EP1048471A2 - Verfahren und Apparat zur Minimierung von Farbtonverschiebungen in bidirektionalem Tintenstrahldruck - Google Patents

Verfahren und Apparat zur Minimierung von Farbtonverschiebungen in bidirektionalem Tintenstrahldruck Download PDF

Info

Publication number
EP1048471A2
EP1048471A2 EP00303081A EP00303081A EP1048471A2 EP 1048471 A2 EP1048471 A2 EP 1048471A2 EP 00303081 A EP00303081 A EP 00303081A EP 00303081 A EP00303081 A EP 00303081A EP 1048471 A2 EP1048471 A2 EP 1048471A2
Authority
EP
European Patent Office
Prior art keywords
ink
color
nozzles
printhead
expulsion nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00303081A
Other languages
English (en)
French (fr)
Other versions
EP1048471A3 (de
EP1048471B1 (de
Inventor
George C. Ross
David M. Wetchler
John M. Skene
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Publication of EP1048471A2 publication Critical patent/EP1048471A2/de
Publication of EP1048471A3 publication Critical patent/EP1048471A3/de
Application granted granted Critical
Publication of EP1048471B1 publication Critical patent/EP1048471B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J19/00Character- or line-spacing mechanisms
    • B41J19/14Character- or line-spacing mechanisms with means for effecting line or character spacing in either direction
    • B41J19/142Character- or line-spacing mechanisms with means for effecting line or character spacing in either direction with a reciprocating print head printing in both directions across the paper width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding

Definitions

  • the present disclosure may contain subject matter related to U.S. Patent Application Serial Number (unknown), Attorney Docket Number 10990240, titled “Method of Minimizing Color Hue Shifts in a Single-pass, Bi-directional Inkjet Printer using Direction Dependent Color Maps” filed on even date herewith.
  • This invention relates to color printing, and more particularly to minimizing color hue shift in bi-directional color inkjet printing.
  • inkjet printing technology is relatively well developed.
  • Commercial products such as computer printers, graphics plotters, copiers, and facsimile machines employ inkjet technology for producing hard copy printed output.
  • the basics of this technology are disclosed, for example, in various articles in the Hewlett-Packard Journal, Vol. 36, No. 5 (May 1985), Vol. 39, No. 4 (August 1988) Vol. 39, No. 5 (October 1988), Vol. 43, No. 4 (March 1992), Vol. 43, No. 6 (December 1992) and Vol. 45 No. 1 (February 1994) editions.
  • Inkjet devices are also described by W.J. Lloyd and H.T. Taub in Output Hardcopy Devices, chapter 13 (Ed. R.C. Durbeck and S. Sherr, Academic Press, San Diego, 1988).
  • the fastest way to print a contiguous area of color with a scanning inkjet printhead is to sweep the printhead across the media in a first direction while firing ink droplets as needed from an array of nozzles, advance the media the height of the array of nozzles then sweep the printhead in a second, opposite direction firing ink droplets as before.
  • This is known as single-pass, bi-directional printing. Single-pass because the printhead passes over each area of the page only one time. There is minimal or no overlap between adjacent printed rows.
  • Bi-directional because drops are fired while the printhead is travelling in both the left to right direction and the returning right to left direction.
  • the ordering of the dot placement of two superimposed droplets has a significant influence on the resulting perceived color. For example, laying down magenta on top of cyan may produce a blue which is biased toward the cyan; whereas printing cyan on top of magenta may yield a blue which emphasizes magenta.
  • sub-swaths are printed while the printhead is thus traveling in each of two directions, respectively, the successive swaths or sub-swaths. Banding that results is often very conspicuous.
  • Both methods are effective at reducing or eliminating color hue shifts, thereby improving the print quality, but they also slow the printing process significantly. The consumer will have to compromise print speed to get the desired color print quality.
  • the desired inkjet printer must be able to print bi-directionally, so there is no time wasted on a carriage return; print in a single-pass mode, so there is no time wasted on overlapping printing; and the deposition of ink droplets to form composite colors must be performed in the same sequence whether traversing in a right to left direction or a left to right direction, thereby eliminating the directional related color hue shifts.
  • An inkjet printer has a printing width and utilizes a plurality of printheads.
  • the plurality of printheads has an axis of symmetry, and a first row of ink expulsion nozzles and a second row of ink expulsion nozzles.
  • the first and second rows are disposed essentially parallel to each other and symmetrically disposed about the axis of symmetry.
  • the third and fourth rows are also disposed essentially parallel to each other and symmetrically disposed about the axis of symmetry.
  • the inkjet printer also has a printhead carriage which holds the plurality of printheads and is arranged to traverse in a first direction parallel to the printing width of the inkjet printer.
  • the printhead carriage positions the plurality of printheads to expulse color ink droplets onto a media in a particular sequence. This arrangement also allows the printhead carriage to traverse in a second direction, opposite the first direction, which positions the plurality of printheads to expulse color ink droplets onto the media in the same particular sequence.
  • the preferred embodiment of the inkjet printer prints bi-directionally, so there is no time wasted on a carriage return; prints in a single-pass mode, so there is no time wasted on overlapping printing; and the deposition of ink droplets to form composite colors is performed in the same sequence whether traversing in a right to left direction or a left to right direction, thereby minimizing the directional related color hue shifts.
  • FIG. 1 illustrates a perspective view of an inkjet printer 100 incorporating the present invention.
  • a media tray 110 holds a supply of input paper or other print media.
  • a printing operation is initiated, a sheet of paper or media in media tray 110 is fed into inkjet printer 100 and is then brought around in a U-direction towards an output tray 114.
  • the sheet is stopped in a print zone 118 and a printhead carriage 102, containing multiple dual color inkjet printheads 108 and a single color printhead 106, is scanned along carriage traverse rail 104 across a printing width 120 of the inkjet printer 100 for printing a swath of ink onto the paper or media below.
  • the sheet is advanced and the process repeats now in an opposite movement of the printhead carriage 102 until the entire sheet has been printed, at which point the printed media is ejected onto output tray 114.
  • Dual color inkjet printheads 108 and single color printhead 106 are fluidically coupled to removable secondary ink supplies 112 by ink conduits 116. Typically, these secondary ink supplies 112 hold Cyan, Magenta, Yellow and Black inks.
  • An example of a commercially available three color inkjet print cartridge is a Model HP5659A available from Hewlett-Packard Co.
  • there is one single multi-colored cartridge that replaces the dual color inkjet printheads 108 and the single color printhead 106 containing varying combinations of colors.
  • each single color inkjet printhead 106, dual color inkjet printhead 108, and secondary ink supply 112 is provided with an integral memory device which stores data that is used by inkjet printer 100 to control its printing operations.
  • FIG. 2 is an isometric view of a dual color inkjet printhead 108 according to one embodiment of the present invention.
  • the inkjet printhead 108 includes a primary ink supply 212 and a flexible inkjet printhead circuit 202.
  • the flexible inkjet printhead circuit 202 is formed on a flexible polymer tape using Tape Automated Bonding (TAB) techniques.
  • TAB Tape Automated Bonding
  • One conventional technique is described in U.S. Pat. No. 4,917,286 (Pollacek).
  • the flexible inkjet printhead circuit 202 includes an ink expulsion region 201 comprising a first nozzle row 206 and a second nozzle row 208. Each nozzle row contains a plurality of ink expulsion nozzles 210.
  • the parallel nozzle rows, reference numerals 206 and 208, of ink expulsion nozzles 210 are formed in the flexible polymer tape by, for example, laser ablation.
  • the tape may be purchased commercially as KAPTON tape, available from 3M Corporation.
  • Other suitable tape may be formed of UPILEX or its equivalent.
  • the ink expulsion nozzles 210 can be formed In a nickel or gold plate and attached to the flexible polymer tape.
  • a back surface of the flexible inkjet printhead circuit 202 includes conductive traces formed, for example, by a conventional photolithographic etching and/or plating process. These conductive traces are terminated at one end by large electrical interconnect pads 214 designed to interconnect with an inkjet printer, and on the opposite end with the circuitry on a semiconductor substrate (not shown) attached to the back surface of the flexible inkjet printhead circuit 202 behind an ink expulsion region 201.
  • the inkjet printheads, 106 and 108 are designed to be installed in a printer so that the electrical interconnect pads 214, which extend through to the front surface of the flexible inkjet printhead circuit 202, contact printer electrodes thereby providing externally generated energization signals to the inkjet printhead.
  • each dual color inkjet printhead 108 has a divided primary ink supply 212, which contains two colors of ink.
  • FIG. 2 shows a flexible circuit centerline 204 where one color is stored and dispensed from one half of a primary ink supply 212 located approximately behind a first side of the flexible circuit centerline 204 using a first nozzle row 206 on that side.
  • the second color of ink is stored and dispensed from the remaining half of the primary ink supply 212 located approximately behind the second side of the flexible circuit centerline 204 using a second nozzle row 208 on that side.
  • ink is replenished through ink conduits 116 from a secondary ink supply 112 (FIG. 1) containing the appropriate color of ink.
  • FIG. 3 is a planar view of the front surface of the flexible inkjet printhead circuit 202 removed from the dual color inkjet print cartridge 108.
  • Affixed to the back of the flexible printhead circuit 202 in the ink expulsion region 201 is the silicon substrate (not shown) containing a plurality of individually energizable thin film resistors.
  • Each resistor is located generally behind a single ink expulsion nozzle 210 and acts as an ohmic heater when selectively energized by one or more pulses applied sequentially or simultaneously to one or more of the electrical interconnect pads 214.
  • FIG. 4 depicts a typical configuration of multiple single color inkjet printheads 106 each having a primary ink supply 212 and secondary ink supply 112 in a configuration of the current inkjet technology.
  • Each printhead is a single color inkjet printhead 106 (both first nozzle row 206 and second nozzle row 208 dispense the same ink color) and are in fluid communication with a secondary ink supply 112 by an ink conduit 116.
  • the color of ink contained within each secondary ink supply 112 and primary ink supply 212 is shown in the shaded cutout windows on the fronts of each device. From left to right, the shading corresponds to Black, Cyan, Magenta and Yellow. This shading scheme will remain consistent throughout this specification.
  • the single color inkjet printhead 106 On one surface of the single color inkjet printhead 106 is the attached flexible inkjet printhead circuit 202 which has two rows of ink expulsion nozzles (FIG. 1) where ink droplets 401 are ejected onto some form of media beyond.
  • the single color inkjet printheads 106 are ordered Cyan, Magenta, and Yellow (CMY) with the Black (B) printhead on either side of the three-color printheads.
  • the physical placement of the secondary ink supplies 112, the fluid conduits 116, and the inkjet print cartridges in an inkjet printer 110 are similar as that shown in FIG. 1.
  • other inkjet printing systems have the secondary ink supplies 112 attached to the inkjet print cartridges wherein both are stationed in the print cartridge carriage 102 and travel together along carriage traverse rail 104.
  • FIG. 5A depicts a section of four adjacent ink expulsion nozzles 210 from each inkjet printhead 108, across a width of the four inkjet printheads 108 of FIG. 4
  • FIG. 5A illustrates the arrangement and colors of ink droplets 401 emerging from the rows of ink expulsion nozzles 210 of each inkjet printhead 108 with the colors ordered, as indicated by the shading, in nozzles rows from left to right as BBCCMMYY (Black, Cyan, Magenta, Yellow).
  • each color has two rows of nozzles.
  • FIG. 5B is representative of the deposition of ink droplets 401 from the four-high section of ink expulsion nozzles 210 of FIG. 5A in both a left to right pass 530 of the inkjet print cartridges 106 and a right to left pass 540 of inkjet print cartridges 106.
  • a shade of green is created by the combining of a droplet of Yellow ink from one of the two rows of a first ink color nozzles 501 and a droplet of Cyan ink from one of the two rows of a second ink color nozzles 503.
  • the inkjet printer 100 is printing in a single-pass, bi-directional mode
  • the inkjet printer 100 after the inkjet printer 100 prints across the media from left to right, then indexes the print media, it will print the next swath of printing while the print cartridge carriage 102 is traversing right to left.
  • Reversing the movement of the print cartridge carriage 102 reverses the order of the inkjet print cartridges 106 and, as a result, the second ink color nozzles 503 (Cyan) will be dispensed before the first ink color nozzles 501 (Yellow).
  • This banding varies depending on the combinations of primary colors required, but can be very noticeable as a typical swath of inkjet printing is approximately .30 to 1.00 inches ,or 7.62 to 25.40 mm, high.
  • Another inkjet printer has all three colors (Cyan, Yellow, and Magenta) contained in the same print cartridge, with the rows of nozzles in parallel, and located together in one six-row ink expulsion region 201 disposed on one single flexible inkjet printhead circuit 202.
  • An example of a commercially available three color inkjet print cartridge is a Hewlett-Packard Model C1823A.
  • the black print cartridge is a separate print cartridge, typically placed to the left of the three-color cartridge.
  • the ink in the three-color cartridge is channeled to the particular nozzle row from the corresponding primary ink container thereby maintaining the CCMMYY color ordering. Therefore, deposition of ink droplets is similar to the described method of FIG. 5A and FIG. 5B above.
  • FIG. 6 depicts a combination of the single color inkjet print cartridge 106 (FIG. 4), the multiple dual color inkjet printheads 108 (FIG. 2), their respective secondary ink supplies 112, and the fluidic conduit interconnects 116 of the preferred embodiment of the present invention.
  • each dual color inkjet printhead 108 is of a similar size and shape as the single color inkjet printhead 106, but the primary ink supply 212 of each dual color inkjet printhead 108 is divided into two chambers which may each contain a different color of ink.
  • there are four secondary ink supplies 112 Black, Cyan, Yellow, Magenta).
  • the Black secondary ink supply 112 supplies the single color inkjet printhead 106 with ink.
  • the secondary ink supplies 112 distribute ink to the dual color inkjet printheads 108 in an order such that there is symmetry in the ordering of the colors of ink within the nozzle rows of six primary ink supplies 212.
  • the two outside primary ink supplies of the dual color inkjet printheads 108 contain the second ink color (Cyan in the preferred embodiment).
  • the first ink color (Yellow in the preferred embodiment) is in both of the primary ink supplies 212 of the second dual color inkjet print cartridge 108.
  • the third ink color (Magenta in the preferred embodiment) is in the remaining two primary ink supplies 212. This symmetry allows the dispensing of the ink in the same order whether the print cartridge carriage 102 (FIG. 1) is traversing right to left or left to right.
  • the middle dual color inkjet print cartridge 108 could have only one nozzle row, therefore only one primary ink supply 212 as the symmetry of the color of inks would be maintained. This results in an ink color ordering of BBCMYMC. Another order is contemplated where Black is the center color resulting in an ordering of CMYBBYMC. This would require four dual color inkjet print cartridges 108 and eliminate the need for the single color inkjet print cartridge 106. Any of the aforementioned orderings would produce the symmetrical ink dispensing desired in the present invention. Additionally, the symmetrical ordering of inks can be extended for any number of inks, for example ABCD...
  • FIG. 7A is a section of the single color inkjet print cartridges 106 and the three dual color inkjet print cartridges 108 of FIG. 6 depicting the arrangement and colors of ink droplets 401 emerging from the rows of nozzles of each flexible inkjet printhead circuit 202.
  • FIG. 7A is illustrative of a four-high section of ink expulsion nozzles 210 from the flexible inkjet printhead circuit 202 with the colors ordered in the nozzles rows from left to right as BBCMYYMC.
  • Each color has two rows of ink expulsion nozzles 210 and these two rows of ink expulsion nozzles 210 are symmetrical about an axis of symmetry 720.
  • the axis of symmetry 720 is perpendicular to the printing width 120 of inkjet printer 100 (FIG. 1).
  • Each dual color print cartridge 108 has its rows of ink expulsion nozzles 210 divided by flexible circuit centerline 204 (FIG.2).
  • the reason for the symmetrical ordering of the colors of inks is to minimize the color hue shift associated with the inability of an asymmetrical ordering to dispense ink in a like order when operating in a single-pass, bi-directional print mode as previously shown and discussed in FIG. 4, FIG. 5A and FIG. 5B.
  • FIG. 7B depicts a left to right pass 730 and a right to left pass 740 of overlaid ink droplets created with the nozzle row and ink distribution configuration of FIG. 7A using all ink expulsion nozzles 210 to print in the single-pass, bi-directional mode of the preferred embodiment of the present invention.
  • These matrices of ink droplets are an example of alternating the ordering of the layering of the colors to get visibly one single color.
  • first combined ink droplet 541 is created from an ink droplet from nozzle row 703 and an inkjet droplet from nozzle row 701 or nozzle row 702.
  • the second combined ink droplet 531 is created from an ink droplet 401 from nozzle row 701 or nozzle 702 and an ink droplet from nozzle row 704. These two combined droplets, 541 and 531, represent the same color. However, as discussed previously and shown in FIG. 5B, with an area of first combined ink droplets 541 and an adjacent area of second combined ink droplets 531 a color hue shift is apparent between the two areas as demonstrated by left to right pass 530 and right to left pass 540. With the alternating ink droplet pattern of the preferred embodiment of the present invention as shown in FIG. 7B, the left to right pass 730 and the right to left pass 740 will appear to be the same color or hue. There will be a minimal color hue shift detectable between adjacent rows.
  • a first nozzle row 206 of each dual color inkjet printhead 108 is used for left to right printing only, while the second nozzle row 208 of each dual color inkjet printhead 108 is used for right to left printing only.
  • This allows every combined droplet to be disposed in the same order, thereby creating an even more contiguous area of color in a single-pass, bi-directional printing mode. Although this compromises the printing speed, as only half of the nozzles are available for dispensing in each direction, the user can decide to forego speed for the higher print quality, for example for photos or precision illustrations.
  • FIG. 8A A fifth alternate implementation is shown in FIG. 8A.
  • Each color primary grouping contains enough ink expulsion nozzles 210 to represent half of the vertical resolution of the pen.
  • Dimensional reference number 810 depicts the standard vertical spacing in an inkjet print cartridge where dimensional reference number 820 depicts twice the standard vertical spacing. Every other ink droplet 401 row is dispensed in an opposite order offset by one droplet 401 row.
  • first combined ink droplet 541 is created by layering second color ink droplet 801 then first color ink droplet 802, while in the adjacent row of ink droplets, second combined ink droplet 531 is created by first color ink droplet 803 then second color ink droplet 804.
  • the color hue shift for this alternate example, will still occur, but on an ink droplet row basis rather than on a print swath basis as shown and described in FIG. 5B.
  • the color hue shift becomes much more difficult for the human eye to detect so the overall result is a reduction in observable color hue shift.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Ink Jet (AREA)
EP20000303081 1999-04-30 2000-04-12 Verfahren und Apparat zur Minimierung von Farbtonverschiebungen in bidirektionalem Tintenstrahldruck Expired - Lifetime EP1048471B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30286099A 1999-04-30 1999-04-30
US302860 1999-04-30

Publications (3)

Publication Number Publication Date
EP1048471A2 true EP1048471A2 (de) 2000-11-02
EP1048471A3 EP1048471A3 (de) 2001-04-04
EP1048471B1 EP1048471B1 (de) 2008-12-17

Family

ID=23169518

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000303081 Expired - Lifetime EP1048471B1 (de) 1999-04-30 2000-04-12 Verfahren und Apparat zur Minimierung von Farbtonverschiebungen in bidirektionalem Tintenstrahldruck

Country Status (3)

Country Link
EP (1) EP1048471B1 (de)
JP (1) JP2000318189A (de)
DE (1) DE60041100D1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088669A2 (de) * 1999-09-30 2001-04-04 Canon Kabushiki Kaisha Drucker und Druckverfahren
EP1088670A2 (de) * 1999-09-30 2001-04-04 Canon Kabushiki Kaisha Zwei-Wege Drucker und Druckverfahren
EP1479523A2 (de) * 2001-08-23 2004-11-24 Brother Kogyo Kabushiki Kaisha Tintenstrahldruckvorrichtung
EP1671800A3 (de) * 2004-12-15 2008-09-24 Jetrion, L.L.C Druckkopfanordnung mit vermindertem Schrittfehler
CN1993227B (zh) * 2005-05-17 2010-12-15 株式会社理光 成像设备
US8136919B2 (en) 2008-06-24 2012-03-20 Canon Kabushiki Kaisha Ink jet recording apparatus and ink jet recording head
CN109203696A (zh) * 2018-08-16 2019-01-15 北京美科艺数码科技发展有限公司 一种喷墨打印装置及打印方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4208652B2 (ja) 2003-06-13 2009-01-14 キヤノン株式会社 インクジェット記録装置及びインクジェット記録方法
JP4383778B2 (ja) 2003-06-13 2009-12-16 キヤノン株式会社 インクジェット記録装置および記録ヘッド

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917286A (en) 1987-05-20 1990-04-17 Hewlett-Packard Company Bonding method for bumpless beam lead tape

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528576A (en) * 1982-04-15 1985-07-09 Canon Kabushiki Kaisha Recording apparatus
US4593295A (en) * 1982-06-08 1986-06-03 Canon Kabushiki Kaisha Ink jet image recording device with pitch-shifted recording elements
JPH0345351A (ja) * 1989-07-13 1991-02-26 Matsushita Electric Ind Co Ltd カラープリンタ
JP3248704B2 (ja) * 1993-12-29 2002-01-21 桂川電機株式会社 カラーインクジェットプリンタ
JPH08295034A (ja) * 1995-04-27 1996-11-12 Canon Inc カラー記録装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917286A (en) 1987-05-20 1990-04-17 Hewlett-Packard Company Bonding method for bumpless beam lead tape

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088669A2 (de) * 1999-09-30 2001-04-04 Canon Kabushiki Kaisha Drucker und Druckverfahren
EP1088670A2 (de) * 1999-09-30 2001-04-04 Canon Kabushiki Kaisha Zwei-Wege Drucker und Druckverfahren
EP1088670B1 (de) * 1999-09-30 2009-10-14 Canon Kabushiki Kaisha Zwei-Wege Drucker und Druckverfahren
EP1088669B1 (de) * 1999-09-30 2009-11-11 Canon Kabushiki Kaisha Drucker und Druckverfahren
EP1479523A2 (de) * 2001-08-23 2004-11-24 Brother Kogyo Kabushiki Kaisha Tintenstrahldruckvorrichtung
EP1479523A3 (de) * 2001-08-23 2004-12-01 Brother Kogyo Kabushiki Kaisha Tintenstrahldruckvorrichtung
US6902251B2 (en) 2001-08-23 2005-06-07 Brother Kogyo Kabushiki Kaisha Inkjet printing device
US7083259B2 (en) 2001-08-23 2006-08-01 Brother Kogyo Kabushiki Kaisha Inkjet printing device
EP1671800A3 (de) * 2004-12-15 2008-09-24 Jetrion, L.L.C Druckkopfanordnung mit vermindertem Schrittfehler
CN1993227B (zh) * 2005-05-17 2010-12-15 株式会社理光 成像设备
US8136919B2 (en) 2008-06-24 2012-03-20 Canon Kabushiki Kaisha Ink jet recording apparatus and ink jet recording head
CN109203696A (zh) * 2018-08-16 2019-01-15 北京美科艺数码科技发展有限公司 一种喷墨打印装置及打印方法

Also Published As

Publication number Publication date
EP1048471A3 (de) 2001-04-04
DE60041100D1 (de) 2009-01-29
JP2000318189A (ja) 2000-11-21
EP1048471B1 (de) 2008-12-17

Similar Documents

Publication Publication Date Title
EP0391570B1 (de) Wagen für Tintenstrahldrucker
EP1273453B1 (de) Druckrichtungsabhängige Farbkonvertierung beim Zweirichtungsdruck
US6244688B1 (en) Pen stagger in color inkjet hard copy apparatus
KR940007478B1 (ko) 잉크제트 기록방법과 이것을 실시하기 위한 칼라 잉크제트 기록장치
US6244687B1 (en) Mixing overprinting and underprinting of inks in an inkjet printer to speed up the dry time of black ink without undesirable hue shifts
JP2001018376A (ja) 記録装置及び記録方法
EP0433556A2 (de) Einrichtung und Verfahren zum mehrfarbigen Tintenstrahldruck
EP1197335B1 (de) Tintenstrahldüsenstruktur zur Verminderung des Tropfenpositionierungfehlers
JP3831419B2 (ja) インクジェット印刷ヘッドによってカラー印刷する方法
EP1048471B1 (de) Verfahren und Apparat zur Minimierung von Farbtonverschiebungen in bidirektionalem Tintenstrahldruck
EP1088669B1 (de) Drucker und Druckverfahren
JP2000118013A (ja) インクジェットプリンタ用マルチパス色ずれ補正方法
EP1097818B1 (de) Zwei-Wege Drucker und Druckverfahren
US20020063750A1 (en) Ink jet recording apparatus and method
JP4046390B2 (ja) 高精度の印刷のためのインクジェット印刷ヘッド及びその作動方法
EP1547779B1 (de) Vorrichtung zur Temperaturmessung
JP2730907B2 (ja) インクジェット・プリント方法
US20040113975A1 (en) Color printing with reduced hue shift
JPH0241421B2 (de)
US8926040B2 (en) Printing device and printing method
JP3236034B2 (ja) インクジェット記録方法及びインクジェット記録装置
US8177328B2 (en) Ink jet printing apparatus and ink jet printing method
JP2008055915A (ja) 液体吐出記録ヘッド
JPH05318770A (ja) インクジェット記録装置
US9079397B1 (en) Inkjet printer having switched firing of adjacent nozzles applying common color

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7B 41J 2/21 A, 7B 41J 19/14 B

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HEWLETT-PACKARD COMPANY, A DELAWARE CORPORATION

17P Request for examination filed

Effective date: 20010914

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20040405

17Q First examination report despatched

Effective date: 20040405

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60041100

Country of ref document: DE

Date of ref document: 20090129

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090918

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120329 AND 20120404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130326

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130322

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130603

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60041100

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140412

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140412

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60041100

Country of ref document: DE

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430