinking agent, is ester of phosphoric acid of the formula
  • the temperature for postcrosslinking is preferably 50-250 ° C, in particular between 50-200 ° C, especially between 100-180 ° C.
  • An acid catalyst can be added to accelerate the reaction of the surface post-crosslinking solution.
  • All inorganic acids, their corresponding anhydrides or organic acids and their corresponding anhydrides can be used as catalysts in the process according to the invention.
  • Examples are boric acid, sulfuric acid, hydroiodic acid, phosphoric acid, tartaric acid, acetic acid and toluenesulfonic acid.
  • their polymeric forms, anhydrides and the acidic salts of the polyvalent acids are also suitable.
  • Examples include boron oxide, sulfur trioxide, diphosphorus pentaoxide and ammonium dihydrogen phosphate.
  • the process according to the invention is preferably carried out in such a way that a solution of the surface postcrosslinker is sprayed onto the dry base polymer powder.
  • the polymer powder is thermally dried, and the crosslinking reaction can take place both before and during the drying.
  • fluidized bed dryers can also be used. Drying can take place in the mixer itself, by heating the jacket or by blowing in warm air.
  • a downstream dryer such as e.g.
  • the residence time at the preferred temperature in the reaction mixer or dryer is 5 to 90 minutes, preferably less than 30 minutes, very particularly preferably less than 10 minutes.
  • Water and mixtures of water with single or polyfunctional alcohols are preferred as the inert solvent. However, it is possible to use all organic solvents which are infinitely miscible with water, such as, for example, certain esters and ketones which, as the term indicates inert, are not reactive even under the process conditions. If an alcohol / water mixture is used, the alcohol content of this solution is 10-90% by weight, preferably 30-70% by weight, in particular 40-60% by weight. All alcohols that are miscible with water can be used as well as mixtures of several alcohols (eg methanol + glycerol + water). The use of the following alcohols in aqueous solution is particularly preferred: methanol, 4
  • the surface post-crosslinking solution is used in a ratio of 1-20% by weight, based on the polymer mass. A solution amount of 2.5-15% by weight with respect to polymer is particularly preferred.
  • the crosslinker itself is used in an amount of 0.01-1.0% by weight, based on the polymer used.
  • the water-absorbing polymer is preferably a polymeric acrylic acid or a polyacrylate.
  • This water-absorbing polymer can be prepared by a process known from the literature. Polymers which contain crosslinking comonomers are preferred (0.001-10 mol), but very particularly preferred are polymers which have been obtained via radical polymerization and in which a polyfunctional ethylenically unsaturated radical crosslinker has been used which additionally bears at least one free hydroxyl group (such as pentaerythritol triallyl ether or trimethylolpropane diallyl ether).
  • hydrophilic, highly swellable hydrogels to be used in the process according to the invention are in particular polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers or natural products which are swellable in aqueous liquids, such as, for example Guar derivatives.
  • hydrogels are known to the person skilled in the art and are described, for example, in US-A-4,286,082, DE-C-27 06 135, US-A-4 340 706, DE-C-37 13 601, DE-C-28 40 010, DE-A-43 44 548, DE-A-40 20 780, DE-A-40 15 085, DE-A-39 17 846, DE-A-38 07 289, DE-A-35 33 337, DE- A-35 03 458, DE-A-42 44 548, DE-A-42 19 607, DE-A-40 21 847, DE-A-38 31 261, DE-A-35 11 086, DE-A- 31 18 172, DE-A-30 28 043, DE-A-44 18 881, EP-A-0 801 483, EP-A-0 455 985, EP-A-0 467 073, EP-A-0 312 952, EP-A-0 205 874, EP-A-0 499 774, DE-A-26 12 846,
  • Hydrophilic monomers suitable for the preparation of these hydrophilic, highly swellable hydrogels are, for example, polymerizable acids, such as acrylic acid, methacrylic acid, vinylsulfonic acid, vinylphosphonic acid, maleic acid including its anhydride, fumaric acid, itaconic acid, 2-acrylamido-2-methylpropane 5 sulfonic acid, 2-acrylamido-2-methylpropanephosphonic acid and their amides, hydroxyalkyl esters and esters and amides containing amino groups or ammonium groups.
  • polymerizable acids such as acrylic acid, methacrylic acid, vinylsulfonic acid, vinylphosphonic acid, maleic acid including its anhydride, fumaric acid, itaconic acid, 2-acrylamido-2-methylpropane 5 sulfonic acid, 2-acrylamido-2-methylpropanephosphonic acid and their amides, hydroxyalkyl esters and esters and amides containing amino groups or ammonium groups.
  • R 1 is hydrogen, methyl or ethyl
  • R2 -COOR 4 a sulfonyl group, a phosphonyl group, a phosphonyl group esterified with (C 1 -C 4 ) alkanol or a group of the formula
  • R 3 is hydrogen, methyl, ethyl or a carboxyl group
  • R 4 is hydrogen, amino (C 1 -C 4 ) alkyl, hydroxy (C1-C4) alkyl, alkali metal or ammonium ion and
  • Examples of (C 1 -C 4 ) alkanols are methanol, ethanol, n-propanol, isopropanol or n-butanol.
  • Particularly preferred hydrophilic monomers are acrylic acid and methacrylic acid and their alkali metal or ammonium salts, for example Na acrylate, K acrylate or ammonium acrylate. 6
  • Suitable graft bases for hydrophilic hydrogels which can be obtained by graft copolymerization of olefinically unsaturated acids or their alkali metal or ammonium salts, can be of natural or synthetic origin. Examples are starch, cellulose or cellulose derivatives and other polysaccharides and oligosaccharides, polyalkylene oxides, in particular polyethylene oxides and polypropylene oxides, and hydrophilic polyesters.
  • Suitable polyalkylene oxides have, for example, the formula
  • R 6 and R 7 independently of one another are hydrogen, alkyl, alkenyl or acyl
  • X is hydrogen or methyl
  • n is an integer from 1 to 10,000.
  • R 6 and R 7 are preferably hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 6 ) alkenyl or phenyl.
  • Preferred hydrogels are in particular polyacrylates, polymethacrylates and the graft copolymers described in US Pat. Nos. 4,931,497, 5,011,892 and 5,041,496.
  • the hydrophilic, highly swellable hydrogels are preferably crosslinked, ie they contain compounds with at least two double bonds which are polymerized into the polymer network.
  • Suitable crosslinkers are, in particular, methylenebisacryl or methacrylamide, esters of unsaturated mono- or polycarbonates of polyols, such as diacrylate or triacrylate, for example butanediol or ethylene glycol diacrylate or methacrylate, and trimethylolpropane triacrylate and allyl compounds, such as allyl (meth) acrylate , Triallyl cyanurate, maleic acid diallyl ester, polyallyl ester, tetraallyloxyethane, triallylamine, tetraallyl-ethylenediamine, allyl ester of phosphoric acid and vinylphosphonic acid derivatives, as described, for example, in EP-A-0 343 427.
  • hydrogels which are prepared using polyallyl ethers as crosslinking agents and by acidic homopolymerization of acrylic acid are particularly preferred in the process according to the invention.
  • Suitable crosslinking agents are pentaerythritol tri- and tetraallyl ether, polyethylene glycol diallyl ether, monoethylene glycol diallyl ether, glycerol di and glycerol ether. 7 triallyl ether, polyallyl ether based on sorbitol, and alkoxylated variants thereof.
  • the hydrophilic, highly swellable hydrogels can be produced by polymerization processes known per se. Polymerization in aqueous solution by the so-called gel polymerization method is preferred. Here, e.g. 15 to 50% by weight aqueous solutions of one or more hydrophilic monomers and, if appropriate, a suitable graft base in the presence of a radical initiator, preferably without mechanical mixing, using the Trommsdorff-Norrish effect (Makromol. Chem. 1, 169 (1947)) polymerized.
  • the polymerization reaction can be carried out, for example, in the temperature range between 0 ° C. and 150 ° C., preferably between 10 ° C. and 100 ° C., both under normal pressure and under elevated or reduced pressure.
  • the polymerization can also be carried out in a protective gas atmosphere, preferably under nitrogen.
  • High-energy electromagnetic radiation or the usual chemical polymerization initiators can be used to initiate the polymerization.
  • organic peroxides such as benzoyl peroxide, tert.
  • reducing agents such as sodium hydrogen sulfite, iron (II) sulfate or redox systems.
  • Redox systems generally contain an aliphatic and aromatic sulfinic acid, such as benzenesulfinic acid or toluenesulfinic acid, or contain derivatives of these acids, such as, for example, Mannich adducts of sulfinic acid, aldehydes and amino compounds, as described in DE-C-13 01 566, as the reducing component.
  • an aliphatic and aromatic sulfinic acid such as benzenesulfinic acid or toluenesulfinic acid
  • derivatives of these acids such as, for example, Mannich adducts of sulfinic acid, aldehydes and amino compounds, as described in DE-C-13 01 566, as the reducing component.
  • the quality properties of the polymers can be improved further by reheating the polymer gels for several hours in the temperature range from 50 to 130 ° C., preferably from 70 to 100 ° C.
  • the gels obtained are neutralized, for example, to 0-100 mol%, preferably to 25-100 mol% and particularly preferably to 50-85 mol%, based on the monomer used, it being possible to use the customary neutralizing agents, preferably alkali metal. hydroxides or oxides, but particularly preferably sodium hydroxide, sodium carbonate or sodium hydrogen carbonate.
  • the neutralization is usually carried out by mixing in the neutralization 8 onskar achieved as an aqueous solution or preferably also as a solid.
  • the gel is mechanically comminuted, for example using a meat grinder.
  • the neutralizing agent is sprayed, sprinkled or poured on, and then carefully mixed 5.
  • the gel mass obtained can be minced several times for homogenization.
  • the neutralized gel mass is then dried with a belt or roller dryer until the residual moisture content is below
  • the dried hydrogel is then ground and sieved, it being possible to use roller mills, pin mills or vibratory mills for the grinding.
  • the preferred particle size of the sieved hydrogel is, for example, in the range 45-1000 ⁇ m, particularly
  • esters of di- or polyols and amino alcohols are used for crosslinking acrylate-containing polymers.
  • the esters of the polyols are represented by formula
  • cyclic esters of the general formula can also be used
  • R — 0 9 arise.
  • the substituent R represents Ci to C ⁇ alkylene, and is preferably C 2 - to C ö alkylene, especially -CH 2 -CH 2 - or
  • Phosphoric acid can be obtained with the alcohols, by transesterification reactions or by the reaction of the diols, polyols or amino alcohols with phosphorus pentoxide or phosphorus oxychloride.
  • This method determines the free swellability of the hydrogel in the tea bag. Approx. 0.200 g of dry hydrogel is sealed into a tea bag (format: 60 mm x 60 mm, Dexter
  • a cover plate is placed over the evenly distributed hydrogel and loaded with an appropriate weight.
  • the hydrogel is then allowed to absorb the saline solution for 60 min. Then the complete cell with the swollen gel is removed from the filter plate and the apparatus is weighed back after the weight has been removed.
  • AUL Absorbency under load
  • Wb is the mass of the equipment + gel after swelling
  • Ws is the weight of dry hydrogel.
  • the apparatus consists of a measuring cylinder + cover plate.
  • the examples according to the invention show the effect of surface postcrosslinking on the superabsorbent polymers.
  • this postcrosslinking can be determined by measuring the centrifuge retention (CRC) and the absorption under load (AUL). With this surface crosslinking, the CRC typically drops by 5-10 g / g, while the AUL 0.7 psi increases by approximately 10 and the AUL 0.3 psi by more than 20 g / g.
  • the base polymer prepared according to Example 1 is sprayed with a crosslinking agent solution in a Waring laboratory mixer.
  • the solution is composed such that the following dosage, based on the base polymer used, is achieved:
  • the moist polymer is then divided into two batches (a) and (b), each of which is dried at 175 ° C.
  • the drying time for batch (a) is 60 min, for batch (b) 90 min.
  • the crosslinking effect is not due to the propylene glycol, because surface crosslinking can be obtained with a higher amount even in purely aqueous systems.
  • the values for CRC and AUL are given in the table.
  • the base polymer prepared according to Example 1 is sprayed with a crosslinking agent solution in a Waring laboratory mixer.
  • the solution is composed so that the following dosage, based on the base polymer used, is achieved:
  • Base polymer prepared according to Example 1 is sprayed with crosslinking agent solution in a Waring laboratory mixer.
  • the solution is composed in such a way that, based on the base polymer used, the following dosage is achieved:
  • Base polymer prepared according to Example 1 is sprayed with a crosslinking agent solution in a Waring laboratory mixer.
  • the solution is composed so that - based on the base polymer used - the following dosage is achieved:
  • Base polymer prepared according to Example 1 is sprayed with a crosslinking agent solution in a Waring laboratory mixer.
  • the solution is composed so that - based on the base polymer used - the following dosage is achieved:
  • Base polymer prepared according to Example 1 is sprayed with a crosslinking agent solution in a Waring laboratory mixer.
  • the solution is composed so that - based on the base polymer used - the following dosage is achieved:
  • Base polymer prepared according to Example 1, is sprayed with a crosslinking agent solution in a Waring laboratory mixer.
  • the solution is composed so that - based on the base polymer used - the following dosage is achieved:
  • Example 1-46 10 8 base polymer (not according to the invention)
  • Example 2a 1 175 ° C 60 min no cat. 38 30 16 PG 1 '/ H 2 0
  • Example 2b 1 175 ° C 90 min no cat. 36 31 18 PG / H 2 0
  • Example 3a 1 175 ° C 60 min no cat. 37 35 15 100% H 2 0
  • Example 5a 3 175 ° C 30 min no cat. 33 36 24 H 2 0 o no cat. H
  • Example 7a 2 175 ° C 30 min no cat. 36 32 18 PG / H 2 0
  • Example 7b 2 175 ° C 60 min no cat. 34 33 21 PG / H 2 0
  • Example 8a 3 175 ° C 30 min no cat. 36 32 17 H 2 0
  • Example 8b 3 175 ° C 60 min no cat. 34 33 19 PG / H 2 0 ⁇ -
  • Example 8c 175 ° C 60 min no cat. 40 20 14 Comparison PG / H 2 0
  • the drying temperature and time relate to the tempering of the surface. solution sprayed base polymer. o O

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Medical Uses (AREA)

Abstract

L'invention concerne un procédé pour la post-réticulation en surface de polymères hydroabsorbants, dans lequel le polymère est aspergé d'une solution permettant la post-réticulation en surface. Comme agent de réticulation, cette solution contient des esters phosphoriques de la formule (1) ou (2), où X représente OH ou NH2, et R représente alkylène C1-C12, ou encore un mélange de ces esters dissous dans un solvant inerte. Pendant ou après l'aspersion, le produit humecté subit une post-réticulation et est séché par élévation de la température à une valeur comprise entre 50 et 250 °C. L'invention concerne des polymères hydroabsorbants obtenus selon le procédé précité, ainsi que leur utilisation dans des produits d'hygiène, des matériaux d'emballage et des non-tissés.
EP99911687A 1998-02-21 1999-02-19 Reticulation d'hydrogels avec des esters phosphoriques Withdrawn EP1056788A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19807500 1998-02-21
DE1998107500 DE19807500C1 (de) 1998-02-21 1998-02-21 Vernetzung von Hydrogelen mit Phosphorsäureestern
PCT/EP1999/001086 WO1999042495A1 (fr) 1998-02-21 1999-02-19 Reticulation d'hydrogels avec des esters phosphoriques

Publications (1)

Publication Number Publication Date
EP1056788A1 true EP1056788A1 (fr) 2000-12-06

Family

ID=7858613

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99911687A Withdrawn EP1056788A1 (fr) 1998-02-21 1999-02-19 Reticulation d'hydrogels avec des esters phosphoriques

Country Status (5)

Country Link
EP (1) EP1056788A1 (fr)
JP (1) JP2002504567A (fr)
CA (1) CA2319457A1 (fr)
DE (1) DE19807500C1 (fr)
WO (1) WO1999042495A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514615B1 (en) * 1999-06-29 2003-02-04 Stockhausen Gmbh & Co. Kg Superabsorbent polymers having delayed water absorption characteristics
CN100335140C (zh) * 1999-06-29 2007-09-05 施托克赫森两合公司 网状超吸收性聚合物和纤维的制造
EP1757641A1 (fr) * 2005-08-23 2007-02-28 The Procter and Gamble Company Procédé de réticulation de la surface de particules de polymères super-absorbants hautement neutralisées en utilisant des acides de Bronsted
US7588822B2 (en) * 2005-08-23 2009-09-15 The Procter & Gamble Co. Absorbent articles surface cross-linked superabsorbent polymer particles made by a method of using ultraviolet radiation and brØnsted acids
US20080039542A1 (en) * 2006-08-11 2008-02-14 General Electric Company Composition and associated method
DE102008045982A1 (de) 2008-09-05 2010-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von nanoskaligen Netzwerken auf Oberflächen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1073489A (en) * 1963-10-04 1967-06-28 Basf Ag Compositions for the production of moulded, impregnated, laminated and coated articles
US4207405A (en) * 1977-09-22 1980-06-10 The B. F. Goodrich Company Water-soluble phosphorus containing carboxylic polymers
JPS57134493A (en) * 1981-02-12 1982-08-19 Sankin Kogyo Kk Phosphoric ester derivative
JPS6018690B2 (ja) * 1981-12-30 1985-05-11 住友精化株式会社 吸水性樹脂の吸水性改良方法
FR2659969A1 (fr) * 1990-03-26 1991-09-27 Norsolor Sa Compositions polymeres ignifugees, leur procede de fabrication et leur application a l'obtention d'articles industriels ignifuges.
DE4128510A1 (de) * 1991-08-28 1993-03-04 Basf Ag Phosphonomethylierte polyacrylamide, verfahren zu ihrer herstellung und ihre verwendung
ES2097235T3 (es) * 1991-09-03 1997-04-01 Hoechst Celanese Corp Polimero superabsorbente que tiene propiedades de absorcion mejoradas.
DE4138408A1 (de) * 1991-11-22 1993-05-27 Cassella Ag Hydrophile, hochquellfaehige hydrogele
US5491198A (en) * 1992-02-24 1996-02-13 Clemson University Process for phosphonylating the surface of an organic polymeric preform
DE4244548C2 (de) * 1992-12-30 1997-10-02 Stockhausen Chem Fab Gmbh Pulverförmige, unter Belastung wäßrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung in textilen Konstruktionen für die Körperhygiene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9942495A1 *

Also Published As

Publication number Publication date
DE19807500C1 (de) 1999-07-29
WO1999042495A1 (fr) 1999-08-26
CA2319457A1 (fr) 1999-08-26
JP2002504567A (ja) 2002-02-12

Similar Documents

Publication Publication Date Title
DE19807992C1 (de) Verfahren zur Vernetzung von Hydrogelen mit Bis- und Poly-2-oxazolidinonen
EP1141039B1 (fr) Procede de post-reticulation d'hydrogels avec des 2-oxotetrahydro-1,3-oxazines
EP1056787B1 (fr) Post-reticulation d'hydrogels avec des 2-oxazolidinones
EP1133525B1 (fr) Procede de post-reticulation d'hydrogels avec des n-acyl-2-oxazolidinones
EP1651683B1 (fr) Procede de post-reticulation d'hydrogels avec des amidacetals bicycliques
EP0400283B1 (fr) Copolymères greffés hydrophiles gonflables à l'eau, leur préparation et leur utilisation
EP1056789A1 (fr) Polymeres gonflants reticules
EP0545126B1 (fr) Copolymères greffés hydrophiles gonflables à l'eau
DE102005014841A1 (de) Verfahren zur Herstellung wasserabsorbierender Polymerpartikel
DE19807501C1 (de) Verfahren zur Nachvernetzung von Hydrogelen mittels Borsäureestern
DE19807500C1 (de) Vernetzung von Hydrogelen mit Phosphorsäureestern
EP1776147B1 (fr) Procede de post-reticulation de polymeres absorbant l'eau avec des carbamates cycliques et/ou des urees cycliques
DE102004062458A1 (de) Hydrogele mit niedrigem Gefrierpunkt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20020214