EP1051266A1 - Revetement polaire du type polymere - Google Patents
Revetement polaire du type polymereInfo
- Publication number
- EP1051266A1 EP1051266A1 EP99901558A EP99901558A EP1051266A1 EP 1051266 A1 EP1051266 A1 EP 1051266A1 EP 99901558 A EP99901558 A EP 99901558A EP 99901558 A EP99901558 A EP 99901558A EP 1051266 A1 EP1051266 A1 EP 1051266A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating
- particular according
- organic compound
- nitrogen
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/62—Plasma-deposition of organic layers
Definitions
- the present invention relates to a method for coating polymeric substrates with a long-term stable, polar coating, a method for increasing the wettability or printability of polymeric substrates, such as in particular packaging films, containers and the like made of polymeric materials, and a stable, polar, polymeric Coating of a substrate, produced using the method according to the invention.
- polymeric substrates such as, in particular, flexible substrates
- the coating of polymeric substrates takes place, inter alia, in order to influence the surface quality or the appearance of the polymer, or to protect the surface both mechanically, physically and chemically. Be this to increase the adhesion to the surface or the printability, to prepare the surface for further functional coatings, to ensure protection against abrasion or damage, to reduce the permeability of certain gases or liquids to or through the surface of the substrate or to prevent, or to increase the chemical resistance of the substrate to certain chemicals.
- JP-59-15569 and PCT / AU89 / 00220 propose to coat a polymeric substrate by means of plasma polymerization of an organic compound, together with optionally a working gas and water or water vapor. Furthermore, it is proposed in WO95 / 04609 to treat or coat the surface by means of plasma polymerization of an organic compound in the presence of hydrogen peroxide.
- the coatings proposed from the prior art have poor adhesion to the substrate or are poorly wettable.
- the use of peroxide or water and oxygen is problematic because the "working gas" thus obtained is aggressive and can attack the surface of the substrate (etching). It is therefore an object of the present invention to propose a coating method for polymeric substrates which does not have the existing disadvantages.
- the process gas used for the plasma polymerization in a plasma reactor being anhydrous or steam-free and which contains at least one organic compound and an inorganic gas and / or carbon monoxide and / or carbon dioxide and / or ammonia and / or another N-containing gas.
- the organic compound is a hydrocarbon compound which is relatively low molecular weight or which has up to a maximum of eight carbon atoms, as a result of which the compound has a relatively high vapor pressure at room temperature.
- Alkanes, alkenes, alkynes (acetylene), polyenes, mono- or polyhydric alcohols, carboxylic acids, ethers, aldehydes and / or ketones are preferably used. These can be aliphatic, cycloaliphatic or aromatic hydrocarbon compounds.
- the use of water vapor as process gas in a gas discharge is anything but ideal and must be avoided. Furthermore, a water-containing layer has a lower chemical and thermal resistance, which will have a negative effect on the subsequent processing steps as well as the definition and stability of the layers.
- the plasma-polymerized layer according to the invention is water-free and so compact that, although it is hydrophilic, it absorbs almost no water during further processing. - 4 -
- the process gas or working gas used for the plasma polymerization is water-free or steam-free.
- the absence of water or water vapor at least in the process gas can also ensure in any case that the working gas or gas mixture may not contain any peroxide compounds which can form, for example, when water and oxygen are used in the plasma chamber.
- all known plasma methods such as, for example, microwave discharge, high or high-frequency discharge, are suitable for carrying out the method proposed according to the invention
- the method proposed according to the invention is also suitable for the coating of all known polymer substrates used today, for example for the production of packaging materials, such as polyethylene , Polyamide, polypropylene, PMMA, PVC, polyester such as PETP, PBTP, polyimide, polycarbonate etc. etc.
- packaging materials such as polyethylene , Polyamide, polypropylene, PMMA, PVC, polyester such as PETP, PBTP, polyimide, polycarbonate etc. etc.
- the polar layer can then serve as an adhesion promoter between these materials and further layers, such as, for example, corrosion protection layers, or enable the bonding of different materials, such as metal / polymer, etc.
- the polymer substrate mentioned is provided with a polar polymer-like coating or with a plasma layer with a high surface tension, in which coating polar groups are incorporated, such as hydroxyl, carboxyl, carbonyl groups (see FIGS. 2a and 2b) or NO x groups, as a result of which excellent adhesion for polar functional layers and / or polar materials can be achieved on the surface of this coating, which is expressed, for example, in very good printability.
- coating polar groups such as hydroxyl, carboxyl, carbonyl groups (see FIGS. 2a and 2b) or NO x groups
- coating polar groups such as hydroxyl, carboxyl, carbonyl groups (see FIGS. 2a and 2b) or NO x groups
- The, for example, flexible substrate to be coated such as, for example, a film, a hollow body or the like, is introduced into a vacuum chamber into which the working gas, consisting of the components mentioned, is introduced. It is essential, as already mentioned above, that this working gas is free of water, water vapor or moisture.
- a plasma-polymerized layer is then deposited on the surface of the material to be coated using the plasma process.
- the coating produced in this way by means of plasma polymerization generally has a layer thickness of a few nm, for example between 1 and 100, preferably 5 to 20 nm; however, it can also be a few ⁇ m.
- the layer thickness depends on the requirements as to whether scratch protection or an anti-fog effect should be achieved in addition to the printability, to which the coating achieved according to the invention can also make a contribution.
- the ratio between the inorganic gas component, such as oxygen, nitrogen, ammonia or carbon monoxide or carbon dioxide, and the organic compound also depends on the properties of the coating.
- the ratio can vary widely, depending on which components contain the gas mixture or the working gas. Table 1 shows a few examples. To- - 7 -
- noble gases such as argon, helium, etc.
- organic compounds are alkanes with a chain length of up to about eight carbon atoms, such as methane, ethane, propane, etc.
- alkenes such as ethylene, propylene, etc., are also suitable as organic compounds.
- acetylene or compounds based on acetylene such as the so-called alkynes.
- Polyenes are also suitable, i.e. Hydrocarbons with several double bonds, again with up to about eight carbon atoms.
- Alcohols such as methanol, ethanol, propanol etc. and polyhydric alcohols such as ethylene glycol are also suitable.
- Mono- or polyvalent organic acids, ethers, aldehydes and ketones are also suitable.
- the hydrocarbon compounds described can be aliphatic, cycloaliphatic or aromatic hydrocarbons, although all of the above-mentioned compounds can of course also be substituted, for example by amino groups, halogens, ammonia, etc.
- a plasma reactor is flooded with the process gas mixture until the desired process pressure is reached, for example 1.6 x 10 " 2 mbar.
- a microwave discharge (2.45 GHz) was then ignited, the process gases being supplied continuously.
- a layer with a polar fraction of 41% and a surface tension of 50 mN / m was achieved with a gas mixture of 48 sccm (standard cubic cm per minute) C0 2 , 12 sccm CH 4 and 12 sccm Ar, with a microwave power of 62 watts (sample 10 / PET).
- the substrate was a 12 ⁇ m thin PET film or a 20 ⁇ m thin polypropylene film (sample 2 / BOPP), representative of polymeric substrates.
- An increase in the process pressure up to atmospheric pressure will lead to a higher deposition rate and is currently the status of the optimization of the coatings.
- Table 1 also shows that the desired surface tension for the corresponding substrate can be achieved by varying the output and the process gas mixture. The comparison of the different gas mixtures in Table 1 shows that the gas mixture has a greater influence on the hydrophilicity than the variation of the power supplied to the plasma by 80 watts.
- Table 1 shows the coatings which were produced between July and October 1997 and for which the surface tension was measured again in January 1999.
- the area share 1 is 6.5%
- the area share 3 is 8.9%
- the share 5 is 20.1%
- the area share 7 is 64.5%.
- the total carbon content is 76.2% and that of oxygen is 23.8%.
- the ratio of carbon to oxygen is therefore 76.2: 23.8.
- the area share 1 is 15.4%, of area 3 2.6%, of area 5 20.0% and of area 7 61.9%.
- the share C (ls) is 70.0% and the share 0 (ls) 30.0%. - 10 -
- PET polyethylene terephthalate film 12 ⁇ m thick
- BOPP Biaxially oriented polypropylene 20 ⁇ m thick
- test conditions described above for example, only serve to explain the basic idea of the present invention in more detail.
- Coating any functional layer which is more polar in nature
- printing laminating (gluing - adhesion to polar adhesives) is made possible on such a polar surface for new printing media and adhesives based on the solvent water.
- doping of the coating with inorganic anions (nitrogen, fluorine, etc.) and inorganic cations (metals and metal oxides) are provided. This means that other properties, such as the electrical conductivity of the layer can be set accordingly for the product requirement.
- the working gases used for the plasma polymerization are water-free or free of water vapor or moisture.
Landscapes
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Paints Or Removers (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Laminated Bodies (AREA)
- Polarising Elements (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Liquid Crystal Substances (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Organic Insulating Materials (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH28198 | 1998-02-05 | ||
CH28198 | 1998-02-05 | ||
PCT/CH1999/000050 WO1999039842A1 (fr) | 1998-02-05 | 1999-02-05 | Revetement polaire du type polymere |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1051266A1 true EP1051266A1 (fr) | 2000-11-15 |
EP1051266B1 EP1051266B1 (fr) | 2003-03-12 |
Family
ID=4183425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99901558A Revoked EP1051266B1 (fr) | 1998-02-05 | 1999-02-05 | Revetement polaire du type polymere |
Country Status (9)
Country | Link |
---|---|
US (1) | US6746721B1 (fr) |
EP (1) | EP1051266B1 (fr) |
JP (1) | JP2002502688A (fr) |
AT (1) | ATE234165T1 (fr) |
AU (1) | AU2147299A (fr) |
BR (1) | BR9907692A (fr) |
CA (1) | CA2318129A1 (fr) |
DE (1) | DE59904532D1 (fr) |
WO (1) | WO1999039842A1 (fr) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2340972C (fr) * | 1998-09-21 | 2007-04-03 | The Procter & Gamble Company | Voiles impermeables aux liquides a mouillabilite durable |
EP1326718B2 (fr) * | 2000-10-04 | 2007-09-05 | Dow Corning Ireland Limited | Procede et appareil pour former un revetement |
CH695222A5 (de) | 2001-04-25 | 2006-01-31 | Eva Maria Moser | Gasdichter Behälter. |
JP2003221456A (ja) * | 2002-01-29 | 2003-08-05 | Japan Gore Tex Inc | 高接着性液晶ポリマーフィルム |
TW200308187A (en) * | 2002-04-10 | 2003-12-16 | Dow Corning Ireland Ltd | An atmospheric pressure plasma assembly |
TW200409669A (en) * | 2002-04-10 | 2004-06-16 | Dow Corning Ireland Ltd | Protective coating composition |
GB0208261D0 (en) * | 2002-04-10 | 2002-05-22 | Dow Corning | An atmospheric pressure plasma assembly |
AU2003303016A1 (en) * | 2002-12-17 | 2004-07-09 | Wipf Ag | Substrate comprising a polar plasma-polymerised coating |
GB0323295D0 (en) * | 2003-10-04 | 2003-11-05 | Dow Corning | Deposition of thin films |
RU2007119782A (ru) * | 2004-10-29 | 2008-12-10 | Дау Глобал Текнолоджиз Инк. (Us) | Износостойкие покрытия, полученные посредством плазменного химического осаждения из паровой фазы |
WO2006048650A1 (fr) * | 2004-11-05 | 2006-05-11 | Dow Corning Ireland Limited | Systeme a plasma |
GB0509648D0 (en) * | 2005-05-12 | 2005-06-15 | Dow Corning Ireland Ltd | Plasma system to deposit adhesion primer layers |
US7910502B1 (en) * | 2006-03-31 | 2011-03-22 | Honeywell International Inc. | Liquid submersion ballistic performance through hybridization |
TWI424980B (zh) * | 2008-02-04 | 2014-02-01 | Nat Univ Tsing Hua | 利用電漿技術將二氧化碳轉化為有用之有機產物 |
CN113690824A (zh) * | 2021-08-10 | 2021-11-23 | 中国电力科学研究院有限公司 | 一种通过降低凝露可能性以提升电晕电压的电力金具 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3397132A (en) * | 1964-10-16 | 1968-08-13 | Du Pont | Treatment of metal surfaces |
US4312575A (en) * | 1979-09-18 | 1982-01-26 | Peyman Gholam A | Soft corneal contact lens with tightly cross-linked polymer coating and method of making same |
US4693927A (en) * | 1984-03-19 | 1987-09-15 | Fuji Photo Film Company Limited | Magnetic recording medium and process for producing the same |
DE3908418C2 (de) * | 1989-03-15 | 1999-06-02 | Buck Chem Tech Werke | Verfahren zum Innenbeschichten von Kunststoff-Behältern und Vorrichtung zum Beschichten |
FR2670495B1 (fr) * | 1990-12-14 | 1995-01-27 | Elf Aquitaine | Procede pour deposer un film mince antistatique a la surface d'un objet faconne, dont au moins la partie superficielle est en un polymere ou copolymere de styrene, et conferer ainsi audit objet un antistatisme durable. |
DE4141805A1 (de) * | 1991-12-18 | 1993-06-24 | Rhein Bonar Kunststoff Technik | Verfahren und vorrichtung zur herstellung von thermoplastischen kunststoffteilen mit hilfe von niedertemperaturplasmen |
DE4234521C1 (de) * | 1992-10-13 | 1994-02-24 | Carbone Ag | Verfahren zur Herstellung einer Komposit-Plasmamembran und ihre Verwendung |
DE4235300A1 (de) | 1992-10-20 | 1994-04-21 | Bayer Ag | Verfahren zur Hydrophilisierung von Festkörper-Oberflächen |
US5700559A (en) | 1994-12-16 | 1997-12-23 | Advanced Surface Technology | Durable hydrophilic surface coatings |
DE19523208A1 (de) * | 1995-06-27 | 1997-01-02 | Behr Gmbh & Co | Wärmeübertrager, insbesondere Verdampfer für eine Kraftfahrzeug-Klimaanlage |
-
1999
- 1999-02-05 DE DE59904532T patent/DE59904532D1/de not_active Expired - Lifetime
- 1999-02-05 US US09/601,709 patent/US6746721B1/en not_active Expired - Fee Related
- 1999-02-05 AU AU21472/99A patent/AU2147299A/en not_active Abandoned
- 1999-02-05 EP EP99901558A patent/EP1051266B1/fr not_active Revoked
- 1999-02-05 AT AT99901558T patent/ATE234165T1/de not_active IP Right Cessation
- 1999-02-05 BR BR9907692-6A patent/BR9907692A/pt not_active Application Discontinuation
- 1999-02-05 WO PCT/CH1999/000050 patent/WO1999039842A1/fr not_active Application Discontinuation
- 1999-02-05 CA CA002318129A patent/CA2318129A1/fr not_active Abandoned
- 1999-02-05 JP JP2000530320A patent/JP2002502688A/ja active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO9939842A1 * |
Also Published As
Publication number | Publication date |
---|---|
US6746721B1 (en) | 2004-06-08 |
EP1051266B1 (fr) | 2003-03-12 |
BR9907692A (pt) | 2000-11-14 |
AU2147299A (en) | 1999-08-23 |
CA2318129A1 (fr) | 1999-08-12 |
WO1999039842A1 (fr) | 1999-08-12 |
ATE234165T1 (de) | 2003-03-15 |
DE59904532D1 (de) | 2003-04-17 |
JP2002502688A (ja) | 2002-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1051266B1 (fr) | Revetement polaire du type polymere | |
EP0010632B1 (fr) | Procédé pour traiter la surface de matières plastiques et feuille fabriquée par ce procédé | |
DE69612089T2 (de) | Acrylatpolymerbeschichtete bahnförmige materialen und verfahren zu ihrer herstellung | |
DE3908418C2 (de) | Verfahren zum Innenbeschichten von Kunststoff-Behältern und Vorrichtung zum Beschichten | |
DE69318424T2 (de) | Schutzfilm für gegenstände und verfahren | |
EP0778089A1 (fr) | Système d'application d'un revêtement polymère sur la surface intérieure de corps creux en matière plastique | |
EP1912747A1 (fr) | Procede pour realiser des couches polymeres de fluorocarbone fonctionnelles par polymerisation plasma de perfluorocycloalkanes | |
DE3878729T2 (de) | Verfahren zur herstellung eines metallisierten polyolefinfilms. | |
DE102006038780A1 (de) | Verfahren und Vorrichtung zum Herstellen einer Beschichtung | |
EP0739655B1 (fr) | Procédé pour revêtir à l'aide d'un plasma un objet en plastique de couches multifonctionnelles | |
DE10017846C2 (de) | Verfahren zum Abscheiden einer Polymerschicht und Verwendung derselben | |
EP0132686B1 (fr) | Procédé pour préparer des couches de polymères par décharge lumineuse | |
EP1581347A2 (fr) | Substrat enduit d'une couche polaire a polymerisation plasma | |
EP0282827A2 (fr) | Procédé de polymérisation de polymères en plasma, en utilisant des prépolymères | |
EP1144715B1 (fr) | Couche barriere de diffusion avec effet barriere important | |
DE10035177C2 (de) | Verfahren zur plasmagestützten Behandlung der Innenfläche eines Hohlkörpers und Verwendung desselben | |
DE4207422C2 (de) | Verfahren zur Erzeugung dünner, mikroporenfreier, leitender Polymerschichten | |
DE4233000A1 (de) | Vorbehandlung von Kunststoffteilen für die elektrostatische Lackierung | |
DE102004017241B4 (de) | Verbundmaterial und Verfahren zu seiner Herstellung | |
DE19856227A1 (de) | Verfahren zur langzeitstabilen Aktivierung von Fluorpolymeroberflächen, Fluorpolymer und Fluorpolymer-Materialverbund | |
DE4306971C2 (de) | Verfahren zur Vorbehandlung der Oberflächen von Kunststoffteilen sowie ein nach diesem Verfahren vorbehandeltes metallisiertes und/oder lackiertes Kunststoffteil | |
DE3635524A1 (de) | Verfahren zum herstellen von schutzschichten auf magnetischen datentraegern und durch das verfahren hergestellter datentraeger | |
EP0961806B1 (fr) | Comment modifier des surfaces de substrat polymeriques ou copolymeriques contenant du methacrylate | |
DE10103460B4 (de) | Mehrschichtige Plasmapolymerbeschichtung, Verfahren zu ihrer Herstellung und ihre Verwendung | |
DE4211962A1 (de) | Verfahren zur Herstellung einer die Grenzflächenenergie von Werkstückoberflächen bestimmenden Schicht |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000726 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL PT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20020529 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EMPA EIDGENOESSISCHE MATERIALPRUEFUNGS- UND FORSCH |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030312 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20030312 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030312 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59904532 Country of ref document: DE Date of ref document: 20030417 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE BREITER + WIEDMER AG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030612 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030616 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030930 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D Ref document number: 1051266E Country of ref document: IE |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: LEYBOLD OPTICS GMBH Effective date: 20031125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040205 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040205 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040213 Year of fee payment: 6 Ref country code: DE Payment date: 20040213 Year of fee payment: 6 Ref country code: CH Payment date: 20040213 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040218 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040228 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
BERE | Be: lapsed |
Owner name: EIDGENOESSISCHE MATERIALPRUEFUNGS- UND FORSCHUNGSA Effective date: 20040228 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20050119 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 20050119 |