EP1040304B1 - Regelgerät der verdichterperiodendauer - Google Patents

Regelgerät der verdichterperiodendauer Download PDF

Info

Publication number
EP1040304B1
EP1040304B1 EP98904711A EP98904711A EP1040304B1 EP 1040304 B1 EP1040304 B1 EP 1040304B1 EP 98904711 A EP98904711 A EP 98904711A EP 98904711 A EP98904711 A EP 98904711A EP 1040304 B1 EP1040304 B1 EP 1040304B1
Authority
EP
European Patent Office
Prior art keywords
compressor
time
call
interval
energy value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98904711A
Other languages
English (en)
French (fr)
Other versions
EP1040304A4 (de
EP1040304A1 (de
Inventor
Jack Hammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTELLIDYNE HOLDINGS, LLC
Original Assignee
Intellidyne Holdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/996,750 external-priority patent/US5960639A/en
Application filed by Intellidyne Holdings LLC filed Critical Intellidyne Holdings LLC
Publication of EP1040304A1 publication Critical patent/EP1040304A1/de
Publication of EP1040304A4 publication Critical patent/EP1040304A4/de
Application granted granted Critical
Publication of EP1040304B1 publication Critical patent/EP1040304B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays

Definitions

  • the invention relates in general to devices that consume electrical energy in the process of generating a cooling medium used for the purposes of reducing the temperatures within an area requiring reduced temperatures.
  • This invention is particularly suited to reducing power consumption in refrigeration and air conditioning units.
  • Air Conditioning/Cooling/Refrigeration systems which utilize compressors, are least efficient when starting up. Prior to reaching optimum running conditions, the average net BTU output of the refrigeration system is below its rated capacity. The optimum run conditions of a refrigeration system are not obtained until all of the component parts of the system have obtained their design operational temperatures. This can take considerable time after the compressor starts because the thermal inertia of each device, which was just off and is relatively hotter than when running, must be overcome.
  • Shah refers to a delay in making a setpoint change, which may or may not coincide with a compressor call at the new setpoint.
  • Shah does not teach directly delaying a compressor call as in the present invention. In Shah, the compressor call may come on, un-delayed, in spite of the delay in setpoint change.
  • Shah does not teach using a delay to more efficiently regulate a steady-state temperature.
  • the invention increases the net BTU output of the refrigeration system by cycle control of the compressor. By intelligently increasing the delay between compressor run cycles, (the amount of which has been experimentally proven and to be within reasonable limits) longer more efficient (higher net BTU) output cycles are generated.
  • the cooling system is over-sized. This "over-sizing" condition exists, within a typical properly designed system, about 85% of the time and causes the cooling system to cycle the compressor in an inefficient and energy consuming fashion.
  • the present invention seeks to:
  • the invention through the use of computer technology, is able to determine the thermodynamic loading imposed upon the compressor, without the need of any additional sensors, and to alter the compressor cycling pattern in such a fashion as to cause the cooling capacity of the system to more closely match the demand of the system.
  • This more efficient ratio of capacity vs. demand causes a more efficient use of each compressor cycle and thereby a reduction of electric consumption.
  • Short-cycling causes undo stress on the compressor as well as much greater than normal electrical demands due to locked-rotor conditions which can occur as a result of non-pressure-equalization within the compressor. This condition is caused by an insufficient time-lapse between when the compressor is stopped and then restarted.
  • Another factor of short-cycling is the excess heat buildup in the motor windings which can be caused by repeated rapid starting of the compressor.
  • the invention incorporates an anti-short-cycling algorithm as part of its program.
  • the invention is therefore desirable for the invention to be an energy saving device capable of being used in cooling energy value sensor (such as a thermostat or pressuretrol) demand type control systems. It is not limited to such applications, but would also be suited for use with energy management systems. This invention would be suitable for new, retrofit and original equipment manufacturer (OEM) installations. It is also the invention's intent to be simple to install and not require any programming or adjustments.
  • cooling energy value sensor such as a thermostat or pressuretrol
  • OEM original equipment manufacturer
  • FIG. 1A shows a refrigeration system, generally designated 2, which includes the present invention.
  • the system comprises a compressor 4, which pumps high pressure gas through high pressure pipe 6 to condenser 8.
  • Fan 10 is propelled by motor 12, and drives air 14 across condenser 8 to cool the condenser coils 9, and the gas therein, causing the gas to condense to liquid and give up its heat of condensation.
  • cooling air 14 Through the length of the condenser 8, large amounts of heat are lost to cooling air 14, which brings down the temperature and heat content of the media leaving the condenser, bringing said media to a liquid state.
  • the liquid media is driven by pressure and it flows from condenser 8 through liquid pipe 16.
  • Liquid media flows along the liquid pipe 16, to evaporator 18, where fan 20, driven by motor 22, drives hot air 24 to be cooled by the evaporator 18.
  • the liquid media from liquid pipe 16, in evaporator 18 absorbs heat from the air 24, and the media evaporates, absorbing the heat of evaporation, and exits along low pressure gas pipe 26, returning to compressor 4, which again drives it through its cycle via high pressure gas pipe 6.
  • thermostat 28 controls fan motor 22, by closing a relay 29 between current source 30 and fan motor 22. Absent the invention, thermostat 28 would simultaneously close relay 31 between current 32 and compressor 4, so that current could flow across relay 31 and would actuate power compressor 4.
  • control apparatus 34 of the present invention interrupts the connection 36, which provides voltage to relay 31, and thereby prevents the compressor 4 from turning on. This results in a delay, which is controlled according to the program outlined further below.
  • control apparatus 34 is interposed in the wire 39 between the compressor 4 and energy value sensor, which is pressuretrol 40.
  • Pressuretrol 40 is typically found as the temperature equivalent sensor on a refrigeration unit.
  • a program also provides an appropriate delay to increase efficiency.
  • FIG. 2 is a typical installation wiring diagram which shows a control unit 34 of the present invention, wired into the cooling circuit.
  • Figure 2 shows control circuit power 42, which may be 230, 115 or 24 volts AC in the embodiment shown depending on which contact 44 a, b, or c it is attached to.
  • Wires 44-46 supply control circuit power to control unit 34.
  • Control wire 36 or 39 would provide control voltage to compressor contactor relay 31, but is broken so that yellow wire 48 and blue wire 49 insert control unit 34 into the circuit to prevent the compressor from operating until an appropriate delay has intervened.
  • FIG. 3 is a more detailed circuit diagram of the control unit 34.
  • AC power is supplied by wires white 44 and brown 46 to transformer 47, then to rectifier 50, comprising four ring diodes, which rectifies the AC to DC.
  • Approximately 14 volt DC is output across smoothing capacitor 56 to voltage regulator 57 across bypass capacitor 58 to pin 1 of BS-1.
  • BS-1 distributes 12 volts DC to control circuit 60 and its micro-controller chips 61 and memory 62 via voltage regulating chip 63 and power-on reset chip 64.
  • Light Emitting Diode 101 (LED) indicates mode status.
  • LED 102 indicates if an energy value sensor is calling for compressor.
  • Optoisolator 104 provides a sensor call to the controller over a wide range of possible call voltages, making this unit well suited for a variety of cooling systems.
  • Controller 34 operates according to the computer program at the end of this specification, entitled "COOLING ROUTINE”.
  • the program incorporates a 180 second anti-short-cycling delay to always avoid starting the compressor within 180 seconds of compressor shut down. This is sufficient time to reduce undue stress on the compressor, as well as much greater than normal electrical demands, due to locked-rotor conditions, by allowing pressure-equalization within the compressor. A 180 second rest reduces excess heat buildup in the motor windings which heat can be caused by repeated rapid starting of the compressor.
  • An anti-short-cycling algorithm tests off-time against the program constant MINOFFTIME, before allowing the compressor to start.
  • the compressor off-time has been greater than 1 hour, the compressor is started immediately upon a call for cooling, the counter is reset, and a new count begins.
  • the delay is calculated as 10% of the last off time, and a countdown for that interval from the sensor call continues. Once the countdown ends, the compressor relay actuates the compressor, and a new timecount starts.
  • T1, T6 and T11 represent points on the temperature or pressure graphs that correspond to points when the compressor is started.
  • T3, T8 and T13 correspond to the temperature or pressure levels when the compressor is stopped.
  • T2 correspond to the new temperature or pressure compressor start points.
  • T4, T9 and T14 correspond to the respective longer intervals before the compressor stop points.
  • T0-T1, T5-T6 and T10-T11 are the time intervals from the last compressor shut-down to a point when there is a need for cooling, hereinafter the off-call-time.
  • T0-T2, T5-T7, and T10-T12 are the new off-intervals required due to the invention, including the invention's extended off-intervals of T1-T2, T6-T7 and T11-T12.
  • Figure 5 graphs the effect of a load, over seven cycles of a conventional cooling system, without the present invention (top). As can be seen on the bottom of figure 5, the same load is handled in only five on-cycles, with reduced on-time, with the present invention. Temperature excursions beyond the high point are insignificant and brief. The graph also illustrates the compressor response either to temperature or cooling media pressure, depending on whether the energy value sensor is a thermostat or a pressuretrol.
  • T1 represents the compressor turn-on point along the temperature or pressure curves without the invention
  • T2 represents the new turn-on point and includes the extended off-time T1-T2 with the invention
  • T3 corresponds to the turn-off point of the temperature or pressure curves without the invention
  • T4 with the invention.
  • Figure 6 graphs a saturation load. Without the invention, the compressor runs continuously. The invention gives the compressor a 6 minute rest (T3-T4; T5-T6; etc.) every 54 minutes (T2-T3, T5-T6, etc.), to cool down, to save energy in the brief off-time. Temperature (not graphed) is largely unaffected by this rest period.
  • FIG. 7 graphs a short cycle restart without the invention.
  • the T1-T2 interval is too short to equalize compressor pressure or to cool the motor coils.
  • a severe and power consuming electrical load results, that might even burn out the motor.
  • the short compressor off-time (T1-T2) is extended by T2-T3 to an adequate 3 minutes (T1-T3), resulting in an easier starting load on the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Claims (19)

  1. Ein Verfahren zum Regeln des Betriebs eines Kühlsystems (2), aufweisend die Schritte:
    Messen einer Ausschaltungs-Anforderungs-Zeitdauer (Figur 5 T0-T1) einer Steuerschaltung (34) eines Verdichters (4) zum Zwecke des Verzögerns des Bereitstellens von Energie an den Verdichter (4);
    Erfassen einer Verdichter (4) Anforderung (Figur 5 T1) von einem Energiewert-Sensor (28); und jederzeitiges Verhindern des Betriebs des Verdichters (4) für ein Intervall (Figur 5 T1-T2) welches einen von der gemessenen Ausschaltungs-Anforderungs-Zeitdauer (Figur 5 T0-T1) abgeleiteten Wert hat, und nicht kürzer als eine minimale Ausschaltungs-Zeitdauer (Figur 7 T1-T3) ist.
  2. Ein Verfahren gemäß Anspruch 1, wobei der Betrieb des Verdichters (4) verhindert wird, sofern nicht und bis die Ausschaltungs-Anforderungs-Zeitdauer (Figur 7 T1-T2) einen vorgegebenen Wert (Figur 7 T1-T3) überschreitet, wobei der Wert ermöglicht, dass im Verdichter (4) ein beträchtlicher Druckausgleich stattfindet.
  3. Ein Verfahren gemäß Anspruch 1, ferner die Schritte aufweisend:
    Speichern der zuletzt gemessenen Ausschaltungs-Anforderungs-Zeitdauer (Figur 5 T0-T1) in einem Speicher;
    Berechnen eines Prozentanteils der Ausschaltungs-Anforderungs-Zeitdauer;
    Verhindern des Betriebs des Verdichters (4) für eine Verzögerung (Figur 5 T1-T2), die gleich dem Prozentanteil ist; und
    Betreiben des Verdichters (4), nachfolgend (Figur 5 T2-T4) zu der Verzögerung (Figur 5 T1-T2).
  4. Ein Verfahren gemäß Anspruch 1, ferner aufweisend die Schritte:
    Messen eines Einschalt-Zyklus (Figur 6 T1-T15) der Betriebsdauer des Verdichters (4);
    Anhalten des Betriebs des Verdichters (4) nachdem der Einschalt-Zyklus sich über ein beträchtliches Einschalt-Zeitintervall (Figur 6 T2-T3) erstreckt hat; wobei der Schritt des Unterbrechens des Betriebs des Verdichters (4) für eine gemessene Ausschalt-Zeit eines Ruhe-Intervalls (Figur 6 T3-T4) erfolgt, wobei das Ruhe-Intervall kurz ist, jedoch ausreichend lang, um zu erlauben, dass:
    ein Ausgleich des Verdichters (4) erfolgt,
    eine Motorabkühlung des Verdichters (4) erfolgt, und
    wobei die Effizienz von dem Ruhe-Intervall (Figur 6 Te-T4) resultiert, welches kurz ist und während dessen eine Raumtemperatur im Wesentlichen durch eine thermische Trägheit jedes gekühlten Objekts und jedes Fluids in dem Raum gehalten wird.
  5. Ein Verfahren zum Regeln eines Kühlsystems (2) gemäß Anspruch 1, wobei das Verfahren die Schritte aufweist:
    Überwachen eines Wertes von einem Energiewertsensor (28);
    Bestimmen aus dem Wert, ob der Wert eine Anforderung des Betriebs des Verdichters (4) rechtfertigt;
    Erzeugen einer Anforderung, sofern gerechtfertigt (Figur 7 T2) ;
    Messen einer Ausschaltungs-Anforderungs-Zeitdauer, vor der Anforderung von einer vorhergehenden Abschaltung des Verdichters (4) an (Figur 7 T1-T2);
    Speichern der Ausschaltungs-Anforderungs-Zeitdauer (Figur 7 T1-T2), welche zuletzt gemessen wurde, in einem Speicher;
    wobei die minimale Ausschaltungs-Zeitdauer (Figur 7 T1-T3) ermöglicht, dass in dem Verdichter (4) ein beträchtlicher Druckausgleich erfolgt;
    Berechnen eines Prozentanteils der Ausschaltungs-Anforderungs-Zeitdauer;
    wobei der von der gemessenen Ausschaltungs-Anforderungs-Zeitdauer (Figur 5 T0-T1) abgeleitete Wert gleich dem Prozentanteil ist;
    Betreiben des Verdichters (4) nach der Zeitdauer (Intervall);
    Messen eines Einschalt-Zyklus (Figur 6 T1-T15) einer Betriebszeit des Verdichters (4);
    Unterbrechen des Betriebs des Verdichters (4) nachdem der Einschalt-Zyklus sich für ein beträchtliches Intervall (Figur 6 T2-T3) erstreckt hat, welches ausreicht, um einen Raum auf eine Gleichgewichtstemperatur zu bringen; und
    Verhindern des Betriebs des Verdichters (4) für ein vorgegebenes Ruhe-Intervall (Figur 6 T3-T4), wobei das Ruhe-Intervall kurz ist, jedoch ausreichend, um zu erlauben:
    dass ein Ausgleich in dem Verdichter (4) eintritt,
    dass eine Motorabkühlung in dem Verdichter (4) eintritt, und
    wobei die Effizienz durch Einsparung von Energie während des Ruhe-Intervalls (Figur 6 T3-T4) verbessert wird, wobei während des Ruhe-Intervalls eine thermische Trägheit jedes gekühlten Objekts und Fluids in dem Raum im wesentlichen die Temperatur in dem Raum erhält.
  6. Ein Verfahren gemäß Anspruch 5, wobei im Wesentlichen der nachfolgende Satz von optimalen Werten verwendet wird:
    die minimale Ausschalt-Zeit (Figur 7 T1-T3) beträgt 3 Minuten;
    der Prozentanteil beträgt 10 Prozent;
    das beträchtliche Intervall (Figur 6 T2-T3) beträgt 54 Minuten; und
    das vorgegebene Ruhe-Intervall (Figur 6 T3-T4) beträgt 6 Minuten.
  7. Ein Kühlsystem (2) mit einem Verdichter (4), einem Kühlmedium und einem Wärmetauscher, ferner aufweisend:
    einen Energiewertsensor (28); und
    Mittel:
    zum Überwachen des Energiewertsensors (28),
    zum Steuern des Verdichters (4),
    zum Bestimmen der thermischen Last auf das Kühlsystem (2),
    zum Messen einer Ausschaltungs-Anforderungs-Zeitdauer (Figur 5 T0-T1) einer Verdichter(4)-Steuerschaltung(34),
    zum Empfangen einer Verdichter(4)-Anforderung von dem Energiewertsensor (28), und
    zum jederzeitigen Verhindern des Betreibens des System-Verdichters (4) durch den Energiewertsensor (28) für ein Intervall (Figur 5 T1-T2), welches einen Wert hat, der von der gemessenen Ausschaltungs-Anforderungs-Zeitdauer abgeleitet ist.
  8. Vorrichtung gemäß Anspruch 7, wobei die Steuermittel aufweisen:
    eine Unterbrechung in einer Energieversorgungsleitung (36 oder 39) zwischen:
    dem Energiewertsensor (28) und
    dem Verdichter (4) ; und
    Mitteln (34) zum schaltbaren Überbrücken der Unterbrechung.
  9. Vorrichtung gemäß Anspruch 8, wobei die Mittel zum Überwachen des Energiewertsensors (28) aufweisen:
    einen heißen Draht (hot wire) (36 oder 39), welche durch den Energiewertsensor (28) in Reaktion auf einen Energiewert geschaltet wird, bei dem der Raum mehr Kühlung erfordert ; und
    Schaltmittel (104) zur Betätigung durch eine Spannung auf dem heißen Draht (36 oder 39).
  10. Vorrichtung gemäß Anspruch 9, wobei die Schaltmittel (104) zur Betätigung durch eine Spannung auf dem heißen Draht (36 oder 39) eine elektronische Schaltung (104) zum Erfassen eines breiten Bereichs von Eingangsspannungen sind.
  11. Vorrichtung gemäß Anspruch 10, wobei der weite Bereich von Eingangsspannungen zwischen 24 VAC und 240 VAC liegt.
  12. Vorrichtung gemäß Anspruch 10, wobei die elektronische Schaltung einen Optoisolator (104) aufweist.
  13. Vorrichtung gemäß Anspruch 10, wobei die elektronische Schaltung einen Mikrocontroller (60) aufweist.
  14. Vorrichtung gemäß Anspruch 13, mit Mitteln:
    zum Erhöhen einer Laufzeit-Pro-Zyklus des Verdichters (4) und dadurch zum Verbessern der elektrischen Nutzung und zum Verringern der gesamten Betriebszeit des Verdichters (4).
  15. Vorrichtung gemäß Anspruch 7, wobei der Energiewertsensor ein Thermostat (28) ist.
  16. Vorrichtung gemäß Anspruch 7, wobei der Energiewertsensor ein Pressuretrol (40) ist.
  17. Vorrichtung gemäß Anspruch 8, wobei die Schaltmittel (31) in Normalstellungen in einer geschlossenen Stellung sind, so dass das Kühlsystem (2) weiterhin arbeitet, wenn die Energieversorgung (42) oder der Controller (34) ausfallen.
  18. Ein Verfahren gemäß Anspruch 1, wobei dann, wenn die Ausschaltungs-Anforderungs-Zeitdauer (Figur 5 T0-T1) des Verdichters (4) größer als ein maximaler Wert ist, das Intervall im wesentlichen Null beträgt.
  19. Ein Verfahren gemäß Anspruch 18, wobei der maximale Wert im wesentlichen eine Stunde ist.
EP98904711A 1997-12-23 1998-01-26 Regelgerät der verdichterperiodendauer Expired - Lifetime EP1040304B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US996750 1997-12-23
US08/996,750 US5960639A (en) 1997-01-23 1997-12-23 Apparatus for regulating compressor cycles to improve air conditioning/refrigeration unit efficiency
PCT/US1998/001550 WO1999032838A1 (en) 1997-12-23 1998-01-26 Apparatus for regulating length of compressor cycles

Publications (3)

Publication Number Publication Date
EP1040304A1 EP1040304A1 (de) 2000-10-04
EP1040304A4 EP1040304A4 (de) 2002-08-21
EP1040304B1 true EP1040304B1 (de) 2007-03-14

Family

ID=25543264

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98904711A Expired - Lifetime EP1040304B1 (de) 1997-12-23 1998-01-26 Regelgerät der verdichterperiodendauer

Country Status (9)

Country Link
EP (1) EP1040304B1 (de)
CN (1) CN1125297C (de)
AT (1) ATE356963T1 (de)
AU (1) AU747039B2 (de)
DE (1) DE69837347T2 (de)
ES (1) ES2285761T3 (de)
HK (1) HK1033598A1 (de)
NZ (1) NZ505835A (de)
WO (1) WO1999032838A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013075113A1 (en) * 2011-11-18 2013-05-23 Cooper Technologies, Inc. Improved efficiency heating, ventilating, and air conditioning through indirect extension of compressor run times

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462321C (zh) * 2000-01-08 2009-02-18 山西广灵精华化工集团有限公司 利用炼镁废渣生产复合水泥的工艺
US6755032B1 (en) 2000-01-13 2004-06-29 Ford Global Technologies, Inc. Control method for a vehicle having an engine and an accessory device
EP1116616B1 (de) * 2000-01-12 2006-05-03 Ford Global Technologies, Inc. Steuerungsverfahren für ein Fahrzeug mit einer Brennkraftmaschine und eine Hilfseinrichtung
US6298675B1 (en) * 2000-01-12 2001-10-09 Ford Global Technologies, Inc. Estimation method for a vehicle having an engine and a cycling accessory device
BRPI0505060B1 (pt) * 2005-11-09 2020-11-10 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda sistema de controle de compressor linear, método de controle de compressor linear e compressor linear
DE102015212543A1 (de) * 2015-07-03 2017-01-05 Robert Bosch Gmbh Verfahren, Klimatisierungseinrichtung und System
JP7099425B2 (ja) * 2019-10-03 2022-07-12 トヨタ自動車株式会社 車載温調装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588897A (en) 1969-07-03 1971-06-28 Us Navy Method and apparatus for the simultaneous probing of the atmosphere by radar and meteorological sensors
US3640085A (en) * 1969-08-14 1972-02-08 Deltrol Corp Refrigeration system with delay timing mechanism
US3573486A (en) * 1969-08-14 1971-04-06 Deltrol Corp Condition control device and system
US4136730A (en) * 1977-07-19 1979-01-30 Kinsey Bernard B Heating and cooling efficiency control
US4537038A (en) * 1982-04-30 1985-08-27 Alsenz Richard H Method and apparatus for controlling pressure in a single compressor refrigeration system
WO1984000603A1 (en) * 1982-07-22 1984-02-16 Donald L Bendikson Refrigeration system energy controller
US4509585A (en) * 1984-01-09 1985-04-09 Energy Control Products, Inc. Energy management control system
US4615179A (en) * 1985-01-17 1986-10-07 General Electric Company Defrost diagnostic arrangement for self-defrosting refrigerator appliance
US5192020A (en) * 1991-11-08 1993-03-09 Honeywell Inc. Intelligent setpoint changeover for a programmable thermostat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013075113A1 (en) * 2011-11-18 2013-05-23 Cooper Technologies, Inc. Improved efficiency heating, ventilating, and air conditioning through indirect extension of compressor run times

Also Published As

Publication number Publication date
WO1999032838A1 (en) 1999-07-01
HK1033598A1 (en) 2001-09-07
AU6251498A (en) 1999-07-12
EP1040304A4 (de) 2002-08-21
ATE356963T1 (de) 2007-04-15
CN1286747A (zh) 2001-03-07
CN1125297C (zh) 2003-10-22
DE69837347D1 (de) 2007-04-26
DE69837347T2 (de) 2007-11-29
ES2285761T3 (es) 2007-11-16
EP1040304A1 (de) 2000-10-04
AU747039B2 (en) 2002-05-09
NZ505835A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
US9671125B2 (en) Fan controller
US6519957B2 (en) Method for controlling air conditioner having multi-compressor
US4286438A (en) Condition responsive liquid line valve for refrigeration appliance
US5177972A (en) Energy efficient air conditioning system utilizing a variable speed compressor and integrally-related expansion valves
US9207001B1 (en) Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation
KR900005983B1 (ko) 재순환 시동시에 냉각장치의 부하를 제한하는 제어장치와 그 방법
CN113623793B (zh) 一种压缩机预热控制方法、空调、计算机可读存储介质
KR100861283B1 (ko) 냉장고 및 그 동작방법
US20100192618A1 (en) Evaporator assembly
JPH10185398A (ja) ファンモータ制御方法およびこれを用いた冷蔵庫
EP1040304B1 (de) Regelgerät der verdichterperiodendauer
US20040107709A1 (en) Method for operating compressors of air conditioner
CN110440412A (zh) 一种压缩机电加热带的控制方法、控制系统与空调器
US5960639A (en) Apparatus for regulating compressor cycles to improve air conditioning/refrigeration unit efficiency
US4735058A (en) Air conditioning apparatus
JP2000337682A (ja) 空調機器
US4840220A (en) Heat pump with electrically heated heat accumulator
US4534181A (en) Cooling system
JP4322996B2 (ja) 空気調和機用圧縮機の駆動制御装置および空気調和機用圧縮機の冷媒寝込み防止制御方法
JPH07218003A (ja) 冷凍装置の制御方式
US9297567B2 (en) Condenser assembly with a fan controller and a method of operating same
KR0177691B1 (ko) 인버터 공기조화기의 압축기 운전 제어방법
JPH0678839B2 (ja) 空気調和機
JP2005055150A (ja) 空気調和装置の運転方法および制御装置
JP2006170570A (ja) 冷凍装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTELLIDYNE HOLDINGS, LLC

A4 Supplementary search report drawn up and despatched

Effective date: 20020710

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 25B 19/00 A, 7G 05D 23/32 B, 7F 25B 49/02 B

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69837347

Country of ref document: DE

Date of ref document: 20070426

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070614

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070401832

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070814

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2285761

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1033598

Country of ref document: HK

26N No opposition filed

Effective date: 20071217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150126

Year of fee payment: 18

Ref country code: DE

Payment date: 20150131

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20150128

Year of fee payment: 18

Ref country code: GB

Payment date: 20150123

Year of fee payment: 18

Ref country code: FR

Payment date: 20150128

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69837347

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160126

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20070401832

Country of ref document: GR

Effective date: 20160803

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160802

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160803

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160127