EP1036398B1 - Electromagnetic relay - Google Patents

Electromagnetic relay Download PDF

Info

Publication number
EP1036398B1
EP1036398B1 EP98959763A EP98959763A EP1036398B1 EP 1036398 B1 EP1036398 B1 EP 1036398B1 EP 98959763 A EP98959763 A EP 98959763A EP 98959763 A EP98959763 A EP 98959763A EP 1036398 B1 EP1036398 B1 EP 1036398B1
Authority
EP
European Patent Office
Prior art keywords
reed contact
coil
terminal
control voltage
relay according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98959763A
Other languages
German (de)
French (fr)
Other versions
EP1036398A1 (en
Inventor
Thomas BÜSCHER
Bican Samray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Solutions GmbH
Original Assignee
Tyco Electronics Logistics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyco Electronics Logistics AG filed Critical Tyco Electronics Logistics AG
Publication of EP1036398A1 publication Critical patent/EP1036398A1/en
Application granted granted Critical
Publication of EP1036398B1 publication Critical patent/EP1036398B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/2445Electromagnetic mechanisms using a reed switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H50/021Bases; Casings; Covers structurally combining a relay and an electronic component, e.g. varistor, RC circuit

Definitions

  • the invention relates to an electromagnetic relay, according to the general concept of Claim 1, such as known from US-A-4412267.
  • SU 142 74 72 A1 is a short-circuit protection for a three-phase motor known, which realized with the help of reed relays is. However, the reed relays are separated from the motor relay. In particular, with motor relays, which switch on the motor power supply, No overload or short-circuit status can be queried.
  • the aim of the invention is to provide an inexpensive, integrated and particularly space-saving solution for a to create short-circuit or overload-proof relay, wherein in particular a differentiated response of the protective devices in the event of a permanent overload of the relay and not already desired with only brief current peaks is.
  • this goal is achieved by an electromagnetic Relay achieved according to claim 1.
  • a relay according to the invention can be interrupted reset the control current to a normal operating state.
  • Hall sensors which also have one Detection of a magnetic field emanating from an increased load current is possible
  • reed contacts offer the advantage of a temperature-independent behavior, a simple setting of trigger thresholds and easier to implement Evaluation circuits.
  • FIG. 1 to 6 show variants of a relay according to the invention with different coupling of a reed contact K R to a load current conductor 1.
  • the reed contact K R is preassembled on a printed circuit board 4.
  • a magnet system 6 is arranged on a base 5 and has a core, an armature and an excitation coil W R.
  • the axis of the excitation coil W R extends parallel to the base plane of the base 6.
  • the printed circuit board 4 is fixed standing perpendicular to the base plane of the base 5.
  • Two connection plates 2 and 3 are connected to the reed contact K R (see also FIG. 2).
  • Switching thresholds for the reed contact K R can be defined by a suitable choice of the distance between the two connecting plates 2 and 3.
  • the two conductor connection plates 2 and 3 are fitted together with the reed contact K R on a printed circuit board 4, the reed contact K R being oriented perpendicular to the base plane of the base 5.
  • the reed contact K R is thus arranged perpendicular to the axis of the excitation coil W R , as a result of which the reed contact K R is insensitive to the magnetic stray flux of the excitation coil W R.
  • the load current conductor 1 is arranged in a section perpendicular to the reed contact K R , with a suitable conductor design ensuring that the magnetic field generated by the load current conductor 1 passes through the reed contact K R centrally and in parallel.
  • this is achieved in that the relevant section of the load current conductor 1 is formed by a sheet metal strip, the sheet metal plane of which extends parallel to the reed contact K R.
  • the magnet system 6 is arranged on the base 5 such that the axis of the excitation coil W R runs parallel to the base plane of the base 5.
  • the reed contact K R is mounted between the magnet system 6 and the base 5 perpendicular to the axis of the excitation coil W R and parallel to the base plane of the base 6.
  • the reed contact K R is connected to two contacting plates 2 and 3 (see also FIG. 4). The two contact plates 2 and 3 are at a distance from one another which determines the switching threshold of the reed contact K R.
  • the unit formed from the contacting plates 2 and 3 and the reed contact K R is inserted into the base 5, the load current conductor 1 being inserted in one section in the middle through a sensor ring R S formed from the reed contact K R and the contacting plates 2 and 3.
  • the load current conductor 1 is formed in this section by a bent sheet metal strip, so that the sensor ring R S lies at a free end of the sheet metal strip perpendicular to the load current conductor 1 and encloses it.
  • the sensor ring R S can also be formed by a U-shaped, magnetically conductive flux ring and a reed contact K R coupled to it via two air gaps.
  • FIG. 5 shows an exemplary embodiment of a relay with a reed contact K R preassembled on a base 5, the reed contact K R being oriented perpendicular to the base plane of the base 5.
  • the magnet system 6 is mounted on the base 5 such that the axis of the excitation coil W R extends parallel to the base plane of the base 5.
  • the load current conductor 1 is essentially formed by a sheet metal strip, a first end of the load current conductor 1 being inserted vertically through the base as a connecting element. The second end of the load current conductor 1 runs parallel to the axis of the excitation coil W R (see also FIG. 6).
  • the load current conductor 1 is formed into a loop surrounding the reed contact K R.
  • a corresponding shaping of the load current conductor 1 in this central section ensures that the magnetic field coupled into the reed contact K R by the load current conductor 1 passes through the reed contact K R in the center and in parallel.
  • the reed contact K R is bent together with its connecting wires in a U-shape and fastened with the ends of the connecting wires to extensions of two connecting loops 7 and 8.
  • the reed contact K R can be connected to the extensions of the connection loops 7 and 8 arranged below the magnet system 6, for example by soldering or resistance welding. The distance between the two connection loops 7 and 8 defines the switching threshold of the reed contact K R.
  • FIG. 7 shows a basic circuit diagram of a relay with an auxiliary reed contact and an auxiliary winding as overcurrent protection elements.
  • the relay R has a control circuit, which is associated with an excitation winding W R through which a control current I S is assigned, and a load circuit, the load current I L being controllable by a movable contact element K B and a fixed contact element K F of the relay R.
  • a reed contact K R is arranged in the control circuit, through which the control current I S can be controlled by the excitation coil W R.
  • the reed contact K R is coupled to a load current conductor through which the load current I L flows.
  • the magnetic coupling between the load current conductor and the reed contact K R is subsequently symbolized by a load current conductor winding W L.
  • the reed contact K R has a movable contact element E1 and two fixed contact elements E2 and E3. Furthermore, an auxiliary winding W H1 is coupled to the reed contact K R in such a way that, in an overcurrent operating state, the auxiliary winding W H1 emits a magnetic field which is in the same direction as a magnetic field caused by a load current winding W L.
  • the load current I L is switched directly via the movable contact element K B and the fixed contact element K F of the relay R.
  • the reed contact K R can be arranged axially within the load current winding W L.
  • a reed contact K R lying outside the load current winding W L which is arranged parallel to the winding axis, is also possible.
  • An alternative to coupling the reed contact K R to a load current winding W L is to arrange the reed contact K R within a loop-shaped section of a load current conductor.
  • the reed contact K R is advantageously to be arranged perpendicular to the axis of the excitation coil W R.
  • the aforementioned influence can be prevented by a magnetically conductive shielding plate between the excitation coil W R and the reed contact K R.
  • a magnetic stray field originating from the excitation coil W R is short-circuited by the shielding plate.
  • Another possibility is to selectively introduce the magnetic stray flux emanating from the excitation coil W R into the reed contact K R. This is possible, for example, by regulating the control current I S. As a result, a constant magnetic flux acts as an offset on the reed contact K R.
  • corresponding threshold values at the reed contact K R it is possible to use the stray magnetic field.
  • the reed contact K R connects the excitation coil W R of the relay R to a control voltage source U S via a first fixed contact element E2 of the reed contact K R.
  • the auxiliary winding W H coupled to the second fixed contact element E3 is separated from the movable contact element E1 of the reed contact K R and thus from the control voltage source U S.
  • the movable contact element E1 of the reed contact K R is connected to the second fixed contact element E3 and separated from the first fixed contact element E2.
  • the excitation winding W R of the relay R is separated from the control voltage source U S , while the auxiliary winding W H is connected to the control voltage source U S. Even after the load circuit has been interrupted, the connection between the movable contact element E1 of the reed contact K R and the second fixed contact element E3 is maintained due to the magnetic flux emanating from the auxiliary winding W H. Only after disconnection from the control voltage source U S does the relay R return to the normal operating state.
  • FIG. 8 shows a basic circuit diagram of an alternative configuration option for a short-circuit-proof relay, in which the overcurrent protection function is implemented by means of an auxiliary relay R H1 .
  • the auxiliary relay R H1 has a movable contact element E4 and two fixed contact elements E5 and E6, the movable contact element E4 being connected to the first fixed contact element E5 in the normal operating state.
  • the movable contact element E4 is connected directly to a control voltage input terminal, so that the control voltage U S is applied directly to the excitation coil W R of the relay R.
  • the reed contact K R is connected between the contact element E4 of the auxiliary relay R H1 and the second fixed contact element E6.
  • the coil W H2 of the auxiliary relay R H1 is de-energized in the normal operating state.
  • the reed contact K R is closed, as a result of which the control voltage U S is applied directly to the coil W H2 of the auxiliary relay R H1 .
  • the movable contact element E4 is connected to the second fixed contact element E6 of the auxiliary relay R H1 and separated from the first fixed contact element E5. Because of this, the excitation coil W R of the relay R is de-energized in the overcurrent operating state.
  • the auxiliary relay R H1 maintains its switch position even after the load circuit of the relay R has been interrupted by actuating the contact element K B and opening the reed contact K R. If a time delay unit is additionally arranged between the reed contact K R and the second fixed contact element E6 of the auxiliary relay R H1 , brief load current peaks do not trigger the overcurrent protection device. Instead of the auxiliary relay R H1 , a second reed contact can be used, which is then coupled to an associated auxiliary winding.
  • FIG. 9 shows a further alternative for implementing overcurrent protection with a PTC thermistor R PTC and a series resistor R v connected in series .
  • These two overcurrent protection elements are connected in series with the reed contact K R to the control voltage source U S , the reed contact K R being initially closed in the overcurrent operating state and opened in the normal operating state.
  • the excitation coil W R of the relay R is connected in parallel with the reed contact K R and the series resistor R V and in series with the PTC thermistor R PTC .
  • the PTC thermistor R PTC performs a status memory function if the residual current through the excitation coil W R of the relay R is sufficient to maintain the required PTC thermistor temperature. In this case, the PTC thermistor R PTC remains in a high-resistance state even after the reed contact K R is reopened. Only after disconnection from the control voltage source U S and cooling of the PTC thermistor R PTC can the relay R be activated again.
  • FIG. 10 shows a basic circuit diagram of an embodiment with a bistable relay R 2S and a capacitor C S.
  • the bistable relay R 2S is equipped with a first field winding W R1 and a second field winding W R2 .
  • the first field winding W R1 of the relay R 2S is connected in series with the capacitor C S to the control voltage source U S.
  • the second excitation winding W R2 is connected in series with the reed contact K R to the control voltage source U S and has an opposite winding sense compared to the first excitation winding W R1 .
  • a positive pulse of the current I S1 through the first field winding W R1 thus causes the load circuit to be closed, while a positive pulse of the current I S2 through the second field winding W R2 interrupts the load circuit.
  • the reed contact K R first connects the second excitation winding W R2 to the control voltage source U S , whereupon the relay R 2S changes to a stable switched-off state. Only after the control voltage U S is switched off and on again does the first excitation winding W R1 receive a positive current pulse via the capacitor C S, as a result of which the relay R 2S changes to a stable switched-on state.
  • the overcurrent protection functions are integrated in an overcurrent protection device which is implemented by an electronic circuit CCU.
  • the electronic circuit CCU has four connections, the control voltage U S being present between a first control voltage connection K1 and a second control voltage connection K2. Furthermore, the electronic circuit CCU has a first excitation coil connection K3 and a second reed contact connection K4. The first reed contact connection and the second excitation coil connection are connected to the second control voltage connection K2.
  • the electronic circuit CCU can be integrated as an application-specific integrated circuit (ASIC) in a very simple manner into the circuit board 4 of the relay shown in FIG. 1 or also into the base 5 of the relay shown in FIGS. 3 and 5.
  • ASIC application-specific integrated circuit
  • the electronic circuit CCU is divided into a timing element U1, a switch-on path U2 for the excitation coil W R and a switch-off path U3.
  • the switch-on path U2 for the relay coil W R consists of a pnp transistor T1 connected in series with the relay coil W R between the two control voltage connections K1 and K2 and a series resistor R2.
  • the transistor T1 is connected with its emitter to the first control voltage connection K1 and with its collector to the first excitation coil connection K3.
  • the series resistor R2 of the switch-on path U2 is connected between the base of the transistor T1 and the second control voltage connection K2.
  • the switch-off path U3 for the excitation coil W R is formed by a first resistor R4 and a second resistor R3.
  • the first resistor R4 is connected in parallel to the excitation coil W R
  • the second resistor R3 of the switch-off path U3 is connected between the first excitation coil connection K3 and the second reed contact connection K4.
  • the timing element U1 has a comparator CMP and an RC element on, the capacitor C1 of the RC element having a first Connection connected to the first control voltage connection K1 is.
  • the resistance R1 of the RC element is between that second terminal K5 of the capacitor C1 and the second reed contact terminal K4 connected.
  • the comparator CMP itself consists of a pnp transistor T2 and a zener diode D1, the transistor T2 of the comparator CMP with its emitter is connected to the first control voltage connection K1, while the collector of transistor T2 with the base of Transistor T1 of the switch-on path U2 is connected.
  • the base of the transistor T2 of the comparator CMP is at the cathode the Zener diode D1 connected, the anode between the Capacitor C1 and the resistor R1 of the RC element connected is.
  • the reed contact K R closes and connects the base of the transistor T2 directly to the second control voltage connection K2. This causes capacitor C1 to discharge through resistors R1 and R3. After the breakdown voltage at the Zener diode D1 has been exceeded, a control current flows through the emitter-base path of the transistor T2, which turns on the transistor T2 and electrically connects the base of the transistor T1 of the switch-on path U2 to the first control voltage terminal K1. The switch-off path U3 is then activated via the transistor T2 of the timer U1, as a result of which the transistor T1 of the switch-on path U2 changes to the blocked state.
  • Timer U1 An unwanted activation of the overcurrent protection device at Inrush or switching current peaks, which are usually less than a few 100 milliseconds, Timer U1 prevented.
  • the resistor R1, the capacitor C1 of the timer U1, of the resistors R3 and R4 of the switch-off path U3 and the selection of a Zener diode D1 with a suitable breakdown voltage can the timing of the electronic Switching CCU to the duration of expected inrush or switching current peaks be adjusted.
  • the timing element U1 also generates interference pulses at the control voltage connections K1 and K2 filtered out.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Relay Circuits (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)

Description

Die Erfindung betrifft ein elektromagnetisches Relais, gemäß dem Oberbegiff des Anspruchs 1, wie z.B. aus der US-A-4412267 bekannt.The invention relates to an electromagnetic relay, according to the general concept of Claim 1, such as known from US-A-4412267.

Bei konventionellen Lösungen zur Gewährleistung einer Kurzschluß- bzw. Überlastfestigkeit für ein Relais werden vorwiegend Schutzeinrichtungen verwendet, welche den Laststrom im Störungsfall unter Nutzung thermischer Effekte unterbrechen. Hierzu zählen insbesondere Schmelzsicherungen oder Bimetallkontaktfedern.With conventional solutions to ensure a short-circuit or overload resistance for a relay are predominant Protective devices used, which the load current in Interrupt a fault using thermal effects. These include in particular fuses or bimetallic contact springs.

Aus SU 142 74 72 A1 ist ein Kurzschlußschutz für einen Drehstrommotor bekannt, welcher mit Hilfe von Reedrelais realisiert ist. Allerdings sind dort die Reedrelais getrennt von den Motorrelais angeordnet. Insbesondere ist bei den Motorrelais, welche die Spannungsversorgung des Motors zuschalten, keine Abfrage eines Überlast- bzw. Kurzschlußstatus möglich.SU 142 74 72 A1 is a short-circuit protection for a three-phase motor known, which realized with the help of reed relays is. However, the reed relays are separated from the motor relay. In particular, with motor relays, which switch on the motor power supply, No overload or short-circuit status can be queried.

Der Erfindung liegt das Ziel zugrunde, eine kostengünstige, integrierte und insbesondere platzsparende Lösung für ein kurzschluß- bzw. überlastfestes Relais zu schaffen, wobei insbesondere ein differenziertes Ansprechen der Schutzeinrichtungen bei einer dauerhaften Überlastung des Relais und nicht bereits bei nur kurzzeitigen Stromspitzen erwünscht ist.The aim of the invention is to provide an inexpensive, integrated and particularly space-saving solution for a to create short-circuit or overload-proof relay, wherein in particular a differentiated response of the protective devices in the event of a permanent overload of the relay and not already desired with only brief current peaks is.

Erfindungsgemäß wird dieses Ziel durch ein elektromagnetisches Relais gemäß dem Anspruch 1 erreicht. According to the invention, this goal is achieved by an electromagnetic Relay achieved according to claim 1.

Ein erfindungsgemäßes Relais läßt sich durch Unterbrechung des Steuerstromes in einen Normalbetriebszustand zurücksetzen. Im Vergleich zu Hall-Sensoren, mit denen ebenfalls eine Detektion eines von einem erhöhten Laststrom ausgehenden Magnetfeldes möglich ist, bieten Reedkontakte den Vorteil eines temperaturunabhängigen Verhaltens, einer einfachen Einstellung von Auslöseschwellwerten und einfach zu realisierender Auswerteschaltungen.A relay according to the invention can be interrupted reset the control current to a normal operating state. Compared to Hall sensors, which also have one Detection of a magnetic field emanating from an increased load current is possible, reed contacts offer the advantage of a temperature-independent behavior, a simple setting of trigger thresholds and easier to implement Evaluation circuits.

Vorteilhafte Ausgestaltungen bezüglich der Anordnung des Reedkontaktes relativ zum Laststromleiter, der Abschirmung der Reedkontaktes vom Magnetfeld der Erregerspule sowie bezüglich der Mittel zur Generierung und Verarbeitung des Überstromsignals und zum Abschalten des Steuerstroms sind den abhängigen Ansprüchen zu entnehmen.Advantageous embodiments with regard to the arrangement of the Reed contact relative to the load current conductor, the shield the reed contact from the magnetic field of the excitation coil as well as regarding the means for generating and processing the overcurrent signal and to turn off the control current are dependent Claims.

Die Erfindung wird nachfolgend an Ausführungsbeispielen anhand der Zeichnung näher erläutert. Es zeigt

  • Figur 1 ein erfindungsgemäßes Relais mit einem auf einer Leiterplatte vormontierten Reedkontakt,
  • Figur 2 den auf einer Leiterplatte vormontierten Reedkontakt mit einem angekoppelten Laststromleiter gemäß Figur 1,
  • Figur 3 eine Variante eines erfindungsgemäßen Relais mit einem in einen Sockel eingelegten Reedkontakt,
  • Figur 4 den in einen Sockel eingelegten Reedkontakt mit einem angekoppelten Laststromleiter gemäß Figur 3,
  • Figur 5 eine weitere Variante eines erfindungsgemäßen Relais mit einem auf einem Sockel vormontierten Reedkontakt,
  • Figur 6 den auf einem Sockel vormontierten Reedkontakt mit einem angekoppelten Laststromleiter gemäß Figur 5,
  • Figur 7 ein Prinzipschaltbild eines erfindungsgemäßen Relais mit einem Hilfsreedkontakt und einer Hilfswicklung als Überstromschutzelementen,
  • Figur 8 ein Prinzipschaltbild einer Ausführungsform mit einem Hilfsrelais als Überstromschutzelement,
  • Figur 9 ein Prinzipschaltbild einer weiteren Ausführungsform mit einem Kaltleiter und einem Vorwiderstand als Überstromschutzelementen,
  • Figur 10 ein Prinzipschaltbild einer bistabilen Ausführungsform mit einem Kondensator als Pulsansteuerungselement,
  • Figur 11 ein Prinzipschaltbild einer Ausführungsform mit einer Auswerteelektronik zur Überstromerkennung und Laststromabschaltung und
  • Figur 12 eine Realisierung der Auswerteelektronik gemäß Figur 11.
  • The invention is explained in more detail below using exemplary embodiments with reference to the drawing. It shows
  • 1 shows a relay according to the invention with a reed contact preassembled on a printed circuit board,
  • FIG. 2 shows the reed contact preassembled on a printed circuit board with a coupled load current conductor according to FIG. 1,
  • FIG. 3 shows a variant of a relay according to the invention with a reed contact inserted in a base,
  • FIG. 4 shows the reed contact inserted in a base with a coupled load current conductor according to FIG. 3,
  • FIG. 5 shows a further variant of a relay according to the invention with a reed contact preassembled on a base,
  • FIG. 6 shows the reed contact preassembled on a base with a coupled load current conductor according to FIG. 5,
  • FIG. 7 shows a basic circuit diagram of a relay according to the invention with an auxiliary reed contact and an auxiliary winding as overcurrent protection elements,
  • FIG. 8 shows a basic circuit diagram of an embodiment with an auxiliary relay as an overcurrent protection element,
  • FIG. 9 shows a basic circuit diagram of a further embodiment with a PTC thermistor and a series resistor as overcurrent protection elements,
  • FIG. 10 shows a basic circuit diagram of a bistable embodiment with a capacitor as a pulse control element,
  • FIG. 11 shows a basic circuit diagram of an embodiment with evaluation electronics for overcurrent detection and load current shutdown and
  • 12 shows a realization of the evaluation electronics according to FIG. 11.
  • In den Figuren 1 bis 6 sind Varianten eines erfindungsgemäßen Relais mit unterschiedlicher Ankopplung eines Reedkontaktes KR an einen Laststromleiter 1 dargestellt. Bei der Ausführungsform gemäß Figur 1 ist der Reedkontakt KR auf einer Leiterplatte 4 vormontiert. Auf einem Sockel 5 ist ein Magnetsystem 6 angeordnet, welches einen Kern, einen Anker und eine Erregerspule WR aufweist. Die Achse der Erregerspule WR erstreckt sich parallel zur Grundebene des Sockels 6. In einem äußeren Bereich auf dem Sockel 5 ist die Leiterplatte 4 senkrecht zur Grundebene des Sockels 5 stehend befestigt. Mit dem Reedkontakt KR sind zwei Anschlußbleche 2 und 3 verbunden (siehe auch Figur 2). Durch eine geeignete Wahl des Abstandes zwischen den beiden Anschlußblechen 2 und 3 können Schaltschwellen für den Reedkontakt KR definiert werden. Die beiden Leiteranschlußbleche 2 und 3 sind zusammen mit dem Reedkontakt KR auf eine Leiterplatte 4 bestückt, wobei der Reedkontakt KR senkrecht zur Grundebene des Sockels 5 orientiert ist. Entsprechend einer bevorzugten Ausführungsform ist der Reedkontakt KR damit senkrecht zur Achse der Erregerspule WR angeordnet, wodurch der Reedkontakt KR gegenüber dem magnetischen Streufluß der Erregerspule WR unempfindlich ist. Der Laststromleiter 1 ist in einem Abschnitt senkrecht zum Reedkontakt KR angeordnet, wobei durch eine geeignete Leitergestaltung sicherzustellen ist, daß das vom Laststromleiter 1 erzeugte Magnetfeld den Reedkontakt KR mittig und parallel durchsetzt. Bei diesem Ausführungsbeispiel wird dies dadurch erreicht, daß der betreffende Abschnitt des Laststromleiters 1 durch einen Blechstreifen gebildet ist, dessen Blechebene parallel zum Reedkontakt KR verläuft.1 to 6 show variants of a relay according to the invention with different coupling of a reed contact K R to a load current conductor 1. In the embodiment according to FIG. 1, the reed contact K R is preassembled on a printed circuit board 4. A magnet system 6 is arranged on a base 5 and has a core, an armature and an excitation coil W R. The axis of the excitation coil W R extends parallel to the base plane of the base 6. In an outer area on the base 5, the printed circuit board 4 is fixed standing perpendicular to the base plane of the base 5. Two connection plates 2 and 3 are connected to the reed contact K R (see also FIG. 2). Switching thresholds for the reed contact K R can be defined by a suitable choice of the distance between the two connecting plates 2 and 3. The two conductor connection plates 2 and 3 are fitted together with the reed contact K R on a printed circuit board 4, the reed contact K R being oriented perpendicular to the base plane of the base 5. According to a preferred embodiment, the reed contact K R is thus arranged perpendicular to the axis of the excitation coil W R , as a result of which the reed contact K R is insensitive to the magnetic stray flux of the excitation coil W R. The load current conductor 1 is arranged in a section perpendicular to the reed contact K R , with a suitable conductor design ensuring that the magnetic field generated by the load current conductor 1 passes through the reed contact K R centrally and in parallel. In this embodiment, this is achieved in that the relevant section of the load current conductor 1 is formed by a sheet metal strip, the sheet metal plane of which extends parallel to the reed contact K R.

    Bei dem in Figur 3 dargestellten Ausführungsbeispiel ist das Magnetsystem 6 derart auf dem Sockel 5 angeordnet, daß die Achse der Erregerspule WR parallel zur Grundebene des Sockels 5 verläuft. Zwischen dem Magnetsystem 6 und dem Sockel 5 ist der Reedkontakt KR senkrecht zur Achse der Erregerspule WR und parallel zur Grundebene des Sockels 6 montiert. Auch bei diesem Ausführungsbeispiel ist der Reedkontakt KR mit zwei Kontaktierungsblechen 2 und 3 verbunden (siehe auch Figur 4). Die beiden Kontaktierungsbleche 2 und 3 weisen dabei einen Abstand voneinander auf, welcher die Schaltschwelle des Reedkontaktes KR bestimmt. Die aus den Kontaktierungsblechen 2 und 3 und dem Reedkontakt KR gebildete Einheit ist in den Sockel 5 eingelegt, wobei der Laststromleiter 1 in einem Abschnitt mittig durch einen aus dem Reedkontakt KR und den Kontaktierungsblechen 2 und 3 gebildeten Sensorring RS gesteckt ist. Der Laststromleiter 1 ist in diesem Abschnitt durch einen abgekröpften Blechstreifen gebildet, so daß der Sensorring RS an einem freien Ende des Blechstreifens senkrecht zum Laststromleiter 1 liegt und ihn umschließt. Alternativ zu dem in Figur 4 dargestellten Beispiel kann der Sensorring RS auch durch einen U-förmigen, magnetisch leitfähigen Flußring und einen über zwei Luftspalte daran angekoppelten Reedkontakt KR gebildet sein. In the embodiment shown in Figure 3, the magnet system 6 is arranged on the base 5 such that the axis of the excitation coil W R runs parallel to the base plane of the base 5. The reed contact K R is mounted between the magnet system 6 and the base 5 perpendicular to the axis of the excitation coil W R and parallel to the base plane of the base 6. In this embodiment too, the reed contact K R is connected to two contacting plates 2 and 3 (see also FIG. 4). The two contact plates 2 and 3 are at a distance from one another which determines the switching threshold of the reed contact K R. The unit formed from the contacting plates 2 and 3 and the reed contact K R is inserted into the base 5, the load current conductor 1 being inserted in one section in the middle through a sensor ring R S formed from the reed contact K R and the contacting plates 2 and 3. The load current conductor 1 is formed in this section by a bent sheet metal strip, so that the sensor ring R S lies at a free end of the sheet metal strip perpendicular to the load current conductor 1 and encloses it. As an alternative to the example shown in FIG. 4, the sensor ring R S can also be formed by a U-shaped, magnetically conductive flux ring and a reed contact K R coupled to it via two air gaps.

    Figur 5 zeigt ein Ausführungsbeispiel eines Relais mit einem auf einem Sockel 5 vormontierten Reedkontakt KR, wobei der Reedkontakt KR senkrecht zur Grundebene des Sockels 5 orientiert ist. Das Magnetsystem 6 ist bei diesem Ausführungsbeispiel so auf dem Sockel 5 montiert, daß sich die Achse der Erregerspule WR parallel zur Grundebene des Sockels 5 erstreckt. Der Laststromleiter 1 ist im wesentlichen durch einen Blechstreifen gebildet, wobei ein erstes Ende des Laststromleiters 1 als Anschlußelement senkrecht durch den Sockel gesteckt ist. Das zweite Ende des Laststromleiters 1 verläuft parallel zur Achse der Erregerspule WR (siehe auch Figur 6). In einem mittleren Abschnitt ist der Laststromleiter 1 zu einer den Reedkontakt KR umgebenden Schleife geformt. Durch eine entsprechende Formung des Laststromleiter 1 in diesem mittleren Abschnitt ist sichergestellt, daß das vom Laststromleiter 1 in den Reedkontakt KR eingekoppelte Magnetfeld den Reedkontakt KR mittig und parallel durchsetzt. Der Reedkontakt KR ist zusammen mit seinen Anschlußdrähten U-förmig umgebogen und mit den Enden der Anschlußdrähte an Fortsätzen von zwei Anschlußschleifen 7 und 8 befestigt. Die Verbindung des Reedkontaktes KR an den Fortsätzen der unterhalb des Magnetsystems 6 angeordneten Anschlußschleifen 7 und 8 kann beispielsweise durch Löten oder Widerstandsschweißen erfolgen. Der Abstand zwischen den beiden Anschlußschleifen 7 und 8 definiert die Schaltschwelle des Reedkontaktes KR. Bei allen in den Figuren 1 bis 6 dargestellten Ausführungsbeispielen besteht ein Vorteil darin, daß die Montage des Reedkontaktes KR und die Ankopplung des Reedkontaktes KR an den Laststromleiter 1 keine nennenswerten konstruktiven Änderungen am Relais erfordern.FIG. 5 shows an exemplary embodiment of a relay with a reed contact K R preassembled on a base 5, the reed contact K R being oriented perpendicular to the base plane of the base 5. In this exemplary embodiment, the magnet system 6 is mounted on the base 5 such that the axis of the excitation coil W R extends parallel to the base plane of the base 5. The load current conductor 1 is essentially formed by a sheet metal strip, a first end of the load current conductor 1 being inserted vertically through the base as a connecting element. The second end of the load current conductor 1 runs parallel to the axis of the excitation coil W R (see also FIG. 6). In a central section, the load current conductor 1 is formed into a loop surrounding the reed contact K R. A corresponding shaping of the load current conductor 1 in this central section ensures that the magnetic field coupled into the reed contact K R by the load current conductor 1 passes through the reed contact K R in the center and in parallel. The reed contact K R is bent together with its connecting wires in a U-shape and fastened with the ends of the connecting wires to extensions of two connecting loops 7 and 8. The reed contact K R can be connected to the extensions of the connection loops 7 and 8 arranged below the magnet system 6, for example by soldering or resistance welding. The distance between the two connection loops 7 and 8 defines the switching threshold of the reed contact K R. In all of the exemplary embodiments shown in FIGS. 1 to 6, there is an advantage in that the assembly of the reed contact K R and the coupling of the reed contact K R to the load current conductor 1 do not require any significant design changes to the relay.

    Figur 7 zeigt ein Prinzipschaltbild eines Relais mit einem Hilfsreedkontakt und einer Hilfswicklung als Überstromschutzelementen. Das Relais R weist einen Steuerstromkreis, welchem eine von einem Steuerstrom IS durchflossene Erregerwicklung WR zugeordnet ist, und einen Laststromkreis auf, wobei der Laststrom IL durch ein bewegliches Kontaktelement KB und ein feststehendes Kontaktelement KF des Relais R steuerbar ist. Im Steuerstromkreis ist ein Reedkontakt KR angeordnet, durch welchen der Steuerstrom IS durch die Erregerspule WR steuerbar ist. Der Reedkontakt KR ist an einen von dem Laststrom IL durchflossenen Laststromleiter gekoppelt. Die magnetische Kopplung zwischen dem Laststromleiter und dem Reedkontakt KR wird nachfolgend durch eine Laststromleiterwicklung WL symbolisiert. Bei dem Ausführungsbeispiel gemäß Figur 7 weist der Reedkontakt KR ein bewegliches Kontaktelement E1 und zwei festehende Kontaktelemente E2 und E3 auf. Ferner ist eine Hilfswicklung WH1 derart an den Reedkontakt KR gekoppelt, daß in einem Überstrombetriebszustand von der Hilfswicklung WH1 ein Magnetfeld ausgeht, welches gleichsinnig zu einem von einer Laststromleiterwicklung WL hervorgerufenen Magnetfeld ist.FIG. 7 shows a basic circuit diagram of a relay with an auxiliary reed contact and an auxiliary winding as overcurrent protection elements. The relay R has a control circuit, which is associated with an excitation winding W R through which a control current I S is assigned, and a load circuit, the load current I L being controllable by a movable contact element K B and a fixed contact element K F of the relay R. A reed contact K R is arranged in the control circuit, through which the control current I S can be controlled by the excitation coil W R. The reed contact K R is coupled to a load current conductor through which the load current I L flows. The magnetic coupling between the load current conductor and the reed contact K R is subsequently symbolized by a load current conductor winding W L. In the exemplary embodiment according to FIG. 7, the reed contact K R has a movable contact element E1 and two fixed contact elements E2 and E3. Furthermore, an auxiliary winding W H1 is coupled to the reed contact K R in such a way that, in an overcurrent operating state, the auxiliary winding W H1 emits a magnetic field which is in the same direction as a magnetic field caused by a load current winding W L.

    Der Laststrom IL wird direkt über das bewegliche Kontaktelement KB und das feststehende Kontaktelement KF des Relais R geschaltet. Der Reedkontakt KR kann axial innerhalb der Laststromleiterwicklung WL angeordnet sein. Ebenfalls möglich ist ein außerhalb der Laststromleiterwicklung WL liegender Reedkontakt KR, welcher parallel zur Wicklungsachse angeordnet ist. Eine Alternative zur Ankopplung des Reedkontaktes KR an eine Laststromleiterwicklung WL ist eine Anordnung des Reedkontaktes KR innerhalb eines schleifenförmigen Abschnittes eines Laststromleiters.The load current I L is switched directly via the movable contact element K B and the fixed contact element K F of the relay R. The reed contact K R can be arranged axially within the load current winding W L. A reed contact K R lying outside the load current winding W L , which is arranged parallel to the winding axis, is also possible. An alternative to coupling the reed contact K R to a load current winding W L is to arrange the reed contact K R within a loop-shaped section of a load current conductor.

    Um eine Beeinflussung des Reedkontaktes KR vom Magnetfeld der Erregerspule WR des Relais R zu verhindern, ist der Reedkontakt KR vorteilhafterweise senkrecht zur Achse der Erregerspule WR anzuordnen. Alternativ kann die genannte Beeinflussung durch ein magnetisch leitfähiges Abschirmblech zwischen der Erregerspule WR und dem Reedkontakt KR verhindert werden. Durch das Abschirmblech wird ein von der Erregerspule WR herrührendes magnetisches Streufeld kurzgeschlossen. Eine andere Möglichkeit besteht darin, den von der Erregerspule WR ausgehenden magnetischen Streufluß gezielt in den Reedkontakt KR einzuleiten. Dies ist beispielsweise durch eine Regelung des Steuerstromes IS möglich. Hierdurch wirkt ein konstanter Magnetfluß als Offset auf den Reedkontakt KR ein. Durch Definition entsprechender Schwellwerte am Reedkontakt KR ist somit eine Ausnutzung des magnetischen Streufeldes möglich.In order to prevent the reed contact K R from being influenced by the magnetic field of the excitation coil W R of the relay R, the reed contact K R is advantageously to be arranged perpendicular to the axis of the excitation coil W R. Alternatively, the aforementioned influence can be prevented by a magnetically conductive shielding plate between the excitation coil W R and the reed contact K R. A magnetic stray field originating from the excitation coil W R is short-circuited by the shielding plate. Another possibility is to selectively introduce the magnetic stray flux emanating from the excitation coil W R into the reed contact K R. This is possible, for example, by regulating the control current I S. As a result, a constant magnetic flux acts as an offset on the reed contact K R. By defining corresponding threshold values at the reed contact K R , it is possible to use the stray magnetic field.

    In einem Normalbetriebszustand verbindet der Reedkontakt KR die Erregerspule WR des Relais R über ein erstes feststehendes Kontaktelement E2 des Reedkontaktes KR mit einer Steuerspannungsquelle US. In diesem Zustand ist die an das zweite feststehende Kontaktelement E3 gekoppelte Hilfswicklung WH vom beweglichen Kontaktelement E1 des Reedkontaktes KR und somit von der Steuerspannungsquelle US getrennt. In einem Überstrombetriebszustand ist dagegen das bewegliche Kontaktelement E1 des Reedkontaktes KR mit dem zweiten feststehenden Kontaktelement E3 verbunden und vom ersten feststehenden Kontaktelement E2 getrennt. Dadurch ist die Erregerwicklung WR des Relais R von der Steuerspannungsquelle US getrennt, während die Hilfswicklung WH mit der Steuerspannungsquelle US verbunden ist. Auch nach Unterbrechung des Laststromkreises bleibt die Verbindung zwischen dem beweglichen Kontaktelement E1 des Reedkontaktes KR und dem zweiten feststehenden Kontaktelement E3 aufgrund des von der Hilfswicklung WH ausgehenden Magnetflusses erhalten. Erst nach Trennung von der Steuerspannungsquelle US kehrt das Relais R in den Normalbetriebszustand zurück.In a normal operating state, the reed contact K R connects the excitation coil W R of the relay R to a control voltage source U S via a first fixed contact element E2 of the reed contact K R. In this state, the auxiliary winding W H coupled to the second fixed contact element E3 is separated from the movable contact element E1 of the reed contact K R and thus from the control voltage source U S. In contrast, in an overcurrent operating state, the movable contact element E1 of the reed contact K R is connected to the second fixed contact element E3 and separated from the first fixed contact element E2. As a result, the excitation winding W R of the relay R is separated from the control voltage source U S , while the auxiliary winding W H is connected to the control voltage source U S. Even after the load circuit has been interrupted, the connection between the movable contact element E1 of the reed contact K R and the second fixed contact element E3 is maintained due to the magnetic flux emanating from the auxiliary winding W H. Only after disconnection from the control voltage source U S does the relay R return to the normal operating state.

    Figur 8 zeigt ein Prinzipschaltbild einer alternativen Ausgestaltungsmöglichkeit für ein kurzschlußfestes Relais, bei dem die Überstromschutzfunktion mittels eines Hilfsrelais RH1 realisiert ist. Das Hilfsrelais RH1 weist ein bewegliches Kontaktelement E4 und zwei feststehende Kontaktelemente E5 und E6 auf, wobei das bewegliche Kontaktelement E4 im Normalbetriebszustand mit dem ersten feststehenden Kontaktelement E5 verbunden ist. Das bewegliche Kontaktelement E4 ist direkt mit einer Steuerspannungseingangsklemme verbunden, so daß die Steuerspannung US direkt an der Erregerspule WR des Relais R anliegt. Der Reedkontakt KR ist zwischen dem Kontaktelement E4 des Hilfsrelais RH1 und dem zweiten feststehenden Kontaktelement E6 angeschlossen.FIG. 8 shows a basic circuit diagram of an alternative configuration option for a short-circuit-proof relay, in which the overcurrent protection function is implemented by means of an auxiliary relay R H1 . The auxiliary relay R H1 has a movable contact element E4 and two fixed contact elements E5 and E6, the movable contact element E4 being connected to the first fixed contact element E5 in the normal operating state. The movable contact element E4 is connected directly to a control voltage input terminal, so that the control voltage U S is applied directly to the excitation coil W R of the relay R. The reed contact K R is connected between the contact element E4 of the auxiliary relay R H1 and the second fixed contact element E6.

    Die Spule WH2 des Hilfsrelais RH1 ist im Normalbetriebszustand stromlos. Im Überstrombetriebszustand ist der Reedkontakt KR geschlossen, wodurch die Steuerspannung US direkt an der Spule WH2 des Hilfsrelais RH1 anliegt. Infolgedessen ist das bewegliche Kontaktelement E4 mit dem zweiten feststehenden Kontaktelement E6 des Hilfsrelais RH1 verbunden und vom ersten feststehenden Kontaktelement E5 getrennt. Aufgrund dessen ist im Überstrombetriebszustand die Erregerspule WR des Relais R stromlos. Dadurch daß der Laststromkreis und der Steuerstromkreis des Hilfsrelais RH1 im Überstrombetriebszustand in Reihe geschaltet sind, behält das Hilfsrelais RH1 auch nach Unterbrechung des Laststromkreises des Relais R durch Betätigung des Kontaktelementes KB und dem damit verbundenen Öffnen des Reedkontaktes KR seine Schaltstellung bei. Ist zusätzlich zwischen dem Reedkontakt KR und dem zweiten feststehenden Kontaktelement E6 des Hilfsrelais RH1 eine Zeitverzögerungseinheit angeordnet, führen kurzzeitige Laststromspitzen nicht zu einem Ansprechen der Überstromschutzeinrichtung. Anstelle des Hilfsrelais RH1 kann ein zweiter Reedkontakt verwendet werden, welcher dann mit einer zugehörigen Hilfswicklung gekoppelt ist.The coil W H2 of the auxiliary relay R H1 is de-energized in the normal operating state. In the overcurrent operating state, the reed contact K R is closed, as a result of which the control voltage U S is applied directly to the coil W H2 of the auxiliary relay R H1 . As a result, the movable contact element E4 is connected to the second fixed contact element E6 of the auxiliary relay R H1 and separated from the first fixed contact element E5. Because of this, the excitation coil W R of the relay R is de-energized in the overcurrent operating state. Because the load circuit and the control circuit of the auxiliary relay R H1 are connected in series in the overcurrent operating state, the auxiliary relay R H1 maintains its switch position even after the load circuit of the relay R has been interrupted by actuating the contact element K B and opening the reed contact K R. If a time delay unit is additionally arranged between the reed contact K R and the second fixed contact element E6 of the auxiliary relay R H1 , brief load current peaks do not trigger the overcurrent protection device. Instead of the auxiliary relay R H1 , a second reed contact can be used, which is then coupled to an associated auxiliary winding.

    Figur 9 zeigt eine weitere Alternative für die Realisierung eines Überstromschutzes mit einem Kaltleiter RPTC und einem seriell dazugeschalteten Vorwiderstand Rv. Diese beiden Überstromschutzelemente sind in Serie zum Reedkontakt KR an die Steuerspannungsquelle US angeschlossen, wobei der Reedkontakt KR im Überstrombetriebszustand zunächst geschlossen und im Normalbetriebszustand geöffnet ist. Die Erregerspule WR des Relais R ist parallel zum Reedkontakt KR und zum Vorwiderstand RV sowie seriell zum Kaltleiter RPTC geschaltet. Da der Vorwiderstand RV im Vergleich zum Innenwiderstand der Erregerspule WR des Relais R niederohmig ist, fließt nach Schließen des Reedkontaktes KR ein erhöhter Strom durch den Kaltleiter RPTC, wodurch sich dieser erwärmt und hochohmig wird. Aufgrund dessen nimmt der Spannungsabfall an der Erregerspule WR des Relais ab, so daß eine Unterbrechung des Laststromkreises erfolgt. In Abhängigkeit vom Erwärmungsverhalten des Kaltleiters RPTC wird eine Zeitverzögerung erreicht, wodurch kurzzeitig auftretende Laststromspitzen keine Schutzauslösung bewirken. Außerdem nimmt der Kaltleiter RPTC eine Zustandsspeicherfunktion wahr, sofern der Reststrom durch die Erregerspule WR des Relais R ausreicht, um die erforderliche Kaltleitertemperatur aufrecht zu erhalten. In diesem Falle bleibt der Kaltleiter RPTC auch nach Wiederöffnen des Reedkontaktes KR in hochohmigem Zustand. Erst nach Trennung von der Steuerspannungsquelle US und Auskühlen des Kaltleiters RPTC ist ein erneutes Ansteuern des Relais R möglich.FIG. 9 shows a further alternative for implementing overcurrent protection with a PTC thermistor R PTC and a series resistor R v connected in series . These two overcurrent protection elements are connected in series with the reed contact K R to the control voltage source U S , the reed contact K R being initially closed in the overcurrent operating state and opened in the normal operating state. The excitation coil W R of the relay R is connected in parallel with the reed contact K R and the series resistor R V and in series with the PTC thermistor R PTC . Since the series resistor R V is low-ohmic in comparison with the internal resistance of the excitation coil W R of the relay R, an increased current flows through the PTC thermistor R PTC after the reed contact K R is closed, as a result of which the latter heats up and becomes high-impedance. As a result, the voltage drop across the excitation coil W R of the relay decreases, so that the load circuit is interrupted. Depending on the heating behavior of the PTC thermistor R PTC , a time delay is reached, which means that short-term load current peaks do not trigger protection. In addition, the PTC thermistor R PTC performs a status memory function if the residual current through the excitation coil W R of the relay R is sufficient to maintain the required PTC thermistor temperature. In this case, the PTC thermistor R PTC remains in a high-resistance state even after the reed contact K R is reopened. Only after disconnection from the control voltage source U S and cooling of the PTC thermistor R PTC can the relay R be activated again.

    In Figur 10 ein Prinzipschaltbild Ausführungsform mit einem bistabilen Relais R2S und einem Kondensator CS. Das bistabile Relais R2S ist mit einer ersten Erregerwicklung WR1 und einer zweiten Erregerwicklung WR2 ausgestattet. Die erste Erregerwicklung WR1 des Relais R2S ist in Serie zum Kondensator CS an die Steuerspannungsquelle US angeschlossen. Die zweite Erregerwicklung WR2 ist in Serie zum Reedkontakt KR an die Steuerspannungsquelle US angeschlossen und weist im Vergleich zur ersten Erregerwicklung WR1 einen umgekehrten Wicklungssinn auf. Ein positiver Impuls des Stroms IS1 durch die erste Erregerwicklung WR1 bewirkt somit ein Schließen des Laststromkreises, während ein positiver Impuls des Stroms IS2 durch die zweite Erregerwicklung WR2 den Laststromkreis unterbricht. Bei Überstrom verbindet der Reedkontakt KR die zweite Erregerwicklung WR2 zunächst mit der Steuerspannungsquelle US, worauf das Relais R2S in einen stabilen ausgeschalteten Zustand übergeht. Erst nach Abschalten und Wiederzuschalten der Steuerspannung US erhält die erste Erregerwicklung WR1 über den Kondensator CS einen positiven Stromimpuls, wodurch das Relais R2S in einen stabilen eingeschalteten Zustand übergeht. 10 shows a basic circuit diagram of an embodiment with a bistable relay R 2S and a capacitor C S. The bistable relay R 2S is equipped with a first field winding W R1 and a second field winding W R2 . The first field winding W R1 of the relay R 2S is connected in series with the capacitor C S to the control voltage source U S. The second excitation winding W R2 is connected in series with the reed contact K R to the control voltage source U S and has an opposite winding sense compared to the first excitation winding W R1 . A positive pulse of the current I S1 through the first field winding W R1 thus causes the load circuit to be closed, while a positive pulse of the current I S2 through the second field winding W R2 interrupts the load circuit. In the event of an overcurrent, the reed contact K R first connects the second excitation winding W R2 to the control voltage source U S , whereupon the relay R 2S changes to a stable switched-off state. Only after the control voltage U S is switched off and on again does the first excitation winding W R1 receive a positive current pulse via the capacitor C S, as a result of which the relay R 2S changes to a stable switched-on state.

    Bei der in Figur 11 dargestellten Prinzipschaltbild einer Variante des kurzschluß- bzw. überstromfesten Relais sind die Überstromschutzfunktionen in eine Überstromschutzeinrichtung integriert, welche durch eine elektronische Schaltung CCU realisiert ist. Die elektronische Schaltung CCU weist vier Anschlüsse auf, wobei zwischen einem ersten Steuerspannungsanschluß K1 und einem zweiten Steuerspannungsanschluß K2 die Steuerspannung US anliegt. Des weiteren weist die elektronische Schaltung CCU einen ersten Erregerspulenanschluß K3 und einen zweiten Reedkontaktanschluß K4 auf. Der erste Reedkontaktanschluß und der zweite Erregerspulenanschluß sind mit dem zweiten Steuerspannungsanschluß K2 verbunden. Die elektronische Schaltung CCU läßt sich als anwendungsspezifischer integrierter Schaltkreis (ASIC) auf sehr einfache Weise in die Leiterplatte 4 des in Figur 1 dargestellten Relais oder auch in den Sockel 5 der in den Figuren 3 und 5 dargestellten Relais integrieren.In the basic circuit diagram of a variant of the short-circuit or overcurrent-proof relay shown in FIG. 11, the overcurrent protection functions are integrated in an overcurrent protection device which is implemented by an electronic circuit CCU. The electronic circuit CCU has four connections, the control voltage U S being present between a first control voltage connection K1 and a second control voltage connection K2. Furthermore, the electronic circuit CCU has a first excitation coil connection K3 and a second reed contact connection K4. The first reed contact connection and the second excitation coil connection are connected to the second control voltage connection K2. The electronic circuit CCU can be integrated as an application-specific integrated circuit (ASIC) in a very simple manner into the circuit board 4 of the relay shown in FIG. 1 or also into the base 5 of the relay shown in FIGS. 3 and 5.

    Eine mögliche schaltungstechnische Realisierung für die Überstromschutzeinrichtung gemäß Figur 11 ist in Figur 12 dargestellt. Die elektronische Schaltung CCU gliedert sich in ein Zeitglied U1, eine Einschaltstrecke U2 für die Erregerspule WR und in eine Ausschaltstrecke U3. Die Einschaltstrecke U2 für die Relaisspule WR besteht aus einem in Serie zur Relaisspule WR zwischen den beiden Steuerspannungsanschlüssen K1 und K2 angeschlossenen pnp-Transistor T1 und einem Vorwiderstand R2. Der Transistor T1 ist dabei mit seinem Emitter am ersten Steuerspannungsanschluß K1 und mit seinem Kollektor am ersten Erregerspulenanschluß K3 angeschlossen. Der Vorwiderstand R2 der Einschaltstrecke U2 ist zwischen der Basis des Transistors T1 und dem zweiten Steuerspannungsanschluß K2 angeschlossen.A possible implementation in terms of circuitry for the overcurrent protection device according to FIG. 11 is shown in FIG. The electronic circuit CCU is divided into a timing element U1, a switch-on path U2 for the excitation coil W R and a switch-off path U3. The switch-on path U2 for the relay coil W R consists of a pnp transistor T1 connected in series with the relay coil W R between the two control voltage connections K1 and K2 and a series resistor R2. The transistor T1 is connected with its emitter to the first control voltage connection K1 and with its collector to the first excitation coil connection K3. The series resistor R2 of the switch-on path U2 is connected between the base of the transistor T1 and the second control voltage connection K2.

    Die Ausschaltstrecke U3 für die Erregerspule WR ist durch einen ersten Widerstand R4 und einen zweiten Widerstand R3 gebildet. Dabei ist der erste Widerstand R4 parallel zur Erregerspule WR geschaltet, während der zweite Widerstand R3 der Ausschaltstrecke U3 zwischen dem ersten Erregerspulenanschluß K3 und dem zweiten Reedkontaktanschluß K4 angeschlossen ist.The switch-off path U3 for the excitation coil W R is formed by a first resistor R4 and a second resistor R3. The first resistor R4 is connected in parallel to the excitation coil W R , while the second resistor R3 of the switch-off path U3 is connected between the first excitation coil connection K3 and the second reed contact connection K4.

    Das Zeitglied U1 weist einen Komparator CMP und ein RC-Glied auf, wobei der Kondensator C1 des RC-Gliedes mit einem ersten Anschluß an der ersten Steuerspannungsanschluß K1 angeschlossen ist. Der Widerstand R1 des RC-Gliedes ist zwischen dem zweiten Anschluß K5 des Kondensators C1 und dem zweiten Reedkontaktanschluß K4 angeschlossen. Der Komparator CMP selbst besteht aus einem pnp-Transistor T2 und einer Zenerdiode D1, wobei der Transistor T2 des Komparators CMP mit seinem Emitter am ersten Steuerspannungsanschluß K1 angeschlossen ist, während der Kollektor des Transistors T2 mit der Basis des Transistors T1 der Einschaltstrecke U2 verbunden ist. Die Basis des Transistors T2 des Komparators CMP ist an der Kathode der Zenerdiode D1 angeschlossen, deren Anode zwischen dem Kondensator C1 und dem Widerstand R1 des RC-Gliedes angeschlossen ist.The timing element U1 has a comparator CMP and an RC element on, the capacitor C1 of the RC element having a first Connection connected to the first control voltage connection K1 is. The resistance R1 of the RC element is between that second terminal K5 of the capacitor C1 and the second reed contact terminal K4 connected. The comparator CMP itself consists of a pnp transistor T2 and a zener diode D1, the transistor T2 of the comparator CMP with its emitter is connected to the first control voltage connection K1, while the collector of transistor T2 with the base of Transistor T1 of the switch-on path U2 is connected. The base of the transistor T2 of the comparator CMP is at the cathode the Zener diode D1 connected, the anode between the Capacitor C1 and the resistor R1 of the RC element connected is.

    Wenn die Steuerspannung US an den Steuerspannungsanschlüssen K1 und K2 der elektronischen Schaltung CCU anliegt, fließt über die Emitter-Basis-Strecke des Transistors T1 der Einschaltstrecke U2 ein Steuerstrom und schaltet den Transistor T1 durch. Dadurch wird die Erregerspule WR des Relais R mit einer Schaltspannung versorgt, worauf der Laststromkreis geschlossen wird. Das Schalten des Transistors T1 erfolgt über den Widerstand R2, wobei der Schaltgeschwindigkeit des Transistors eine wichtige Rolle zukommt. Vor Aktivieren des Zeitgliedes U1 muß nämlich sichergestellt sein, daß durch Anlegen der Steuerspannung US das Relais R zuerst durchschaltet. Dabei kommt dem Zeitglied U1 die Aufgabe zu, den Transistor T2 des Komparators CMP so lange zu sperren, bis der Transistor T1 der Einschaltstrecke U2 durchgeschaltet ist. Darauf geht auch der Transistor T2 des Komparators CMP in einen stabilen gesperrten Zustand über, welches durch die Rückkopplung der Kollektorspannung des Transistors T1 über die Widerstände R3, R1 und über die Zenerdiode D1 erreicht wird.When the control voltage U S is applied to the control voltage connections K1 and K2 of the electronic circuit CCU, a control current flows through the emitter-base path of the transistor T1 of the switch-on path U2 and turns on the transistor T1. As a result, the excitation coil W R of the relay R is supplied with a switching voltage, whereupon the load circuit is closed. The transistor T1 is switched via the resistor R2, the switching speed of the transistor playing an important role. Before activating the timer U1 it must be ensured that the relay R switches through first when the control voltage U S is applied. The timing element U1 has the task of blocking the transistor T2 of the comparator CMP until the transistor T1 of the switch-on path U2 is turned on. The transistor T2 of the comparator CMP then changes to a stable, blocked state, which is achieved by the feedback of the collector voltage of the transistor T1 via the resistors R3, R1 and the zener diode D1.

    Bei Überstrom schließt der Reedkontakt KR und verbindet die Basis des Transistors T2 direkt mit dem zweiten Steuerspannungsanschluß K2. Dies bewirkt eine Entladung des Kondensators C1 über die Widerstände R1 und R3. Nach Überschreiten der Durchbruchspannung an der Zenerdiode D1 fließt durch die Emitter-Basis-Strecke des Transistors T2 ein Steuerstrom, welcher den Transistor T2 durchschaltet und die Basis des Transistors T1 der Einschaltstrecke U2 elektrisch mit dem ersten Steuerspannungsanschluß K1 verbindet. Daraufhin wird die Ausschaltstrecke U3 über den Transistor T2 des Zeitgliedes U1 aktiviert, wodurch der Transistor T1 der Einschaltstrecke U2 in den gesperrten Zustand übergeht. Infolgedessen wird die Erregerspule WR des Relais R von der Steuerspannungsquelle US getrennt, so daß der Laststromkreis unterbrochen wird. Dies hat zur Folge, daß sich der Reedkontakt KR wieder öffnet, da nun kein Überstrom durch den Lastkreis fließt. Die Ausschaltstrecke U3 bleibt weiterhin aktiviert, da sich der Transistor T2 des Komparators CMP unverändert im leitenden Zustand befindet. Dieser Betriebszustand bleibt so lange erhalten bzw. gespeichert, bis die Steuerspannung US an den Steuerspannungsanschlüssen K1 und K2 der elektronischen Schaltung CCU abgeschaltet wird.In the event of an overcurrent, the reed contact K R closes and connects the base of the transistor T2 directly to the second control voltage connection K2. This causes capacitor C1 to discharge through resistors R1 and R3. After the breakdown voltage at the Zener diode D1 has been exceeded, a control current flows through the emitter-base path of the transistor T2, which turns on the transistor T2 and electrically connects the base of the transistor T1 of the switch-on path U2 to the first control voltage terminal K1. The switch-off path U3 is then activated via the transistor T2 of the timer U1, as a result of which the transistor T1 of the switch-on path U2 changes to the blocked state. As a result, the excitation coil W R of the relay R is separated from the control voltage source U S , so that the load circuit is interrupted. The result of this is that the reed contact K R opens again, since no overcurrent now flows through the load circuit. The switch-off path U3 remains activated since the transistor T2 of the comparator CMP remains in the conductive state unchanged. This operating state is maintained or stored until the control voltage U S at the control voltage connections K1 and K2 of the electronic circuit CCU is switched off.

    Ein ungewolltes Ansprechen der Überstromschutzeinrichtung bei Einschalt- oder Umschaltstromspitzen, welche in der Regel weniger als einige 100 Millisekunden betragen, wird durch das Zeitglied U1 verhindert. Durch eine geeignete Dimensionierung des Widerstandes R1, des Kondensators C1 des Zeitgliedes U1, der Widerstände R3 und R4 der Ausschaltstrecke U3 sowie durch die Auswahl einer Zenerdiode D1 mit einer geeigneten Durchbruchspannung kann das Zeitverhalten der elektronischen Schaltung CCU an die Dauer zu erwartender Einschalt- bzw. Umschaltstromspitzen angepaßt werden. Gleichzeitig werden durch das Zeitglied U1 auch Störimpulse an den Steuerspannungsanschlüssen K1 und K2 ausgefiltert.An unwanted activation of the overcurrent protection device at Inrush or switching current peaks, which are usually less than a few 100 milliseconds, Timer U1 prevented. By appropriate dimensioning the resistor R1, the capacitor C1 of the timer U1, of the resistors R3 and R4 of the switch-off path U3 and the selection of a Zener diode D1 with a suitable breakdown voltage can the timing of the electronic Switching CCU to the duration of expected inrush or switching current peaks be adjusted. At the same time, through the timing element U1 also generates interference pulses at the control voltage connections K1 and K2 filtered out.

    Claims (24)

    1. An electromagnetic relay, having
      a magnet system (6) containing: an exciter coil (WR) through which there flows a control current (IS) and which is connected to a control voltage (US); a core; and an armature, with the core and the armature forming at least one operative air gap,
      at least one movable contact element (KB) and at least one fixed contact element (KF) through each of which a load current circuit can be completed,
      coil and contact terminal elements,
      a reed contact (KR) for each load current circuit, which is coupled to a load current conductor (1) through which a load current (IL) flows, and
      means, coupled to the reed contact (KR), for generating and processing an overcurrent signal and for switching off the control current (IS),
         characterised in that
         these means generate an overcurrent signal and continue to process such that the switched-off condition of the control current (IS) is maintained until the control voltage (US) is switched off.
    2. A relay according to Claim 1, characterised in that the reed contact (KR) is integrated in an electrically and magnetically conductive, open flux ring which surrounds the load current conductor (1).
    3. A relay according to Claim 1, characterised in that the reed contact (KR) is coupled by way of two air gaps to an electrically and magnetically conductive, open flux ring which surrounds the load current conductor (1).
    4. A relay according to Claim 1, characterised in that the load current conductor (1) is in one section shaped into a loop which surrounds the reed contact (KR).
    5. A relay according to one of Claims 1 to 4, characterised in that the load current conductor (1) is arranged in a section perpendicular to the reed contact (KR), with the magnetic flux fed from the load current conductor (1) into the reed contact (KR) passing through the reed contact (KR) centrally and parallel.
    6. A relay according to Claim 1, characterised in that the load current conductor (1) is in one section wound into a coil (WL), with the reed contact (KR) being arranged axially in the coil (WL).
    7. A relay according to Claim 1, characterised in that the load current conductor (1) is in one section wound into a coil (WL), with the reed contact (KR) being arranged outside the coil (WL) and parallel to its axis.
    8. A relay according to one of Claims 1 to 7, characterised in that the reed contact (KR) is arranged perpendicular to the axis of the exciter coil (WR).
    9. A relay according to one of Claims 1 to 7, characterised in that between the reed contact (KR) and the exciter coil (WR) there is arranged a magnetically conductive plate.
    10. A relay according to one of Claims 1 to 7, characterised in that the exciter coil (WR) is coupled to a current regulator in order to introduce a defined magnetic flux into the reed contact (KR).
    11. A relay according to one of Claims 1 to 10, characterised in that the means for generating and processing the overcurrent signal and for switching off the control current (IS) are grouped together to form an overcurrent protection unit.
    12. A relay according to Claim 11, characterised in that the reed contact (KR) has a movable contact element (E1) and two fixed contact elements (E2, E3), in that the overcurrent protection unit is formed by an auxiliary winding (WH1) coupled to the reed contact (KR), in that the movable contact element (E1) of the reed contact (KR) is connected to a first control voltage terminal, in that a first terminal of the exciter coil (WR) is connected to a first fixed contact element (E2) of the reed contact (KR), in that a first terminal of the auxiliary winding (WH1) is connected to the second fixed contact element (E3) of the reed contact (KR), in that the second terminal of the exciter coil (WR) and the second terminal of the auxiliary winding (WH1) are connected to the second control voltage terminal, in that the movable contact element (E1) of the reed contact (KR) is connected, in a normal operating condition, to the first fixed contact element (E2) of the reed contact (KR), and in that the movable contact element (E1) of the reed contact (KR) is connected, in an overcurrent operating condition, to the second fixed contact element (E3) of the reed contact (KR).
    13. A relay according to Claim 12, characterised in that the auxiliary winding (WH1) is coupled to the reed contact (KR) such that in the overcurrent operating condition there is emitted from the auxiliary winding (WH1) through which current flows a magnetic field which at the reed contact (KR) is in the same direction as the magnetic field created by the load current (IL).
    14. A relay according to Claim 11, characterised in that the overcurrent protection unit is formed by an electromagnetic switching unit which has a movable contact element (E4), two fixed contact elements (E5, E6) and a coil (WH2), in that the movable contact element (E4) of the switching unit is connected to a first control voltage terminal, in that a first terminal of the exciter coil (WR) is connected to a first fixed contact element (E5) of the switching unit, in that a first terminal of the coil (WH2) of the switching unit is connected to the second fixed contact element (E6) of the switching unit, in that the second terminal of the exciter coil (WR) and the second terminal of the coil (WH2) of the switching unit are connected to the second control voltage terminal, in that the reed contact (KR) is connected between the first control voltage terminal and the first terminal of the coil (WH2) of the switching unit, in that the movable contact element (E4) of the switching unit is connected, in a normal operating condition, to the first fixed contact element (E5) of the switching unit, and in that the movable contact element (E4) of the switching unit is connected, in an overcurrent operating condition, to the second fixed contact element (E6) of the switching unit.
    15. A relay according to Claim 14, characterised in that a time delay unit is placed between the reed contact (KR) and the coil (WH2) of the switching unit.
    16. A relay according to Claim 14 or 15, characterised in that the electromagnetic switching unit is in the form of an auxiliary relay (RH1).
    17. A relay according to Claim 14 or 15, characterised in that the electromagnetic switching unit is in the form of an auxiliary reed contact.
    18. A relay according to Claim 11, characterised in that the overcurrent protection unit is in the form of a PTC thermistor (RPTC) and a serially connected series resistor (RV) which is connected, in series with the reed contact (KR), to the control voltage source (Us), in that the reed contact (KR) is opened (contact broken) in a normal operating condition and closed (contact made) in an overcurrent operating condition, and in that the relay coil (WR) is placed in parallel with the reed contact (KR) and the series resistor (RV) and in series with the PTC thermistor (RPTC).
    19. A relay according to Claim 11, characterised in that the overcurrent protection device is integrated in the magnet system (6), which in order to create two stable switching conditions has an additional, second exciter coil (WR2), with the exciter coils (WR1, WR2) being wound in opposing directions and with a control current (IS1) through the first coil (WR1) putting the relay into a switched-on condition, while a control current (IS2) through the second coil (WR2) puts the relay into a switched-off condition, in that the first coil (WR1) is connected in series with a capacitor (CS) to the control voltage source (Us), and in that the second coil (WR2) is connected in series with the reed contact (KR) to the control voltage source (US).
    20. A relay according to Claim 11, characterised in that the overcurrent protection device is in the form of an electronic circuit (CCU) which has a first control voltage terminal (K1) and a second control voltage terminal (K2), and in that the circuit (CCU) has a timer member (U1), a switch-on section (U2) for the exciter coil (WR), and a switch-off section (U3).
    21. A relay according to Claim 20, characterised in that the switch-on section (U2) for the exciter coil (WR) comprises a pnp transistor (T1), connected in series with the exciter coil (WR) between the two control voltage terminals (K1, K2), and a series resistor (R2), in that the transistor (T1) of the switch-on section (U2) is connected by means of its emitter to the first control voltage terminal (K1) and by means of its collector to a first exciter coil terminal (K3), in that the exciter coil (WR) is connected by means of its second terminal to the second control voltage terminal (K2), and in that the series resistor (R2) of the switch-on section (U2) is connected between the base of the transistor (T1) of the switch-on section (U2) and the second control voltage terminal (K2).
    22. A relay according to Claim 21, characterised in that the switch-off section (U3) for the exciter coil (WR) is formed by a first resistor (R4) and a second resistor (R3), in that the first resistor (R4) of the switch-off section (U3) is placed in parallel with the exciter coil (WR), in that the reed contact (KR) is connected by means of a first terminal to the second control voltage terminal (K2), and in that the second resistor (R3) of the switch-off section (U3) is connected between the first terminal (K3) of the exciter coil (WR) and the second terminal (K4) of the reed contact (KR).
    23. A relay according to Claim 22, characterised in that the timer member (U1) has a comparator (CMP) and an RC element, in that the capacitor (C1) of the RC element is connected by means of a first terminal to the first control voltage terminal (K1), and in that the resistor (R1) of the RC element is connected between the second terminal (K5) of the capacitor (C1) and the second terminal (K4) of the reed contact (KR).
    24. A relay according to Claim 23, characterised in that the comparator (CMP) comprises a pnp transistor (T2) and a Zener diode (D1), in that the transistor (T2) of the comparator (CMP) is connected by means of its emitter to the first control voltage terminal (K1), in that the transistor (T2) of the comparator is connected by means of its collector to the base of the transistor (T1) of the switch-on section (U2), in that the transistor (T2) of the comparator is connected by means of its base to the cathode of the Zener diode (D1), and in that the Zener diode (D1) is connected by means of its anode between the capacitor (C1) and the resistor (R1) of the RC element.
    EP98959763A 1997-12-04 1998-10-28 Electromagnetic relay Expired - Lifetime EP1036398B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19753852 1997-12-04
    DE19753852A DE19753852A1 (en) 1997-12-04 1997-12-04 Electromagnetic relay
    PCT/DE1998/003151 WO1999030338A1 (en) 1997-12-04 1998-10-28 Electromagnetic relay

    Publications (2)

    Publication Number Publication Date
    EP1036398A1 EP1036398A1 (en) 2000-09-20
    EP1036398B1 true EP1036398B1 (en) 2002-04-03

    Family

    ID=7850760

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98959763A Expired - Lifetime EP1036398B1 (en) 1997-12-04 1998-10-28 Electromagnetic relay

    Country Status (7)

    Country Link
    US (1) US6600640B1 (en)
    EP (1) EP1036398B1 (en)
    JP (1) JP2001526445A (en)
    KR (1) KR20010032739A (en)
    CA (1) CA2312486A1 (en)
    DE (2) DE19753852A1 (en)
    WO (1) WO1999030338A1 (en)

    Families Citing this family (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19963504C1 (en) * 1999-12-28 2001-10-18 Tyco Electronics Logistics Ag Relay with overcurrent protection
    EP1256480A4 (en) * 2000-02-18 2011-06-22 Sanyo Electric Co Relay fusion detector for electrically driven vehicles
    US6853530B1 (en) * 2000-09-15 2005-02-08 General Electric Company Apparatus and method for actuating a mechanical device
    NL1021382C2 (en) * 2002-09-03 2004-03-05 Iku Holding Montfoort Bv Electric motor circuit with overload protection.
    US7548146B2 (en) * 2006-12-27 2009-06-16 Tyco Electronics Corporation Power relay
    KR200454957Y1 (en) * 2009-10-26 2011-08-05 대성전기공업 주식회사 Arc prevented relay
    DE102010018755A1 (en) 2010-04-29 2011-11-03 Kissling Elektrotechnik Gmbh Relay with integrated safety circuit
    DE102011080226B4 (en) * 2011-08-01 2024-01-25 Bayerische Motoren Werke Aktiengesellschaft Vehicle with a power distributor and a control unit
    US9219422B1 (en) * 2014-08-21 2015-12-22 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Operating a DC-DC converter including a coupled inductor formed of a magnetic core and a conductive sheet
    US9379619B2 (en) 2014-10-21 2016-06-28 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Dividing a single phase pulse-width modulation signal into a plurality of phases
    US9618539B2 (en) 2015-05-28 2017-04-11 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Sensing current of a DC-DC converter
    DE102015214966A1 (en) * 2015-08-05 2017-02-09 Ellenberger & Poensgen Gmbh breaker
    EP3832684B1 (en) * 2018-07-31 2024-02-14 Panasonic Intellectual Property Management Co., Ltd. Interrupter system
    WO2021109054A1 (en) 2019-12-05 2021-06-10 Suzhou Littelfuse Ovs Co., Ltd. Relay assembly with reverse connection protection

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3294987A (en) 1963-06-13 1966-12-27 Ford Motor Co Overload protective device
    DE1588418A1 (en) * 1967-02-23 1970-06-18 Licentia Gmbh Cable conversion relay
    DE1763394A1 (en) * 1968-05-20 1972-01-05 Inst Energetik Primary relay for electrical switchgear
    US3911342A (en) * 1974-08-05 1975-10-07 Allis Chalmers Plug current sensor for traction motor
    US3959694A (en) * 1974-12-30 1976-05-25 Bell Telephone Laboratories, Incorporated Electrical circuit protection apparatus
    DE2542724A1 (en) * 1975-09-25 1977-04-07 Vdo Schindling Overcurrent protective circuit breaker - has magnetically actuated switching contact with short circuit coil in region of breaker winding
    US4101826A (en) * 1977-06-13 1978-07-18 Hendrik Horsitmann Fault indicator including a reed relay responsive to above normal current flow in a conductor
    US4412267A (en) * 1980-02-06 1983-10-25 Eaton Corporation Time-delay current sensing circuit breaker relay
    DE3005460C2 (en) * 1980-02-14 1986-04-24 Robert Bosch Gmbh, 7000 Stuttgart Electromagnetic switch
    SE439692B (en) * 1983-10-24 1985-06-24 Asea Ab DEVICE FOR MONITORING THE CONDITION OF AN ELECTRIC APPLIANCE WITH POWER SWITCHING CONNECTORS, IN PARTICULAR A HIGH VOLTAGE SWITCH
    US4611154A (en) * 1985-03-28 1986-09-09 Gulf & Western Manufacturing Company Method and apparatus for controlling the operation of a DC load
    US4922369A (en) * 1986-06-25 1990-05-01 Inresco, Inc. Circuit protector
    SU1427472A1 (en) * 1987-03-04 1988-09-30 Павлодарский Индустриальный Институт Electric machine protection arrangement with emergency duty sensor
    JP3237446B2 (en) * 1995-03-29 2001-12-10 市光工業株式会社 DC motor drive control circuit
    US5684447A (en) * 1996-01-19 1997-11-04 Cooper Industries, Inc. Failsafe bimetallic reed having bimetal with fusible link for a circuit protector

    Also Published As

    Publication number Publication date
    JP2001526445A (en) 2001-12-18
    DE59803670D1 (en) 2002-05-08
    DE19753852A1 (en) 1999-06-17
    WO1999030338A1 (en) 1999-06-17
    US6600640B1 (en) 2003-07-29
    CA2312486A1 (en) 1999-06-17
    KR20010032739A (en) 2001-04-25
    EP1036398A1 (en) 2000-09-20

    Similar Documents

    Publication Publication Date Title
    EP1036398B1 (en) Electromagnetic relay
    DE69403022T2 (en) Device for setting the trip response value of a multi-pole circuit breaker
    DE3841365A1 (en) INSULATED-ENCLOSED SELF-SWITCH
    WO2009114890A1 (en) Trigger module for a switching device
    DE102011089251B4 (en) Tripping unit for actuating a mechanical switching unit of a device
    DE10134104B4 (en) Power supply circuit for starters
    EP1218909B1 (en) Load-disconnecting switch, especially for use in motor vehicles
    EP0231793B1 (en) Electromagnetic relay
    DE4218621A1 (en) ELECTRIC HORN OR HORN
    DE102011052003B4 (en) Switching device with overload protection device and a first and a second actuating member
    WO2005073997A1 (en) Protective switch device comprising a differential current triggering device
    DE10254038A1 (en) Auxiliary release for motor protection switches
    EP0990247B1 (en) Device for triggering an overload circuit breaker
    DE1763282C (en) Push-button operated overcurrent switch for contacting semiconductor components
    DE2610951B2 (en) Circuit breaker
    EP0671747B1 (en) Circuit with reduced direct current
    DE102009047192A1 (en) Monostable plug-in relay for use in controller or central electrical device of motor vehicle, has relay circuit for realizing electromechanical functions of relay, and electrical safety device provided for relay circuit
    DE9203984U1 (en) Magnet armature for a tripping device of a switching device
    EP0821383B1 (en) Overcurrent trip unit for an electrical installation device, particularly for a circuit breaker
    DE453082C (en) Electromagnetic overcurrent switch
    AT226415B (en) Contactless push button switch, especially for controlling elevators
    DE2827282A1 (en) CONTROL DEVICE
    DE19606255A1 (en) Automatic gas ignition system
    DE3445031A1 (en) Short-circuit-proof transistor output stage
    DE2159170C3 (en) Time switch device

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000508

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20010523

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REF Corresponds to:

    Ref document number: 59803670

    Country of ref document: DE

    Date of ref document: 20020508

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020702

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030106

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20031003

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20031031

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20040915

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050503

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050630

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051028

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051028

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20051028