EP1043088B1 - A process and machine for continuous formation of conveyor screws for archimedes-type screws - Google Patents
A process and machine for continuous formation of conveyor screws for archimedes-type screws Download PDFInfo
- Publication number
- EP1043088B1 EP1043088B1 EP00830086A EP00830086A EP1043088B1 EP 1043088 B1 EP1043088 B1 EP 1043088B1 EP 00830086 A EP00830086 A EP 00830086A EP 00830086 A EP00830086 A EP 00830086A EP 1043088 B1 EP1043088 B1 EP 1043088B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spiral
- shaft
- movement device
- support
- shafts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/15—Making tubes of special shape; Making tube fittings
- B21C37/22—Making finned or ribbed tubes by fixing strip or like material to tubes
- B21C37/26—Making finned or ribbed tubes by fixing strip or like material to tubes helically-ribbed tubes
Definitions
- the invention relates to a process and a machine for continuous formation of conveyor screws for archimedes type screws.
- conveyor screws which each comprise an internal support shaft, about which a band is coaxially and spirally wound.
- FR-A-814 323 discloses a process for formation of conveyor screws for Archimedes screw systems, as in the preamble of claim 1, wherein each conveyor screw comprises an internal support shaft at a periphery of which a spiral is wound; the process, which comprises the step of infeeding a band continuously into a spiral forming zone in which the band is made to wind into a spiral shape, has the disadvantage of stopping production to use a new shaft.
- a machine according to the preamble of claim 6 is known from FR-A-814 323 as well.
- the main aim of the present invention is to provide a process for obviating the above-mentioned limitations and drawbacks in the prior art.
- An advantage of the invention is that it makes available a process which is relatively rapid and thus leads to increases in productivity.
- variable-step conveyor screws can be produced with good geometrical precision and relatively simply.
- a further aim is to provide a constructionally simple and economical machine for realising the above-described process.
- An advantage of the machine is that it is relatively small.
- each screw comprises an internal support shaft to which a spiral-fashioned metal band is externally fixed.
- the machine 1 comprises means for continuously feeding a uniform-width band 2 into a device 3 for spiral-forming.
- the means for continuously feeding comprise a spool 5, from which the band 2 is continuously dispensed, and a guide 6, for example a roller-guide, for orienting and conveying the band 2 in an advancement direction.
- the guide 6, of known type is provided with means for regulating the orientation of the band 2; the means for regulating continuously control and can vary the advancement direction of the band 2.
- the spiral-forming device 3 also of known type, receives the continuously-advancing belt 2 and by cold-forming causes it to wind into a spiral, developing along a horizontal axis x-x.
- the cold-forming is done by two rollers 3a and 3b, having their active surfaces inclined with respect to the band fed in between them.
- the internal edge of the spiral 4 of band is shaped and arranged as a cylindrical spiral of a predetermined diameter.
- the machine 1 comprises a first shaft movement device 7 for moving the support shafts A and B located upstream of the spiral-forming device 3.
- the first shaft movement device 7 comprises a truck 7a which can be commanded to move in both senses in direction F parallel to the horizontal axis x-x of the spiral 4.
- the truck 7a bears a chuck 7b for gripping and rotating a shaft A about an axis thereof and coaxially to the spiral.
- the chuck 7b is in effect a device for controlling rotation of a shaft, mounted on a mobile horizontal support, constituted by the truck 7a.
- the machine comprises a further support 7c predisposed at a certain distance from the truck 7a and supporting the rotating shaft A.
- the support 7c is horizontally mobile on command in both senses of direction F, preferably in synchrony with the truck 7a.
- the truck 7a is predisposed to introduce the support shaft into the centre of the spiral 4 of the band, in an advancement direction G, coaxially to the spiral.
- the external diameter of the shaft is about the same as the diameter of the internal edge of the spiral 4 destined to be fixed to the shaft.
- the spiral is not only wound, but is also narrowed about the internal shaft: in other words, during the coupling of the spiral 4 with the shaft, the spiral 4 is not only wound about the shaft but is also deformed, in effect stretched, by effect of the contact with the shaft A.
- the machine is equipped with means 8 for fixing the spiral 4 to an internal support shaft A introduced through the centre of the spiral 4.
- the means for fixing are in the example constituted by an automatic welder 8a arranged on a group 8b which is mobile on command in a parallel direction to the axis x-x of the spiral in both senses.
- the welder 8a welds (e.g. spot-welds) the internal edge of the spiral 4 onto the circumference of the support shaft.
- a cutting device 9 is predisposed between the welder 8a and the rollers 3a, 3b, which cut the spiral 4 into lengths. Before cutting, each length will have been previously fixed to a support shaft, as will be better explained herein below.
- the cutting device 9, like the welder 8a, is mobile on command in the direction of the axis x-x of the spiral formation.
- the machine Downstream of the spiral-forming device 3 (downstream being in reference to the direction G of advancement of the support shafts), the machine comprises a second movement device 10, similar to the first and opposite thereto.
- the second device 10 comprises a second truck 10a situated, with respect to the spiral-forming zone, on the opposite side of the first truck 7a.
- the second truck also bears means for gripping and rotating the support shaft, which means comprise a chuck 10b, opposite to the chuck 7b, for gripping and rotating a shaft arranged coaxially to the spiral.
- the two movement devices 7 and 10 operate in synchrony; in particular, the second movement device 10 receives a support shaft from the first movement device 7 and distances the shaft axially from the spiral-forming zone (i.e. the rollers 3a and 3b) after the spiral has been cut to a desired length.
- the two trucks 7a and 10a translate at speeds above the normal axially-directed advancement speed of the spiral being formed.
- Each support shaft A, B comprises at opposite ends thereof two internally-grooved collars A' and B'.
- Each end collar can be connected with a grooved coupling to an end collar of another shaft by means of a joint constituted by a short shaft 11, externally grooved so as to be couplable to either end collar.
- These grooved couplings enable the two shafts A and B to be joined coaxially to each other, so as to render the two shafts solid in rotation but disengageable from each other by simple reciprocal pulling in an axial direction.
- Other types of couplings could be used to join the two shafts A and B.
- the band 2 is fed continuously into the spiral-forming device 3, and the spiral 4 is therefore also continuously-formed at a controlled speed.
- the internal shaft is commanded, by the movement devices 7 and 10, to translate in direction G and to rotate about its own axis, at controlled translation and rotation speeds and in relation to the spiral-forming speed.
- the rotating-translating movement of the internal shaft and the formation of the external spiral are contemporaneous, so that the spiral will form about the moving shaft.
- the truck 7a and the chuck 7b cause the shaft to rotate and translate in synchrony with the movement of the spiral formation operation.
- the spiral formation operation is so regulated that the spiral exerts a certain squeezing pressure on the shaft.
- the spiral though not welded on the shaft, is however tightly held thereon.
- the spiral formation starting from the flat straight band, is essentially realised by the action of the means for plastically deforming, i.e. the rollers 3a and 3b, in collaboration with the shaft.
- the presence of the shaft at the centre of the spiral while the latter is being formed contributes to the formation of a regular spiral and facilitates the subsequent welding operation.
- the welder 8a fixes the spiral to the shaft by a plurality of spots, or with a continuous seam if so desired.
- a second shaft is coupled coaxially behind the shaft, on which in the meantime the spiral continues to be formed.
- the second shaft is coupled to the back end of the first shaft, upstream of the spiral formation zone, while a tract of the first shaft is still passing through the zone.
- the second shaft is destined to pass through the above-mentioned zone immediately after the first shaft, practically continuously and without interrupting the movement of the shafts and the formation of the spiral. It is possible, if so preferred, to stop the movement during the passage from the first to the second shaft.
- the second shaft is coupled in the following way.
- the chuck 7b of the first truck 7a (upstream of the spiral forming zone) is disengaged from the first shaft.
- the left end of the first shaft is therefore free as it is no longer engaged in the first chuck 7b.
- the first shaft is however supported during this phase by the second movement means 10 and possibly by other supports (in this case the mobile support 7c).
- the truck 7a is subsequently commanded to retreat quickly, distancing from the rollers 3a, 3b in order to reach a retracted position in which a second shaft can be fixed to the chuck 7b.
- the truck 7a Before leaving the spiral forming zone, the truck 7a is quickly advanced in order that the free right end of the second shaft in can be inserted in the free left end of the first shaft, after insertion of a joint constituted by the short grooved shaft 11 into the end collars A' and B'.
- a continuity is created between the two shafts, so that when the first shaft leaves the spiral forming zone, a second shaft, commanded to rotate and translate, immediately enters the empty central zone of the spiral.
- the result is that there is at all times a longitudinal element in the spiral formation zone, and precisely in the internal space created by the spiral, which advances and rotates continuously and in synchrony with the formation of the spiral, guaranteeing process continuity.
- the cutting device 9 is commanded to cut the spiral transversally.
- the spiral is cut at a tract of the second shaft which is close to the joining zone between the two shafts.
- the cut is made without involving the abovementioned tract of the second shaft, as it interests only the spiral 4, which it cuts to length with respect to the first shaft.
- the second truck 10a bearing the chuck 10b gripping the first shaft, is moved swiftly rightwards, distancing the first shaft from the second shaft and also removing it from the spiral forming zone.
- the first shaft about which a length of spiral is wound and fixed, is thus drawn by the truck 10a and the chuck 10b into a position which facilitates the detachment of the shaft from the chuck 10b and the subsequent distancing of the machine.
- the separation and axial distancing of the first shaft from the second can be obtained thanks to the fact that the length of spiral which is solid to the first shaft has been detached, by means of the previous cut, from the remaining tract of spiral, which continues to develop about the second shaft. Firstly the above-mentioned separation between the two shafts is made possible by the fact that the grooved coupling between the shafts permits axial uncoupling.
- the formation of the spiral can proceed with no interruption and at a more-or-less constant speed, though it can also be performed intermittently.
- the truck 10a is translated leftwards, opposite to direction G, nearing the spiral formation zone, in order that the chuck 10b can engage the right end of the second shaft, i.e. the shaft passing through the spiral forming zone and undergoing the spiral-forming operation.
- the other chuck 7b situated upstream, is commanded to disengage from the left end of the shaft; the truck 7a is retreated to allow the chuck 7b to grip a third shaft; the other, free end of the third shaft is connected up, by means of the grooved coupling, to the free left end of the second shaft, which in the meantime continues to advance into the spiral forming zone.
- the connection between the two shafts is obtained as previously described.
- insertion of the shafts into the spiral forming zone, coaxially one after another, is preferably done with no interruptions and harmoniously with the creation of the spirals. This prevents any subsequent laborious spiral winding operations on the shaft.
- the spiral forming device is fixed and the support shafts are mobile with respect thereto. It would be possible, however, to set up other systems, for example systems having a mobile spiral forming device, which would obtain a relative axial movement between the shafts and the spiral under formation.
- the welding and cutting of the spiral can be automatically done, as in the illustrated example, or can be done manually or semi-automatically.
- the spiral forming device 3 can be advantageously provided with a plastic deformation parameter regulation system, and in particular could be equipped with one or more of the following devices: a forming roller pressure regulator, also for regulating the inclination of the rollers themselves; a flat band infeed angle variator situated internally of the rollers; and an infeed speed regulation device of the belt into the spiral forming device.
- a forming roller pressure regulator also for regulating the inclination of the rollers themselves
- a flat band infeed angle variator situated internally of the rollers
- an infeed speed regulation device of the belt into the spiral forming device Preferably also included is an advancement speed regulation device in the direction of arrow G, to regulate the speed of the shafts as they are moved into the spiral forming zone.
- a shaft rotation speed regulator is also advisable.
- spirals having variable steps can be extremely precisely manufactured. Furthermore, the regulation of the working parameters guarantees (even before beginning the welding operation of the spiral to the shaft) a perfect coupling of the internal edge of the spiral with the peripheral surface of the shaft. The spiral can in fact be squeezed on to the shaft so tightly that the two elements can be considered solidly reciprocally constrained even before welding.
- the first shaft inserted into the spiral forming zone could be a decoy, only used to facilitate the setting up of the spiral forming operation and subsequent infeeding of the actual workpiece shafts.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Screw Conveyors (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMO990065 | 1999-04-06 | ||
IT1999MO000065A IT1310206B1 (it) | 1999-04-06 | 1999-04-06 | Metodo e macchina per la formazione in continuo di eliche di trasporto per trasportatore a coclea. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1043088A1 EP1043088A1 (en) | 2000-10-11 |
EP1043088B1 true EP1043088B1 (en) | 2002-12-04 |
Family
ID=11386934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00830086A Expired - Lifetime EP1043088B1 (en) | 1999-04-06 | 2000-02-08 | A process and machine for continuous formation of conveyor screws for archimedes-type screws |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1043088B1 (it) |
AT (1) | ATE228900T1 (it) |
DE (1) | DE60000888T2 (it) |
IT (1) | IT1310206B1 (it) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102059462B (zh) * | 2010-11-03 | 2012-08-22 | 太仓市宝马油脂设备有限公司 | 一种螺旋叶片的制作方法 |
CN103071699B (zh) * | 2012-12-27 | 2015-06-17 | 伦慧东 | 螺旋筋增强薄壁金属管的加工系统 |
CN105689431A (zh) * | 2016-02-01 | 2016-06-22 | 唐山市丰润区天鑫金属制品有限公司 | 多功能翅片缠绕机 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR814323A (fr) * | 1935-11-07 | 1937-06-21 | Procédé et dispositif pour fabrication de transporteurs à vis | |
FR2146134B1 (it) * | 1971-07-20 | 1974-04-26 | Leblond Leon |
-
1999
- 1999-04-06 IT IT1999MO000065A patent/IT1310206B1/it active
-
2000
- 2000-02-08 EP EP00830086A patent/EP1043088B1/en not_active Expired - Lifetime
- 2000-02-08 AT AT00830086T patent/ATE228900T1/de not_active IP Right Cessation
- 2000-02-08 DE DE60000888T patent/DE60000888T2/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ATE228900T1 (de) | 2002-12-15 |
IT1310206B1 (it) | 2002-02-11 |
EP1043088A1 (en) | 2000-10-11 |
DE60000888T2 (de) | 2003-09-11 |
DE60000888D1 (de) | 2003-01-16 |
ITMO990065A0 (it) | 1999-04-06 |
ITMO990065A1 (it) | 2000-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2229381C2 (ru) | Способ изготовления намотанной по спирали трубы и устройство для его осуществления | |
CN111170047B (zh) | 一种塑料薄膜制备收卷方法 | |
US5537745A (en) | Method and apparatus for making paint roller cover with thermo plastic core | |
CN103153829B (zh) | 用于生产幅材卷筒的复卷机和方法 | |
KR100367225B1 (ko) | 튜브의절단방법및장치 | |
EP0744275A2 (en) | Method of making a paint roller | |
PL116606B1 (en) | Apparatus for manufacturing tooth-paste and the like tubes with cup-shaped closures | |
CN208117053U (zh) | 一种软管材焊接成型机 | |
JP2537702B2 (ja) | 熱可塑性材料からなる容器の縁形成方法及び装置 | |
CN105414647A (zh) | 管材无屑开料机 | |
EP1043088B1 (en) | A process and machine for continuous formation of conveyor screws for archimedes-type screws | |
CN108296663A (zh) | 一种软管材焊接成型机 | |
JPH0424171B2 (it) | ||
US5149912A (en) | Method and apparatus for assembling a fusee and wire support stand | |
JPH1119428A (ja) | フィルタ製造装置 | |
JP2002535176A (ja) | 多層複合チューブの製造装置 | |
EP0593430B1 (en) | Paint roller and apparatus and method for making same | |
JP2838447B2 (ja) | パイプ切断方法及びパイプカッター | |
US6169268B1 (en) | Method and apparatus for forming the ends of metallic tubes | |
US4017232A (en) | Apparatus for producing a continuous flexible reinforced tubular conduit | |
JPH04294945A (ja) | パイプ曲げ加工方法、パイプベンダー及びそのシステム | |
KR100371510B1 (ko) | 중공 단면 소재를 이송하기 위한 방법 및 장치 | |
RU68621U1 (ru) | Устройство для изготовления гибкого трубопровода | |
US3966104A (en) | Apparatus for severing reinforced elastomeric conduit | |
JP2001087716A (ja) | 不良製品の除去装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010319 |
|
17Q | First examination report despatched |
Effective date: 20010509 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021204 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021204 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021204 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021204 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021204 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021204 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021204 |
|
REF | Corresponds to: |
Ref document number: 228900 Country of ref document: AT Date of ref document: 20021215 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60000888 Country of ref document: DE Date of ref document: 20030116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030208 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030304 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030305 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030627 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030905 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120224 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130325 Year of fee payment: 14 Ref country code: GB Payment date: 20130228 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130429 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60000888 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20141031 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60000888 Country of ref document: DE Effective date: 20140902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140902 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140208 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140208 |