EP1056062A2 - Détecteur d'incendie - Google Patents

Détecteur d'incendie Download PDF

Info

Publication number
EP1056062A2
EP1056062A2 EP00110782A EP00110782A EP1056062A2 EP 1056062 A2 EP1056062 A2 EP 1056062A2 EP 00110782 A EP00110782 A EP 00110782A EP 00110782 A EP00110782 A EP 00110782A EP 1056062 A2 EP1056062 A2 EP 1056062A2
Authority
EP
European Patent Office
Prior art keywords
volume flow
drive motor
speed
fire detector
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00110782A
Other languages
German (de)
English (en)
Other versions
EP1056062B1 (fr
EP1056062A3 (fr
Inventor
Friedrich Klenk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Securiton AG
Original Assignee
Securiton AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Securiton AG filed Critical Securiton AG
Publication of EP1056062A2 publication Critical patent/EP1056062A2/fr
Publication of EP1056062A3 publication Critical patent/EP1056062A3/fr
Application granted granted Critical
Publication of EP1056062B1 publication Critical patent/EP1056062B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means

Definitions

  • the invention relates to a method for fire detection in which take a gas sample from at least one monitoring point and by means of a fan having an electric drive motor via at least one flow channel of a measuring chamber with at least a fire detector is supplied, the volume flow of the Fire detector supplied gas measured and the volume flow measurement signal with at least one predetermined volume flow limit is compared.
  • the invention also relates to a Fire detector with at least one fire detector Measuring chamber and with a flow channel that the measuring chamber with connects at least one monitoring point, the flow channel at the monitoring point (s) for taking gas samples has at least one gas inlet opening, being used for transport the gas samples from the monitoring station (s) to the fire detector a fan with an electric drive motor is provided, and wherein for measuring the volume flow of the fire detector volume flow measuring device is provided, that with a comparison device for comparing the volume flow measurement signal with at least one predetermined volume flow limit connected is.
  • a detector is placed under a fire detector understood to recognize at least one physical quantity, those in the environment of an emerging fire of change subject, such as a smoke or fire gas detector Detector for the detection of a solid or liquid content the ambient air and / or a temperature sensor.
  • a fire detector understood to recognize at least one physical quantity, those in the environment of an emerging fire of change subject, such as a smoke or fire gas detector Detector for the detection of a solid or liquid content the ambient air and / or a temperature sensor.
  • the previously known Fire detector is the volume flow of the gas supplied to the fire detector measured and with one by an upper and a lower Volume flow limit defined volume flow window compared. If the volume flow measurement signal lies outside this window, an optical display and an electrical output, e.g. on Relay or an open collector output, after one Delay time activated.
  • the one located in the flow channel of the fire detector increases Pressure sensor the flow resistance in the flow channel.
  • Pressure sensor can also cause turbulence in the gas samples conveyed to the detector cause that can have that smoke particles contained in the gas on the wall of the flow channel and / or the pressure sensor. This Smoke particles then do not get to the fire detector, causing the detection sensitivity of the fire detector is reduced. It is also unfavorable that the pressure sensor before each Cleaning the gas inlet openings of the flow channel by means of Compressed air must be removed from the flow channel in order to Avoid damaging the pressure sensor due to excess pressure.
  • the solution to this problem with regard to the method is that the electrical power consumption and the speed of the fan drive motor be measured and that the volume flow measurement signal indirectly by forming quotients from the measurement signals for the Power consumption and the speed is determined.
  • the invention is based on the knowledge that both electrical power consumption as well as the speed of the fan drive motor each approximately proportional to the density of the gas, in usually air, is in the vicinity of the monitoring points.
  • the by forming the quotient from the measurement signals for the power consumption and the speed of the fan drive motor is formed Volume flow measurement signal is therefore largely independent of the Density of the gas.
  • this can be a complex Gas pressure measurement as used in conventional methods of compensation changes in density of the gas is not necessary.
  • determining the volume flow measurement signal by forming quotients can be the measurement signal for electrical power consumption either in the numerator and the speed measurement signal in the denominator or there is the speed measurement signal in the counter and the measurement signal for Power consumption in the denominator. In the former case results then, for example, with a radial fan to the volume flow of the gas conveyed through the flow channel is approximately proportional and in the other case roughly vice versa to the volume flow proportional volume flow measurement signal.
  • the extensive independence of the volume flow measurement signal formed by the quotient of the power consumption and the speed of the drive motor can be derived by assuming a constant volume flow V by forming the ratio of the fluidic and mechanical power of the fan.
  • the fluidic power P st is calculated from the gas pressure difference ⁇ p generated by the fan and the volume flow V in the flow channel
  • the gas pressure difference can be simplified as a parabolic function are described, where ⁇ is the density, R is the flow resistance of the flow channel and V is the volume flow. This results in
  • the method according to the invention can be continuous in time as well Discrete-time, for example at periodically recurring times be applied.
  • changes in the measurement signals for the electrical Power consumption and the speed of the drive motor determined be that with a change in the same direction of these measurement signals a representing a change in density of the ambient gas Trend value changed and the volume flow measurement signal with the trend value compensated and / or the volume flow limit corresponding to the Trend value is adjusted.
  • a representing a change in density of the ambient gas Trend value changed
  • the volume flow measurement signal with the trend value compensated and / or the volume flow limit corresponding to the Trend value is adjusted.
  • the above task can also be done with regard to the method be solved in that the electrical power consumption and the inverse speed of the fan drive motor, which is inversely proportional to the speed be measured and that the volume flow measurement signal indirectly through product formation from the measurement signals for the Power consumption and the reciprocal speed is determined.
  • This solution can also be complex and cumbersome Gas pressure measurement to compensate for the influence of density on the gas, which is usually air, is eliminated.
  • a temperature measurement signal is determined and if for temperature compensation the volume flow measurement signal and / or the volume flow limit is changed.
  • the temperature measurement signal can, for example, the influence of one of the temperature-dependent mechanical and / or electrical efficiency the fan is compensated for the monitoring result, which is particularly advantageous after switching on the fan, if it has not yet reached its full operating temperature.
  • a possible temperature coefficient can also advantageously be used one used for power and / or speed measurement Measuring device can be compensated.
  • the drive motor with a constant rms value having electrical voltage, in particular a DC voltage is operated and that the electrical power consumption of the Drive motor determined indirectly by measuring the motor current becomes.
  • the electrical power consumption of the drive motor can then, for example, in series with the drive motor switched shunts and filtering out the commutation ripple can be measured easily.
  • the procedure is the drive motor with a constant RMS motor current, in particular a direct current operated and the electrical power consumption of the drive motor is measured indirectly by measuring the motor voltage and filtering out the Commutation ripple determined. That way too is one simple measurement of electrical power consumption possible.
  • the volume flow measuring device Power measuring device for measuring the electrical power consumption of the drive motor and a speed sensor for measuring the Has speed of the drive motor, and that the power meter and the speed sensor for indirectly determining the Volume flow measurement signal with the inputs of a quotient are connected.
  • the task can also be solved in that the volume flow measuring device has a measuring signal output having power measuring device for measuring the electrical Power consumption of the drive motor and a rotation angle sensor with a measurement signal output for the speed of the drive motor has inversely proportional speed return signal, and that the measuring signal outputs of the power measuring device and the Angle of rotation sensor for indirect determination of the volume flow measurement signal are connected to the inputs of a multiplier.
  • the fire detector therefore points a simple structure and is inexpensive to manufacture. There the full cross section of the flow channel for conveying the gas samples can be used, the fire detector can be a relatively large Have flow channel length, so that also from the fire detector distant places a detection of an emerging fire is possible is.
  • the fire detector can be used, for example, to monitor EDP rooms, High-bay warehouses, cavities that are difficult to access or Freezers are used. Because a sensitive one Pressure sensor for monitoring the conveyed to the fire detector Volume flow is not required, this results in a more robust Fire detector, which makes cleaning the gas inlet openings easy the flow channel by blowing out the flow channel with compressed air enables.
  • a fire detector designated as a whole by 1, has a measuring chamber 3, delimited by a housing 2, in which fire detectors 4 are arranged.
  • the fire detectors 4 can comprise, for example, at least one scattered light sensor, a transmitted light sensor and / or a gas sensor, such as a C0 or C0 2 sensor.
  • the measuring chamber 3 is connected to a flow channel 5, which is only partially shown in FIG. 1 and which is arranged in a room to be monitored for an incipient fire.
  • the flow channel 5 has a plurality of air or gas inlet openings 6, which are each arranged at a monitoring point in the room.
  • a fan 7 with an electric drive motor 8 having a load-dependent speed is arranged in the housing 2 of the fire detector 1 for sucking in room air at the inlet openings 6 of the flow channel 5.
  • the fan 7 promotes a sufficient, representative amount of air or gas in the monitoring space from the different inlet openings 6 of the flow channel 5 to the fire detectors 4 and from these to an outlet opening 9 of the housing 2.
  • the fire detector 1 To monitor the volume flow of the fire detectors 4 supplied gas, the fire detector 1 has a monitoring device on that a volume flow measuring device for the Fire detectors 4 supplied air or the fire detectors 4 has supplied gas.
  • a volume flow measuring device for the Fire detectors 4 supplied air or the fire detectors 4 has supplied gas.
  • the monitoring device Disturbances in the flow channel 5 can be seen, such as a Overgrowth of the gas inlet openings 6 or an interruption of the Flow channel 5.
  • the monitoring device can, for example with an optical fault indicator (Fig. 5) and / or Host computer connected to a fire alarm control panel.
  • the volume flow measuring device (Fig. 4) has a power measuring device 10 for measuring the electrical power consumption of the Drive motor 8 and a speed sensor 11 for measuring the Speed of the drive motor 8 on.
  • the power measuring device 10 and the speed sensor 11 are for indirectly determining the Volume flow measurement signals 12 with the inputs one by one Microprocessor 13 formed quotient.
  • Means the quotient is the measurement signal for the speed of the Drive motor 8 by the measurement signal for the electrical power consumption of the drive motor 8 divided, whereby a the volume flow representing the gas delivered to the fire detectors 4 Volume flow measurement signal 12 is formed, which is largely independent on the density of the gas.
  • volume flow measurement signal 12 that is inversely proportional to the volume flow of the gas being conveyed.
  • the gas or air particles accelerated by the fan wheel 14 act on the one hand from the centrifugal force F z and on the other hand at right angles to it arranged Coriolis force F c .
  • the Coriolis force exerts a braking effect on the fan wheel 14 and the drive shaft of the drive motor 8, which results in a corresponding load torque.
  • the volume flow measurement signal behaves 12 approximately inversely proportional to the volume flow of the gas conveyed by the fan 7, ie when the volume flow decreases, for example as a result of the increase in the inlet openings 6 of the flow channel 5, the volume flow measurement signal 12 increases and with an increase in the volume flow, for example as a result of an interruption of the flow channel 5, the volume flow measurement signal 12 decreases.
  • the flow resistance R of the flow channel 5 causes a pressure loss ⁇ p dependent on the volume flow V of the gas at the gas conveyed therein.
  • This pressure loss can be simply described as a parabolic function: where ⁇ means the density of the extracted gas.
  • the fan 7 must generate the above pressure loss in order to produce a uniform volume flow in the flow channel 5, ie the negative pressure generation of the fan 7 is approximately proportional to the density of the gas.
  • M is the torque of the drive motor 8.
  • the pressure generated by the fan 7 increases and thus also the speed of the fan wheel 14.
  • the speed of the fan wheel 14 correspondingly decreases when the density of the gas decreases. The speed is therefore approximately proportional to changes in density of the gas.
  • the electrical power consumption of the fan 7 thus behaves like the speed roughly proportional to the density of the gas.
  • volume flow measuring device To monitor the volume flow from the fan 7 to the Fire detectors 4 pumped gas samples is the volume flow measuring device with a trained as a window comparator the microprocessor 13 formed comparison device. This compares the volume flow measurement signal 12 with one by one lower volume flow limit 15a and an upper volume flow limit 15b limited window (Fig.3). Falls below that Volume flow measurement signal 12 at least for a predetermined period of time the lower volume flow limit 15a, a display as well an output of a relay or an open collector for one Interruption of the flow channel 5 activated. 3 is the Delay time by the double arrow 16a and the duration while an interruption of the flow channel 5 is recognized by marked the double arrow 17a.
  • 3 is the delay time by the double arrow 16b and the duration while which the blockage is recognized by the double arrow 17b marked. This can both interrupt the flow channel 5, as well as a blockage of an inlet opening 6 on simple Way to be detected.
  • volume flow measurement signal generated for power consumption and speed 12 are changes in the measurement signals for the electrical Power consumption and the speed of the drive motor 8 determined.
  • Change in these measurement signals a change in density Ambient air or the ambient gas representing trend value changed and the volume flow limit values 15a, 15b moved accordingly.
  • the determination of the density trend value takes place with the aid of a microprocessor 13 connected data storage filed table that a variety of combinations of values, each consisting of values for the Pressure change, the speed difference and the density trend consist. The based on the table from the pressure and speed change The density trend value determined becomes the Meter reading of a density trend counter 18 added.
  • the density trend counter 18 is activated when the fire detector 1 initialized and reset to a defined value. In certain time intervals, for example a few hours the counter reading of the density trend counter 18 is read out and the volume flow limit values 15a, 15b are corresponding to the Counter reading adjusted.
  • Fig. 2 it can be seen that the operating point 19 of the fan 7 with a change in the same direction of the measurement signals for the electrical power consumption and the speed of the drive motor 8 moves on the characteristic curve 20 of the flow channel 5.
  • Fig. 2 are two further characteristic curves 20 ', 20' 'for clarification of the flow channel 5 entered, of which the characteristic curve 20 'at a blockage of the gas inlet openings 6 and the characteristic 20 '' was measured when the flow channel 5 was interrupted.
  • the operating point 19 marks the intersection of the fan and flow channel characteristic when commissioning the fire detector 1.
  • Fig. 1 is for detecting the engine temperature a temperature sensor 22 with the electric drive motor 8 thermally connected.
  • the temperature sensor 22 is part of a Device for temperature compensation (Fig. 5) of the volume flow measurement signal 12, whose measurement signal input with the volume flow measuring device is connected and its output at the Comparison device is connected.
  • Fig. 4 it can be seen that the power measuring device 10 a Motor current measuring device 23 with a with the drive motor 8 in Series connected shunt 24 and a motor voltage measuring device 25 has. These are each with an analog input connected to an analog-digital converter, its digital output to form the product corresponding to the engine power from the Measured values for motor voltage and motor current on the microprocessor 13 is connected.
  • the Microprocessor 13 with the control input of a motor start control 27 is connected.
  • the motor start control 27 serves for limitation dee current consumption when the fire detector is switched on 1.
  • the measurement signal outputs of the motor current measuring device 23, the Motor voltage measuring device 25, the speed sensor 11 and the Temperature sensors 22 are each for filtering their measurement signals connected to the input of a low pass filter. This will result in the interference signals contained interference, for example, by the commutation of the motor windings of the drive motor 8 and / or by the blower arranged adjacent to the fire detector 1 Ventilation device caused periodic fluctuations in air pressure can be caused, filtered out of the measurement signals.
  • the fire detection method involves at least one Monitoring point of a room an air sample taken and by means of a fan 7 having an electric drive motor 8 via a flow channel 5 of a measuring chamber 3 with at least one Fire detector 4 supplied.
  • the volume flow of the fire detector 4 supplied air is measured indirectly by measuring values for the electrical power consumption and the speed of the fan drive motor 8 can be determined. From these measured values is by at least one volume flow measured value is formed by forming the quotient and to monitor the volume flow with at least one predetermined volume flow limit 15a, 15b compared.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Measuring Volume Flow (AREA)
  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)
EP00110782A 1999-05-27 2000-05-20 Détecteur d'incendie Expired - Lifetime EP1056062B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19924400A DE19924400C1 (de) 1999-05-27 1999-05-27 Brandmelder und Verfahren zur Branddetektion
DE19924400 1999-05-27

Publications (3)

Publication Number Publication Date
EP1056062A2 true EP1056062A2 (fr) 2000-11-29
EP1056062A3 EP1056062A3 (fr) 2002-02-20
EP1056062B1 EP1056062B1 (fr) 2003-09-24

Family

ID=7909415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00110782A Expired - Lifetime EP1056062B1 (fr) 1999-05-27 2000-05-20 Détecteur d'incendie

Country Status (3)

Country Link
EP (1) EP1056062B1 (fr)
AT (1) ATE250795T1 (fr)
DE (2) DE19924400C1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504962B2 (en) 2005-11-22 2009-03-17 Joseph Stephen Smith Apparatus for enclosing a smoke detector
EP2407946A1 (fr) * 2010-07-15 2012-01-18 Siemens Schweiz AG Détection d'encrassements et de ruptures dans un détecteur de fumées par aspiration (ASD)
CN113160514A (zh) * 2020-01-22 2021-07-23 中移物联网有限公司 一种风道式烟感系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1549916A1 (fr) 2002-10-07 2005-07-06 Wagner Alarm- und Sicherungssysteme GmbH Dispositif permettant de determiner des grandeurs d'ecoulement d'un fluide et procede de fonctionnement dudit dispositif
DE10251891B4 (de) * 2002-10-07 2007-07-26 Wagner Alarm- Und Sicherungssysteme Gmbh Vorrichtung zur Bestimmung von Strömungsgrößen sowie Verfahren zum Betrieb einer solchen Vorrichtung
DE102004044094A1 (de) 2004-09-09 2006-03-30 Hekatron Vertriebs Gmbh Ansaugender Brandmelder und Verfahren zu dessen Betrieb
DE502006000573D1 (de) 2006-01-07 2008-05-15 Hekatron Vertriebs Gmbh Verfahren und Vorrichtung zur Erkennung eines Brandes
DE102009031099A1 (de) * 2009-06-29 2010-12-30 Ista International Gmbh Rauchwarnmelder und Verfahren zur Überprüfung der Verschmutzung der Rauchdurchtrittsöffnungen
ES2958969T3 (es) 2020-05-08 2024-02-16 Carrier Corp Detección de fugas en un sistema de detección de incendios por aspiración
CN113586894A (zh) * 2021-07-26 2021-11-02 广东爱得威建设(集团)股份有限公司 一种智慧楼宇安防检测装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163818A (en) * 1990-02-05 1992-11-17 Ametek, Inc. Automatic constant air flow rate pump unit for sampling air
EP0696787A1 (fr) * 1994-08-12 1996-02-14 Wagner Alarm- und Sicherungssysteme GmbH Dispositif et méthode de détection d'incendie à compensation de la pression d'air

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI81447C (fi) * 1987-09-15 1990-10-10 Ilmaterae Oy Anordning foer uppmaetning av volymstroem i blaester.
DE3808890A1 (de) * 1988-03-17 1989-09-28 Ewald Hennel Verfahren zum belueften eines raums
DE4244633A1 (de) * 1992-12-30 1994-07-07 Hansa Ventilatoren Masch Energiesparendes Rückkühlaggregat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163818A (en) * 1990-02-05 1992-11-17 Ametek, Inc. Automatic constant air flow rate pump unit for sampling air
EP0696787A1 (fr) * 1994-08-12 1996-02-14 Wagner Alarm- und Sicherungssysteme GmbH Dispositif et méthode de détection d'incendie à compensation de la pression d'air

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504962B2 (en) 2005-11-22 2009-03-17 Joseph Stephen Smith Apparatus for enclosing a smoke detector
EP2407946A1 (fr) * 2010-07-15 2012-01-18 Siemens Schweiz AG Détection d'encrassements et de ruptures dans un détecteur de fumées par aspiration (ASD)
WO2012007434A1 (fr) * 2010-07-15 2012-01-19 Siemens Schweiz Ag Détection d'obturations et d'interruptions dans un détecteur de fumée à aspiration
US9134716B2 (en) 2010-07-15 2015-09-15 Siemens Schweiz Ag Detection of blockages and interruptions with an aspirating smoke detector (ASD)
CN113160514A (zh) * 2020-01-22 2021-07-23 中移物联网有限公司 一种风道式烟感系统

Also Published As

Publication number Publication date
EP1056062B1 (fr) 2003-09-24
EP1056062A3 (fr) 2002-02-20
ATE250795T1 (de) 2003-10-15
DE50003792D1 (de) 2003-10-30
DE19924400C1 (de) 2001-01-25

Similar Documents

Publication Publication Date Title
EP2407946B1 (fr) Détection d'encrassements et de ruptures dans un détecteur de fumées par aspiration (ASD)
DE2303936C2 (de) Drehmomentmesser
DE69403205T2 (de) Verfahren und vorrichtung zur feststellung von teilchen in einer strömung
EP1056062B1 (fr) Détecteur d'incendie
EP1285686A1 (fr) Procédé et dispositif de détection de colmatage d'un filtre
DE2152848A1 (de) Vorrichtung zur Feststellung von Beschädigungen in Maschinenelementen
EP2765359B1 (fr) Procédé de surveillance d'un flux d'air dans une gaine d'aération
EP0943805B1 (fr) Procédé et capteur pour la détection de la cavitation ainsi qu'un dispositif comprenant un tel capteur
EP0164591A2 (fr) Méthode de détermination et de surveillance en continu de la teneur en composants nocifs de gaz porteurs de particules solides
DE10229233A1 (de) Ionenmessvorrichtung
EP1638062B1 (fr) Détecteur de fumée à aspiration et méthode de son fonctionnement
DE4428694C2 (de) Luftdruckkompensierte Branderkennungsvorrichtung und Verfahren
EP0427908B1 (fr) Compteur de particules
DE4101739A1 (de) Luftaufbereitungsanlage
DE102015015153B4 (de) Verfahren zur Überprüfung einer Pumpeneinrichtung in einem Gasmessystem
DE2715464C2 (de) Vorrichtung zum Messen der Lastbedingungen eines Antriebs
EP0717282A2 (fr) Dispositif pour la détermination des constituants étrangers dans un courant de gaz
EP0628014B1 (fr) Installation pour le controle de l'energie cinetique d'une porte coulissante
EP0197371B1 (fr) Agencement pour détecteur d'incendie avec un système d'aspiration
DE19830737A1 (de) Verfahren und Vorrichtung zur Erfassung von Kenndaten einer Turbine für Sauggeräte
DE19624974C5 (de) Schwebekörperdurchflußmesser für strömende Flüssigkeiten oder Gase
AT405885B (de) Vorrichtung zum erfassen der drehzahl von dentalturbinen
EP4119214A1 (fr) Dispositif de détection d'une obstruction d'un filtre
DE69724930T2 (de) Verfahren zur automatischen Überprüfung der Kalibrierung einer Messvorrichtung
DE3123279A1 (de) Verfahren zur frueherkennung eines brandes sowie brandmelder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7G 08B 17/10 A, 7G 08B 29/24 B

17P Request for examination filed

Effective date: 20020208

17Q First examination report despatched

Effective date: 20020513

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030924

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030924

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030924

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030924

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030924

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50003792

Country of ref document: DE

Date of ref document: 20031030

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031224

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031224

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GRESSET - LAESSER CABINET DE CONSEILS EN PROPRIETE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040104

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040114

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040625

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050518

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050523

Year of fee payment: 6

Ref country code: BE

Payment date: 20050523

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20050525

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20061201

BERE Be: lapsed

Owner name: *SECURITON A.G.

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090525

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090528

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110720

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50003792

Country of ref document: DE

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201