EP1050667A1 - Kombianlage mit Zusatzfeuerung - Google Patents
Kombianlage mit Zusatzfeuerung Download PDFInfo
- Publication number
- EP1050667A1 EP1050667A1 EP99810389A EP99810389A EP1050667A1 EP 1050667 A1 EP1050667 A1 EP 1050667A1 EP 99810389 A EP99810389 A EP 99810389A EP 99810389 A EP99810389 A EP 99810389A EP 1050667 A1 EP1050667 A1 EP 1050667A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steam
- turbine
- feed water
- gas turbine
- heat recovery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/103—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
Definitions
- the present invention relates to a combination system consisting of at least one gas turbine, at least one steam turbine, and at least a heat recovery steam generator. It will continue to operate of such a system.
- gas turbine of a combination plant to operate temporarily with increased performance.
- has a short-term Increasing the hot gas temperatures for example, a sustainable one negative effect on the life of the machine components.
- Increase in performance by introducing water or steam into the Combustion chamber or the hot gas path of the gas turbine is not unproblematic. In addition, these measures will soon reach theirs quantitative limits.
- Additional firing can also be of interest to the delivery to increase electrical power in times of peak demand. If high prices for top performance that can be provided quickly are increased electricity generation costs due to the lower efficiency acceptable, especially when providing peak performance with low capital investment.
- the additional firing reaches its limits when the exhaust gas from the Gas turbine is already at a temperature level that is little below the permissible maximum temperature of the boiler.
- a case is given, for example, when gas turbines of the type ABB GT24 / GT26 can be used in the combination process.
- the Exhaust gas temperature already well above 600 ° C.
- a bigger one Increasing the temperature through additional firing requires a redesign of the Boilers using expensive and complex to process High temperature materials.
- the core of the invention is therefore, in a combination system, the exhaust gas from the gas turbine first cool in the superheater from the originally high temperature, by a larger distance up to the maximum when using the additional firing permissible temperature of a waste heat boiler, and thus the Water-steam circuit to supply additional heat to the steam turbine to increase the power output of the steam turbine.
- the additional firing is therefore not at the inlet of the exhaust gas arranged in the boiler, but downstream of at least one superheater.
- the exhaust gas of the gas turbine when the The boiler has already cooled down considerably, up to the boiling point of the Feed water.
- the temperature difference by which the exhaust gas in the superheater cooled, can now be fired without the To have to design waste heat boilers for higher temperatures.
- Another advantage of the invention is - in addition to the larger to be fired Performance - that the additional firing acts on the evaporator pipe instead on a superheater. This will prevent the superheater surfaces with the radiant heat of the additional firing and at the same time the high Hot gas temperatures applied.
- the heat recovery steam generator of a combination system according to the invention can be used as conventional drum kettle or as a single-pipe kettle. Also if in the latter type there is no sharp dividing line between the superheater part and the evaporator of the heat recovery steam generator is more, that It should be clear to the specialist where the additional firing according to the Claims to be arranged, just in the flow direction of the relaxed Working medium of the gas turbine downstream of the live steam superheater on the one hand, that the gas turbine exhaust gas has already cooled down, on the other hand, so that the additional firing on heat exchanger surfaces acts from which the heat - especially the radiant heat of Additional firing - discharged by a liquid in all operating states becomes.
- a preferred operating mode for such a combination system is the following:
- the gas turbine operates at full load in nominal full load operation.
- the exhaust of the Gas turbine flows through one after the other in the heat recovery steam generator Superheater, an evaporator and an economizer.
- the amount of steam results in this operating state so that the temperature of the exhaust gas on Leaves from the evaporator just above the boiling point of the Feed water lies.
- the auxiliary firing is switched on, which increases steam production.
- the thermal output of the additional firing can be increased up to the maximum Temperature of the gas turbine exhaust gas at the outlet from the superheater only is still slightly above the boiling point of the feed water, or the maximum permissible temperature of the additional firing for the boiler is reached.
- the execution of the combination system according to the invention without Reheating is a preferred variant in cases where a The greatest possible potential for providing peak load at low Investment costs should be used.
- the conventional arrangement of a Reheater at the same position in the heat recovery steam generator as that Live steam reheater is only useful if this is the case caloric potential of the gas turbine exhaust gas is sufficiently high to between the entry temperature of the hot gas into the boiler and the Boiling temperature of the feed water to provide enough energy to also a greatly increased amount of steam due to the additional firing on the Fresh steam temperature to overheat and this amount of steam at the same time reheat.
- the partial flow led through the feed water preheater is in the Dimension and preheated to the first partial flow so that the total mass flow when leaving the economizer is almost on the Boiling temperature is.
- the circuit variant in which a first partial flow is fed directly into the economizer, compared to the preheating of the Total mass flow is preferred because the temperature of the coldest in the Economizer inflowing water pretends to be the lowest temperature which uses the calorific potential of the gas turbine exhaust gas can.
- the feed water preheaters are operated with steam, which is more suitable Place of the steam turbine is removed.
- This initially disturbing loss Working fluid of the steam turbine can be increased when operating Steam mass flow can even be an advantage.
- the flash floods can therefore built smaller and better for normal operation, i.e. combination operation without Additional firing and with a lower amount of steam.
- Depending on System design can possibly be due to expensive additional floods in the Low pressure part of the steam turbine can be dispensed with.
- Each branch of the feed water line is expediently equipped with a shut-off and regulating device.
- the shut-off device in the branch that leads directly to the economizer are closed, and another feed water partial stream is expediently heated to above the dew point temperature of sulfuric acid, to avoid corrosion damage to the boiler tubing.
- the arrangement according to the invention is the Additional firing between superheater and evaporator is an advantage if the exhaust gas temperature of the gas turbine is only slightly below the maximum permissible boiler temperature, which is particularly the case is when gas turbines with reheating the partially relaxed working medium be used.
- gas turbines are from EP 0 620 362 B1 or the US 5,577,378 and US 5,454,220 known which fonts are integral Represent part of the present description.
- the inventive design of a heat recovery steam generator with Additional firing compared to the prior art also has other advantages for the operation and construction of the boiler and steam turbine. Since the Superheater arranged in the direction of the exhaust gas flow before the additional firing is, as already mentioned, the superheater is not subject to changing influences Heat radiation exposed to the auxiliary firing, and therefore can comparatively inexpensive as a finned tube heat exchanger. In addition, the live steam data of the steam turbine vary significantly to a lesser extent with the operation of the auxiliary firing than if it were on the live steam superheater would work.
- Fig. 1 shows a preferred embodiment of a Combination system according to the invention, as characterized in the claims is.
- Fig. 2 shows a development of the combination system shown in Fig. 1, at the bleed steam from the steam turbine into the combustion chambers of the gas turbine is injected.
- Fig. 3 shows a further circuit variant with a Steam injection into the gas turbine, in which the steam is extracted from the Water / steam cycle very flexible to the swallowing ability of different Components in the water / steam cycle is designed to be adaptable 4 and 5 finally show two variants with an intermediate overheating of partially relaxed steam.
- a gas turbine 1 shows a first example of the embodiment of a Combination system.
- a gas turbine 1 is connected to a generator 2, and drives this.
- the generator 2 is still an automatically acting Coupling 3 connected to a steam turbine 4.
- the gas turbine sucks one Fresh air amount 51, which in the compressor 101 to a working pressure is compressed.
- the compressed air is in a first combustion chamber 102 a strongly sub-stoichiometric amount of fuel 42 is supplied, and burned.
- the high-tension working medium is in a first turbine 103 partially relaxed.
- Working medium through the combustion of a further quantity of fuel 43 reheated, and in a turbine 105 approximately to ambient pressure relaxed.
- the relaxed working medium 52 is still on a high temperature of, for example, 600 ° C, which is sufficient Amount of steam 74, 75 to be sufficiently overheated; also can be found in the Exhaust gas from the gas turbine still contains a high proportion of oxygen.
- the relaxed Working medium 52 is passed through a heat recovery steam generator 6, wherein Heat to at least one inflow of feed water 71.72 what amount of feed water is emitted in the heat recovery steam generator is evaporated and overheated.
- the superheated steam 75 thus generated is in the Steam turbine 4 relaxed.
- Relaxed steam 76 is in the condenser 7 liquefied and up again by the condensate and feed pumps 8 and 9 brought the live steam pressure.
- the feed water 77 is expediently led a first feed water preheater 10, where it by means of one of the Steam turbine removed steam amount 78, for example, to 60 ° C. is preheated.
- the temperature in the feed water preheater is regulated by the control member 21 controlling the bleed steam amount 78.
- the design of the Gas turbine as a gas turbine with sequential combustion is not essential to the invention, still the single-shaft arrangement, with steam turbine and Gas turbine working on a common generator.
- These characteristics correspond to the latest technology and are related to the To implement invention with advantage. So the illustrated ensures Gas turbine design is inherently high efficiency, and is due to the high exhaust gas temperatures particularly good for use in a Combination system suitable.
- the single-shaft design enables a combination system create confined space; in connection with that only one generator and only a generator foundation is necessary, the system performance is included low investment costs provided.
- the invention can, however, without further can also be realized when the steam turbine and the Gas turbine each act on a generator. Likewise, that of steam generated in several gas turbines via heat recovery steam generator Steam turbine act.
- a quantity of feed water 71 flows out of the Feed water preheater 10 into a first part 601 and from this into one second part 602 of the economizer.
- water 73 is at boiling temperature or only little below, and is fed into the drum 603.
- Boiling water flows from drum 603 into evaporator 604, absorbs further heat there, and flows back into the drum 603. There the water becomes that Part to which the absorbed heat is insufficient for evaporation; deposited; the separated liquid is again through the Evaporator 604 passed.
- Saturated steam 74 flows out of the drum 603 into the Live steam superheater 606, and finally flows as superheated Live steam 75, ideally almost at the temperature of the relaxed Working medium 52 of the gas turbine, in the steam turbine 4.
- the relaxed Working medium of the gas turbine flows through the components mentioned Heat recovery steam generator in reverse order, and cools continuously from.
- the economizer is equipped with a second one Inflow connection provided over the between the first and the second Part of the economizer another preheated amount of feed water 72 in the economizer is introduced.
- this is a stronger one Preheating the feed water quantity 71 in the feed water preheater 10 uneconomical because the temperature of the water at the entrance to the first part 601 of the economizer specifies the lower temperature level, except for which heat can be extracted from the exhaust gas 53.
- the feed water line points therefore downstream of the feed water preheater 10 a branch at which the second quantity of feed water 72 is branched off and via at least one further - in the present example three - feed water preheaters 11, 12, 13 to be led.
- the steam turbine is used to heat the feed water Tapped steam mass flows 79, 80 and 81 are taken, which via the shut-off and control elements 22, 23 and 24 are set, and thus the Determine the temperature of the preheated feed water 72.
- About these Temperature and the shut-off and control elements 14 and 15 can be the water 73 can be set to the boiling point after the economizer.
- the additional firing 605 becomes a fuel 44 fed and burned, which adds further heat to the process. Because of the arrangement of the additional firing in the heat recovery steam generator acts Additional firing directly affects steam production. So it will be Steam production and thus the water / steam mass flow of the Water / steam cycle increased by operating the auxiliary firing. The water / steam mass flow can be increased until the Exhaust gas from the gas turbine as soon as it flows through the superheater Boiling temperature of the feed water reached.
- the Temperature and / or the mass flow of the preheated Increase the amount of feed water 72 so that the water 73 exits the second part 602 of the economizer approximately at the boiling point is.
- the bleed steam mass flows 79, 80, 81 increased. This steam is no longer available to the steam turbine Labor turnover in the final stages is available, which is also an advantage has that especially with an increase in the steam mass flow Low pressure levels of the steam turbine are relieved. This eliminates the Need the low pressure stages and the flash floods for the full Dimension steam mass flow, which is significant investment saves.
- a the first fuel 41 which is supplied, is gas, so this is expedient Feed water introduced into the economizer at a temperature that the Water vapor contained in the exhaust gas is not condensed on the pipes.
- the first quantity of feed water 71 is then, for example, the one above 60 ° C quoted in the first part of the economizer. If as Fuel 41 is now supplied with oil, the temperature in the economizer be raised to the precipitation of organic components or of Sulfuric acid and therefore corrosion damage to the boiler pipes avoid. According to the higher feed water temperature is now a smaller heat exchanger area in the economizer is also necessary.
- the shutoff and control member 14 is closed in oil firing, and the total amount of feed water flows through the preheaters 11, 12 and 13, which Amount of feed water 72 is now at a temperature of, for example Preheat 130 ° C.
- the Feed water preheater 10 operated with steam 78 which is relatively strongly expanded and does not have to be excessively large.
- the Feedwater preheaters 11, 12 and 13 can be a larger one if necessary Use a driving temperature gradient for preheating the feed water.
- FIG. 2 is one Another preferred embodiment of the combination system according to the invention shown.
- the boiler 6 is designed as a single-tube boiler. At a Single-tube boilers are live steam superheaters and evaporators not so accurate separately, we in the drum kettle shown in Fig. 1. The expert will nonetheless recognize the position where the additional firing in the Heat recovery steam generator is to be arranged to take advantage of the invention to take full advantage of. It is advantageous to choose a position downstream of which - seen in the direction of flow of the gas turbine exhaust gas - in all Operating states working medium of the steam turbine in liquid Physical state inside the boiler tubes.
- a first tap of appropriate pressure on the Steam turbine is connected via a connecting line 28, in which a shut-off and control element 26, with the first combustion chamber 102 of the gas turbine connected is. Furthermore, a line 27 leads from a tap lower pressure via a shut-off and control element 25 to the second Combustion chamber 104 of the gas turbine.
- steam can be in different places in the water-steam cycle be removed.
- saturated steam is suitable downstream of the evaporator 604, especially if one Steam cooling of the gas turbine components can be realized.
- This Tapping the water / steam cycle can still make sense if in the live steam superheater 606 not the total amount of steam generated can be overheated sufficiently high.
- the excess amount of saturated steam can then be expanded in the gas turbine, and the steam injection relieves the live steam superheater and the entire steam turbine.
- superheated live steam for injection into the gas turbine Find use.
- FIG. 3 shows a circuit of the combination system with additional firing, which a particularly flexible adaptation of the mass flows to the Swallowing ability of various components and the possible ones Enthalpy flows in the heat recovery steam generator enabled.
- a first Operating condition without additional firing, are the shut-off and control elements 16, 26, 33 and 34 closed, and the shut-off and control elements 15, 22, 23, 24 are at least strongly throttled.
- the additional combustion 605 increases the output by a quantity of fuel 44 fed and burned.
- steam production increases Amount of feed water, and the amount of live steam.
- too Shut-off and control element 15 opened further to the preheated To increase feed water mass flow 72.
- the steam turbine To the bigger one To preheat the amount of feed water, the steam turbine must be larger Tapping mass flows 79, 80 are removed, which relieves the last stages of the steam turbine leads to the corresponding amount of steam.
- An increase in the feed water mass flow can occur that from a certain mass flow, the preheating of the partial flow 72 in the Preheaters 11 and 12 are no longer sufficient to exit the economizer To get water close to the boiling point.
- Feed water partial stream 72 is in turn divided into partial streams 721 and 722. This division is primarily controlled by the shut-off and control element 16. Its opening determines the partial flow 722, which is almost open in the preheater 13 Boiling temperature is heated, and therefore immediately in the embodiment is fed into the boiler drum 603. In the case of a single-tube boiler, the Partial flow 722 the remaining feed water mass flow, 71 and 721, are mixed upstream of the evaporator tube 604.
- FIGS. 4 and 5 also show two circuit variants reheating 607.
- the steam turbine 4 is in a high pressure part 401 and a low pressure part 402 divided. a partially released steam quantity 82 from the high pressure part is in each case Intermediate superheater 607 led, from where reheated steam 83 in the Low-pressure part 402 of the steam turbine flows and is fully expanded there becomes.
- the heat recovery steam generator 6 is shown as a drum boiler, in Fig. 5 as a single-tube boiler.
- the design of the heat recovery steam generator can be in the both figures can be exchanged for each other without the essence touch the invention in the slightest, as well as the different Place the feed of the preheated feed water 72 in the two Examples - once in the economizer and once in the boiler tubing immediately upstream of the evaporator - design variants that are in the Examples chosen to illustrate different possibilities were.
- the arrangement of the reheaters is in both Examples completely different.
- the reheater 607 is parallel to the live steam superheater 606 led.
- this circuit results in the best possible System efficiency in nominal full load operation, on the other hand the Amount of steam at a limited within the superheater section of the Heat recovery steam generator usable heat to the design temperature can be overheated, limited. For this limitation of steam production results in a lower achievable increase in performance.
- the reheater 607 in FIG. 5 is parallel to the evaporator 604 arranged in the steam generator, such that the additional firing also on the reheater works.
- the steam is in nominal operation only slightly reheated without additional firing, and the nominal Efficiency is lower than in the circuit shown in Fig. 4.
- the additional firing acts on the reheater pipe, more fuel can be sensibly fired.
- the one with additional firing increased reheat temperature is also equal Efficiency losses that occur with the additional firing, at least partially out.
- the piping of the reheater so to arrange that the evaporator pipe between the additional firing and the pipe of the reheater, and the heat transfer to the is driven purely by convection to superheating steam.
- wet operated heat exchanger tubes from the radiant heat of the auxiliary firing is a much less expensive construction of the boiler possible.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
- 1
- Gasturbine
- 2
- Generator
- 3
- Kupplung
- 4
- Dampfturbine
- 6
- Abhitzedampferzeuger
- 7
- Kondensator
- 8
- Kondensat- und Speisepumpe
- 9
- Kondensat- und Speisepumpe
- 10
- Speisewasservorwärmer
- 11
- Speisewasservorwärmer
- 12
- Speisewasservorwärmer
- 13
- Speisewasservorwärmer
- 14
- Absperr- und Regelorgan
- 15
- Absperr- und Regelorgan
- 16
- Absperr- und Regelorgan
- 21
- Absperr- und Regelorgan
- 22
- Absperr- und Regelorgan
- 23
- Absperr- und Regelorgan
- 24
- Absperr- und Regelorgan
- 25
- Absperr- und Regelorgan, Dampfeinspritz-Regelventil
- 26
- Absperr- und Regelorgan, Dampfeinspritz-Regelventil
- 27
- Verbindungsleitung
- 28
- Verbindungsleitung
- 29
- Dreiwegeventil
- 30
- Dreiwegeventil
- 31
- Verbindungsleitung
- 32
- Verbindungsleitung
- 33
- Absperr- und Regelorgan
- 34
- Absperr- und Regelorgan
- 41
- Brennstoff
- 42
- erste Brennstoffmenge
- 43
- zweite Brennstoffmenge
- 44
- Brennstoffmenge für die Nachfeuerung
- 51
- Ansaugluft der Gasturbine
- 52
- entspanntes Arbeitsmedium der Gasturbine
- 53
- abgekühltes Abgas
- 71
- Speisewassermenge, Speisewasserleitung
- 72
- Speisewassermenge, Speisewasserleitung
- 73
- Erwärmtes (Siede-)Wasser
- 74
- Sattdampf, Dampfleitung
- 75
- (überhitzter) Frischdampf, Dampfleitung
- 76
- entspannter Dampf
- 77
- Speisewasser, Hauptspeisewassermenge
- 78
- Anzapfdampfmenge
- 79
- Anzapfdampfmenge
- 80
- Anzapfdampfmenge
- 81
- Anzapfdampfmenge
- 82
- teilentspannter Dampf
- 83
- zwischenüberhitzter Teilentspannter Dampf
- 101
- Verdichter
- 102
- erste Brennkammer
- 103
- erste Turbine
- 104
- zweite Brennkammer
- 105
- zweite Turbine
- 401
- Hochdruckteil der Dampfturbine
- 402
- Niederdruckteil der Dampfturbine
- 601
- erster Teil des Economizers
- 602
- zweiter Teil des Economizers
- 603
- Kesseltrommel
- 604
- Verdampfer, Verdampferberohrung
- 605
- Zusatzfeuerung
- 606
- Frischdampf-Überhitzer
- 607
- Zwischenüberhitzer
- 721
- Speisewasser-Teilstrom
- 722
- Speisewasser-Teilstrom
Claims (21)
- Kombianlage, bestehend aus wenigstens einer Gasturbine (1), wenigstens einer Dampfturbine (4), und wenigstens einem Abhitzedampferzeuger (6), welcher Abhitzedampferzeuger wenigstens einen Verdampfer (604) und einen Frischdampfüberhitzer (606) beinhaltet, und welcher Abhitzedampferzeuger im Betrieb von einem entspannten Arbeitsmedium (52, 53) der Gasturbine und von einem Arbeitsmedium (71, 72, 73, 74, 75)der Dampfturbine im Gegenstrom durchströmt wird, dadurch gekennzeichnet, dass in dem Abhitzedampferzeuger eine Zusatzfeuerung (605) in Strömungsrichtung des entspannten Arbeitsmediums der Gasturbine stromab des Frischdampf-Überhitzers des Abhitzedampferzeugers angeordnet ist.
- Kombianlage nach Anspruch 1, dadurch gekennzeichnet, dass der Abhitzedampferzeuger als Einrohrkessel ausgeführt ist.
- Kombianlage nach Anspruch 1, dadurch gekennzeichnet, dass der Abhitzedampferzeuger als Trommelkessel ausgeführt ist.
- Kombianlage nach Anspruch 1, dadurch gekennzeichnet, dass die Zusatzfeuerung zwischen dem Frischdampf-Überhitzer und einem Verdampfer (604) des Abhitzedampferzeugers angeordnet ist.
- Kombianlage nach Anspruch 1, wobei in dem Abhitzedampferzeuger ein Economizer angeordnet ist, dadurch gekennzeichnet, dass im Wasser-Dampf-Kreislauf stromab der Speisepumpe (8,9) ein erster Speisewasservorwärmer (10) angeordnet ist, stromab dessen die Speisewasserleitung verzweigt ist, von welcher Verzweigung ausgehend eine erste Speisewasserleitung (71) zu dem am weitesten stromab der Strömung des entspannten Arbeitsmediums der Gasturbine gelegenen Teil des Economizers (601) führt, und wenigstens eine weitere Speisewasserleitung (72) über wenigstens einen weiteren Speisewasservorwärmer (11,12,13) zu einem weiter stromauf gelegenen Abschnitt (602) des Economizers, und/oder unmittelbar in eine Kesseltrommel (603) oder einen Verdampfer (604) geführt ist.
- Kombianlage nach Anspruch 5, dadurch gekennzeichnet, dass jeder Speisewasservorwärmer (10,11, 12, 13) mit einer Entnahmestelle der Dampfturbine verbunden ist.
- Kombianlage nach Anspruch 5, dadurch gekennzeichnet, dass jede Speisewasserleitung (71, 72) mit jeweils wenigstens einem Absperr- und Regelorgan (14, 15, 16) versehen ist.
- Kombianlage nach Anspruch 1, dadurch gekennzeichnet, dass in dem Kreislauf des Arbeitsmedium der Dampfturbine stromab eines Kondensators (7) zwei Pumpen gleicher Leistung (8, 9) angeordnet sind, von denen jeweils eine zum Betrieb der Kombianlage ohne Zusatzfeuerung genügt.
- Kombianlage nach Anspruch 1, dadurch gekennzeichnet, dass ein Zwischenüberhitzer (607) für ein teilentspanntes Arbeitsmedium der Dampfturbine im Abhitzedampferzeuger angeordnet ist.
- Kombianlage nach Anspruch 9, dadurch gekennzeichnet, dass die zum Abhitzedampferzeuger gehörende Berohrung des Zwischenüberhitzers (607) und die zum Abhitzedampferzeuger gehörende Berohrung des Verdampfers (604) an identischer Position im Abhitzedampferzeuger angeordnet sind.
- Kombianlage nach Anspruch 1, dadurch gekennzeichnet, dass eine Welle einer Gasturbine (1) mit einem Generator (2) zur Stromerzeugung verbunden ist, und der selbe Generator über eine selbstätig wirkende Kupplung (3) mit einer Welle einer Dampfturbine (4) verbunden ist.
- Kombianlage nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens eine Verbindungsleitung (27, 28) von einer Anzapfstelle der Dampfturbine in eine Brennkammer (102, 104) und/oder eine Turbine (103, 105) der Gasturbine führt, und dass diese Verbindungsleitung mit einem Absperr- und Regelorgan (25, 26) versehen ist.
- Kombianlage nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens eine Verbindungsleitung (31,32) vom Kessel (6) und/oder einer Dampfleitung (74,75,82,83) in eine Brennkammer (102, 104) und/oder eine Turbine (103, 105) der Gasturbine führt, und dass diese Verbindungsleitung mit einem Absperr- und Regelorgan (33,34) versehen ist.
- Kombianlage nach den Ansprüchen 12 und 13, wobei Dampf sowohl von Anzapfstellen der Dampfturbine wie auch von Anzapfstellen am Kessel und/oder den Dampfleitungen der Gasturbine zuführbar ist, dadurch gekennzeichnet, dass zur Umschaltung der Zufuhr von Dampf aus den verschiedenen Zweigen der Dampfversorgung Dreiwegeventile (29,30) in den Verbindungsleitungen eingebaut sind.
- Kombianlage nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass Dampf zur Kühlung thermisch hochbelasteter Gasturbinenkomponenten verwendet wird.
- Kombianlage nach Anspruch 1, dadurch gekennzeichnet, dass die Gasturbine über wenigstens zwei bezüglich der Strömung des Arbeitsmediums in Reihe geschaltete Brennkammern (102, 104) verfügt, wobei zwischen jeweils zwei Brennkammern eine Turbine (103) angeordnet ist, und wobei eine letzte Turbine (105) stromab einer letzten Brennkammer angeordnet ist.
- Kombianlage nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur des entspannten Arbeitsmediums (52) der Gasturbine beim Vollastbetrieb der Gasturbine über 580°C liegt.
- Verfahren zum Betrieb einer Kombianlage nach Anspruch 1, dadurch gekennzeichnet, dass in einem ersten Betriebspunkt die Gasturbine in ihrem Vollastbestriebspunkt arbeitet, und den Abhitzekessel mit einem Nennmassenstrom von Abgas beaufschlagt, wobei der Wasser/Dampfmassenstrom derart bemessen ist, dass die Temperatur des Abgases beim Austritt aus dem Verdampfer (604) näherungsweise der Siedetemperatur des Speisewassers entspricht, und dass zur Erhöhung der Leistungsabgabe der Dampfturbine die Zusatzfeuerung in Betrieb genommen wird, welche unmittelbar auf den Verdampfer wirkt, dergestalt, dass die Dampfproduktion ansteigt.
- Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass eine Hauptspeisewassermenge (77) in zwei Teilströme (71, 72) aufgeteilt wird, dass ein erster Teilstrom (71) über eine erste Speisewasserleitung unmittelbar einem ersten Abschnitt (601) eines Economizers zugeführt wird, und dass wenigstens ein weiterer Teilstrom, welcher im Economizer oder in der Kesseltrommel oder dem Verdampfer des Abhitzedampferzeugers dem ersten Teilstrom zugemischt wird, in wenigstens einem Vorwärmer (11, 12, 13) soweit erwärmt wird, dass die Temperatur des gesamten Wassermassenstroms (73) beim Eintritt in den Verdampferbereich (603, 604) näherungsweise der Siedetemperatur des Speisewassers entspricht.
- Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass zur Vorwärmung des Speisewassers der Dampfturbine mindestens eine Dampfmenge (79, 80, 81) an mindestens einer Zwischenentnahmestelle entnommen wird.
- Verfahren nach Anspruch 18, wobei Öl als Brennstoff (41) eingesetzt wird, dadurch gekennzeichnet, dass die erste Speisewasserleitung abgesperrt wird, und, dass ein weiterer Teilstrom auf eine Temperatur vorgewärmt wird, die über der Taupunkttemperatur von Schwefelsäure liegt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99810389A EP1050667A1 (de) | 1999-05-05 | 1999-05-05 | Kombianlage mit Zusatzfeuerung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99810389A EP1050667A1 (de) | 1999-05-05 | 1999-05-05 | Kombianlage mit Zusatzfeuerung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1050667A1 true EP1050667A1 (de) | 2000-11-08 |
Family
ID=8242808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99810389A Withdrawn EP1050667A1 (de) | 1999-05-05 | 1999-05-05 | Kombianlage mit Zusatzfeuerung |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1050667A1 (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002077420A1 (de) | 2001-03-27 | 2002-10-03 | Alstom (Switzerland) Ltd | Verfahren zur sofortigen, schnellen und temporären erhöhung der leistung eines kombikraftwerkes |
WO2002101205A1 (de) * | 2001-05-19 | 2002-12-19 | Alstom (Switzerland) Ltd | Verfahren zum betrieb eines kombikraftwerkes |
EP1462632A2 (de) | 2003-03-28 | 2004-09-29 | Alstom Technology Ltd | Verfahren und Vorrichtung zur Anpassung der Parameter des Heissgases eines Heissgaserzeugers mit nachgeschaltetem technologischem Prozess |
US6813888B2 (en) | 2000-12-29 | 2004-11-09 | Fortum Oyj | Integration construction between a boiler and a steam turbine and method in preheating of the supply water for a steam turbine and in its control |
US6951106B2 (en) | 2000-12-29 | 2005-10-04 | Fortum Oyj | Integration construction between a boiler and a steam turbine and method in preheating of the supply water for a steam turbine and in its control |
DE10124492B4 (de) * | 2001-05-19 | 2007-07-19 | Alstom Technology Ltd. | Verfahren zum Betrieb eines Kombikraftwerkes bei unterschiedlichen Netzanforderungen |
WO2012052276A1 (en) * | 2010-10-19 | 2012-04-26 | Alstom Technology Ltd | Method for operation of a combined-cycle power plant with cogeneration, and a combined-cycle power plant for carrying out the method |
WO2013105071A1 (en) * | 2012-01-13 | 2013-07-18 | Alstom Technology Ltd | A supercritical heat recovery steam generator reheater and supercritical evaporator arrangement |
DE102012218542A1 (de) * | 2012-10-11 | 2014-04-17 | Siemens Aktiengesellschaft | Verfahren zum flexiblen Betrieb einer Kraftwerksanlage |
US9677430B2 (en) | 2011-03-01 | 2017-06-13 | General Electric Technology Gmbh | Combined cycle power plant |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2023748A1 (de) * | 1969-05-14 | 1971-02-18 | Stein Industrie | Verfahren fur die Verbesserung der Betriebsweise einer einen kombinierten Kreislauf aufweisenden Gas und Dampf turbmenanlage mit nachgeschaltetem Dampfkessel und Anlage zur Durchfuhrung des Verfahrens |
FR2257786A1 (de) * | 1974-01-15 | 1975-08-08 | Sulzer Ag | |
EP0582898A1 (de) * | 1992-08-10 | 1994-02-16 | Siemens Aktiengesellschaft | Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Gud-Anlage |
EP0620362A1 (de) | 1993-04-08 | 1994-10-19 | ABB Management AG | Gasturbogruppe |
GB2277965A (en) * | 1993-05-12 | 1994-11-16 | British Gas Plc | Steam turbine |
EP0674099A1 (de) * | 1994-03-21 | 1995-09-27 | ABB Management AG | Verfahren zur Kühlung von thermische belasteten Komponenten einer Gasturbogruppe |
DE19615911A1 (de) * | 1996-04-22 | 1997-10-23 | Asea Brown Boveri | Verfahren zum Betrieb einer Kombianlage |
DE19734862A1 (de) * | 1997-08-12 | 1999-02-18 | Bernd Gericke | Wärmekraftwerk mit einer Gasturbine und einem Dampferzeuger für eine Mehrdruck-Dampfturbine |
-
1999
- 1999-05-05 EP EP99810389A patent/EP1050667A1/de not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2023748A1 (de) * | 1969-05-14 | 1971-02-18 | Stein Industrie | Verfahren fur die Verbesserung der Betriebsweise einer einen kombinierten Kreislauf aufweisenden Gas und Dampf turbmenanlage mit nachgeschaltetem Dampfkessel und Anlage zur Durchfuhrung des Verfahrens |
FR2257786A1 (de) * | 1974-01-15 | 1975-08-08 | Sulzer Ag | |
EP0582898A1 (de) * | 1992-08-10 | 1994-02-16 | Siemens Aktiengesellschaft | Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Gud-Anlage |
EP0620362A1 (de) | 1993-04-08 | 1994-10-19 | ABB Management AG | Gasturbogruppe |
US5454220A (en) | 1993-04-08 | 1995-10-03 | Abb Management Ag | Method of operating gas turbine group with reheat combustor |
US5577378A (en) | 1993-04-08 | 1996-11-26 | Abb Management Ag | Gas turbine group with reheat combustor |
GB2277965A (en) * | 1993-05-12 | 1994-11-16 | British Gas Plc | Steam turbine |
EP0674099A1 (de) * | 1994-03-21 | 1995-09-27 | ABB Management AG | Verfahren zur Kühlung von thermische belasteten Komponenten einer Gasturbogruppe |
DE19615911A1 (de) * | 1996-04-22 | 1997-10-23 | Asea Brown Boveri | Verfahren zum Betrieb einer Kombianlage |
DE19734862A1 (de) * | 1997-08-12 | 1999-02-18 | Bernd Gericke | Wärmekraftwerk mit einer Gasturbine und einem Dampferzeuger für eine Mehrdruck-Dampfturbine |
Non-Patent Citations (1)
Title |
---|
GERICKE B: "KOMBI-ANLAGEN FUER INDUSTRIE UND KOMMUNEN. TEIL 2: ZUSATZBEFEUERTEREINDRUCKPROZESS MIT REKU UND ZUSATZBEFEUERTER MEHRDRUCKPROZESS MIT ZUE", VGB KRAFTWERKSTECHNIK, vol. 77, no. 11, 1 November 1997 (1997-11-01), pages 912 - 919, XP000724054, ISSN: 0372-5715 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6813888B2 (en) | 2000-12-29 | 2004-11-09 | Fortum Oyj | Integration construction between a boiler and a steam turbine and method in preheating of the supply water for a steam turbine and in its control |
US6951106B2 (en) | 2000-12-29 | 2005-10-04 | Fortum Oyj | Integration construction between a boiler and a steam turbine and method in preheating of the supply water for a steam turbine and in its control |
WO2002077420A1 (de) | 2001-03-27 | 2002-10-03 | Alstom (Switzerland) Ltd | Verfahren zur sofortigen, schnellen und temporären erhöhung der leistung eines kombikraftwerkes |
US6810675B2 (en) | 2001-03-27 | 2004-11-02 | Alstom Technology Ltd | Method for operating a combined-cycle power station |
WO2002101205A1 (de) * | 2001-05-19 | 2002-12-19 | Alstom (Switzerland) Ltd | Verfahren zum betrieb eines kombikraftwerkes |
DE10124492B4 (de) * | 2001-05-19 | 2007-07-19 | Alstom Technology Ltd. | Verfahren zum Betrieb eines Kombikraftwerkes bei unterschiedlichen Netzanforderungen |
EP1462632A2 (de) | 2003-03-28 | 2004-09-29 | Alstom Technology Ltd | Verfahren und Vorrichtung zur Anpassung der Parameter des Heissgases eines Heissgaserzeugers mit nachgeschaltetem technologischem Prozess |
US7260938B2 (en) | 2003-03-28 | 2007-08-28 | Alstom Technology, Ltd. | Method and arrangement for adapting a parameter of a hot gas of a hot-gas generator having a downstream technological process |
CN103154446B (zh) * | 2010-10-19 | 2015-05-27 | 阿尔斯通技术有限公司 | 用于运行带有热电联产的联合循环动力设备的方法以及用于实施该方法的联合循环动力设备 |
CN103154446A (zh) * | 2010-10-19 | 2013-06-12 | 阿尔斯通技术有限公司 | 用于运行带有热电联产的联合循环动力设备的方法以及用于实施该方法的联合循环动力设备 |
US8984894B2 (en) | 2010-10-19 | 2015-03-24 | Alstom Technology Ltd | Method for operating a combined-cycle power plant with cogeneration, and a combined-cycle power plant for carrying out the method |
WO2012052276A1 (en) * | 2010-10-19 | 2012-04-26 | Alstom Technology Ltd | Method for operation of a combined-cycle power plant with cogeneration, and a combined-cycle power plant for carrying out the method |
US9677430B2 (en) | 2011-03-01 | 2017-06-13 | General Electric Technology Gmbh | Combined cycle power plant |
US9429044B2 (en) | 2012-01-13 | 2016-08-30 | Alstom Technology Ltd | Supercritical heat recovery steam generator reheater and supercritical evaporator arrangement |
WO2013105071A1 (en) * | 2012-01-13 | 2013-07-18 | Alstom Technology Ltd | A supercritical heat recovery steam generator reheater and supercritical evaporator arrangement |
CN103477034A (zh) * | 2012-01-13 | 2013-12-25 | 阿尔斯通技术有限公司 | 超临界热回收蒸汽发生器的再热器和超临界蒸发器布置 |
CN103477034B (zh) * | 2012-01-13 | 2015-08-12 | 阿尔斯通技术有限公司 | 超临界热回收蒸汽发生器的再热器和超临界蒸发器布置 |
DE102012218542A1 (de) * | 2012-10-11 | 2014-04-17 | Siemens Aktiengesellschaft | Verfahren zum flexiblen Betrieb einer Kraftwerksanlage |
DE102012218542B4 (de) * | 2012-10-11 | 2016-07-07 | Siemens Aktiengesellschaft | Verfahren zum flexiblen Betrieb einer Kraftwerksanlage |
JP2015534633A (ja) * | 2012-10-11 | 2015-12-03 | シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft | 発電プラントの柔軟な運転方法 |
WO2014056772A1 (de) | 2012-10-11 | 2014-04-17 | Siemens Aktiengesellschaft | Verfahren zum flexiblen betrieb einer kraftwerksanlage |
US10487696B2 (en) | 2012-10-11 | 2019-11-26 | Siemens Aktiengesellschaft | Method for the flexible operation of a power plant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2462378B1 (de) | Verfahren zum betreiben eines mit einer dampftemperatur von über 650°c operierenden zwangdurchlaufdampferzeugers sowie zwangdurchlauf-dampferzeuger | |
EP0778397B1 (de) | Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Gasturbogruppe | |
EP0591163B2 (de) | Kombinierte gas- und dampfturbinenanlage | |
DE2632777C2 (de) | Dampfkraftanlage mit Einrichtung zur Spitzenlastdeckung | |
CH697959A2 (de) | Kombinierter Prozess unter Verwendung überkritischen Dampfs und Verfahren. | |
WO1996010124A1 (de) | Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage | |
DE1170423B (de) | Verfahren und Anordnung zur Regelung der Dampftemperaturen in einem Zwangdurchlauf-dampferzeuger mit zwei im Rauchgaszug angeordneten Zwischenueberhitzern | |
EP0773349A1 (de) | Kühlluftkühler für Kraftwerksanlagen | |
EP1390606B2 (de) | Vorrichtung zur kühlmittelkühlung einer gasturbine und gas- und dampfturbinenanlage mit einer derartigen vorrichtung | |
WO2008067855A2 (de) | Verfahren und vorrichtung zur erhöhung von leistung und wirkungsgrad eines orc-kraftwerkprozesses | |
EP0515911B1 (de) | Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und entsprechende Anlage | |
DE10260993A1 (de) | Verfahren zur Stromerzeugung sowie nach diesen Verfahren betriebene Kraftwerke | |
EP0789134B1 (de) | Verfahren zum Betrieb einer Kraftwerksanlage | |
EP1584798B1 (de) | Verfahren und Einrichtung zur Erzeugung von Kraft und Wärme | |
EP1050667A1 (de) | Kombianlage mit Zusatzfeuerung | |
EP3420202B1 (de) | Kondensatrezirkulation | |
EP1801363A1 (de) | Kraftwerksanlage | |
EP0709561B1 (de) | Kraftwerksanlage | |
DE10155508C2 (de) | Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie | |
DD296733A5 (de) | Abhitzedampferzeuger fuer ein gas- und dampfturbinenkraftwerk | |
EP3810907B1 (de) | Abgasrezirkulation in gas- und dampfturbinenanlagen | |
DE102012110579B4 (de) | Anlage und Verfahren zur Erzeugung von Prozessdampf | |
EP0037845A1 (de) | Kombinierte Gasturbinen-Dampfkraftanlage | |
DE3815993A1 (de) | Zweistoff-turbinenanlage | |
WO2012062708A2 (de) | Fossil befeuerter dampferzeuger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990604 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
AKX | Designation fees paid |
Free format text: DE |
|
18W | Application withdrawn |
Withdrawal date: 20010705 |