EP1036398B1 - Electromagnetic relay - Google Patents
Electromagnetic relay Download PDFInfo
- Publication number
- EP1036398B1 EP1036398B1 EP98959763A EP98959763A EP1036398B1 EP 1036398 B1 EP1036398 B1 EP 1036398B1 EP 98959763 A EP98959763 A EP 98959763A EP 98959763 A EP98959763 A EP 98959763A EP 1036398 B1 EP1036398 B1 EP 1036398B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reed contact
- coil
- terminal
- control voltage
- relay according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 235000014676 Phragmites communis Nutrition 0.000 claims description 112
- 239000004020 conductor Substances 0.000 claims description 32
- 238000004804 winding Methods 0.000 claims description 31
- 239000003990 capacitor Substances 0.000 claims description 13
- 230000004907 flux Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims 1
- 230000005284 excitation Effects 0.000 description 37
- 238000010586 diagram Methods 0.000 description 9
- 239000002184 metal Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/10—Operating or release mechanisms
- H01H71/12—Automatic release mechanisms with or without manual release
- H01H71/24—Electromagnetic mechanisms
- H01H71/2445—Electromagnetic mechanisms using a reed switch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/10—Operating or release mechanisms
- H01H71/12—Automatic release mechanisms with or without manual release
- H01H71/24—Electromagnetic mechanisms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/02—Bases; Casings; Covers
- H01H50/021—Bases; Casings; Covers structurally combining a relay and an electronic component, e.g. varistor, RC circuit
Definitions
- the invention relates to an electromagnetic relay, according to the general concept of Claim 1, such as known from US-A-4412267.
- SU 142 74 72 A1 is a short-circuit protection for a three-phase motor known, which realized with the help of reed relays is. However, the reed relays are separated from the motor relay. In particular, with motor relays, which switch on the motor power supply, No overload or short-circuit status can be queried.
- the aim of the invention is to provide an inexpensive, integrated and particularly space-saving solution for a to create short-circuit or overload-proof relay, wherein in particular a differentiated response of the protective devices in the event of a permanent overload of the relay and not already desired with only brief current peaks is.
- this goal is achieved by an electromagnetic Relay achieved according to claim 1.
- a relay according to the invention can be interrupted reset the control current to a normal operating state.
- Hall sensors which also have one Detection of a magnetic field emanating from an increased load current is possible
- reed contacts offer the advantage of a temperature-independent behavior, a simple setting of trigger thresholds and easier to implement Evaluation circuits.
- FIG. 1 to 6 show variants of a relay according to the invention with different coupling of a reed contact K R to a load current conductor 1.
- the reed contact K R is preassembled on a printed circuit board 4.
- a magnet system 6 is arranged on a base 5 and has a core, an armature and an excitation coil W R.
- the axis of the excitation coil W R extends parallel to the base plane of the base 6.
- the printed circuit board 4 is fixed standing perpendicular to the base plane of the base 5.
- Two connection plates 2 and 3 are connected to the reed contact K R (see also FIG. 2).
- Switching thresholds for the reed contact K R can be defined by a suitable choice of the distance between the two connecting plates 2 and 3.
- the two conductor connection plates 2 and 3 are fitted together with the reed contact K R on a printed circuit board 4, the reed contact K R being oriented perpendicular to the base plane of the base 5.
- the reed contact K R is thus arranged perpendicular to the axis of the excitation coil W R , as a result of which the reed contact K R is insensitive to the magnetic stray flux of the excitation coil W R.
- the load current conductor 1 is arranged in a section perpendicular to the reed contact K R , with a suitable conductor design ensuring that the magnetic field generated by the load current conductor 1 passes through the reed contact K R centrally and in parallel.
- this is achieved in that the relevant section of the load current conductor 1 is formed by a sheet metal strip, the sheet metal plane of which extends parallel to the reed contact K R.
- the magnet system 6 is arranged on the base 5 such that the axis of the excitation coil W R runs parallel to the base plane of the base 5.
- the reed contact K R is mounted between the magnet system 6 and the base 5 perpendicular to the axis of the excitation coil W R and parallel to the base plane of the base 6.
- the reed contact K R is connected to two contacting plates 2 and 3 (see also FIG. 4). The two contact plates 2 and 3 are at a distance from one another which determines the switching threshold of the reed contact K R.
- the unit formed from the contacting plates 2 and 3 and the reed contact K R is inserted into the base 5, the load current conductor 1 being inserted in one section in the middle through a sensor ring R S formed from the reed contact K R and the contacting plates 2 and 3.
- the load current conductor 1 is formed in this section by a bent sheet metal strip, so that the sensor ring R S lies at a free end of the sheet metal strip perpendicular to the load current conductor 1 and encloses it.
- the sensor ring R S can also be formed by a U-shaped, magnetically conductive flux ring and a reed contact K R coupled to it via two air gaps.
- FIG. 5 shows an exemplary embodiment of a relay with a reed contact K R preassembled on a base 5, the reed contact K R being oriented perpendicular to the base plane of the base 5.
- the magnet system 6 is mounted on the base 5 such that the axis of the excitation coil W R extends parallel to the base plane of the base 5.
- the load current conductor 1 is essentially formed by a sheet metal strip, a first end of the load current conductor 1 being inserted vertically through the base as a connecting element. The second end of the load current conductor 1 runs parallel to the axis of the excitation coil W R (see also FIG. 6).
- the load current conductor 1 is formed into a loop surrounding the reed contact K R.
- a corresponding shaping of the load current conductor 1 in this central section ensures that the magnetic field coupled into the reed contact K R by the load current conductor 1 passes through the reed contact K R in the center and in parallel.
- the reed contact K R is bent together with its connecting wires in a U-shape and fastened with the ends of the connecting wires to extensions of two connecting loops 7 and 8.
- the reed contact K R can be connected to the extensions of the connection loops 7 and 8 arranged below the magnet system 6, for example by soldering or resistance welding. The distance between the two connection loops 7 and 8 defines the switching threshold of the reed contact K R.
- FIG. 7 shows a basic circuit diagram of a relay with an auxiliary reed contact and an auxiliary winding as overcurrent protection elements.
- the relay R has a control circuit, which is associated with an excitation winding W R through which a control current I S is assigned, and a load circuit, the load current I L being controllable by a movable contact element K B and a fixed contact element K F of the relay R.
- a reed contact K R is arranged in the control circuit, through which the control current I S can be controlled by the excitation coil W R.
- the reed contact K R is coupled to a load current conductor through which the load current I L flows.
- the magnetic coupling between the load current conductor and the reed contact K R is subsequently symbolized by a load current conductor winding W L.
- the reed contact K R has a movable contact element E1 and two fixed contact elements E2 and E3. Furthermore, an auxiliary winding W H1 is coupled to the reed contact K R in such a way that, in an overcurrent operating state, the auxiliary winding W H1 emits a magnetic field which is in the same direction as a magnetic field caused by a load current winding W L.
- the load current I L is switched directly via the movable contact element K B and the fixed contact element K F of the relay R.
- the reed contact K R can be arranged axially within the load current winding W L.
- a reed contact K R lying outside the load current winding W L which is arranged parallel to the winding axis, is also possible.
- An alternative to coupling the reed contact K R to a load current winding W L is to arrange the reed contact K R within a loop-shaped section of a load current conductor.
- the reed contact K R is advantageously to be arranged perpendicular to the axis of the excitation coil W R.
- the aforementioned influence can be prevented by a magnetically conductive shielding plate between the excitation coil W R and the reed contact K R.
- a magnetic stray field originating from the excitation coil W R is short-circuited by the shielding plate.
- Another possibility is to selectively introduce the magnetic stray flux emanating from the excitation coil W R into the reed contact K R. This is possible, for example, by regulating the control current I S. As a result, a constant magnetic flux acts as an offset on the reed contact K R.
- corresponding threshold values at the reed contact K R it is possible to use the stray magnetic field.
- the reed contact K R connects the excitation coil W R of the relay R to a control voltage source U S via a first fixed contact element E2 of the reed contact K R.
- the auxiliary winding W H coupled to the second fixed contact element E3 is separated from the movable contact element E1 of the reed contact K R and thus from the control voltage source U S.
- the movable contact element E1 of the reed contact K R is connected to the second fixed contact element E3 and separated from the first fixed contact element E2.
- the excitation winding W R of the relay R is separated from the control voltage source U S , while the auxiliary winding W H is connected to the control voltage source U S. Even after the load circuit has been interrupted, the connection between the movable contact element E1 of the reed contact K R and the second fixed contact element E3 is maintained due to the magnetic flux emanating from the auxiliary winding W H. Only after disconnection from the control voltage source U S does the relay R return to the normal operating state.
- FIG. 8 shows a basic circuit diagram of an alternative configuration option for a short-circuit-proof relay, in which the overcurrent protection function is implemented by means of an auxiliary relay R H1 .
- the auxiliary relay R H1 has a movable contact element E4 and two fixed contact elements E5 and E6, the movable contact element E4 being connected to the first fixed contact element E5 in the normal operating state.
- the movable contact element E4 is connected directly to a control voltage input terminal, so that the control voltage U S is applied directly to the excitation coil W R of the relay R.
- the reed contact K R is connected between the contact element E4 of the auxiliary relay R H1 and the second fixed contact element E6.
- the coil W H2 of the auxiliary relay R H1 is de-energized in the normal operating state.
- the reed contact K R is closed, as a result of which the control voltage U S is applied directly to the coil W H2 of the auxiliary relay R H1 .
- the movable contact element E4 is connected to the second fixed contact element E6 of the auxiliary relay R H1 and separated from the first fixed contact element E5. Because of this, the excitation coil W R of the relay R is de-energized in the overcurrent operating state.
- the auxiliary relay R H1 maintains its switch position even after the load circuit of the relay R has been interrupted by actuating the contact element K B and opening the reed contact K R. If a time delay unit is additionally arranged between the reed contact K R and the second fixed contact element E6 of the auxiliary relay R H1 , brief load current peaks do not trigger the overcurrent protection device. Instead of the auxiliary relay R H1 , a second reed contact can be used, which is then coupled to an associated auxiliary winding.
- FIG. 9 shows a further alternative for implementing overcurrent protection with a PTC thermistor R PTC and a series resistor R v connected in series .
- These two overcurrent protection elements are connected in series with the reed contact K R to the control voltage source U S , the reed contact K R being initially closed in the overcurrent operating state and opened in the normal operating state.
- the excitation coil W R of the relay R is connected in parallel with the reed contact K R and the series resistor R V and in series with the PTC thermistor R PTC .
- the PTC thermistor R PTC performs a status memory function if the residual current through the excitation coil W R of the relay R is sufficient to maintain the required PTC thermistor temperature. In this case, the PTC thermistor R PTC remains in a high-resistance state even after the reed contact K R is reopened. Only after disconnection from the control voltage source U S and cooling of the PTC thermistor R PTC can the relay R be activated again.
- FIG. 10 shows a basic circuit diagram of an embodiment with a bistable relay R 2S and a capacitor C S.
- the bistable relay R 2S is equipped with a first field winding W R1 and a second field winding W R2 .
- the first field winding W R1 of the relay R 2S is connected in series with the capacitor C S to the control voltage source U S.
- the second excitation winding W R2 is connected in series with the reed contact K R to the control voltage source U S and has an opposite winding sense compared to the first excitation winding W R1 .
- a positive pulse of the current I S1 through the first field winding W R1 thus causes the load circuit to be closed, while a positive pulse of the current I S2 through the second field winding W R2 interrupts the load circuit.
- the reed contact K R first connects the second excitation winding W R2 to the control voltage source U S , whereupon the relay R 2S changes to a stable switched-off state. Only after the control voltage U S is switched off and on again does the first excitation winding W R1 receive a positive current pulse via the capacitor C S, as a result of which the relay R 2S changes to a stable switched-on state.
- the overcurrent protection functions are integrated in an overcurrent protection device which is implemented by an electronic circuit CCU.
- the electronic circuit CCU has four connections, the control voltage U S being present between a first control voltage connection K1 and a second control voltage connection K2. Furthermore, the electronic circuit CCU has a first excitation coil connection K3 and a second reed contact connection K4. The first reed contact connection and the second excitation coil connection are connected to the second control voltage connection K2.
- the electronic circuit CCU can be integrated as an application-specific integrated circuit (ASIC) in a very simple manner into the circuit board 4 of the relay shown in FIG. 1 or also into the base 5 of the relay shown in FIGS. 3 and 5.
- ASIC application-specific integrated circuit
- the electronic circuit CCU is divided into a timing element U1, a switch-on path U2 for the excitation coil W R and a switch-off path U3.
- the switch-on path U2 for the relay coil W R consists of a pnp transistor T1 connected in series with the relay coil W R between the two control voltage connections K1 and K2 and a series resistor R2.
- the transistor T1 is connected with its emitter to the first control voltage connection K1 and with its collector to the first excitation coil connection K3.
- the series resistor R2 of the switch-on path U2 is connected between the base of the transistor T1 and the second control voltage connection K2.
- the switch-off path U3 for the excitation coil W R is formed by a first resistor R4 and a second resistor R3.
- the first resistor R4 is connected in parallel to the excitation coil W R
- the second resistor R3 of the switch-off path U3 is connected between the first excitation coil connection K3 and the second reed contact connection K4.
- the timing element U1 has a comparator CMP and an RC element on, the capacitor C1 of the RC element having a first Connection connected to the first control voltage connection K1 is.
- the resistance R1 of the RC element is between that second terminal K5 of the capacitor C1 and the second reed contact terminal K4 connected.
- the comparator CMP itself consists of a pnp transistor T2 and a zener diode D1, the transistor T2 of the comparator CMP with its emitter is connected to the first control voltage connection K1, while the collector of transistor T2 with the base of Transistor T1 of the switch-on path U2 is connected.
- the base of the transistor T2 of the comparator CMP is at the cathode the Zener diode D1 connected, the anode between the Capacitor C1 and the resistor R1 of the RC element connected is.
- the reed contact K R closes and connects the base of the transistor T2 directly to the second control voltage connection K2. This causes capacitor C1 to discharge through resistors R1 and R3. After the breakdown voltage at the Zener diode D1 has been exceeded, a control current flows through the emitter-base path of the transistor T2, which turns on the transistor T2 and electrically connects the base of the transistor T1 of the switch-on path U2 to the first control voltage terminal K1. The switch-off path U3 is then activated via the transistor T2 of the timer U1, as a result of which the transistor T1 of the switch-on path U2 changes to the blocked state.
- Timer U1 An unwanted activation of the overcurrent protection device at Inrush or switching current peaks, which are usually less than a few 100 milliseconds, Timer U1 prevented.
- the resistor R1, the capacitor C1 of the timer U1, of the resistors R3 and R4 of the switch-off path U3 and the selection of a Zener diode D1 with a suitable breakdown voltage can the timing of the electronic Switching CCU to the duration of expected inrush or switching current peaks be adjusted.
- the timing element U1 also generates interference pulses at the control voltage connections K1 and K2 filtered out.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Relay Circuits (AREA)
- Emergency Protection Circuit Devices (AREA)
- Breakers (AREA)
Description
Die Erfindung betrifft ein elektromagnetisches Relais,
gemäß dem Oberbegiff des
Anspruchs 1, wie z.B. aus der US-A-4412267 bekannt.The invention relates to an electromagnetic relay,
according to the general concept of
Bei konventionellen Lösungen zur Gewährleistung einer Kurzschluß- bzw. Überlastfestigkeit für ein Relais werden vorwiegend Schutzeinrichtungen verwendet, welche den Laststrom im Störungsfall unter Nutzung thermischer Effekte unterbrechen. Hierzu zählen insbesondere Schmelzsicherungen oder Bimetallkontaktfedern.With conventional solutions to ensure a short-circuit or overload resistance for a relay are predominant Protective devices used, which the load current in Interrupt a fault using thermal effects. These include in particular fuses or bimetallic contact springs.
Aus SU 142 74 72 A1 ist ein Kurzschlußschutz für einen Drehstrommotor bekannt, welcher mit Hilfe von Reedrelais realisiert ist. Allerdings sind dort die Reedrelais getrennt von den Motorrelais angeordnet. Insbesondere ist bei den Motorrelais, welche die Spannungsversorgung des Motors zuschalten, keine Abfrage eines Überlast- bzw. Kurzschlußstatus möglich.SU 142 74 72 A1 is a short-circuit protection for a three-phase motor known, which realized with the help of reed relays is. However, the reed relays are separated from the motor relay. In particular, with motor relays, which switch on the motor power supply, No overload or short-circuit status can be queried.
Der Erfindung liegt das Ziel zugrunde, eine kostengünstige, integrierte und insbesondere platzsparende Lösung für ein kurzschluß- bzw. überlastfestes Relais zu schaffen, wobei insbesondere ein differenziertes Ansprechen der Schutzeinrichtungen bei einer dauerhaften Überlastung des Relais und nicht bereits bei nur kurzzeitigen Stromspitzen erwünscht ist.The aim of the invention is to provide an inexpensive, integrated and particularly space-saving solution for a to create short-circuit or overload-proof relay, wherein in particular a differentiated response of the protective devices in the event of a permanent overload of the relay and not already desired with only brief current peaks is.
Erfindungsgemäß wird dieses Ziel durch ein elektromagnetisches
Relais gemäß dem Anspruch 1 erreicht. According to the invention, this goal is achieved by an electromagnetic
Relay achieved according to
Ein erfindungsgemäßes Relais läßt sich durch Unterbrechung des Steuerstromes in einen Normalbetriebszustand zurücksetzen. Im Vergleich zu Hall-Sensoren, mit denen ebenfalls eine Detektion eines von einem erhöhten Laststrom ausgehenden Magnetfeldes möglich ist, bieten Reedkontakte den Vorteil eines temperaturunabhängigen Verhaltens, einer einfachen Einstellung von Auslöseschwellwerten und einfach zu realisierender Auswerteschaltungen.A relay according to the invention can be interrupted reset the control current to a normal operating state. Compared to Hall sensors, which also have one Detection of a magnetic field emanating from an increased load current is possible, reed contacts offer the advantage of a temperature-independent behavior, a simple setting of trigger thresholds and easier to implement Evaluation circuits.
Vorteilhafte Ausgestaltungen bezüglich der Anordnung des Reedkontaktes relativ zum Laststromleiter, der Abschirmung der Reedkontaktes vom Magnetfeld der Erregerspule sowie bezüglich der Mittel zur Generierung und Verarbeitung des Überstromsignals und zum Abschalten des Steuerstroms sind den abhängigen Ansprüchen zu entnehmen.Advantageous embodiments with regard to the arrangement of the Reed contact relative to the load current conductor, the shield the reed contact from the magnetic field of the excitation coil as well as regarding the means for generating and processing the overcurrent signal and to turn off the control current are dependent Claims.
Die Erfindung wird nachfolgend an Ausführungsbeispielen anhand
der Zeichnung näher erläutert. Es zeigt
In den Figuren 1 bis 6 sind Varianten eines erfindungsgemäßen
Relais mit unterschiedlicher Ankopplung eines Reedkontaktes
KR an einen Laststromleiter 1 dargestellt. Bei der Ausführungsform
gemäß Figur 1 ist der Reedkontakt KR auf einer Leiterplatte
4 vormontiert. Auf einem Sockel 5 ist ein Magnetsystem
6 angeordnet, welches einen Kern, einen Anker und eine
Erregerspule WR aufweist. Die Achse der Erregerspule WR erstreckt
sich parallel zur Grundebene des Sockels 6. In einem
äußeren Bereich auf dem Sockel 5 ist die Leiterplatte 4 senkrecht
zur Grundebene des Sockels 5 stehend befestigt. Mit dem
Reedkontakt KR sind zwei Anschlußbleche 2 und 3 verbunden
(siehe auch Figur 2). Durch eine geeignete Wahl des Abstandes
zwischen den beiden Anschlußblechen 2 und 3 können Schaltschwellen
für den Reedkontakt KR definiert werden. Die beiden
Leiteranschlußbleche 2 und 3 sind zusammen mit dem Reedkontakt
KR auf eine Leiterplatte 4 bestückt, wobei der Reedkontakt
KR senkrecht zur Grundebene des Sockels 5 orientiert
ist. Entsprechend einer bevorzugten Ausführungsform ist der
Reedkontakt KR damit senkrecht zur Achse der Erregerspule WR
angeordnet, wodurch der Reedkontakt KR gegenüber dem magnetischen
Streufluß der Erregerspule WR unempfindlich ist. Der
Laststromleiter 1 ist in einem Abschnitt senkrecht zum Reedkontakt
KR angeordnet, wobei durch eine geeignete Leitergestaltung
sicherzustellen ist, daß das vom Laststromleiter 1
erzeugte Magnetfeld den Reedkontakt KR mittig und parallel
durchsetzt. Bei diesem Ausführungsbeispiel wird dies dadurch
erreicht, daß der betreffende Abschnitt des Laststromleiters
1 durch einen Blechstreifen gebildet ist, dessen Blechebene
parallel zum Reedkontakt KR verläuft.1 to 6 show variants of a relay according to the invention with different coupling of a reed contact K R to a load
Bei dem in Figur 3 dargestellten Ausführungsbeispiel ist das
Magnetsystem 6 derart auf dem Sockel 5 angeordnet, daß die
Achse der Erregerspule WR parallel zur Grundebene des Sockels
5 verläuft. Zwischen dem Magnetsystem 6 und dem Sockel 5 ist
der Reedkontakt KR senkrecht zur Achse der Erregerspule WR
und parallel zur Grundebene des Sockels 6 montiert. Auch bei
diesem Ausführungsbeispiel ist der Reedkontakt KR mit zwei
Kontaktierungsblechen 2 und 3 verbunden (siehe auch Figur 4).
Die beiden Kontaktierungsbleche 2 und 3 weisen dabei einen
Abstand voneinander auf, welcher die Schaltschwelle des
Reedkontaktes KR bestimmt. Die aus den Kontaktierungsblechen
2 und 3 und dem Reedkontakt KR gebildete Einheit ist in den
Sockel 5 eingelegt, wobei der Laststromleiter 1 in einem Abschnitt
mittig durch einen aus dem Reedkontakt KR und den
Kontaktierungsblechen 2 und 3 gebildeten Sensorring RS gesteckt
ist. Der Laststromleiter 1 ist in diesem Abschnitt
durch einen abgekröpften Blechstreifen gebildet, so daß der
Sensorring RS an einem freien Ende des Blechstreifens senkrecht
zum Laststromleiter 1 liegt und ihn umschließt. Alternativ
zu dem in Figur 4 dargestellten Beispiel kann der Sensorring
RS auch durch einen U-förmigen, magnetisch leitfähigen
Flußring und einen über zwei Luftspalte daran angekoppelten
Reedkontakt KR gebildet sein. In the embodiment shown in Figure 3, the
Figur 5 zeigt ein Ausführungsbeispiel eines Relais mit einem
auf einem Sockel 5 vormontierten Reedkontakt KR, wobei der
Reedkontakt KR senkrecht zur Grundebene des Sockels 5 orientiert
ist. Das Magnetsystem 6 ist bei diesem Ausführungsbeispiel
so auf dem Sockel 5 montiert, daß sich die Achse der
Erregerspule WR parallel zur Grundebene des Sockels 5 erstreckt.
Der Laststromleiter 1 ist im wesentlichen durch einen
Blechstreifen gebildet, wobei ein erstes Ende des Laststromleiters
1 als Anschlußelement senkrecht durch den Sockel
gesteckt ist. Das zweite Ende des Laststromleiters 1 verläuft
parallel zur Achse der Erregerspule WR (siehe auch Figur 6).
In einem mittleren Abschnitt ist der Laststromleiter 1 zu einer
den Reedkontakt KR umgebenden Schleife geformt. Durch eine
entsprechende Formung des Laststromleiter 1 in diesem
mittleren Abschnitt ist sichergestellt, daß das vom Laststromleiter
1 in den Reedkontakt KR eingekoppelte Magnetfeld
den Reedkontakt KR mittig und parallel durchsetzt. Der Reedkontakt
KR ist zusammen mit seinen Anschlußdrähten U-förmig
umgebogen und mit den Enden der Anschlußdrähte an Fortsätzen
von zwei Anschlußschleifen 7 und 8 befestigt. Die Verbindung
des Reedkontaktes KR an den Fortsätzen der unterhalb des Magnetsystems
6 angeordneten Anschlußschleifen 7 und 8 kann
beispielsweise durch Löten oder Widerstandsschweißen erfolgen.
Der Abstand zwischen den beiden Anschlußschleifen 7 und
8 definiert die Schaltschwelle des Reedkontaktes KR. Bei allen
in den Figuren 1 bis 6 dargestellten Ausführungsbeispielen
besteht ein Vorteil darin, daß die Montage des Reedkontaktes
KR und die Ankopplung des Reedkontaktes KR an den
Laststromleiter 1 keine nennenswerten konstruktiven Änderungen
am Relais erfordern.FIG. 5 shows an exemplary embodiment of a relay with a reed contact K R preassembled on a
Figur 7 zeigt ein Prinzipschaltbild eines Relais mit einem Hilfsreedkontakt und einer Hilfswicklung als Überstromschutzelementen. Das Relais R weist einen Steuerstromkreis, welchem eine von einem Steuerstrom IS durchflossene Erregerwicklung WR zugeordnet ist, und einen Laststromkreis auf, wobei der Laststrom IL durch ein bewegliches Kontaktelement KB und ein feststehendes Kontaktelement KF des Relais R steuerbar ist. Im Steuerstromkreis ist ein Reedkontakt KR angeordnet, durch welchen der Steuerstrom IS durch die Erregerspule WR steuerbar ist. Der Reedkontakt KR ist an einen von dem Laststrom IL durchflossenen Laststromleiter gekoppelt. Die magnetische Kopplung zwischen dem Laststromleiter und dem Reedkontakt KR wird nachfolgend durch eine Laststromleiterwicklung WL symbolisiert. Bei dem Ausführungsbeispiel gemäß Figur 7 weist der Reedkontakt KR ein bewegliches Kontaktelement E1 und zwei festehende Kontaktelemente E2 und E3 auf. Ferner ist eine Hilfswicklung WH1 derart an den Reedkontakt KR gekoppelt, daß in einem Überstrombetriebszustand von der Hilfswicklung WH1 ein Magnetfeld ausgeht, welches gleichsinnig zu einem von einer Laststromleiterwicklung WL hervorgerufenen Magnetfeld ist.FIG. 7 shows a basic circuit diagram of a relay with an auxiliary reed contact and an auxiliary winding as overcurrent protection elements. The relay R has a control circuit, which is associated with an excitation winding W R through which a control current I S is assigned, and a load circuit, the load current I L being controllable by a movable contact element K B and a fixed contact element K F of the relay R. A reed contact K R is arranged in the control circuit, through which the control current I S can be controlled by the excitation coil W R. The reed contact K R is coupled to a load current conductor through which the load current I L flows. The magnetic coupling between the load current conductor and the reed contact K R is subsequently symbolized by a load current conductor winding W L. In the exemplary embodiment according to FIG. 7, the reed contact K R has a movable contact element E1 and two fixed contact elements E2 and E3. Furthermore, an auxiliary winding W H1 is coupled to the reed contact K R in such a way that, in an overcurrent operating state, the auxiliary winding W H1 emits a magnetic field which is in the same direction as a magnetic field caused by a load current winding W L.
Der Laststrom IL wird direkt über das bewegliche Kontaktelement KB und das feststehende Kontaktelement KF des Relais R geschaltet. Der Reedkontakt KR kann axial innerhalb der Laststromleiterwicklung WL angeordnet sein. Ebenfalls möglich ist ein außerhalb der Laststromleiterwicklung WL liegender Reedkontakt KR, welcher parallel zur Wicklungsachse angeordnet ist. Eine Alternative zur Ankopplung des Reedkontaktes KR an eine Laststromleiterwicklung WL ist eine Anordnung des Reedkontaktes KR innerhalb eines schleifenförmigen Abschnittes eines Laststromleiters.The load current I L is switched directly via the movable contact element K B and the fixed contact element K F of the relay R. The reed contact K R can be arranged axially within the load current winding W L. A reed contact K R lying outside the load current winding W L , which is arranged parallel to the winding axis, is also possible. An alternative to coupling the reed contact K R to a load current winding W L is to arrange the reed contact K R within a loop-shaped section of a load current conductor.
Um eine Beeinflussung des Reedkontaktes KR vom Magnetfeld der Erregerspule WR des Relais R zu verhindern, ist der Reedkontakt KR vorteilhafterweise senkrecht zur Achse der Erregerspule WR anzuordnen. Alternativ kann die genannte Beeinflussung durch ein magnetisch leitfähiges Abschirmblech zwischen der Erregerspule WR und dem Reedkontakt KR verhindert werden. Durch das Abschirmblech wird ein von der Erregerspule WR herrührendes magnetisches Streufeld kurzgeschlossen. Eine andere Möglichkeit besteht darin, den von der Erregerspule WR ausgehenden magnetischen Streufluß gezielt in den Reedkontakt KR einzuleiten. Dies ist beispielsweise durch eine Regelung des Steuerstromes IS möglich. Hierdurch wirkt ein konstanter Magnetfluß als Offset auf den Reedkontakt KR ein. Durch Definition entsprechender Schwellwerte am Reedkontakt KR ist somit eine Ausnutzung des magnetischen Streufeldes möglich.In order to prevent the reed contact K R from being influenced by the magnetic field of the excitation coil W R of the relay R, the reed contact K R is advantageously to be arranged perpendicular to the axis of the excitation coil W R. Alternatively, the aforementioned influence can be prevented by a magnetically conductive shielding plate between the excitation coil W R and the reed contact K R. A magnetic stray field originating from the excitation coil W R is short-circuited by the shielding plate. Another possibility is to selectively introduce the magnetic stray flux emanating from the excitation coil W R into the reed contact K R. This is possible, for example, by regulating the control current I S. As a result, a constant magnetic flux acts as an offset on the reed contact K R. By defining corresponding threshold values at the reed contact K R , it is possible to use the stray magnetic field.
In einem Normalbetriebszustand verbindet der Reedkontakt KR die Erregerspule WR des Relais R über ein erstes feststehendes Kontaktelement E2 des Reedkontaktes KR mit einer Steuerspannungsquelle US. In diesem Zustand ist die an das zweite feststehende Kontaktelement E3 gekoppelte Hilfswicklung WH vom beweglichen Kontaktelement E1 des Reedkontaktes KR und somit von der Steuerspannungsquelle US getrennt. In einem Überstrombetriebszustand ist dagegen das bewegliche Kontaktelement E1 des Reedkontaktes KR mit dem zweiten feststehenden Kontaktelement E3 verbunden und vom ersten feststehenden Kontaktelement E2 getrennt. Dadurch ist die Erregerwicklung WR des Relais R von der Steuerspannungsquelle US getrennt, während die Hilfswicklung WH mit der Steuerspannungsquelle US verbunden ist. Auch nach Unterbrechung des Laststromkreises bleibt die Verbindung zwischen dem beweglichen Kontaktelement E1 des Reedkontaktes KR und dem zweiten feststehenden Kontaktelement E3 aufgrund des von der Hilfswicklung WH ausgehenden Magnetflusses erhalten. Erst nach Trennung von der Steuerspannungsquelle US kehrt das Relais R in den Normalbetriebszustand zurück.In a normal operating state, the reed contact K R connects the excitation coil W R of the relay R to a control voltage source U S via a first fixed contact element E2 of the reed contact K R. In this state, the auxiliary winding W H coupled to the second fixed contact element E3 is separated from the movable contact element E1 of the reed contact K R and thus from the control voltage source U S. In contrast, in an overcurrent operating state, the movable contact element E1 of the reed contact K R is connected to the second fixed contact element E3 and separated from the first fixed contact element E2. As a result, the excitation winding W R of the relay R is separated from the control voltage source U S , while the auxiliary winding W H is connected to the control voltage source U S. Even after the load circuit has been interrupted, the connection between the movable contact element E1 of the reed contact K R and the second fixed contact element E3 is maintained due to the magnetic flux emanating from the auxiliary winding W H. Only after disconnection from the control voltage source U S does the relay R return to the normal operating state.
Figur 8 zeigt ein Prinzipschaltbild einer alternativen Ausgestaltungsmöglichkeit für ein kurzschlußfestes Relais, bei dem die Überstromschutzfunktion mittels eines Hilfsrelais RH1 realisiert ist. Das Hilfsrelais RH1 weist ein bewegliches Kontaktelement E4 und zwei feststehende Kontaktelemente E5 und E6 auf, wobei das bewegliche Kontaktelement E4 im Normalbetriebszustand mit dem ersten feststehenden Kontaktelement E5 verbunden ist. Das bewegliche Kontaktelement E4 ist direkt mit einer Steuerspannungseingangsklemme verbunden, so daß die Steuerspannung US direkt an der Erregerspule WR des Relais R anliegt. Der Reedkontakt KR ist zwischen dem Kontaktelement E4 des Hilfsrelais RH1 und dem zweiten feststehenden Kontaktelement E6 angeschlossen.FIG. 8 shows a basic circuit diagram of an alternative configuration option for a short-circuit-proof relay, in which the overcurrent protection function is implemented by means of an auxiliary relay R H1 . The auxiliary relay R H1 has a movable contact element E4 and two fixed contact elements E5 and E6, the movable contact element E4 being connected to the first fixed contact element E5 in the normal operating state. The movable contact element E4 is connected directly to a control voltage input terminal, so that the control voltage U S is applied directly to the excitation coil W R of the relay R. The reed contact K R is connected between the contact element E4 of the auxiliary relay R H1 and the second fixed contact element E6.
Die Spule WH2 des Hilfsrelais RH1 ist im Normalbetriebszustand stromlos. Im Überstrombetriebszustand ist der Reedkontakt KR geschlossen, wodurch die Steuerspannung US direkt an der Spule WH2 des Hilfsrelais RH1 anliegt. Infolgedessen ist das bewegliche Kontaktelement E4 mit dem zweiten feststehenden Kontaktelement E6 des Hilfsrelais RH1 verbunden und vom ersten feststehenden Kontaktelement E5 getrennt. Aufgrund dessen ist im Überstrombetriebszustand die Erregerspule WR des Relais R stromlos. Dadurch daß der Laststromkreis und der Steuerstromkreis des Hilfsrelais RH1 im Überstrombetriebszustand in Reihe geschaltet sind, behält das Hilfsrelais RH1 auch nach Unterbrechung des Laststromkreises des Relais R durch Betätigung des Kontaktelementes KB und dem damit verbundenen Öffnen des Reedkontaktes KR seine Schaltstellung bei. Ist zusätzlich zwischen dem Reedkontakt KR und dem zweiten feststehenden Kontaktelement E6 des Hilfsrelais RH1 eine Zeitverzögerungseinheit angeordnet, führen kurzzeitige Laststromspitzen nicht zu einem Ansprechen der Überstromschutzeinrichtung. Anstelle des Hilfsrelais RH1 kann ein zweiter Reedkontakt verwendet werden, welcher dann mit einer zugehörigen Hilfswicklung gekoppelt ist.The coil W H2 of the auxiliary relay R H1 is de-energized in the normal operating state. In the overcurrent operating state, the reed contact K R is closed, as a result of which the control voltage U S is applied directly to the coil W H2 of the auxiliary relay R H1 . As a result, the movable contact element E4 is connected to the second fixed contact element E6 of the auxiliary relay R H1 and separated from the first fixed contact element E5. Because of this, the excitation coil W R of the relay R is de-energized in the overcurrent operating state. Because the load circuit and the control circuit of the auxiliary relay R H1 are connected in series in the overcurrent operating state, the auxiliary relay R H1 maintains its switch position even after the load circuit of the relay R has been interrupted by actuating the contact element K B and opening the reed contact K R. If a time delay unit is additionally arranged between the reed contact K R and the second fixed contact element E6 of the auxiliary relay R H1 , brief load current peaks do not trigger the overcurrent protection device. Instead of the auxiliary relay R H1 , a second reed contact can be used, which is then coupled to an associated auxiliary winding.
Figur 9 zeigt eine weitere Alternative für die Realisierung eines Überstromschutzes mit einem Kaltleiter RPTC und einem seriell dazugeschalteten Vorwiderstand Rv. Diese beiden Überstromschutzelemente sind in Serie zum Reedkontakt KR an die Steuerspannungsquelle US angeschlossen, wobei der Reedkontakt KR im Überstrombetriebszustand zunächst geschlossen und im Normalbetriebszustand geöffnet ist. Die Erregerspule WR des Relais R ist parallel zum Reedkontakt KR und zum Vorwiderstand RV sowie seriell zum Kaltleiter RPTC geschaltet. Da der Vorwiderstand RV im Vergleich zum Innenwiderstand der Erregerspule WR des Relais R niederohmig ist, fließt nach Schließen des Reedkontaktes KR ein erhöhter Strom durch den Kaltleiter RPTC, wodurch sich dieser erwärmt und hochohmig wird. Aufgrund dessen nimmt der Spannungsabfall an der Erregerspule WR des Relais ab, so daß eine Unterbrechung des Laststromkreises erfolgt. In Abhängigkeit vom Erwärmungsverhalten des Kaltleiters RPTC wird eine Zeitverzögerung erreicht, wodurch kurzzeitig auftretende Laststromspitzen keine Schutzauslösung bewirken. Außerdem nimmt der Kaltleiter RPTC eine Zustandsspeicherfunktion wahr, sofern der Reststrom durch die Erregerspule WR des Relais R ausreicht, um die erforderliche Kaltleitertemperatur aufrecht zu erhalten. In diesem Falle bleibt der Kaltleiter RPTC auch nach Wiederöffnen des Reedkontaktes KR in hochohmigem Zustand. Erst nach Trennung von der Steuerspannungsquelle US und Auskühlen des Kaltleiters RPTC ist ein erneutes Ansteuern des Relais R möglich.FIG. 9 shows a further alternative for implementing overcurrent protection with a PTC thermistor R PTC and a series resistor R v connected in series . These two overcurrent protection elements are connected in series with the reed contact K R to the control voltage source U S , the reed contact K R being initially closed in the overcurrent operating state and opened in the normal operating state. The excitation coil W R of the relay R is connected in parallel with the reed contact K R and the series resistor R V and in series with the PTC thermistor R PTC . Since the series resistor R V is low-ohmic in comparison with the internal resistance of the excitation coil W R of the relay R, an increased current flows through the PTC thermistor R PTC after the reed contact K R is closed, as a result of which the latter heats up and becomes high-impedance. As a result, the voltage drop across the excitation coil W R of the relay decreases, so that the load circuit is interrupted. Depending on the heating behavior of the PTC thermistor R PTC , a time delay is reached, which means that short-term load current peaks do not trigger protection. In addition, the PTC thermistor R PTC performs a status memory function if the residual current through the excitation coil W R of the relay R is sufficient to maintain the required PTC thermistor temperature. In this case, the PTC thermistor R PTC remains in a high-resistance state even after the reed contact K R is reopened. Only after disconnection from the control voltage source U S and cooling of the PTC thermistor R PTC can the relay R be activated again.
In Figur 10 ein Prinzipschaltbild Ausführungsform mit einem bistabilen Relais R2S und einem Kondensator CS. Das bistabile Relais R2S ist mit einer ersten Erregerwicklung WR1 und einer zweiten Erregerwicklung WR2 ausgestattet. Die erste Erregerwicklung WR1 des Relais R2S ist in Serie zum Kondensator CS an die Steuerspannungsquelle US angeschlossen. Die zweite Erregerwicklung WR2 ist in Serie zum Reedkontakt KR an die Steuerspannungsquelle US angeschlossen und weist im Vergleich zur ersten Erregerwicklung WR1 einen umgekehrten Wicklungssinn auf. Ein positiver Impuls des Stroms IS1 durch die erste Erregerwicklung WR1 bewirkt somit ein Schließen des Laststromkreises, während ein positiver Impuls des Stroms IS2 durch die zweite Erregerwicklung WR2 den Laststromkreis unterbricht. Bei Überstrom verbindet der Reedkontakt KR die zweite Erregerwicklung WR2 zunächst mit der Steuerspannungsquelle US, worauf das Relais R2S in einen stabilen ausgeschalteten Zustand übergeht. Erst nach Abschalten und Wiederzuschalten der Steuerspannung US erhält die erste Erregerwicklung WR1 über den Kondensator CS einen positiven Stromimpuls, wodurch das Relais R2S in einen stabilen eingeschalteten Zustand übergeht. 10 shows a basic circuit diagram of an embodiment with a bistable relay R 2S and a capacitor C S. The bistable relay R 2S is equipped with a first field winding W R1 and a second field winding W R2 . The first field winding W R1 of the relay R 2S is connected in series with the capacitor C S to the control voltage source U S. The second excitation winding W R2 is connected in series with the reed contact K R to the control voltage source U S and has an opposite winding sense compared to the first excitation winding W R1 . A positive pulse of the current I S1 through the first field winding W R1 thus causes the load circuit to be closed, while a positive pulse of the current I S2 through the second field winding W R2 interrupts the load circuit. In the event of an overcurrent, the reed contact K R first connects the second excitation winding W R2 to the control voltage source U S , whereupon the relay R 2S changes to a stable switched-off state. Only after the control voltage U S is switched off and on again does the first excitation winding W R1 receive a positive current pulse via the capacitor C S, as a result of which the relay R 2S changes to a stable switched-on state.
Bei der in Figur 11 dargestellten Prinzipschaltbild einer Variante
des kurzschluß- bzw. überstromfesten Relais sind die
Überstromschutzfunktionen in eine Überstromschutzeinrichtung
integriert, welche durch eine elektronische Schaltung CCU
realisiert ist. Die elektronische Schaltung CCU weist vier
Anschlüsse auf, wobei zwischen einem ersten Steuerspannungsanschluß
K1 und einem zweiten Steuerspannungsanschluß K2 die
Steuerspannung US anliegt. Des weiteren weist die elektronische
Schaltung CCU einen ersten Erregerspulenanschluß K3 und
einen zweiten Reedkontaktanschluß K4 auf. Der erste Reedkontaktanschluß
und der zweite Erregerspulenanschluß sind mit
dem zweiten Steuerspannungsanschluß K2 verbunden. Die elektronische
Schaltung CCU läßt sich als anwendungsspezifischer
integrierter Schaltkreis (ASIC) auf sehr einfache Weise in
die Leiterplatte 4 des in Figur 1 dargestellten Relais oder
auch in den Sockel 5 der in den Figuren 3 und 5 dargestellten
Relais integrieren.In the basic circuit diagram of a variant of the short-circuit or overcurrent-proof relay shown in FIG. 11, the overcurrent protection functions are integrated in an overcurrent protection device which is implemented by an electronic circuit CCU. The electronic circuit CCU has four connections, the control voltage U S being present between a first control voltage connection K1 and a second control voltage connection K2. Furthermore, the electronic circuit CCU has a first excitation coil connection K3 and a second reed contact connection K4. The first reed contact connection and the second excitation coil connection are connected to the second control voltage connection K2. The electronic circuit CCU can be integrated as an application-specific integrated circuit (ASIC) in a very simple manner into the
Eine mögliche schaltungstechnische Realisierung für die Überstromschutzeinrichtung gemäß Figur 11 ist in Figur 12 dargestellt. Die elektronische Schaltung CCU gliedert sich in ein Zeitglied U1, eine Einschaltstrecke U2 für die Erregerspule WR und in eine Ausschaltstrecke U3. Die Einschaltstrecke U2 für die Relaisspule WR besteht aus einem in Serie zur Relaisspule WR zwischen den beiden Steuerspannungsanschlüssen K1 und K2 angeschlossenen pnp-Transistor T1 und einem Vorwiderstand R2. Der Transistor T1 ist dabei mit seinem Emitter am ersten Steuerspannungsanschluß K1 und mit seinem Kollektor am ersten Erregerspulenanschluß K3 angeschlossen. Der Vorwiderstand R2 der Einschaltstrecke U2 ist zwischen der Basis des Transistors T1 und dem zweiten Steuerspannungsanschluß K2 angeschlossen.A possible implementation in terms of circuitry for the overcurrent protection device according to FIG. 11 is shown in FIG. The electronic circuit CCU is divided into a timing element U1, a switch-on path U2 for the excitation coil W R and a switch-off path U3. The switch-on path U2 for the relay coil W R consists of a pnp transistor T1 connected in series with the relay coil W R between the two control voltage connections K1 and K2 and a series resistor R2. The transistor T1 is connected with its emitter to the first control voltage connection K1 and with its collector to the first excitation coil connection K3. The series resistor R2 of the switch-on path U2 is connected between the base of the transistor T1 and the second control voltage connection K2.
Die Ausschaltstrecke U3 für die Erregerspule WR ist durch einen ersten Widerstand R4 und einen zweiten Widerstand R3 gebildet. Dabei ist der erste Widerstand R4 parallel zur Erregerspule WR geschaltet, während der zweite Widerstand R3 der Ausschaltstrecke U3 zwischen dem ersten Erregerspulenanschluß K3 und dem zweiten Reedkontaktanschluß K4 angeschlossen ist.The switch-off path U3 for the excitation coil W R is formed by a first resistor R4 and a second resistor R3. The first resistor R4 is connected in parallel to the excitation coil W R , while the second resistor R3 of the switch-off path U3 is connected between the first excitation coil connection K3 and the second reed contact connection K4.
Das Zeitglied U1 weist einen Komparator CMP und ein RC-Glied auf, wobei der Kondensator C1 des RC-Gliedes mit einem ersten Anschluß an der ersten Steuerspannungsanschluß K1 angeschlossen ist. Der Widerstand R1 des RC-Gliedes ist zwischen dem zweiten Anschluß K5 des Kondensators C1 und dem zweiten Reedkontaktanschluß K4 angeschlossen. Der Komparator CMP selbst besteht aus einem pnp-Transistor T2 und einer Zenerdiode D1, wobei der Transistor T2 des Komparators CMP mit seinem Emitter am ersten Steuerspannungsanschluß K1 angeschlossen ist, während der Kollektor des Transistors T2 mit der Basis des Transistors T1 der Einschaltstrecke U2 verbunden ist. Die Basis des Transistors T2 des Komparators CMP ist an der Kathode der Zenerdiode D1 angeschlossen, deren Anode zwischen dem Kondensator C1 und dem Widerstand R1 des RC-Gliedes angeschlossen ist.The timing element U1 has a comparator CMP and an RC element on, the capacitor C1 of the RC element having a first Connection connected to the first control voltage connection K1 is. The resistance R1 of the RC element is between that second terminal K5 of the capacitor C1 and the second reed contact terminal K4 connected. The comparator CMP itself consists of a pnp transistor T2 and a zener diode D1, the transistor T2 of the comparator CMP with its emitter is connected to the first control voltage connection K1, while the collector of transistor T2 with the base of Transistor T1 of the switch-on path U2 is connected. The base of the transistor T2 of the comparator CMP is at the cathode the Zener diode D1 connected, the anode between the Capacitor C1 and the resistor R1 of the RC element connected is.
Wenn die Steuerspannung US an den Steuerspannungsanschlüssen K1 und K2 der elektronischen Schaltung CCU anliegt, fließt über die Emitter-Basis-Strecke des Transistors T1 der Einschaltstrecke U2 ein Steuerstrom und schaltet den Transistor T1 durch. Dadurch wird die Erregerspule WR des Relais R mit einer Schaltspannung versorgt, worauf der Laststromkreis geschlossen wird. Das Schalten des Transistors T1 erfolgt über den Widerstand R2, wobei der Schaltgeschwindigkeit des Transistors eine wichtige Rolle zukommt. Vor Aktivieren des Zeitgliedes U1 muß nämlich sichergestellt sein, daß durch Anlegen der Steuerspannung US das Relais R zuerst durchschaltet. Dabei kommt dem Zeitglied U1 die Aufgabe zu, den Transistor T2 des Komparators CMP so lange zu sperren, bis der Transistor T1 der Einschaltstrecke U2 durchgeschaltet ist. Darauf geht auch der Transistor T2 des Komparators CMP in einen stabilen gesperrten Zustand über, welches durch die Rückkopplung der Kollektorspannung des Transistors T1 über die Widerstände R3, R1 und über die Zenerdiode D1 erreicht wird.When the control voltage U S is applied to the control voltage connections K1 and K2 of the electronic circuit CCU, a control current flows through the emitter-base path of the transistor T1 of the switch-on path U2 and turns on the transistor T1. As a result, the excitation coil W R of the relay R is supplied with a switching voltage, whereupon the load circuit is closed. The transistor T1 is switched via the resistor R2, the switching speed of the transistor playing an important role. Before activating the timer U1 it must be ensured that the relay R switches through first when the control voltage U S is applied. The timing element U1 has the task of blocking the transistor T2 of the comparator CMP until the transistor T1 of the switch-on path U2 is turned on. The transistor T2 of the comparator CMP then changes to a stable, blocked state, which is achieved by the feedback of the collector voltage of the transistor T1 via the resistors R3, R1 and the zener diode D1.
Bei Überstrom schließt der Reedkontakt KR und verbindet die Basis des Transistors T2 direkt mit dem zweiten Steuerspannungsanschluß K2. Dies bewirkt eine Entladung des Kondensators C1 über die Widerstände R1 und R3. Nach Überschreiten der Durchbruchspannung an der Zenerdiode D1 fließt durch die Emitter-Basis-Strecke des Transistors T2 ein Steuerstrom, welcher den Transistor T2 durchschaltet und die Basis des Transistors T1 der Einschaltstrecke U2 elektrisch mit dem ersten Steuerspannungsanschluß K1 verbindet. Daraufhin wird die Ausschaltstrecke U3 über den Transistor T2 des Zeitgliedes U1 aktiviert, wodurch der Transistor T1 der Einschaltstrecke U2 in den gesperrten Zustand übergeht. Infolgedessen wird die Erregerspule WR des Relais R von der Steuerspannungsquelle US getrennt, so daß der Laststromkreis unterbrochen wird. Dies hat zur Folge, daß sich der Reedkontakt KR wieder öffnet, da nun kein Überstrom durch den Lastkreis fließt. Die Ausschaltstrecke U3 bleibt weiterhin aktiviert, da sich der Transistor T2 des Komparators CMP unverändert im leitenden Zustand befindet. Dieser Betriebszustand bleibt so lange erhalten bzw. gespeichert, bis die Steuerspannung US an den Steuerspannungsanschlüssen K1 und K2 der elektronischen Schaltung CCU abgeschaltet wird.In the event of an overcurrent, the reed contact K R closes and connects the base of the transistor T2 directly to the second control voltage connection K2. This causes capacitor C1 to discharge through resistors R1 and R3. After the breakdown voltage at the Zener diode D1 has been exceeded, a control current flows through the emitter-base path of the transistor T2, which turns on the transistor T2 and electrically connects the base of the transistor T1 of the switch-on path U2 to the first control voltage terminal K1. The switch-off path U3 is then activated via the transistor T2 of the timer U1, as a result of which the transistor T1 of the switch-on path U2 changes to the blocked state. As a result, the excitation coil W R of the relay R is separated from the control voltage source U S , so that the load circuit is interrupted. The result of this is that the reed contact K R opens again, since no overcurrent now flows through the load circuit. The switch-off path U3 remains activated since the transistor T2 of the comparator CMP remains in the conductive state unchanged. This operating state is maintained or stored until the control voltage U S at the control voltage connections K1 and K2 of the electronic circuit CCU is switched off.
Ein ungewolltes Ansprechen der Überstromschutzeinrichtung bei Einschalt- oder Umschaltstromspitzen, welche in der Regel weniger als einige 100 Millisekunden betragen, wird durch das Zeitglied U1 verhindert. Durch eine geeignete Dimensionierung des Widerstandes R1, des Kondensators C1 des Zeitgliedes U1, der Widerstände R3 und R4 der Ausschaltstrecke U3 sowie durch die Auswahl einer Zenerdiode D1 mit einer geeigneten Durchbruchspannung kann das Zeitverhalten der elektronischen Schaltung CCU an die Dauer zu erwartender Einschalt- bzw. Umschaltstromspitzen angepaßt werden. Gleichzeitig werden durch das Zeitglied U1 auch Störimpulse an den Steuerspannungsanschlüssen K1 und K2 ausgefiltert.An unwanted activation of the overcurrent protection device at Inrush or switching current peaks, which are usually less than a few 100 milliseconds, Timer U1 prevented. By appropriate dimensioning the resistor R1, the capacitor C1 of the timer U1, of the resistors R3 and R4 of the switch-off path U3 and the selection of a Zener diode D1 with a suitable breakdown voltage can the timing of the electronic Switching CCU to the duration of expected inrush or switching current peaks be adjusted. At the same time, through the timing element U1 also generates interference pulses at the control voltage connections K1 and K2 filtered out.
Claims (24)
- An electromagnetic relay, havingcharacterised in thata magnet system (6) containing: an exciter coil (WR) through which there flows a control current (IS) and which is connected to a control voltage (US); a core; and an armature, with the core and the armature forming at least one operative air gap,at least one movable contact element (KB) and at least one fixed contact element (KF) through each of which a load current circuit can be completed,coil and contact terminal elements,a reed contact (KR) for each load current circuit, which is coupled to a load current conductor (1) through which a load current (IL) flows, andmeans, coupled to the reed contact (KR), for generating and processing an overcurrent signal and for switching off the control current (IS),
these means generate an overcurrent signal and continue to process such that the switched-off condition of the control current (IS) is maintained until the control voltage (US) is switched off. - A relay according to Claim 1, characterised in that the reed contact (KR) is integrated in an electrically and magnetically conductive, open flux ring which surrounds the load current conductor (1).
- A relay according to Claim 1, characterised in that the reed contact (KR) is coupled by way of two air gaps to an electrically and magnetically conductive, open flux ring which surrounds the load current conductor (1).
- A relay according to Claim 1, characterised in that the load current conductor (1) is in one section shaped into a loop which surrounds the reed contact (KR).
- A relay according to one of Claims 1 to 4, characterised in that the load current conductor (1) is arranged in a section perpendicular to the reed contact (KR), with the magnetic flux fed from the load current conductor (1) into the reed contact (KR) passing through the reed contact (KR) centrally and parallel.
- A relay according to Claim 1, characterised in that the load current conductor (1) is in one section wound into a coil (WL), with the reed contact (KR) being arranged axially in the coil (WL).
- A relay according to Claim 1, characterised in that the load current conductor (1) is in one section wound into a coil (WL), with the reed contact (KR) being arranged outside the coil (WL) and parallel to its axis.
- A relay according to one of Claims 1 to 7, characterised in that the reed contact (KR) is arranged perpendicular to the axis of the exciter coil (WR).
- A relay according to one of Claims 1 to 7, characterised in that between the reed contact (KR) and the exciter coil (WR) there is arranged a magnetically conductive plate.
- A relay according to one of Claims 1 to 7, characterised in that the exciter coil (WR) is coupled to a current regulator in order to introduce a defined magnetic flux into the reed contact (KR).
- A relay according to one of Claims 1 to 10, characterised in that the means for generating and processing the overcurrent signal and for switching off the control current (IS) are grouped together to form an overcurrent protection unit.
- A relay according to Claim 11, characterised in that the reed contact (KR) has a movable contact element (E1) and two fixed contact elements (E2, E3), in that the overcurrent protection unit is formed by an auxiliary winding (WH1) coupled to the reed contact (KR), in that the movable contact element (E1) of the reed contact (KR) is connected to a first control voltage terminal, in that a first terminal of the exciter coil (WR) is connected to a first fixed contact element (E2) of the reed contact (KR), in that a first terminal of the auxiliary winding (WH1) is connected to the second fixed contact element (E3) of the reed contact (KR), in that the second terminal of the exciter coil (WR) and the second terminal of the auxiliary winding (WH1) are connected to the second control voltage terminal, in that the movable contact element (E1) of the reed contact (KR) is connected, in a normal operating condition, to the first fixed contact element (E2) of the reed contact (KR), and in that the movable contact element (E1) of the reed contact (KR) is connected, in an overcurrent operating condition, to the second fixed contact element (E3) of the reed contact (KR).
- A relay according to Claim 12, characterised in that the auxiliary winding (WH1) is coupled to the reed contact (KR) such that in the overcurrent operating condition there is emitted from the auxiliary winding (WH1) through which current flows a magnetic field which at the reed contact (KR) is in the same direction as the magnetic field created by the load current (IL).
- A relay according to Claim 11, characterised in that the overcurrent protection unit is formed by an electromagnetic switching unit which has a movable contact element (E4), two fixed contact elements (E5, E6) and a coil (WH2), in that the movable contact element (E4) of the switching unit is connected to a first control voltage terminal, in that a first terminal of the exciter coil (WR) is connected to a first fixed contact element (E5) of the switching unit, in that a first terminal of the coil (WH2) of the switching unit is connected to the second fixed contact element (E6) of the switching unit, in that the second terminal of the exciter coil (WR) and the second terminal of the coil (WH2) of the switching unit are connected to the second control voltage terminal, in that the reed contact (KR) is connected between the first control voltage terminal and the first terminal of the coil (WH2) of the switching unit, in that the movable contact element (E4) of the switching unit is connected, in a normal operating condition, to the first fixed contact element (E5) of the switching unit, and in that the movable contact element (E4) of the switching unit is connected, in an overcurrent operating condition, to the second fixed contact element (E6) of the switching unit.
- A relay according to Claim 14, characterised in that a time delay unit is placed between the reed contact (KR) and the coil (WH2) of the switching unit.
- A relay according to Claim 14 or 15, characterised in that the electromagnetic switching unit is in the form of an auxiliary relay (RH1).
- A relay according to Claim 14 or 15, characterised in that the electromagnetic switching unit is in the form of an auxiliary reed contact.
- A relay according to Claim 11, characterised in that the overcurrent protection unit is in the form of a PTC thermistor (RPTC) and a serially connected series resistor (RV) which is connected, in series with the reed contact (KR), to the control voltage source (Us), in that the reed contact (KR) is opened (contact broken) in a normal operating condition and closed (contact made) in an overcurrent operating condition, and in that the relay coil (WR) is placed in parallel with the reed contact (KR) and the series resistor (RV) and in series with the PTC thermistor (RPTC).
- A relay according to Claim 11, characterised in that the overcurrent protection device is integrated in the magnet system (6), which in order to create two stable switching conditions has an additional, second exciter coil (WR2), with the exciter coils (WR1, WR2) being wound in opposing directions and with a control current (IS1) through the first coil (WR1) putting the relay into a switched-on condition, while a control current (IS2) through the second coil (WR2) puts the relay into a switched-off condition, in that the first coil (WR1) is connected in series with a capacitor (CS) to the control voltage source (Us), and in that the second coil (WR2) is connected in series with the reed contact (KR) to the control voltage source (US).
- A relay according to Claim 11, characterised in that the overcurrent protection device is in the form of an electronic circuit (CCU) which has a first control voltage terminal (K1) and a second control voltage terminal (K2), and in that the circuit (CCU) has a timer member (U1), a switch-on section (U2) for the exciter coil (WR), and a switch-off section (U3).
- A relay according to Claim 20, characterised in that the switch-on section (U2) for the exciter coil (WR) comprises a pnp transistor (T1), connected in series with the exciter coil (WR) between the two control voltage terminals (K1, K2), and a series resistor (R2), in that the transistor (T1) of the switch-on section (U2) is connected by means of its emitter to the first control voltage terminal (K1) and by means of its collector to a first exciter coil terminal (K3), in that the exciter coil (WR) is connected by means of its second terminal to the second control voltage terminal (K2), and in that the series resistor (R2) of the switch-on section (U2) is connected between the base of the transistor (T1) of the switch-on section (U2) and the second control voltage terminal (K2).
- A relay according to Claim 21, characterised in that the switch-off section (U3) for the exciter coil (WR) is formed by a first resistor (R4) and a second resistor (R3), in that the first resistor (R4) of the switch-off section (U3) is placed in parallel with the exciter coil (WR), in that the reed contact (KR) is connected by means of a first terminal to the second control voltage terminal (K2), and in that the second resistor (R3) of the switch-off section (U3) is connected between the first terminal (K3) of the exciter coil (WR) and the second terminal (K4) of the reed contact (KR).
- A relay according to Claim 22, characterised in that the timer member (U1) has a comparator (CMP) and an RC element, in that the capacitor (C1) of the RC element is connected by means of a first terminal to the first control voltage terminal (K1), and in that the resistor (R1) of the RC element is connected between the second terminal (K5) of the capacitor (C1) and the second terminal (K4) of the reed contact (KR).
- A relay according to Claim 23, characterised in that the comparator (CMP) comprises a pnp transistor (T2) and a Zener diode (D1), in that the transistor (T2) of the comparator (CMP) is connected by means of its emitter to the first control voltage terminal (K1), in that the transistor (T2) of the comparator is connected by means of its collector to the base of the transistor (T1) of the switch-on section (U2), in that the transistor (T2) of the comparator is connected by means of its base to the cathode of the Zener diode (D1), and in that the Zener diode (D1) is connected by means of its anode between the capacitor (C1) and the resistor (R1) of the RC element.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19753852 | 1997-12-04 | ||
| DE19753852A DE19753852A1 (en) | 1997-12-04 | 1997-12-04 | Electromagnetic relay |
| PCT/DE1998/003151 WO1999030338A1 (en) | 1997-12-04 | 1998-10-28 | Electromagnetic relay |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1036398A1 EP1036398A1 (en) | 2000-09-20 |
| EP1036398B1 true EP1036398B1 (en) | 2002-04-03 |
Family
ID=7850760
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP98959763A Expired - Lifetime EP1036398B1 (en) | 1997-12-04 | 1998-10-28 | Electromagnetic relay |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US6600640B1 (en) |
| EP (1) | EP1036398B1 (en) |
| JP (1) | JP2001526445A (en) |
| KR (1) | KR20010032739A (en) |
| CA (1) | CA2312486A1 (en) |
| DE (2) | DE19753852A1 (en) |
| WO (1) | WO1999030338A1 (en) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19963504C1 (en) * | 1999-12-28 | 2001-10-18 | Tyco Electronics Logistics Ag | Relay with overcurrent protection |
| EP1256480A4 (en) * | 2000-02-18 | 2011-06-22 | Sanyo Electric Co | Relay fusion detector for electrically driven vehicles |
| US6853530B1 (en) * | 2000-09-15 | 2005-02-08 | General Electric Company | Apparatus and method for actuating a mechanical device |
| NL1021382C2 (en) * | 2002-09-03 | 2004-03-05 | Iku Holding Montfoort Bv | Electric motor circuit with overload protection. |
| US7548146B2 (en) * | 2006-12-27 | 2009-06-16 | Tyco Electronics Corporation | Power relay |
| KR200454957Y1 (en) * | 2009-10-26 | 2011-08-05 | 대성전기공업 주식회사 | Arc prevented relay |
| DE102010018755A1 (en) | 2010-04-29 | 2011-11-03 | Kissling Elektrotechnik Gmbh | Relay with integrated safety circuit |
| DE102011080226B4 (en) * | 2011-08-01 | 2024-01-25 | Bayerische Motoren Werke Aktiengesellschaft | Vehicle with a power distributor and a control unit |
| US9219422B1 (en) * | 2014-08-21 | 2015-12-22 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Operating a DC-DC converter including a coupled inductor formed of a magnetic core and a conductive sheet |
| US9379619B2 (en) | 2014-10-21 | 2016-06-28 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Dividing a single phase pulse-width modulation signal into a plurality of phases |
| US9618539B2 (en) | 2015-05-28 | 2017-04-11 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Sensing current of a DC-DC converter |
| DE102015214966A1 (en) * | 2015-08-05 | 2017-02-09 | Ellenberger & Poensgen Gmbh | breaker |
| EP3832684B1 (en) * | 2018-07-31 | 2024-02-14 | Panasonic Intellectual Property Management Co., Ltd. | Interrupter system |
| WO2021109054A1 (en) | 2019-12-05 | 2021-06-10 | Suzhou Littelfuse Ovs Co., Ltd. | Relay assembly with reverse connection protection |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3294987A (en) | 1963-06-13 | 1966-12-27 | Ford Motor Co | Overload protective device |
| DE1588418A1 (en) * | 1967-02-23 | 1970-06-18 | Licentia Gmbh | Cable conversion relay |
| DE1763394A1 (en) * | 1968-05-20 | 1972-01-05 | Inst Energetik | Primary relay for electrical switchgear |
| US3911342A (en) * | 1974-08-05 | 1975-10-07 | Allis Chalmers | Plug current sensor for traction motor |
| US3959694A (en) * | 1974-12-30 | 1976-05-25 | Bell Telephone Laboratories, Incorporated | Electrical circuit protection apparatus |
| DE2542724A1 (en) * | 1975-09-25 | 1977-04-07 | Vdo Schindling | Overcurrent protective circuit breaker - has magnetically actuated switching contact with short circuit coil in region of breaker winding |
| US4101826A (en) * | 1977-06-13 | 1978-07-18 | Hendrik Horsitmann | Fault indicator including a reed relay responsive to above normal current flow in a conductor |
| US4412267A (en) * | 1980-02-06 | 1983-10-25 | Eaton Corporation | Time-delay current sensing circuit breaker relay |
| DE3005460C2 (en) * | 1980-02-14 | 1986-04-24 | Robert Bosch Gmbh, 7000 Stuttgart | Electromagnetic switch |
| SE439692B (en) * | 1983-10-24 | 1985-06-24 | Asea Ab | DEVICE FOR MONITORING THE CONDITION OF AN ELECTRIC APPLIANCE WITH POWER SWITCHING CONNECTORS, IN PARTICULAR A HIGH VOLTAGE SWITCH |
| US4611154A (en) * | 1985-03-28 | 1986-09-09 | Gulf & Western Manufacturing Company | Method and apparatus for controlling the operation of a DC load |
| US4922369A (en) * | 1986-06-25 | 1990-05-01 | Inresco, Inc. | Circuit protector |
| SU1427472A1 (en) * | 1987-03-04 | 1988-09-30 | Павлодарский Индустриальный Институт | Electric machine protection arrangement with emergency duty sensor |
| JP3237446B2 (en) * | 1995-03-29 | 2001-12-10 | 市光工業株式会社 | DC motor drive control circuit |
| US5684447A (en) * | 1996-01-19 | 1997-11-04 | Cooper Industries, Inc. | Failsafe bimetallic reed having bimetal with fusible link for a circuit protector |
-
1997
- 1997-12-04 DE DE19753852A patent/DE19753852A1/en not_active Withdrawn
-
1998
- 1998-10-28 WO PCT/DE1998/003151 patent/WO1999030338A1/en active IP Right Grant
- 1998-10-28 US US09/555,695 patent/US6600640B1/en not_active Expired - Fee Related
- 1998-10-28 CA CA002312486A patent/CA2312486A1/en not_active Abandoned
- 1998-10-28 DE DE59803670T patent/DE59803670D1/en not_active Expired - Fee Related
- 1998-10-28 JP JP2000524803A patent/JP2001526445A/en active Pending
- 1998-10-28 EP EP98959763A patent/EP1036398B1/en not_active Expired - Lifetime
- 1998-10-28 KR KR1020007006028A patent/KR20010032739A/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| JP2001526445A (en) | 2001-12-18 |
| DE59803670D1 (en) | 2002-05-08 |
| DE19753852A1 (en) | 1999-06-17 |
| WO1999030338A1 (en) | 1999-06-17 |
| US6600640B1 (en) | 2003-07-29 |
| CA2312486A1 (en) | 1999-06-17 |
| KR20010032739A (en) | 2001-04-25 |
| EP1036398A1 (en) | 2000-09-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1036398B1 (en) | Electromagnetic relay | |
| DE69403022T2 (en) | Device for setting the trip response value of a multi-pole circuit breaker | |
| DE3841365A1 (en) | INSULATED-ENCLOSED SELF-SWITCH | |
| WO2009114890A1 (en) | Trigger module for a switching device | |
| DE102011089251B4 (en) | Tripping unit for actuating a mechanical switching unit of a device | |
| DE10134104B4 (en) | Power supply circuit for starters | |
| EP1218909B1 (en) | Load-disconnecting switch, especially for use in motor vehicles | |
| EP0231793B1 (en) | Electromagnetic relay | |
| DE4218621A1 (en) | ELECTRIC HORN OR HORN | |
| DE102011052003B4 (en) | Switching device with overload protection device and a first and a second actuating member | |
| WO2005073997A1 (en) | Protective switch device comprising a differential current triggering device | |
| DE10254038A1 (en) | Auxiliary release for motor protection switches | |
| EP0990247B1 (en) | Device for triggering an overload circuit breaker | |
| DE1763282C (en) | Push-button operated overcurrent switch for contacting semiconductor components | |
| DE2610951B2 (en) | Circuit breaker | |
| EP0671747B1 (en) | Circuit with reduced direct current | |
| DE102009047192A1 (en) | Monostable plug-in relay for use in controller or central electrical device of motor vehicle, has relay circuit for realizing electromechanical functions of relay, and electrical safety device provided for relay circuit | |
| DE9203984U1 (en) | Magnet armature for a tripping device of a switching device | |
| EP0821383B1 (en) | Overcurrent trip unit for an electrical installation device, particularly for a circuit breaker | |
| DE453082C (en) | Electromagnetic overcurrent switch | |
| AT226415B (en) | Contactless push button switch, especially for controlling elevators | |
| DE2827282A1 (en) | CONTROL DEVICE | |
| DE19606255A1 (en) | Automatic gas ignition system | |
| DE3445031A1 (en) | Short-circuit-proof transistor output stage | |
| DE2159170C3 (en) | Time switch device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20000508 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| 17Q | First examination report despatched |
Effective date: 20010523 |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
| REF | Corresponds to: |
Ref document number: 59803670 Country of ref document: DE Date of ref document: 20020508 |
|
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020702 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20030106 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20031003 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20031031 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040915 Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050503 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051028 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051028 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20051028 |