EP0943805B1 - Procédé et capteur pour la détection de la cavitation ainsi qu'un dispositif comprenant un tel capteur - Google Patents

Procédé et capteur pour la détection de la cavitation ainsi qu'un dispositif comprenant un tel capteur Download PDF

Info

Publication number
EP0943805B1
EP0943805B1 EP98810237A EP98810237A EP0943805B1 EP 0943805 B1 EP0943805 B1 EP 0943805B1 EP 98810237 A EP98810237 A EP 98810237A EP 98810237 A EP98810237 A EP 98810237A EP 0943805 B1 EP0943805 B1 EP 0943805B1
Authority
EP
European Patent Office
Prior art keywords
sensor
monitored
pressure
time interval
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98810237A
Other languages
German (de)
English (en)
Other versions
EP0943805A1 (fr
Inventor
Peter Bucher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSB Gas Processing AG
Original Assignee
NSB Gas Processing AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSB Gas Processing AG filed Critical NSB Gas Processing AG
Priority to EP98810237A priority Critical patent/EP0943805B1/fr
Priority to AT98810237T priority patent/ATE285037T1/de
Priority to DE59812383T priority patent/DE59812383D1/de
Priority to US09/270,958 priority patent/US6206646B1/en
Publication of EP0943805A1 publication Critical patent/EP0943805A1/fr
Application granted granted Critical
Publication of EP0943805B1 publication Critical patent/EP0943805B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/78Warnings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/80Diagnostics

Definitions

  • the invention relates to a method and a sensor for the detection of Cavitation according to the respective independent claim, and a device containing such a sensor.
  • Cavitation is a sudden formation of cavities like this can occur, for example, when liquid ring vacuum pumps - these are pumps that look like a liquid Use auxiliary medium to create a vacuum - the previously evaporated Liquid condenses very quickly or even suddenly.
  • Such a cavitation creates a mechanical fluid pump Impact or impact on the blade or blades of the impeller, between which the gas is located. This has one with every cavitation more or less minor injury to the blades resulting in time the paddle wheel and thus the pump becomes unusable.
  • a method is already known from the published patent application DE 35 20 734 A. and a device for operating a centrifugal pump is known, wherein by means cavitation-free operation can be set for a probe.
  • cavitation will damage the pump over time can, as already explained above, avoid such cavitations will be or at least be detected, so that appropriate measures can be taken (e.g. operating parameters can be changed), to prevent the constant occurrence of such cavitations.
  • this task is solved by a procedure like this characterized by the features of the independent process claim is.
  • the space to be monitored monitored using a teachable sensor. Doing this at least once (a saving can then take place) during a learning process for the duration of a first time interval produces a state in which in cavitation will definitely occur in the room to be monitored. To Completion of the first time interval will last for a second Time interval established a state in which to be monitored Hence no cavitation will occur. In each of the two Time intervals, the sensor learns which signals cavitation or which Signals correspond to non-cavitation in the room to be monitored.
  • the sensor examines the im Operation in the signals to be monitored, whether Predefinable criteria that are derived from the learned signals for cavitation or Non-cavitation are derived, fulfilled and deciding on this basis, whether or not cavitation has occurred in the room to be monitored and generates a corresponding output signal.
  • the sensor itself "learns" what is cavitation and what is not (In particular, of course, he also learns the operating noise without Know cavitations) and then decides after a learning phase whether Cavitations occur or not.
  • the reliability is there extremely large.
  • the corresponding pump can also be used on one Place where monitoring is not always possible. If the sensor detects that cavitation is occurring when the pump is operating, If necessary, he can trigger an alarm so that the operating personnel appropriate measures can take and damage the Buckets and thus the pump can be avoided.
  • pressure sensors are in these days Different versions available and can directly Deliver an output signal that represents the pressure. Basically come but also other sensors, such as acoustic sensors, in Consideration.
  • both the absolute pressure and the pressure change are monitored, especially of course both.
  • This is particularly advantageous for the teach-in process because it then follows as follows can expire.
  • the sensor for the first Triggered time interval when falling below or Reaching a predeterminable pressure at which the pressure to be monitored Cavitation definitely occur, the sensor for the first Triggered time interval.
  • the sensor "learns" in this first time interval, what is a cavitation.
  • the pump After the end of the first time interval, again generates an increase in pressure that is greater than or equal to a predeterminable one Minimum pressure rise, and the sensor will be on for the second time interval triggered as soon as the minimum pressure rise is reached or exceeded and a predeterminable pressure is reached or exceeded. The sensor Then “learns” in this second time interval what is a "non-cavitation”. After this learning phase, the pump can then be operated.
  • the senor is used during the learning process triggered for the first time interval only when the further decrease of the Pressure is less than a predetermined threshold. So it’s waiting until the pressure drop is practically complete. After completing the first Time interval, the sensor is then triggered for the second time interval, if the increase in pressure is greater than a predetermined threshold. Since it is preferred to work with low vapor pressures, one is correspondingly large pressure increase the pressure almost immediately above the Vapor pressure (and there are no cavitations in any case).
  • the sensor determines how high for different criteria Fulfillment of the respective criteria the probability is that a Cavitation has occurred, and then due to all Criteria and the associated probabilities the sensor decides whether or not cavitation has occurred and the corresponding Output signal generated.
  • Such sensors typically set the Principles of "fuzzy logic”.
  • the task is also solved by means of a teachable sensor. Doing so in the room to be monitored initially during a teach-in process a state is established for the duration of a first time interval in which Cavitation definitely occurs in the room to be monitored. In this first time interval, the sensor learns what cavitation is. To The first time interval is completed in the room to be monitored for the duration of a second time interval produces a state in which in in any case, no cavitation occurs in the room to be monitored. In During this second time interval, the sensor learns what "non-cavitation" is. The sensor now includes means that in each of the two time intervals Store signals which indicate the cavitations or the non-cavitations in correspond to the room to be monitored.
  • the sensor also includes Means which occur during operation in the room to be monitored Signals then investigate whether predeterminable criteria that result from the learned signals for cavitation or non-cavitation are derived, are fulfilled as well as means that decide on this basis whether to monitoring room a cavitation has occurred or not and then generate a corresponding output signal.
  • a pump can be monitored with high reliability, even if operating personnel cannot be on site at all times. If cavitations occur, an alarm may be triggered based on the sensor output signal so that the operating personnel can take measures that Prevent damage to the blades and thus the pump.
  • the senor has means for Determination of the pressure in the room to be monitored, so it is as Pressure sensor trained.
  • he has both funds for Determination of the pressure as well as the change in pressure in the monitoring room, especially of both, which is especially for the Teaching process can be an advantage. Doing so can change the pressure either by forming the difference between successive measured values of the absolute pressure can be determined, or it can be separate means be provided, the direct measurement of the pressure change enable.
  • the sensor has means for triggering the trigger the sensor for the first time interval during the teach-in process, if in a greater pressure drop is generated in the room to be monitored as a predeterminable minimum pressure drop and if a predeterminable pressure is reached or fallen below, in which in the to be monitored Cavitation definitely occur.
  • the sensor learns what cavitation is and stores it corresponding signals.
  • the sensor comprises means that the Sensor after completion of the first time interval for the second time interval trigger as soon as a pressure rise is generated that is greater than or equal to a predeterminable minimum pressure rise and as soon as a predeterminable one Minimum pressure is reached or exceeded. The sensor learns in this Time interval, which is a non-cavitation and stores the corresponding one Signals off.
  • the means for triggering cause the learning process triggering of the sensor for the first time interval when the further pressure drop is smaller than a predeterminable one Threshold. In other words, this means that a trigger for the first time interval occurs at a practically stable low pressure.
  • the means for triggering the Sensor triggers the sensor for the second time interval when the pressure rises is greater than a predefinable threshold. Because preferably with low Steam pressure is worked, the pressure is accordingly large pressure increase practically immediately above the vapor pressure.
  • the senor comprises means which determine for different criteria how high when the respective one is fulfilled Criterion the likelihood is that cavitation has occurred as well as funds that are based on all criteria and the associated probabilities decide whether cavitation has occurred or not and generate the corresponding output signal.
  • Such sensors typically use the principles of "fuzzy logic”.
  • the subject of the invention is a device in particular a liquid ring pump that has a corresponding sensor includes.
  • Liquid ring pump 1 can be seen the intake manifold 10 and the location 11, on which a pressure transmitter of a cavitation sensor (not shown) can be arranged inside the intake manifold 10.
  • An eccentrically arranged paddle wheel 12 can also be seen (dashed), with the help of which a gas to be pumped (e.g. air at a Vacuum pump) through the intake manifold 10 and the intake slot 100, the are connected to each other, but what in Fig. 1 from the drawing For reasons not recognizable, is sucked in.
  • the direction in which that Gas is pumped is indicated by the arrows G. It is immediate obvious that the paddle wheel 12 is driven clockwise for this purpose must become what e.g.
  • An outlet slot 130 can also be seen in FIG. 1 and an outlet port 13, which are also in communication with each other stand, but which is not visible in Fig. 1 for drawing reasons. Through the outlet slot 130, the pumped gas can again from the Pump are led out.
  • Fig. 2 shows the embodiment of the liquid ring pump 1 according to Fig. 1, however, is in addition to the intake manifold 10, the sensor 2 for Detect cavitations.
  • the ring liquid space R which is concentric to the Pump housing is arranged and shown with a hatched Liquid F is filled.
  • this ring liquid space R that is Paddle wheel 12 arranged eccentrically.
  • the suction slot 100 as well the outlet slot 130 are indicated in Fig. 2 for the mode of operation to better explain such a pump.
  • Another is Opening O for the ring liquid F is indicated. Because it has to - like still will be explained - new liquid F is constantly fed and heated liquid F are discharged.
  • Sensor 2 is provided for the detection of such cavitations.
  • there it is a so-called “learnable” sensor. That means the Sensor 2 is first taught in a teach-in process, which is actually (in terms of signal) corresponds to cavitation, and what does not. To do this of course a condition can be made, in any case Cavitations occur. In this state, sensor 2 must "learn” what is a cavitation. The sensor 2 must also learn what is a "non-cavitation” so that he is able to prevent cavitation from others Distinguish between disturbing noises (such as flow noises, Engine noise, etc.). This is done in a teach-in process, as in following will be described with reference to FIG. 3.
  • the triggering of the sensor 2 for the first time interval t1 in which the Sensor learns what a cavitation (signal-based) is, is now done in such a way that first wait until the pressure level is below the level LO and on the other hand until the further pressure drop is less than one predefinable threshold. If the further pressure drop is smaller than this Threshold (this is in the area of the "kink" at the bottom of the edge 31 the case, which is actually not a sharp kink, but a there is a short, fixed transition Waiting time or triggering can take place immediately.
  • the pressure p (DC component) is approximately in the region 32, which runs horizontally in FIG. 3 constant and cavitation occurs in any case at this pressure level (Alternating component).
  • store in sensor 2 during the first time interval t1 means provided the signals corresponding to the cavitations. at these signals are the alternating component of the pressure (in FIG. 3 not shown), for a definable number of time windows, all lie within the first time interval t1, recorded and is saved.
  • FIG. 4 shows the same signal curve as in FIG. 3, but here an operating state of the pump has been assumed.
  • the triggering of sensor 2 takes place in operation only when the Pressure level (DC component) is below the LO level. this is a necessary - but not sufficient - condition for the occurrence of Cavitations. If the sensor is triggered during operation, there is a Monitoring with the help of sensor 2 until the time interval t3 Pressure level (DC component) is again above LO. Is this the If so, no cavitation and monitoring can occur through the sensor is reset until the level of pressure (DC component) falls below LO again.
  • DC component Pressure level
  • Fig. 5 shows a block diagram of a signal generating unit 21 of the Sensor 2.
  • the transmitter 210 is separated there delivered signal in a switch ("Switch") 211.
  • the two Output signal branches for absolute pressure detection 212 and for cavitation detection ("Cavitation Detection") 213 follow the outputs of the switch 211.
  • the absolute pressure detection 212 the Constant component of the pressure is taken into account during the cavitation detection 213 the alternating component of the pressure is taken into account, for example in the already mentioned frequency range of 500-4000 Hz.
  • such a device is particularly suitable for the Use as a vacuum pump.
  • the quality of the achievable vacuum is thereby determined by the vapor pressure of the liquid F in the liquid annulus F.
  • the device it is also suitable for applications where the monitoring room there is a risk of explosion.
  • the sensor be designed so that the pressure transmitter in the hazardous area is located, but the rest of the sensor outside the hazardous area. Especially for use in The chemical / pharmaceutical industry can do this particularly Be interested.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Fluid Pressure (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Claims (13)

  1. Procédé pour la détection de cavitations dans une enceinte à surveiller, dans lequel l'enceinte à surveiller est surveillée au moyen d'un capteur apte à apprendre (2), où au moins une fois pendant une opération d'apprentissage, pendant la durée d'un premier intervalle de temps (t1), un état est établi lors duquel, dans l'enceinte à surveiller, des cavitations se produisent dans tous les cas, après l'écoulement du premier intervalle de temps (t1), pendant la durée d'un deuxième intervalle de temps (t2), un état est établi pendant lequel, dans l'enceinte à surveiller, des cavitations se produisent en aucun cas et où, pendant chacun des deux intervalles de temps, le capteur (2) apprend les signaux qui correspondent à la cavitation respectivement les signaux qui correspondent à une non-cavitation dans l'enceinte à surveiller, et en ce que après l'achèvement de cette opération d'apprentissage, le capteur examine les signaux produits pendant le fonctionnement dans l'enceinte à surveiller pour déterminer si des critères prédéfinissables, dérivés des signaux appris pour la cavitation respectivement la non-cavitation, sont remplis et décide sur cette base si dans l'enceinte à surveiller, une cavitation s'est produite ou non et produit un signal de sortie correspondant.
  2. Procédé selon la revendication 1, dans lequel est utilisé un capteur (2) réalisé comme capteur de pression, et la pression dans l'enceinte à surveiller est surveillée.
  3. Procédé selon la revendication 2, dans lequel dans l'enceinte à surveiller, à la fois la pression absolue et aussi la modification de la pression, en particulier les deux, sont surveillées.
  4. Procédé selon la revendication 3, dans lequel, pendant l'opération d'apprentissage, il est produit dans l'enceinte à surveiller d'abord une chute de pression (31), qui est plus grande qu'une chute de pression minimale prédéfinissable, en ce qu'ensuite, lors du passage sous respectivement de l'atteinte d'une pression prédéfinissable, à laquelle dans tous les cas des cavitations se produisent dans l'enceinte à surveiller, le capteur est déclenché pendant le premier intervalle de temps (t1), qu'après l'écoulement du premier intervalle de temps (t1), une montée de pression (33) est produite qui est plus grande ou égale à une montée de pression minimale prédéfinissable, et en ce que le capteur (2) est déclenché pendant le second intervalle de temps (t2) dès que la montée de pression minimale est atteinte ou dépassée et qu'une pression prédéfinissable (LO) est atteinte ou dépassée.
  5. Procédé selon la revendication 4, caractérisé en ce que lors de l'opération d'apprentissage, le capteur est déclenché pour le premier intervalle de temps (t1) seulement lorsque la chute suivante de la pression est plus petite qu'une valeur de seuil prédéfinissable, et en ce qu'après l'écoulement du premier intervalle de temps (t1), le capteur (2) est déclenché pour le second intervalle de temps (t2) lorsque la montée de pression est plus grande qu'une valeur de seuil prédéfinissable.
  6. Procédé selon l'une des revendications 1 à 5, où le capteur détermine pour différents critères, lorsqu'il est répondu au critère respectif, le degré de probabilité qu'une cavitation s'est produite et en ce qu'ensuite, sur la base de tous les critères et des probabilités associées, le capteur décide si une cavitation s'est produite ou non et produit le signal de sortie correspondant.
  7. Capteur (2) apte à apprendre pour détecter des cavitations, qui comprend des moyens (24) qui stockent d'abord pendant une opération d'apprentissage pendant la durée d'un premier intervalle de temps (t1) des signaux qui correspondent à des cavitations produites et qui, après l'écoulement du premier intervalle de temps (t1), pendant la durée d'un second intervalle de temps (t2) pendant lequel, dans tous les cas, il n'y aura pas de cavitations, des signaux qui correspondent à des non-cavitations, et où le capteur comprend en outre des moyens (26) qui examinent les signaux produits lors du fonctionnement quant au remplissage de critères prédéfinissables, qui sont dérivés des signaux appris pour la cavitation respectivement la non-cavitation, ainsi que des moyens (27), qui décident sur cette base, si une cavitation s'est produite ou non, et qui produisent ensuite un signal de départ correspondant.
  8. Capteur selon la revendication 7, qui comprend des moyens (21) pour déterminer la pression dans l'enceinte à surveiller.
  9. Capteur selon la revendication 8, qui présente à la fois des moyens (21) pour déterminer la pression et aussi la modification de la pression dans l'enceinte à surveiller, en particulier pour déterminer les deux.
  10. Capteur selon la revendication 9, qui présente des moyens de déclenchement, qui déclenchent lors de l'opération d'apprentissage le capteur pendant le premier intervalle de temps (t1), lorsque dans l'enceinte à surveiller, une chute de pression (31) est produite qui est plus grande qu'une chute de pression minimale prédéfinissable et lorsqu'une pression prédéfinissable est atteinte ou n'est pas atteinte, à laquelle dans l'enceinte à surveiller, dans tous les cas, des cavitations se produisent, et qui déclenchent le capteur pendant le second intervalle de temps (t2) dès que, après l'écoulement du premier intervalle de temps (t1), une montée de pression (33) est produite qui est supérieure ou égale à une montée de pression minimale prédéfinissable et dès qu'une pression minimale prédéfinissable est dépassée.
  11. Capteur selon la revendication 10, caractérisé en ce que lors de l'opération d'apprentissage, les moyens de déclenchement, qui déclenchent lors de l'opération d'apprentissage le capteur pendant le premier intervalle de temps (t1), provoquent le déclenchement du capteur seulement lorsque la chute de pression ultérieure est plus petite qu'une valeur de seuil prédéfinissable, et en ce qu'après l'écoulement du premier intervalle de temps (t1), les moyens de déclenchement déclenchent le capteur pour le second intervalle de temps (t2) lorsque la montée de pression est plus grande qu'une valeur de seuil prédéfinissable.
  12. Capteur selon l'une des revendications 7 à 11, qui comprend des moyens (26), qui déterminent pour des critères différents, lors du remplissage du critère respectif, le degré de probabilité, qu'une cavitation s'est produite, ainsi que des moyens (27) qui décident ensuite sur la base de tous les critères et des probabilités associées si une cavitation s'est produite ou non et qui produisent le signal de sortie correspondant.
  13. Dispositif, en particulier pompe à anneau liquide (1) comportant un capteur selon l'une des revendications 7 à 12.
EP98810237A 1998-03-19 1998-03-19 Procédé et capteur pour la détection de la cavitation ainsi qu'un dispositif comprenant un tel capteur Expired - Lifetime EP0943805B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98810237A EP0943805B1 (fr) 1998-03-19 1998-03-19 Procédé et capteur pour la détection de la cavitation ainsi qu'un dispositif comprenant un tel capteur
AT98810237T ATE285037T1 (de) 1998-03-19 1998-03-19 Verfahren und sensor zur detektion von kavitationen, sowie vorrichtung enthaltend einen solchen sensor
DE59812383T DE59812383D1 (de) 1998-03-19 1998-03-19 Verfahren und Sensor zur Detektion von Kavitationen, sowie Vorrichtung enthaltend einen solchen Sensor
US09/270,958 US6206646B1 (en) 1998-03-19 1999-03-17 Method and sensor for the detection of cavitations and an apparatus containing a sensor of this kind

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98810237A EP0943805B1 (fr) 1998-03-19 1998-03-19 Procédé et capteur pour la détection de la cavitation ainsi qu'un dispositif comprenant un tel capteur

Publications (2)

Publication Number Publication Date
EP0943805A1 EP0943805A1 (fr) 1999-09-22
EP0943805B1 true EP0943805B1 (fr) 2004-12-15

Family

ID=8235999

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98810237A Expired - Lifetime EP0943805B1 (fr) 1998-03-19 1998-03-19 Procédé et capteur pour la détection de la cavitation ainsi qu'un dispositif comprenant un tel capteur

Country Status (4)

Country Link
US (1) US6206646B1 (fr)
EP (1) EP0943805B1 (fr)
AT (1) ATE285037T1 (fr)
DE (1) DE59812383D1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7457785B1 (en) 2000-08-25 2008-11-25 Battelle Memorial Institute Method and apparatus to predict the remaining service life of an operating system
US6954713B2 (en) * 2001-03-01 2005-10-11 Fisher-Rosemount Systems, Inc. Cavitation detection in a process plant
WO2003054503A2 (fr) * 2001-12-07 2003-07-03 Battelle Memorial Institute Procedes et systemes d'analyse de la degradation et de la defaillance de systemes mecaniques
US7007747B2 (en) * 2003-10-20 2006-03-07 Mark Charles Kitchens Structural support apparatus with active or passive heat transfer system
DE102005019063B3 (de) * 2005-04-23 2006-11-09 Netzsch-Mohnopumpen Gmbh Verfahren zum Betreiben einer Exzenterschneckenpumpe
EP2014924A1 (fr) * 2007-07-12 2009-01-14 Siemens Aktiengesellschaft Agencement de turbine et procédé de détection de condition dans un agencement de turbine
JP4980949B2 (ja) * 2008-02-22 2012-07-18 ヤマハ発動機株式会社 舶用推進システム
JP4980948B2 (ja) * 2008-02-22 2012-07-18 ヤマハ発動機株式会社 舶用推進システム
US9389160B2 (en) 2010-10-15 2016-07-12 Nanyang Technological University Cavitation sensor
MX348628B (es) * 2011-12-12 2017-06-22 Sterling Ind Consult Gmbh Bomba de vacío de anillo líquido con regulación de cavitación.
US9255578B2 (en) 2012-07-31 2016-02-09 Fisher-Rosemount Systems, Inc. Systems and methods to monitor pump cavitation
US10316504B2 (en) * 2015-08-05 2019-06-11 Aqseptence Group, Inc. Vacuum sewage system with monitoring system and method of use
GB2571971B (en) 2018-03-14 2020-09-23 Edwards Tech Vacuum Engineering Qingdao Co Ltd Liquid ring pump control
WO2019190853A1 (fr) * 2018-03-26 2019-10-03 Roadtec, Inc. Procédé et appareil pour éviter ou améliorer la cavitation dans un circuit de fluide de ciment d'asphalte
KR20210079330A (ko) * 2018-10-25 2021-06-29 에드워즈 테크놀로지스 배큠 엔지니어링 (칭다오) 컴퍼니 리미티드 액체 링 펌프의 제어
KR102027219B1 (ko) * 2018-12-24 2019-10-01 주식회사 백콤 내부점검과 이물질 제거기능을 갖는 수봉식 진공펌프
US11939760B2 (en) 2020-03-30 2024-03-26 Aqseptence Group, Inc. Vacuum sewage system with monitoring system and variable speed pump and methods of use
US11713237B2 (en) * 2020-07-14 2023-08-01 Paragon Tank Truck Equipment, Llc Liquid discharge system including liquid product pump having vibration sensor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3420144A1 (de) * 1984-05-30 1985-12-05 Loewe Pumpenfabrik GmbH, 2120 Lüneburg Regelungs- und steuerungssystem, insbes. fuer wassering-vakuumpumpen
DE3425616A1 (de) * 1984-07-12 1986-01-23 Loewe Pumpenfabrik GmbH, 2120 Lüneburg Anordnung zur minimierung des kuehlfluessigkeitsverbrauches insbes. bei fluessigkeitsring-vakuumpumpen o.dgl.
US4608833A (en) * 1984-12-24 1986-09-02 Borg-Warner Corporation Self-optimizing, capacity control system for inverter-driven centrifugal compressor based water chillers
DE3520734A1 (de) * 1985-06-10 1986-12-11 Kraftwerk Union AG, 4330 Mülheim Verfahren und einrichtung zum betrieb einer kreiselpumpe
US4850805A (en) * 1987-03-13 1989-07-25 Critikon, Inc. Pump control system
US4913625A (en) * 1987-12-18 1990-04-03 Westinghouse Electric Corp. Automatic pump protection system
KR950005848B1 (ko) * 1992-01-14 1995-05-31 삼성전자주식회사 보일러 순환펌프의 안전장치
DE19517289A1 (de) * 1995-05-11 1996-11-14 Klein Schanzlin & Becker Ag Überwachungssystem zur Feststellung einer Kavitationsintensität
US5669225A (en) * 1996-06-27 1997-09-23 York International Corporation Variable speed control of a centrifugal chiller using fuzzy logic
JPH1137979A (ja) * 1997-07-24 1999-02-12 Toshiba Corp 流体機械のキャビテーション検出装置

Also Published As

Publication number Publication date
DE59812383D1 (de) 2005-01-20
ATE285037T1 (de) 2005-01-15
EP0943805A1 (fr) 1999-09-22
US6206646B1 (en) 2001-03-27

Similar Documents

Publication Publication Date Title
EP0943805B1 (fr) Procédé et capteur pour la détection de la cavitation ainsi qu'un dispositif comprenant un tel capteur
EP1564411B2 (fr) Procédé de détection des erreurs de fonctionnement d'une unité de pompage
EP0895010B1 (fr) Procédé pour contrôler l'état d'une garniture mécanique d'étanchéité
EP3449132B1 (fr) Procédé de détection d'un état de fonctionnement anormal d'un groupe de pompage
EP1825147B1 (fr) Procede de fonctionnement d'un compresseur alimente par convertisseur
DE3544821A1 (de) Verfahren zum regeln von turbokompressoren zur vermeidung des pumpens
WO2019233859A1 (fr) Procédé pour déterminer ou surveiller l'état d'une pompe à vis excentrique
EP0967475B1 (fr) Méthode pour la détermination de la viscosité d' un liquide
DE19645129A1 (de) Verfahren zum kavitiationsfreien Betrieb einer drehzahlgeregelten Pumpe
DE3806248C2 (fr)
DE102006049440B4 (de) Verfahren, Sensor und Diagnosegerät zur Pumpendiagnose
EP0554640A1 (fr) Procédure et dispositif pour la détermination de l'érosion occasionnée par le cavitation d'éléments traversés par un écoulement de fluides
EP2791511A2 (fr) Pompe à vide à anneau liquide pourvue d'un réglage de cavitation
EP0742372B1 (fr) Système de surveillance pour détecter l'intensité de la cavitation
DE102017122373A1 (de) Betriebszustandsüberwachungsvorrichtung für einen Zylinder
WO2001076760A1 (fr) Centrifugeuse a jet libre avec moyens de surveillance, et procede de surveillance de cette centrifugeuse
EP3250918B1 (fr) Procédé de détection de cavitation
EP1056062B1 (fr) Détecteur d'incendie
EP2500579A1 (fr) Détection de la cavitation et de l'entraînement de gaz dans une pompe électrique centrifuge
EP1792242B1 (fr) Procede et dispositif pour determiner un etat defectueux dans un compresseur rotatif
EP3497420A1 (fr) Système de mesure de pression différentielle et procédé permettant de détecter des conduites de pression active obstruées
DE19747248A1 (de) Reflexionslichtschranke
DE3314143A1 (de) Stroemungsabrisserkennungsvorrichtung und -verfahren
DE3410792C2 (fr)
DE102022116603B4 (de) Verfahren zum Betreiben einer Betonpumpe und Betonpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000224

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB IE IT LI NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NSB GAS PROCESSING AG

17Q First examination report despatched

Effective date: 20031104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SULZER MANAGEMENT AG PATENTABTEILUNG/0067

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59812383

Country of ref document: DE

Date of ref document: 20050120

Kind code of ref document: P

Owner name: PHILIP MORRIS INC.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

ET Fr: translation filed
BERE Be: lapsed

Owner name: NSB GAS PROCESSING A.G.

Effective date: 20050331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050916

BERE Be: lapsed

Owner name: *NSB GAS PROCESSING A.G.

Effective date: 20050331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20100325

Year of fee payment: 13

Ref country code: CH

Payment date: 20100325

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100324

Year of fee payment: 13

Ref country code: FR

Payment date: 20100402

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100322

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100315

Year of fee payment: 13

Ref country code: DE

Payment date: 20100419

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110319

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110321

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59812383

Country of ref document: DE

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110319

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110319