EP1036398B1 - Elektromagnetisches relais - Google Patents
Elektromagnetisches relais Download PDFInfo
- Publication number
- EP1036398B1 EP1036398B1 EP98959763A EP98959763A EP1036398B1 EP 1036398 B1 EP1036398 B1 EP 1036398B1 EP 98959763 A EP98959763 A EP 98959763A EP 98959763 A EP98959763 A EP 98959763A EP 1036398 B1 EP1036398 B1 EP 1036398B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reed contact
- coil
- terminal
- control voltage
- relay according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 235000014676 Phragmites communis Nutrition 0.000 claims description 112
- 239000004020 conductor Substances 0.000 claims description 32
- 238000004804 winding Methods 0.000 claims description 31
- 239000003990 capacitor Substances 0.000 claims description 13
- 230000004907 flux Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims 1
- 230000005284 excitation Effects 0.000 description 37
- 238000010586 diagram Methods 0.000 description 9
- 239000002184 metal Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/10—Operating or release mechanisms
- H01H71/12—Automatic release mechanisms with or without manual release
- H01H71/24—Electromagnetic mechanisms
- H01H71/2445—Electromagnetic mechanisms using a reed switch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/10—Operating or release mechanisms
- H01H71/12—Automatic release mechanisms with or without manual release
- H01H71/24—Electromagnetic mechanisms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/02—Bases; Casings; Covers
- H01H50/021—Bases; Casings; Covers structurally combining a relay and an electronic component, e.g. varistor, RC circuit
Definitions
- the invention relates to an electromagnetic relay, according to the general concept of Claim 1, such as known from US-A-4412267.
- SU 142 74 72 A1 is a short-circuit protection for a three-phase motor known, which realized with the help of reed relays is. However, the reed relays are separated from the motor relay. In particular, with motor relays, which switch on the motor power supply, No overload or short-circuit status can be queried.
- the aim of the invention is to provide an inexpensive, integrated and particularly space-saving solution for a to create short-circuit or overload-proof relay, wherein in particular a differentiated response of the protective devices in the event of a permanent overload of the relay and not already desired with only brief current peaks is.
- this goal is achieved by an electromagnetic Relay achieved according to claim 1.
- a relay according to the invention can be interrupted reset the control current to a normal operating state.
- Hall sensors which also have one Detection of a magnetic field emanating from an increased load current is possible
- reed contacts offer the advantage of a temperature-independent behavior, a simple setting of trigger thresholds and easier to implement Evaluation circuits.
- FIG. 1 to 6 show variants of a relay according to the invention with different coupling of a reed contact K R to a load current conductor 1.
- the reed contact K R is preassembled on a printed circuit board 4.
- a magnet system 6 is arranged on a base 5 and has a core, an armature and an excitation coil W R.
- the axis of the excitation coil W R extends parallel to the base plane of the base 6.
- the printed circuit board 4 is fixed standing perpendicular to the base plane of the base 5.
- Two connection plates 2 and 3 are connected to the reed contact K R (see also FIG. 2).
- Switching thresholds for the reed contact K R can be defined by a suitable choice of the distance between the two connecting plates 2 and 3.
- the two conductor connection plates 2 and 3 are fitted together with the reed contact K R on a printed circuit board 4, the reed contact K R being oriented perpendicular to the base plane of the base 5.
- the reed contact K R is thus arranged perpendicular to the axis of the excitation coil W R , as a result of which the reed contact K R is insensitive to the magnetic stray flux of the excitation coil W R.
- the load current conductor 1 is arranged in a section perpendicular to the reed contact K R , with a suitable conductor design ensuring that the magnetic field generated by the load current conductor 1 passes through the reed contact K R centrally and in parallel.
- this is achieved in that the relevant section of the load current conductor 1 is formed by a sheet metal strip, the sheet metal plane of which extends parallel to the reed contact K R.
- the magnet system 6 is arranged on the base 5 such that the axis of the excitation coil W R runs parallel to the base plane of the base 5.
- the reed contact K R is mounted between the magnet system 6 and the base 5 perpendicular to the axis of the excitation coil W R and parallel to the base plane of the base 6.
- the reed contact K R is connected to two contacting plates 2 and 3 (see also FIG. 4). The two contact plates 2 and 3 are at a distance from one another which determines the switching threshold of the reed contact K R.
- the unit formed from the contacting plates 2 and 3 and the reed contact K R is inserted into the base 5, the load current conductor 1 being inserted in one section in the middle through a sensor ring R S formed from the reed contact K R and the contacting plates 2 and 3.
- the load current conductor 1 is formed in this section by a bent sheet metal strip, so that the sensor ring R S lies at a free end of the sheet metal strip perpendicular to the load current conductor 1 and encloses it.
- the sensor ring R S can also be formed by a U-shaped, magnetically conductive flux ring and a reed contact K R coupled to it via two air gaps.
- FIG. 5 shows an exemplary embodiment of a relay with a reed contact K R preassembled on a base 5, the reed contact K R being oriented perpendicular to the base plane of the base 5.
- the magnet system 6 is mounted on the base 5 such that the axis of the excitation coil W R extends parallel to the base plane of the base 5.
- the load current conductor 1 is essentially formed by a sheet metal strip, a first end of the load current conductor 1 being inserted vertically through the base as a connecting element. The second end of the load current conductor 1 runs parallel to the axis of the excitation coil W R (see also FIG. 6).
- the load current conductor 1 is formed into a loop surrounding the reed contact K R.
- a corresponding shaping of the load current conductor 1 in this central section ensures that the magnetic field coupled into the reed contact K R by the load current conductor 1 passes through the reed contact K R in the center and in parallel.
- the reed contact K R is bent together with its connecting wires in a U-shape and fastened with the ends of the connecting wires to extensions of two connecting loops 7 and 8.
- the reed contact K R can be connected to the extensions of the connection loops 7 and 8 arranged below the magnet system 6, for example by soldering or resistance welding. The distance between the two connection loops 7 and 8 defines the switching threshold of the reed contact K R.
- FIG. 7 shows a basic circuit diagram of a relay with an auxiliary reed contact and an auxiliary winding as overcurrent protection elements.
- the relay R has a control circuit, which is associated with an excitation winding W R through which a control current I S is assigned, and a load circuit, the load current I L being controllable by a movable contact element K B and a fixed contact element K F of the relay R.
- a reed contact K R is arranged in the control circuit, through which the control current I S can be controlled by the excitation coil W R.
- the reed contact K R is coupled to a load current conductor through which the load current I L flows.
- the magnetic coupling between the load current conductor and the reed contact K R is subsequently symbolized by a load current conductor winding W L.
- the reed contact K R has a movable contact element E1 and two fixed contact elements E2 and E3. Furthermore, an auxiliary winding W H1 is coupled to the reed contact K R in such a way that, in an overcurrent operating state, the auxiliary winding W H1 emits a magnetic field which is in the same direction as a magnetic field caused by a load current winding W L.
- the load current I L is switched directly via the movable contact element K B and the fixed contact element K F of the relay R.
- the reed contact K R can be arranged axially within the load current winding W L.
- a reed contact K R lying outside the load current winding W L which is arranged parallel to the winding axis, is also possible.
- An alternative to coupling the reed contact K R to a load current winding W L is to arrange the reed contact K R within a loop-shaped section of a load current conductor.
- the reed contact K R is advantageously to be arranged perpendicular to the axis of the excitation coil W R.
- the aforementioned influence can be prevented by a magnetically conductive shielding plate between the excitation coil W R and the reed contact K R.
- a magnetic stray field originating from the excitation coil W R is short-circuited by the shielding plate.
- Another possibility is to selectively introduce the magnetic stray flux emanating from the excitation coil W R into the reed contact K R. This is possible, for example, by regulating the control current I S. As a result, a constant magnetic flux acts as an offset on the reed contact K R.
- corresponding threshold values at the reed contact K R it is possible to use the stray magnetic field.
- the reed contact K R connects the excitation coil W R of the relay R to a control voltage source U S via a first fixed contact element E2 of the reed contact K R.
- the auxiliary winding W H coupled to the second fixed contact element E3 is separated from the movable contact element E1 of the reed contact K R and thus from the control voltage source U S.
- the movable contact element E1 of the reed contact K R is connected to the second fixed contact element E3 and separated from the first fixed contact element E2.
- the excitation winding W R of the relay R is separated from the control voltage source U S , while the auxiliary winding W H is connected to the control voltage source U S. Even after the load circuit has been interrupted, the connection between the movable contact element E1 of the reed contact K R and the second fixed contact element E3 is maintained due to the magnetic flux emanating from the auxiliary winding W H. Only after disconnection from the control voltage source U S does the relay R return to the normal operating state.
- FIG. 8 shows a basic circuit diagram of an alternative configuration option for a short-circuit-proof relay, in which the overcurrent protection function is implemented by means of an auxiliary relay R H1 .
- the auxiliary relay R H1 has a movable contact element E4 and two fixed contact elements E5 and E6, the movable contact element E4 being connected to the first fixed contact element E5 in the normal operating state.
- the movable contact element E4 is connected directly to a control voltage input terminal, so that the control voltage U S is applied directly to the excitation coil W R of the relay R.
- the reed contact K R is connected between the contact element E4 of the auxiliary relay R H1 and the second fixed contact element E6.
- the coil W H2 of the auxiliary relay R H1 is de-energized in the normal operating state.
- the reed contact K R is closed, as a result of which the control voltage U S is applied directly to the coil W H2 of the auxiliary relay R H1 .
- the movable contact element E4 is connected to the second fixed contact element E6 of the auxiliary relay R H1 and separated from the first fixed contact element E5. Because of this, the excitation coil W R of the relay R is de-energized in the overcurrent operating state.
- the auxiliary relay R H1 maintains its switch position even after the load circuit of the relay R has been interrupted by actuating the contact element K B and opening the reed contact K R. If a time delay unit is additionally arranged between the reed contact K R and the second fixed contact element E6 of the auxiliary relay R H1 , brief load current peaks do not trigger the overcurrent protection device. Instead of the auxiliary relay R H1 , a second reed contact can be used, which is then coupled to an associated auxiliary winding.
- FIG. 9 shows a further alternative for implementing overcurrent protection with a PTC thermistor R PTC and a series resistor R v connected in series .
- These two overcurrent protection elements are connected in series with the reed contact K R to the control voltage source U S , the reed contact K R being initially closed in the overcurrent operating state and opened in the normal operating state.
- the excitation coil W R of the relay R is connected in parallel with the reed contact K R and the series resistor R V and in series with the PTC thermistor R PTC .
- the PTC thermistor R PTC performs a status memory function if the residual current through the excitation coil W R of the relay R is sufficient to maintain the required PTC thermistor temperature. In this case, the PTC thermistor R PTC remains in a high-resistance state even after the reed contact K R is reopened. Only after disconnection from the control voltage source U S and cooling of the PTC thermistor R PTC can the relay R be activated again.
- FIG. 10 shows a basic circuit diagram of an embodiment with a bistable relay R 2S and a capacitor C S.
- the bistable relay R 2S is equipped with a first field winding W R1 and a second field winding W R2 .
- the first field winding W R1 of the relay R 2S is connected in series with the capacitor C S to the control voltage source U S.
- the second excitation winding W R2 is connected in series with the reed contact K R to the control voltage source U S and has an opposite winding sense compared to the first excitation winding W R1 .
- a positive pulse of the current I S1 through the first field winding W R1 thus causes the load circuit to be closed, while a positive pulse of the current I S2 through the second field winding W R2 interrupts the load circuit.
- the reed contact K R first connects the second excitation winding W R2 to the control voltage source U S , whereupon the relay R 2S changes to a stable switched-off state. Only after the control voltage U S is switched off and on again does the first excitation winding W R1 receive a positive current pulse via the capacitor C S, as a result of which the relay R 2S changes to a stable switched-on state.
- the overcurrent protection functions are integrated in an overcurrent protection device which is implemented by an electronic circuit CCU.
- the electronic circuit CCU has four connections, the control voltage U S being present between a first control voltage connection K1 and a second control voltage connection K2. Furthermore, the electronic circuit CCU has a first excitation coil connection K3 and a second reed contact connection K4. The first reed contact connection and the second excitation coil connection are connected to the second control voltage connection K2.
- the electronic circuit CCU can be integrated as an application-specific integrated circuit (ASIC) in a very simple manner into the circuit board 4 of the relay shown in FIG. 1 or also into the base 5 of the relay shown in FIGS. 3 and 5.
- ASIC application-specific integrated circuit
- the electronic circuit CCU is divided into a timing element U1, a switch-on path U2 for the excitation coil W R and a switch-off path U3.
- the switch-on path U2 for the relay coil W R consists of a pnp transistor T1 connected in series with the relay coil W R between the two control voltage connections K1 and K2 and a series resistor R2.
- the transistor T1 is connected with its emitter to the first control voltage connection K1 and with its collector to the first excitation coil connection K3.
- the series resistor R2 of the switch-on path U2 is connected between the base of the transistor T1 and the second control voltage connection K2.
- the switch-off path U3 for the excitation coil W R is formed by a first resistor R4 and a second resistor R3.
- the first resistor R4 is connected in parallel to the excitation coil W R
- the second resistor R3 of the switch-off path U3 is connected between the first excitation coil connection K3 and the second reed contact connection K4.
- the timing element U1 has a comparator CMP and an RC element on, the capacitor C1 of the RC element having a first Connection connected to the first control voltage connection K1 is.
- the resistance R1 of the RC element is between that second terminal K5 of the capacitor C1 and the second reed contact terminal K4 connected.
- the comparator CMP itself consists of a pnp transistor T2 and a zener diode D1, the transistor T2 of the comparator CMP with its emitter is connected to the first control voltage connection K1, while the collector of transistor T2 with the base of Transistor T1 of the switch-on path U2 is connected.
- the base of the transistor T2 of the comparator CMP is at the cathode the Zener diode D1 connected, the anode between the Capacitor C1 and the resistor R1 of the RC element connected is.
- the reed contact K R closes and connects the base of the transistor T2 directly to the second control voltage connection K2. This causes capacitor C1 to discharge through resistors R1 and R3. After the breakdown voltage at the Zener diode D1 has been exceeded, a control current flows through the emitter-base path of the transistor T2, which turns on the transistor T2 and electrically connects the base of the transistor T1 of the switch-on path U2 to the first control voltage terminal K1. The switch-off path U3 is then activated via the transistor T2 of the timer U1, as a result of which the transistor T1 of the switch-on path U2 changes to the blocked state.
- Timer U1 An unwanted activation of the overcurrent protection device at Inrush or switching current peaks, which are usually less than a few 100 milliseconds, Timer U1 prevented.
- the resistor R1, the capacitor C1 of the timer U1, of the resistors R3 and R4 of the switch-off path U3 and the selection of a Zener diode D1 with a suitable breakdown voltage can the timing of the electronic Switching CCU to the duration of expected inrush or switching current peaks be adjusted.
- the timing element U1 also generates interference pulses at the control voltage connections K1 and K2 filtered out.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Relay Circuits (AREA)
- Emergency Protection Circuit Devices (AREA)
- Breakers (AREA)
Description
Claims (24)
- Elektromagnetisches Relais mitdadurch gekennzeichnet, daß diese Mittel ein Überstromsignal erzeugen und so weiterverarbeiten, daß der Abschaltzustand des Steuerstroms (IS) bis zum Abschalten der Steuerspannung (US) aufrechterhalten wird.einem eine von einem Steuerstrom (IS) durchflossene, mit einer Steuerspannung (US) verbundene Erregerspule (WR), einen Kern und einen Anker enthaltenden Magnetsystem (6), wobei der Kern und der Anker mindestens einen Arbeitsluftspalt bilden,mindestens einem beweglichen Kontaktelement (K3) sowie mindestens einem feststehenden Kontaktelement (KF), durch welche jeweils ein Laststromkreis schließbar ist,Spulen- und Kontaktanschlußelementen,einem Reedkontakt (KR) je Laststromkreis, welcher an einen von einem Laststrom (IL) durchflossenen Laststromleiter (1) angekoppelt ist, undan den Reedkontakt (KR) gekoppelten Mitteln zur Generierung und Verarbeitung eines Überstromsignals sowie zum Abschalten des Steuerstromes (IS),
- Relais nach Anspruch 1,
dadurch gekennzeichnet, daß der Reedkontakt (KR) in einen elektrisch und magnetisch leitfähigen, offenen Flußring integriert ist, welcher den Laststromleiter (1) umgibt. - Relais nach Anspruch 1,
dadurch gekennzeichnet, daß der Reedkontakt (KR) an einen elektrisch und magnetisch leitfähigen, offenen Flußring, welcher den Laststromleiter (1) umgibt, über zwei Luftspalte angekoppelt ist. - Relais nach Anspruch 1,
dadurch gekennzeichnet, daß der Laststromleiter (1) in einem Abschnitt zu einer Schleife geformt ist, welche den Reedkontakt (KR) umgibt. - Relais nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß der Laststromleiter (1) in einem Abschnitt senkrecht zum Reedkontakt (KR) angeordnet ist, wobei der vom Laststromleiter (1) in den Reedkontakt (KR) eingekoppelte magnetische Fluß den Reedkontakt (KR) mittig und parallel durchsetzt. - Relais nach Anspruch 1,
dadurch gekennzeichnet, daß der Laststromleiter (1) in einem Abschnitt zu einer Spule (WL) gewikkelt ist, wobei der Reedkontakt (KR) axial in der Spule (WL) angeordnet ist. - Relais nach Anspruch 1,
dadurch gekennzeichnet, daß der Laststromleiter (1) in einem Abschnitt zu einer Spule (WL) gewikkelt ist, wobei der Reedkontakt (KR) außerhalb der Spule (WL) parallel zu ihrer Achse angeordnet ist. - Relais nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, daß der Reedkontakt (KR) senkrecht zur Achse der Erregerspule (WR) angeordnet ist. - Relais nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, daß zwischen dem Reedkontakt (KR) und der Erregerspule (WR) ein magnetisch leitfähiges Blech angeordnet ist. - Relais nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, daß die Erregerspule (WR) zur Einleitung eines definierten magnetischen Flusses in den Reedkontakt (KR) an einen Stromregler gekoppelt ist. - Relais nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, daß die Mittel zur Generierung und Verarbeitung des Überstromsignals sowie zum Abschalten des Steuerstromes (IS) zu einer Überstromschutzeinheit zusammengefaßt sind. - Relais nach Anspruch 11,
dadurch gekennzeichnet, daß der Reedkontakt (KR) ein bewegliches Kontaktelement (E1) und zwei feststehende Kontaktelemente (E2,E3) aufweist, daß die Überstromschutzeinheit durch eine mit dem Reedkontakt (KR) gekoppelte Hilfswicklung (WH1) gebildet ist, daß das bewegliche Kontaktelement (E1) des Reedkontaktes (KR) mit einem ersten Steuerspannungsanschluß verbunden ist, daß ein erster Anschluß der Erregerspule (WR) mit einem ersten feststehenden Kontaktelement (E2) des Reedkontaktes (KR) verbunden ist, daß ein erster Anschluß der Hilfswicklung (WH1) mit dem zweiten feststehenden Kontaktelement (E3) des Reedkontaktes (KR) verbunden ist, daß der zweite Anschluß der Erregerspule (WR) und der zweite Anschluß der Hilfswicklung (WH1) mit dem zweiten Steuerspannungsanschluß verbunden sind, daß das bewegliche Kontaktelement (E1) des Reedkontaktes (KR) in einem Normalbetriebszustand mit dem ersten feststehenden Kontaktelement (E2) des Reedkontaktes (KR) verbunden ist, und daß das bewegliche Kontaktelement (E1) des Reedkontaktes (KR) in einem Überstrombetriebszustand mit dem zweiten feststehenden Kontaktelement (E3) des Reedkontaktes (KR) verbunden ist. - Relais nach Anspruch 12,
dadurch gekennzeichnet, daß die Hilfswicklung (WH1) derart an den Reedkontakt (KR) angekoppelt ist, daß im Überstrombetriebszustand von der stromdurchflossenen Hilfswicklung (WH1) ein Magnetfeld ausgeht, welches am Reedkontakt (KR) gleichsinnig zu dem vom Laststrom (IL) hervorgerufenen Magnetfeld ist. - Relais nach Anspruch 11,
dadurch gekennzeichnet, daß die Überstromschutzeinheit durch eine elektromagnetische Schalteinheit gebildet ist, welche ein bewegliches Kontaktelement (E4), zwei feststehende Kontaktelemente (E5,E6) und eine Spule (WH2) aufweist, daß das bewegliche Kontaktelement (E4) der Schalteinheit mit einem ersten Steuerspannungsanschluß verbunden ist, daß ein erster Anschluß der Erregerspule (WR) mit einem ersten feststehenden Kontaktelement (E5) der Schalteinheit verbunden ist, daß ein erster Anschluß der Spule (WH2) der Schalteinheit mit dem zweiten feststehenden Kontaktelement (E6) der Schalteinheit verbunden ist, daß der zweite Anschluß der Erregerspule (WR) und der zweite Anschluß der Spule (WH2) der Schalteinheit mit dem zweiten Steuerspannungsanschluß verbunden sind, daß der Reedkontakt (KR) zwischen dem ersten Steuerspannungsanschluß und dem ersten Anschluß der Spule (WH2) der Schalteinheit angeschlossen ist, daß das bewegliche Kontaktelement (E4) der Schalteinheit in einem Normalbetriebszustand mit dem ersten feststehenden Kontaktelement (E5) der Schalteinheit verbunden ist, und daß das bewegliche Kontaktelement (E4) der Schalteinheit in einem Überstrombetriebszustand mit dem zweiten feststehenden Kontaktelement (E6) der Schalteinheit verbunden ist. - Relais nach Anspruch 14,
dadurch gekennzeichnet, daß eine Zeitverzögerungseinheit zwischen den Reedkontakt (KR) und die Spule (WH2) der Schalteinheit geschaltet ist. - Relais nach Anspruch 14 oder 15,
dadurch gekennzeichnet, daß die elektromagnetische Schalteinheit durch ein Hilfsrelais (RH1) realisiert ist. - Relais nach Anspruch 14 oder 15,
dadurch gekennzeichnet, daß die elektromagnetische Schalteinheit durch einen Hilfsreedkontakt realisiert ist. - Relais nach Anspruch 11,
dadurch gekennzeichnet, daß die Überstromschutzeinheit durch einen Kaltleiter (RPTC) und einen seriell geschalteten Vorwiderstand (Rv) realisiert ist, welche in Serie zum Reedkontakt (KR) an die Steuerspannungsquelle (US) angeschlossen sind, daß der Reedkontakt (KR) in einem Normalbetriebszustand geöffnet und in einem Überstrombetriebszustand geschlossen ist, und daß die Relaisspule (WR) parallel zum Reedkontakt (KR) und zum Vorwiderstand (RV) sowie seriell zum Kaltleiter (RPTC) geschaltet ist. - Relais nach Anspruch 11,
dadurch gekennzeichnet, daß die Überstromschutzeinrichtung in das Magnetsystem (6) integriert ist, welches zur Realisierung von zwei stabilen Schaltzuständen eine zusätzliche zweite Erregerspule (WR2) aufweist, wobei die Erregerspulen (WR1,WR2) gegensinnig gewickelt sind und ein Steuerstrom (IS1) durch die erste Spule (WR1) das Relais in einen Einschaltzustand versetzt, während ein Steuerstrom (IS2) durch die zweite Spule (WR2) das Relais in einen Ausschaltzustand überführt, daß die erste Spule (WR1) in Serie zu einem Kondensator (CS) an die Steuerspannungsquelle (US) angeschlossen ist, und daß die zweite Spule (WR2) in Serie zum Reedkontakt (KR) an die Steuerspannungsquelle (US) angeschlossen ist. - Relais nach Anspruch 11,
dadurch gekennzeichnet, daß die Überstromschutzeinrichtung durch eine elektronische Schaltung (CCU) realisiert ist, welche einen ersten Steuerspannungsanschluß (K1) und einen zweiten Steuerspannungsanschluß (K2) aufweist, und daß die Schaltung (CCU) ein Zeitglied (U1), eine Einschaltstrecke (U2) für die Erregerspule (WR) und eine Ausschaltstrecke (U3) aufweist. - Relais nach Anspruch 20,
dadurch gekennzeichnet, daß die Einschaltstrecke (U2) für die Erregerspule (WR) aus einem in Serie zur Erregerspule (WR) zwischen den beiden Steuerspannungsanschlüssen (K1,K2) angeschlossenen pnp-Transistor (T1) und einem Vorwiderstand (R2) besteht, daß der Transistor (T1) der Einschaltstrecke (U2) mit seinem Emitter an der ersten Steuerspannungsanschluß (K1) und mit seinem Kollektor an einem ersten Erregerspulenanschluß (K3) angeschlossen ist, daß die Erregerspule (WR) mit ihrem zweiten Anschluß am zweiten Steuerspannungsanschluß (K2) angeschlossen ist, und daß der Vorwiderstand (R2) der Einschaltstrecke (U2) zwischen der Basis des Transistors (T1) der Einschaltstrecke (U2) und dem zweiten Steuerspannungsanschluß (K2) angeschlossen ist. - Relais nach Anspruch 21,
dadurch gekennzeichnet, daß die Ausschaltstrecke (U3) für die Erregerspule (WR) durch einen ersten Widerstand (R4) und einen zweiten Widerstand (R3) gebildet ist, daß der erste Widerstand (R4) der Ausschaltstrecke (U3) parallel zur Erregerspule (WR) geschaltet ist, daß der Reedkontakt (KR) mit einem ersten Anschluß am zweiten Steuerspannungsanschluß (K2) angeschlossen ist, und daß der zweite Widerstand (R3) der Ausschaltstrecke (U3) zwischen dem ersten Anschluß (K3) der Erregerspule (WR) und dem zweiten Anschluß (K4) des Reedkontaktes (KR) angeschlossen ist. - Relais nach Anspruch 22,
dadurch gekennzeichnet, daß das Zeitglied (U1) einen Komparator (CMP) und ein RC-Glied aufweist, daß der Kondensator (C1) des RC-Gliedes mit einem ersten Anschluß am ersten Steuerspannungsanschluß (K1) angeschlossen ist, und daß der Widerstand (R1) des RC-Gliedes zwischen dem zweiten Anschluß (K5) des Kondensators (C1) und dem zweiten Anschluß (K4) des Reedkontaktes (KR) angeschlossen ist. - Relais nach Anspruch 23,
dadurch gekennzeichnet, daß der Komparator (CMP) aus einem pnp-Transistor (T2) und einer Zenerdiode (D1) besteht, daß der Transistor (T2) des Komparators (CMP) mit seinem Emitter am ersten Steuerspannungsanschluß (K1) angeschlossen ist, daß der Transistor (T2) des Komparators mit seinem Kollektor an der Basis des Transistors (T1) der Einschaltstrecke (U2) angeschlossen ist, daß der Transistor (T2) des Komparators mit seiner Basis an der Kathode der Zenerdiode (D1) angeschlossen ist, und daß die Zenerdiode (D1) mit ihrer Anode zwischen dem Kondensator (C1) und dem Widerstand (R1) des RC-Gliedes angeschlossen ist.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19753852 | 1997-12-04 | ||
| DE19753852A DE19753852A1 (de) | 1997-12-04 | 1997-12-04 | Elektromagnetisches Relais |
| PCT/DE1998/003151 WO1999030338A1 (de) | 1997-12-04 | 1998-10-28 | Elektromagnetisches relais |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1036398A1 EP1036398A1 (de) | 2000-09-20 |
| EP1036398B1 true EP1036398B1 (de) | 2002-04-03 |
Family
ID=7850760
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP98959763A Expired - Lifetime EP1036398B1 (de) | 1997-12-04 | 1998-10-28 | Elektromagnetisches relais |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US6600640B1 (de) |
| EP (1) | EP1036398B1 (de) |
| JP (1) | JP2001526445A (de) |
| KR (1) | KR20010032739A (de) |
| CA (1) | CA2312486A1 (de) |
| DE (2) | DE19753852A1 (de) |
| WO (1) | WO1999030338A1 (de) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19963504C1 (de) * | 1999-12-28 | 2001-10-18 | Tyco Electronics Logistics Ag | Relais mit Überstromschutz |
| EP1256480A4 (de) * | 2000-02-18 | 2011-06-22 | Sanyo Electric Co | Schmlzdetektor von relais für elektrisch angetriebene fahrzeuge |
| US6853530B1 (en) * | 2000-09-15 | 2005-02-08 | General Electric Company | Apparatus and method for actuating a mechanical device |
| NL1021382C2 (nl) * | 2002-09-03 | 2004-03-05 | Iku Holding Montfoort Bv | Electromotorschakeling met beveiliging tegen overbelasting. |
| US7548146B2 (en) * | 2006-12-27 | 2009-06-16 | Tyco Electronics Corporation | Power relay |
| KR200454957Y1 (ko) * | 2009-10-26 | 2011-08-05 | 대성전기공업 주식회사 | 아크 발생이 방지된 릴레이 |
| DE102010018755A1 (de) | 2010-04-29 | 2011-11-03 | Kissling Elektrotechnik Gmbh | Relais mit integrierter Sicherheitsbeschaltung |
| DE102011080226B4 (de) * | 2011-08-01 | 2024-01-25 | Bayerische Motoren Werke Aktiengesellschaft | Fahrzeug mit einem Stromverteiler und einem Steuergerät |
| US9219422B1 (en) * | 2014-08-21 | 2015-12-22 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Operating a DC-DC converter including a coupled inductor formed of a magnetic core and a conductive sheet |
| US9379619B2 (en) | 2014-10-21 | 2016-06-28 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Dividing a single phase pulse-width modulation signal into a plurality of phases |
| US9618539B2 (en) | 2015-05-28 | 2017-04-11 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Sensing current of a DC-DC converter |
| DE102015214966A1 (de) * | 2015-08-05 | 2017-02-09 | Ellenberger & Poensgen Gmbh | Schutzschalter |
| EP3832684B1 (de) * | 2018-07-31 | 2024-02-14 | Panasonic Intellectual Property Management Co., Ltd. | Abschaltsystem |
| WO2021109054A1 (en) | 2019-12-05 | 2021-06-10 | Suzhou Littelfuse Ovs Co., Ltd. | Relay assembly with reverse connection protection |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3294987A (en) | 1963-06-13 | 1966-12-27 | Ford Motor Co | Overload protective device |
| DE1588418A1 (de) * | 1967-02-23 | 1970-06-18 | Licentia Gmbh | Kabelumbaurelais |
| DE1763394A1 (de) * | 1968-05-20 | 1972-01-05 | Inst Energetik | Primaerrelais fuer elektrische Schaltanlagen |
| US3911342A (en) * | 1974-08-05 | 1975-10-07 | Allis Chalmers | Plug current sensor for traction motor |
| US3959694A (en) * | 1974-12-30 | 1976-05-25 | Bell Telephone Laboratories, Incorporated | Electrical circuit protection apparatus |
| DE2542724A1 (de) * | 1975-09-25 | 1977-04-07 | Vdo Schindling | Ueberstromschalter |
| US4101826A (en) * | 1977-06-13 | 1978-07-18 | Hendrik Horsitmann | Fault indicator including a reed relay responsive to above normal current flow in a conductor |
| US4412267A (en) * | 1980-02-06 | 1983-10-25 | Eaton Corporation | Time-delay current sensing circuit breaker relay |
| DE3005460C2 (de) * | 1980-02-14 | 1986-04-24 | Robert Bosch Gmbh, 7000 Stuttgart | Elektromagnetischer Schalter |
| SE439692B (sv) * | 1983-10-24 | 1985-06-24 | Asea Ab | Anordning for overvakning av konditionen hos en elektrisk apparat med strombrytande kontakter, i synnerhet en hogspenningsbrytare |
| US4611154A (en) * | 1985-03-28 | 1986-09-09 | Gulf & Western Manufacturing Company | Method and apparatus for controlling the operation of a DC load |
| US4922369A (en) * | 1986-06-25 | 1990-05-01 | Inresco, Inc. | Circuit protector |
| SU1427472A1 (ru) * | 1987-03-04 | 1988-09-30 | Павлодарский Индустриальный Институт | Устройство дл защиты электрической машины с датчиком аварийного режима |
| JP3237446B2 (ja) * | 1995-03-29 | 2001-12-10 | 市光工業株式会社 | 直流モータ駆動制御回路 |
| US5684447A (en) * | 1996-01-19 | 1997-11-04 | Cooper Industries, Inc. | Failsafe bimetallic reed having bimetal with fusible link for a circuit protector |
-
1997
- 1997-12-04 DE DE19753852A patent/DE19753852A1/de not_active Withdrawn
-
1998
- 1998-10-28 WO PCT/DE1998/003151 patent/WO1999030338A1/de active IP Right Grant
- 1998-10-28 US US09/555,695 patent/US6600640B1/en not_active Expired - Fee Related
- 1998-10-28 CA CA002312486A patent/CA2312486A1/en not_active Abandoned
- 1998-10-28 DE DE59803670T patent/DE59803670D1/de not_active Expired - Fee Related
- 1998-10-28 JP JP2000524803A patent/JP2001526445A/ja active Pending
- 1998-10-28 EP EP98959763A patent/EP1036398B1/de not_active Expired - Lifetime
- 1998-10-28 KR KR1020007006028A patent/KR20010032739A/ko not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| JP2001526445A (ja) | 2001-12-18 |
| DE59803670D1 (de) | 2002-05-08 |
| DE19753852A1 (de) | 1999-06-17 |
| WO1999030338A1 (de) | 1999-06-17 |
| US6600640B1 (en) | 2003-07-29 |
| CA2312486A1 (en) | 1999-06-17 |
| KR20010032739A (ko) | 2001-04-25 |
| EP1036398A1 (de) | 2000-09-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1036398B1 (de) | Elektromagnetisches relais | |
| DE69403022T2 (de) | Einstellvorrichtung des Auslöseansprechwerts eines mehrpoligen Schutzschalters | |
| DE3841365A1 (de) | Isolierstoffgekapselter selbstschalter | |
| WO2009114890A1 (de) | Auslösemodul für ein schaltgerät | |
| DE102011089251B4 (de) | Auslöseeinheit zum Betätigen einer mechanischen Schalteinheit einer Vorrichtung | |
| DE10134104B4 (de) | Stromversorgungsschaltung für Anlasser | |
| EP1218909B1 (de) | Lasttrennschalter, vorzugsweise zum einsatz in kraftfahrzeugen | |
| EP0231793B1 (de) | Elektromagnetisches Relais | |
| DE4218621A1 (de) | Elektrisches horn bzw. hupe | |
| DE102011052003B4 (de) | Schaltvorrichtung mit Überlastsicherungsvorrichtung und einem ersten und einem zweiten Betätigungsorgan | |
| WO2005073997A1 (de) | Schutzschaltvorrichtung mit differenzstromauslöser | |
| DE10254038A1 (de) | Hilfsauslöser für Motorschutzschalter | |
| EP0990247B1 (de) | Auslöse-einrichtung für ein überstrom-abschaltgerät | |
| DE1763282C (de) | Druckknopfbetätigter Überstromschalter zum Schütze von Halbleiterbauelementen | |
| DE2610951B2 (de) | Schutzschalter | |
| EP0671747B1 (de) | Gleichstrom-Sparschaltung | |
| DE102009047192A1 (de) | Relais | |
| DE9203984U1 (de) | Magnetanker für eine Auslöseeinrichtung eines Schaltgerätes | |
| EP0821383B1 (de) | Überstromauslöser für ein elektrisches Installationsgerät, insbesondere für einen Leitungsschutzschalter | |
| DE453082C (de) | Elektromagnetischer UEberstromschalter | |
| AT226415B (de) | Kontaktloser Druckknopfschalter, insbesondere zur Steuerung von Aufzügen | |
| DE2827282A1 (de) | Steuervorrichtung | |
| DE19606255A1 (de) | Feuerungsautomat | |
| DE3445031A1 (de) | Kurzschlusssichere transistor-endstufe | |
| DE2159170C3 (de) | Zeitschaltvorrichtung |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20000508 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| 17Q | First examination report despatched |
Effective date: 20010523 |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
| REF | Corresponds to: |
Ref document number: 59803670 Country of ref document: DE Date of ref document: 20020508 |
|
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020702 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20030106 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20031003 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20031031 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040915 Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050503 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051028 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051028 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20051028 |