EP1032941B1 - Miniaturisiertes flachspul-relais - Google Patents

Miniaturisiertes flachspul-relais Download PDF

Info

Publication number
EP1032941B1
EP1032941B1 EP98951151A EP98951151A EP1032941B1 EP 1032941 B1 EP1032941 B1 EP 1032941B1 EP 98951151 A EP98951151 A EP 98951151A EP 98951151 A EP98951151 A EP 98951151A EP 1032941 B1 EP1032941 B1 EP 1032941B1
Authority
EP
European Patent Office
Prior art keywords
micro
flat
permanent magnet
relay according
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98951151A
Other languages
English (en)
French (fr)
Other versions
EP1032941A1 (de
Inventor
Hans Diem
Werner Johler
Werner Kälin
Urs Korrodi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axicom AG
Original Assignee
Axicom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axicom AG filed Critical Axicom AG
Publication of EP1032941A1 publication Critical patent/EP1032941A1/de
Application granted granted Critical
Publication of EP1032941B1 publication Critical patent/EP1032941B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • H01H2050/007Relays of the polarised type, e.g. the MEMS relay beam having a preferential magnetisation direction

Definitions

  • the present invention relates to a microrelay consisting of a Magnetic coil system, a contact carrier body with contacts arranged therein, a permanent magnet for magnetic inference and one around his Center axis between two positions tiltable anchor and one Changeover spring system, with the magnetic coil system in the form of a flat coil system a microstructure executed on a flow plate is formed and is formed from at least one microflat coil.
  • a large number of relays are known, the coils of which are wound.
  • circuit board relays are known, one being wound Coil over a permanent magnet an armature over an induced Magnetic flux causes a tilting movement, causing changeover contact springs be operated.
  • the resulting downward is still a disadvantage here limited overall height, especially due to the space requirement of the wound coil, which limits the applicability of such relays.
  • they prove to be relative high manufacturing costs of the wound coil and the complexity as well disadvantageous.
  • EP, A1 0685864 which forms the closest prior art, describes a flat coil relay, in which the force on a current-carrying conductor is used within a magnetic field.
  • the flow between the cylindrical Shaped permanent magnet takes place in the opposite direction, whereby the resulting total flow through the coil cross-sectional area is approximately zero.
  • the two magnetic fluxes run in opposite directions Direction.
  • EP, A1 0780858 further describes a miniaturized flat coil relay with two completely separate magnetic circles, which are separated by an elastic Switch rocker are connected in spring form. There always have to be two separate permanent magnets can be used.
  • the object of the invention is to provide a microrelay of the type described in the introduction to provide that has a minimal height, contains only a few components and can be produced inexpensively in automated production.
  • the armature can be swiveled around a central axis as a 3-pole Permanent magnet or is designed as a 2-pole permanent magnet.
  • the Permanent magnet positioned on flat cores in the micro flat coils are arranged.
  • the flat coil system preferably has two individually arranged micro flat coils on.
  • FIG. 1 shows the individual modules of the microrelay in an exploded view, namely a flat coil system 1, a contact carrier body 2 and an anchor and Switch spring holder 3.
  • the flat coil system 1 consists of a flow plate 11 and two on it applied micro flat coils 12 and 13, which by means of a suitable Etching process from the field of microstructure technology in a known manner Way generated and fed via the connection lugs 26, 26 '.
  • the designed as a microstructure flat coil system 1 serves as a drive for Tilting movement of the armature 31 to actuate the changeover springs 33 and 34.
  • the contact carrier body 2 is a frame-shaped plastic injection-molded part, in which six connection lugs are held by injection molding.
  • the connecting lugs 27, 28, 29 and 27 ', 28', 29 'for the changeover contacts are provided on each of the long sides of the contact carrier body 2.
  • An armature 31 designed as a prismatic rod is arranged in the armature and switchover spring holder 3, which armature can also be designed as a permanent magnet 32.
  • the connections 35 and 36 are welded to the positions 40 and 41.
  • the armature 31 actuates the changeover springs 33 and 34 as a result of its tilting movement, which, in turn, close the working contacts 37, 37 'and the normally closed contacts 38, 38' in the appropriate position.
  • the magnetic flux ⁇ E1 induced by the excited microflat coil 12 counteracts the magnetic flux ⁇ M1 caused by the permanent magnet 32 '.
  • the movement is transmitted in a known manner to the changeover springs 33, 34, whereby the switching operation of the microrelay is triggered.
  • the resulting fluxes must be set in such a way that the tilting movement is triggered with the aid of the supporting spring action of the changeover springs 33, 34. This can be done by swapping the polarity of the power source.
  • Fig. 3 shows an embodiment in which the permanent magnet 32 in the armature 31 induces the magnetic fluxes ⁇ M1 and ⁇ M2 with different flow directions.
  • the magnetic flux ⁇ E induced by the micro flat coils 12 and 13 via the cores 15 and 16 in the permanent magnet 32 supports the magnetic flux ⁇ M2 and counteracts the magnetic flux ⁇ M1 , so that the armature 31 tilts into the working position.
  • the direction of flow of the micro-coil flux ⁇ E must be reversed, for example in a corresponding manner, as described in the section above.
  • FIG. 5 shows an exemplary embodiment which, in contrast to FIG. 2, has an armature 31 ′ which is designed as a 2-pole permanent magnet 32 ′′.
  • the magnetically conductive central core 17 increases the magnetic flux ⁇ E1 .
  • the magnetic foot ⁇ M has approximately twice the amount of the magnetic flux ⁇ E1.Therefore , the flux ⁇ M is shown as a double line.
  • ⁇ E1 is subtracted to ⁇ M
  • ⁇ E2 is added to ⁇ M , which in a corresponding manner, as explained above, causes a tilting movement of the armature 31, which is designed as a permanent magnet 'is triggered.
  • FIG. 6 shows an exemplary embodiment based on FIG. 5 with a magnetically non-conductive rotary support 17 'instead of a magnetically conductive central core.
  • a smaller magnetic flux ⁇ E1 results.
  • the ratio ⁇ E1 to ⁇ E2 is smaller than in the case of the exemplary embodiment described in FIG. 5, since there is greater resistance across the air gap during the rotating rest. The principle of operation remains the same.
  • FIG. 7 shows an exemplary embodiment according to FIG. 6, with the difference that the axis of rotation 18 "'is located at a greater distance from the flow plate 11.
  • the bearing 19 of the axis of rotation 18"' can be provided on the contact carrier body 2.
  • 8 shows an exemplary embodiment with a single microflat coil 12 'arranged around a magnetically conductive central core 17.
  • the magnetic fluxes ⁇ E1 and ⁇ M subtract, the magnetic fluxes ⁇ E2 and ⁇ M add up, which in turn enables a tilting movement of the armature 31 'designed as a permanent magnet 32 "in the manner already described.
  • the flat coil system designed as a microstructure serves as a drive for the tilting movement of the armature 31.
  • the tilting movement is achieved by corresponding interaction of the magnetic fluxes ⁇ E1 , ⁇ M1 , ⁇ E2 , ⁇ M2 , ⁇ E , ⁇ M (Fig. 2-8), as explained in detail above.
  • the armature actuates the changeover springs 33 and 34, which in turn, in the appropriate position, close the working contacts 37, 37 ', or the normally closed contacts 38, 38'.
  • the advantages of the subject of the invention are that they are low Heights can be achieved. It is essential that the invention trained flat coil system allows miniaturization of the relay. Through the Layered construction can optimally unbundle the coil from the contacts be designed. In addition, the manufacture of flat micro coils is due to the Use of modern galvanic processes in a manner known to those skilled in the art particularly inexpensive. This can be achieved by reducing the conductor insulation very high degree of utilization can be achieved. Compared to conventional wound Coils can be massively reduced in process steps during manufacture make. For example, soldering of the coil ends and also that is not necessary related use of fluxes, which for the microclimate of the relay can damage the contact. In addition, the Eisatz from inexpensive connection technologies, e.g. bonding, possible.
  • the Insulation material of the conventional insulation of the winding wires also has one negative impact on the microclimate.
  • Another advantage of the present The invention is therefore the elimination of this contact damaging Insulation material.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)
  • Micromachines (AREA)

Abstract

Mit der vorliegenden Erfindung wird ein Mikrorelais vorgeschlagen, bestehend aus einem Magnetspulsystem, einem Kontaktträgerkörper (2) mit darin angeordneten Kontakten, einem Permanentmagneten (32) und einem um seine Mittelachse zwischen zwei Stellungen kippbaren Anker (31) und einem Umschaltfedersystem, wobei das Magnetspulsystem als Flachspul-System (1) in Form einer auf einer Flussplatte (11) ausgeführten Mikrostruktur ausgebildet ist und mindestens aus einer Mikroflachspule (12') gebildet ist. Dabei kann der schwenkbare Anker (31') selbst als 3-poliger Permanentmagnet (32') oder als 2-poliger Permanentmagnet (32'') ausgebildet sein. Das beschriebene Mikrorelais weist eine minimale Bauhöhe auf und lässt sich kostengünstig in einer automatisierten Fertigung herstellen.

Description

Die vorliegende Erfindung betrifft ein Mikrorelais, bestehend aus einem Magnetspulsystem, einem Kontaktträgerkörper mit darin angeordneten Kontakten, einem Permanentmagneten für den magnetischen Rückschluss und einem um seine Mittelachse zwischen zwei Stellungen kippbaren Anker und einem Umschaltfedersystem, wobei das Magnetspulsystem als Flachspul-System in Form einer auf einer Flussplatte ausgeführten Mikrostruktur ausgebildet ist und mindestens aus einer Mikroflachspule gebildet ist.
Es ist eine Vielzahl von Relais bekannt, deren Spulen gewickelt sind. Aus der EP A1 0 373 109 sind zum Beispiel Leiterplattenrelais bekannt, wobei eine gewickelte Spule über einen Permanentmagneten einen Anker über einen induzierten Magnetfluss zu einer Kippbewegung veranlasst, wodurch Umschaltekontaktfedern betätigt werden. Nachteilig ist hier noch immer die resultierende nach unten begrenzte Bauhöhe, insbesondere durch den Platzbedarf der gewickelten Spule, was die Anwendbarkeit solcher Relais einschränkt. Zudem erweisen sich die relativ hohen Herstellkosten der gewickelten Spule und die Kompliziertheit ebenfalls als nachteilig.
Die den nächstliegenden Stand der Technik bildende EP, A1 0685864 beschreibt ein Flachspul-Relais, in welchem die Kraft auf einen stromdurchflossenen Leiter innerhalb eines Magnetfeldes verwendet wird. Der Fluss zwischen den zylindrisch geformten Permanentmagneten erfolgt in entgegengesetzter Richtung, wodurch der resultierende Gesamtfluss durch die Spulen-Querschnittsfläche annähern Null ist. Die Kraft zur Bewegung des Ankers wird ausschliesslich erzeugt durch die Leiterteile der Spule, welche senkrecht zu den Magnetflüssen 13A=>13B und 14A<=14B stehen. Die beiden Magnetflüsse verlaufen in entgegengesetzter Richtung.
Weiter beschreibt die EP, A1 0780858 ein miniaturisiertes Flachspuirelais mit zwei komplett getrennten magnetischen Kreisen, welche durch eine elastische Schaltwippe in Federform miteinander verbunden sind. Es müssen immer zwei getrennte Permanentmagnete verwendet werden.
Aufgabe der Erfindung ist es, ein Mikrorelais der einleitend beschriebenen Art vorzusehen, das eine minimale Bauhöhe aufweist, nur wenige Komponenten enthält und sich kostengünstig in einer automatisierten Fertigung herstellen lässt.
Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass der um eine Mittelachse schwenkbare Anker als 3-poliger Permanentmagnet oder als 2-poliger Permanentmagnet ausgebildet ist.
Nach einer ersten bevorzugten weiterausbildung ist der Permanentmagnet zwischen zwei in den Mikroflachspulen angeordneten Kernen positioniert.
Nach einer zweiten bevorzugten weiterausbildung ist der Permanentmagnet auf flachen Kernen positioniert, die in den Mikroflachspulen angeordnet sind.
Weitere vorteilhafte und weiterbildende Ausführungsbeispiele des Erfindungsgegenstandes können den abhängigen Ansprüchen entnommen werden.
Das Flachspul-System weist vorzugsweise zwei einzeln angeordnete Mikroflachspulen auf.
Die Erfindung wird anhand von in der Zeichnung dargestellten Ausführungsbeispielen, welche auch Gegenstand von abhängigen Patentansprüchen sind, näher erläutert.
Es zeigen schematisch:
Fig. 1
eine Ansicht der einzelnen Teile des Relais in Explosionsdarstellung,
Fig. 2
eine Innenansicht der Längsseite der Hauptelemente des Relais bei entferntem Kontaktträgerkörper,
Fig. 3
ein Ausführungsbeispiel analog jenem von Fig. 2,
Fig. 4
ein Ausführungsbeispiel analog jenem von Fig. 3,
Fig. 5
ein Ausführungsbeispiel analog jenem von Fig. 2,
Fig. 6
ein Ausführungsbeispiel analog jenem von Fig. 5,
Fig. 7
ein Ausführungsbeispiel analog jenem von Fig. 6,
Fig. 8
ein Ausführungsbeispiel des Antriebs des Mikrorelais mit einer zentral angeordneten Flachspule, und
Fig. 9
die Uebertragung der Kippbewegung des Ankers auf die Umschaltfedern.
Die vielfältigen Ausführungsformen des Erfindungsgegenstands - wie in Fig. 1 bis Fig. 8 angedeutet - können mit anderen bisher bekannten Verfahren nicht in der gleich einfachen Weise realisiert werden.
Fig 1. zeigt die einzelnen Baugruppen des Mikrorelais in Explosionsdarstellung, nämlich ein Flachspul-System 1, einen Kontaktträgerkörper 2 und einen Anker- und Umschaltfeder-Halter 3.
Das Flachspul-System 1 besteht aus einer Flussplatte 11 und zwei darauf aufgebrachten Mikroflachspulen 12 und 13, die mittels eines geeigneten Aetzverfahrens aus dem Fachgebiet der Mikrostrukturtechnik in an sich bekannter Art und Weise erzeugt und über die Anschlussfahnen 26, 26' gespeist werden. Das als Mikrostruktur ausgeführte Flachspul-System 1 dient als Antrieb für die Kippbewegung des Ankers 31 zur Betätigung der Umschaltfedern 33 und 34.
Der Kontaktträgerkörper 2 ist ein rahmenförmiger Kunststoffspritzteil, in welchem sechs Anschlussfahnen durch Umspritzen gehaltert sind. An jeder der Längsseiten des Kontaktträgerkörpers 2 sind die Anschlussfahnen 27, 28, 29, beziehungsweise 27', 28', 29' für die Umschaltkontakte vorgesehen.
Im Anker- und Umschaltfeder-Halter 3 ist ein als prismatischer Stab ausgebildeter Anker 31 angeordnet, der gleichzeitig als Permanentmagnet 32 ausgebildet sein kann. Die Anschlüsse 35 und 36 sind mit den Stellen 40 und 41 verschweisst. Wie aus Fig. 9 hervorgeht, betätigt der Anker 31 infolge seiner Kippbewegung die Umschaltfedern 33 und 34, die ihrerseits in entsprechender Stellung die Arbeitskontakte 37, 37', respektive die Ruhekontakte 38,38' schliessen.
Fig. 2 zeigt eine Innenansicht der Längsseite des erfindungsgemässen Relais, wobei die entsprechenden Seitenwände des Kontaktträgerkörpers weggeschnitten sind. Der durch die erregte Mikroflachspule 12 induzierte Magnetfluss ΦE1 wirkt dem durch den Permanentmagneten 32' bewirkten Magnetfluss ΦM1 entgegen. Der durch die erregte Mikroflachspule 13 induzierte Magnetfluss ΦE2 hingegen unterstützt den durch den Permanentmagneten 32' bewirkten Magnetfluss ΦM2 , wodurch die Anzugskraft des Teilmagneten auf der Seite des Luftspalts 14 grösser wird als die Haltekraft des Teilmagneten auf der anderen Seite, so dass der als Anker 31' ausgebildete Permanentmagnet 32' über seine Kante 18 oder seine bogenförmige Kontur 18' in die Arbeitsstellung kippt. Die Bewegung wird in bekannter Art und Weise auf die Umschaltfedern 33, 34 übertragen, wodurch der Schaltvorgang des Mikrorelais ausgelöst wird. Um den Permanentmagnet wieder in die andere Stellung zu bringen, müssen die resultierenden Flüsse derart eingestellt werden, dass mit Hilfe der unterstützenden Federwirkung der Umschaltfedern 33, 34 die Kippbewegung ausgelöst wird. Dies kann durch Vertauschen der Polarität der Stromquelle geschehen.
Fig. 3 zeigt ein Ausführungsbeispiel, worin der Permanentmagnet 32 im Anker 31 die Magnetflüsse ΦM1 und ΦM2 mit unterschiedlicher Flussrichtung induziert. Der durch die Mikroflachspulen 12 und 13 über die Kerne 15 und 16 im Permanentmagnet 32 induzierte Magnetfluss ΦE unterstützt den Magnetfluss ΦM2 und wirkt dem Magnetfluss ΦM1 entgegen, so dass der Anker 31 in die Arbeitsstellung kippt. Um den Anker wieder in die andere Stellung zu bringen, muss die Flussrichtung des Mikrospulenflusses ΦE umgekehrt werden, zum Beispiel in entsprechender Weise, wie in obigem Abschnitt beschrieben.
Die Funktionsweise des Ausführungsbeispiels gemäss Fig. 4 geschieht analog zum vorherigen Abschnitt, wobei die in den Mitten der Mikroflachspulen 12 und 13 angeordneten Kerne 15' und 16' eine Höhe aufweisen, die nur geringfügig über der Dicke der Mikrospulen liegt.
Fig. 5 zeigt ein Ausführungsbeispiel, welches im Unterschied zu Fig. 2 einen Anker 31' aufweist, der als 2-poliger Permanentmagnet 32" ausgeführt ist. Der magnetisch leitende Zentralkern 17 bewirkt eine Verstärkung des Magnetflusses ΦE1 . Der Magnetfuss ΦM hat etwa den doppelten Betrag des Magnetflusses ΦE1. Deshalb ist der Fluss ΦM als Doppellinie dargestellt. ΦE1 subtrahiert sich zu ΦM, ΦE2 addiert sich zu ΦM , wodurch in entsprechender Weise wie oben erläutert, eine Kippbewegung des als Permanentmagnet ausgebildeten Ankers 31' ausgelöst wird.
Fig. 6 zeigt ein Ausführungsbeispiel in Anlehnung an Fig. 5 mit einer magnetisch nicht leitenden Drehauflage 17' anstelle eines magnetisch leitenden Zentralkems. Infolge des sich ergebenden grösseren Widerstands bedingt durch den Luftspalt, resultiert ein kleinerer Magnetfluss ΦE1. Das Verhältnis ΦE1 zu ΦE2 ist kleiner als im Falle des unter Fig. 5 beschriebenen Ausführungsbeispiels, da sich über den Luftspalt bei der Drehauflage ein grösserer Widerstand ergibt. Das Funktionsprinzip bleibt gleich.
In Fig. 7 ist ein Ausführungsbeispiel nach Fig. 6 dargestellt, mit dem Unterschied, dass sich die Drehachse 18"' in grösserem Abstand von der Flussplatte 11 befindet. Die Lagerung 19 der Drehachse 18"' kann am Kontaktträgerkörper 2 vorgesehen werden. Fig. 8 zeigt ein Ausführungsbeispiel mit einer einzigen, um einen magnetisch leitenden Zentralkem 17 angeordneten Mikroflachspule 12'. Die Magnetflüsse ΦE1 und ΦM subtrahieren sich, die Magnetflüsse ΦE2 und ΦM addieren sich, wodurch wiederum eine Kippbewegung des als Permanentmagnet 32" ausgebildeten Ankers 31' in bereits beschriebener Weise ermöglicht wird.
Anhand der Fig. 9 wird die Funktionsweise des Mikrorelais kurz erklärt:
Das als Mikrostruktur ausgeführte Flachspul-System dient als Antrieb für die Kippbewegung des Ankers 31. Die Kippbewegung wird durch entsprechendes Zusammenwirken der Magnetflüsse ΦE1M1E2M2E, ΦM (Fig. 2-8), wie oben im Detail erläutert, ausgelöst. Der Anker betätigt infolge seiner Kippbewegung die Umschaltfedern 33 und 34, die ihrerseits in entsprechender Stellung die Arbeitskontakte 37, 37', respektive die Ruhekontakte 38, 38', schliessen.
Die Vorteile des Erfindungsgegenstandes bestehen darin, dass damit niedrige Bauhöhen erreicht werden können. Wesentlich ist, dass das erfindungsgemäss ausgebildete Flachspul-System eine Miniaturisierung des Relais erlaubt. Durch die Schichtbauweise kann eine Entflechtung der Spule von den Kontakten optimal gestaltet werden. Ausserdem ist die Herstellung der flachen Mikrospulen infolge der Anwendung modemer galvanischer Prozesse in für den Fachmann bekannter Weise besonders kostengünstig. Dabei kann durch eine Reduktion der Leiterisolation ein sehr hoher Nutzungsgrad erzielt werden. Gegenüber herkömmlichen gewickelten Spulen lässt sich eine massive Reduktion der Prozessschritte bei der Herstellung vornehmen. So entfällt beispielsweise auch ein Löten der Spulenenden und auch die damit zusammenhängende Verwendung von Flussmitteln, welche für das Mikroklima des Relais kontaktschädigend sein können. Zudem wird der Eisatz von kostengünstigen Anschlusstechnologien, zB. das Bonden, möglich. Das Isolationsmaterial der herkömmlichen Isolation der Wickeldrähte hat ebenfalls eine negative Auswirkung auf das Mikroklima. Ein weiterer Vorteil der vorliegenden Erfindung ist demzufolge das Wegfallen dieses kontaktschädigenden Isolationsmaterials. Durch die Verwendung einer Flussplatte aus Eisen als Systemträger wird eine ausserordentlich stabile Voraussetzung für die SMD-Tauglichkeit geschaffen. Hinsichtlich der SMD-Lötprozesse ist somit eine hohe Temperaturstabilität gegeben.

Claims (9)

  1. Mikrorelais, bestehend aus einem Magnetspulsystem (1), einem Kontaktträgerkörper (2) mit darin angeordneten Kontakten, einem Permanentmagneten (32) für den magnetischen Rückschluss und einem um seine Mittelachse zwischen zwei Stellungen kippbaren Anker (31) und einem Umschaltfedersystem, wobei das Magnetspulsystem (1) als Flachspul-System in Form einer auf einer Flussplatte (11) ausgeführten Mikrostruktur ausgebildet ist und mindestens aus einer Mikroflachspule (12') gebildet ist,
    dadurch gekennzeichnet, dass
    der um eine Mittelachse schwenkbare Anker (31') als 3-poliger Permanentmagnet (32') oder als 2-poliger Permanentmagnet (32") ausgebildet ist.
  2. Mikrorelais nach Patentanspruch 1
    dadurch gekennzeichnet, dass
    der Permanentmagnet (32) zwischen zwei in den Mikroflachspulen (12), (13) angeordneten Kemen (15), (16) positioniert ist.
  3. Mikrorelais nach Patentanspruch 1
    dadurch gekennzeichnet, dass
    der Permanentmagnet (32) auf flachen Kernen (15'), (16') positioniert ist, die in den Mikroflachspulen (12), (13) angeordnet sind.
  4. Mikrorelais nach einem der Patentansprüche 1 - 3, dadurch gekennzeichnet, dass zwischen den zwei Mikroflachspulen (12), (13) ein ebenfalls flach ausgebildeter, magnetisch leitender Zentralkern (17) angeordnet ist.
  5. Mikrorelais nach einem der Patentansprüche 1 - 4, dadurch gekennzeichnet, dass zwischen zwei Mikroflachspulen (12) und (13) eine magnetisch nicht leitende Drehauflage (17') angeordnet ist, worauf sich die Drehachse (18") des schwenkbaren Ankers (31') befindet
  6. Mikrorelais nach einem der Patentansprüche 1 - 5, dadurch gekennzeichnet, dass sich die Drehachse (18"') des Ankers (31') in einem definierten Abstand oberhalb der Flussplatte (11) befindet
  7. Mikrorelais nach einem der Patentansprüche 1 - 6, dadurch gekennzeichnet, dass in der Mikroflachspule (12') ein magnetisch leitender Zentralkern (17) angeordnet ist.
  8. Mikrorelais nach einem der Patentansprüche 1 - 7, dadurch gekennzeichnet, dass der Anker (31), (31') die Gestalt eines prismatischen Stabes aufweist und sich die Ankerschenkel im Querschnitt von ihrer geometrischen Mitte aus gegen aussen hin verjüngen, das Ganze derart, dass durch diese prismatische Querschnittsform der Ankerschenkel in deren Mitte eine Kante (18) als Drehachse oder eine bogenförmige Kontur (18') zur Ausführung der Schwenkbewegung entsteht.
  9. Mikrorelais nach einem der Patentansprüche 1 - 8, dadurch gekennzeichnet, dass das Flachspul-System (1) mindestens angenähert parallel zu der neutralen Mittellage des Ankers (31), (31') angeordnet ist.
EP98951151A 1997-11-20 1998-11-06 Miniaturisiertes flachspul-relais Expired - Lifetime EP1032941B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH267697 1997-11-20
CH02676/97A CH692829A5 (de) 1997-11-20 1997-11-20 Mikrorelais als miniaturisiertes Flachspul-Relais.
PCT/CH1998/000475 WO1999027548A1 (de) 1997-11-20 1998-11-06 Miniaturisiertes flachspul-relais

Publications (2)

Publication Number Publication Date
EP1032941A1 EP1032941A1 (de) 2000-09-06
EP1032941B1 true EP1032941B1 (de) 2002-05-08

Family

ID=4239086

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98951151A Expired - Lifetime EP1032941B1 (de) 1997-11-20 1998-11-06 Miniaturisiertes flachspul-relais

Country Status (6)

Country Link
US (1) US6492887B1 (de)
EP (1) EP1032941B1 (de)
AU (1) AU9733298A (de)
CH (1) CH692829A5 (de)
DE (1) DE59804089D1 (de)
WO (1) WO1999027548A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496612B1 (en) 1999-09-23 2002-12-17 Arizona State University Electronically latching micro-magnetic switches and method of operating same
US7027682B2 (en) 1999-09-23 2006-04-11 Arizona State University Optical MEMS switching array with embedded beam-confining channels and method of operating same
US6469602B2 (en) * 1999-09-23 2002-10-22 Arizona State University Electronically switching latching micro-magnetic relay and method of operating same
US6794965B2 (en) 2001-01-18 2004-09-21 Arizona State University Micro-magnetic latching switch with relaxed permanent magnet alignment requirements
EP1399939A4 (de) 2001-05-18 2006-11-15 Microlab Inc Mikromagnetische riegelschalterkapselung
US6633158B1 (en) * 2001-09-17 2003-10-14 Jun Shen Micro magnetic proximity sensor apparatus and sensing method
US7301334B2 (en) * 2001-09-17 2007-11-27 Schneider Electric Industries Sas Micro magnetic proximity sensor system
US20030169135A1 (en) 2001-12-21 2003-09-11 Jun Shen Latching micro-magnetic switch array
US6836194B2 (en) 2001-12-21 2004-12-28 Magfusion, Inc. Components implemented using latching micro-magnetic switches
US20030179057A1 (en) 2002-01-08 2003-09-25 Jun Shen Packaging of a micro-magnetic switch with a patterned permanent magnet
US20030137374A1 (en) 2002-01-18 2003-07-24 Meichun Ruan Micro-Magnetic Latching switches with a three-dimensional solenoid coil
US20030222740A1 (en) 2002-03-18 2003-12-04 Microlab, Inc. Latching micro-magnetic switch with improved thermal reliability
JP2003331674A (ja) * 2002-05-14 2003-11-21 Konica Minolta Holdings Inc スイッチ及び画像形成装置
KR100547217B1 (ko) 2002-07-31 2006-01-26 마츠시다 덴코 가부시키가이샤 마이크로 릴레이
WO2004027799A2 (en) 2002-09-18 2004-04-01 Magfusion, Inc. Method of assembling a laminated electro-mechanical structure
US20040121505A1 (en) 2002-09-30 2004-06-24 Magfusion, Inc. Method for fabricating a gold contact on a microswitch
US7202765B2 (en) 2003-05-14 2007-04-10 Schneider Electric Industries Sas Latchable, magnetically actuated, ground plane-isolated radio frequency microswitch
US7215229B2 (en) 2003-09-17 2007-05-08 Schneider Electric Industries Sas Laminated relays with multiple flexible contacts
US20050083157A1 (en) 2003-10-15 2005-04-21 Magfusion, Inc. Micro magnetic latching switches and methods of making same
US7342473B2 (en) 2004-04-07 2008-03-11 Schneider Electric Industries Sas Method and apparatus for reducing cantilever stress in magnetically actuated relays
US7482899B2 (en) * 2005-10-02 2009-01-27 Jun Shen Electromechanical latching relay and method of operating same
US8174343B2 (en) * 2006-09-24 2012-05-08 Magvention (Suzhou) Ltd. Electromechanical relay and method of making same
US8068002B2 (en) * 2008-04-22 2011-11-29 Magvention (Suzhou), Ltd. Coupled electromechanical relay and method of operating same
US8143978B2 (en) * 2009-02-23 2012-03-27 Magvention (Suzhou), Ltd. Electromechanical relay and method of operating same
US8188817B2 (en) * 2009-03-11 2012-05-29 Magvention (Suzhou) Ltd. Electromechanical relay and method of making same
US8159320B2 (en) 2009-09-14 2012-04-17 Meichun Ruan Latching micro-magnetic relay and method of operating same
US8378766B2 (en) * 2011-02-03 2013-02-19 National Semiconductor Corporation MEMS relay and method of forming the MEMS relay
US8847715B2 (en) * 2011-09-30 2014-09-30 Telepath Networks, Inc. Multi integrated switching device structures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714736B2 (ja) * 1992-06-01 1998-02-16 シャープ株式会社 マイクロリレー
JP3465940B2 (ja) * 1993-12-20 2003-11-10 日本信号株式会社 プレーナー型電磁リレー及びその製造方法
US5531018A (en) * 1993-12-20 1996-07-02 General Electric Company Method of micromachining electromagnetically actuated current switches with polyimide reinforcement seals, and switches produced thereby
FR2742917B1 (fr) * 1995-12-22 1998-02-13 Suisse Electronique Microtech Dispositif miniature pour executer une fonction predeterminee, notamment microrelais
US6094116A (en) * 1996-08-01 2000-07-25 California Institute Of Technology Micro-electromechanical relays

Also Published As

Publication number Publication date
US6492887B1 (en) 2002-12-10
CH692829A5 (de) 2002-11-15
DE59804089D1 (de) 2002-06-13
AU9733298A (en) 1999-06-15
WO1999027548A1 (de) 1999-06-03
EP1032941A1 (de) 2000-09-06

Similar Documents

Publication Publication Date Title
EP1032941B1 (de) Miniaturisiertes flachspul-relais
EP2831900B1 (de) Gepoltes elektromagnetisches relais und verfahren zu seiner herstellung
DE10084599B4 (de) Elektromagnetische Schaltvorrichtung
DE3843359C2 (de)
EP0593526B1 (de) Elektromagnetisches relais
DE3686808T2 (de) Polarisiertes elektromagnetisches relais.
DE2632126B1 (de) Polarisiertes Miniaturrelais
DE69019866T2 (de) Polarisiertes elektromagnetisches Relais.
DE60223566T2 (de) Bistabiler magnetischer aktuator
DE3047608C2 (de) Elektromagnetisches Relais
DE2811378C2 (de)
EP0096350A2 (de) Elektromagnetisches Drehankerrelais
DE3249864C2 (de)
DE3124412C1 (de) Polarisiertes elektromagnetisches Kleinrelais
DE69111310T2 (de) Polarisiertes elektromagnetisches Relais schmaler Bauform.
EP0192928A1 (de) Elektromagnetisches Relais
DE3528090C1 (de) Elektromagnetisches Relais
DE3225777A1 (de) Polarisiertes relais
DE3223867C2 (de) Polarisiertes Relais
EP0795186A1 (de) Elektromagnetisches schaltgerät
DE2128557C (de) Polarisiertes Relais
EP0373109B1 (de) Polarisiertes Leiterplattenrelais
DE3202580A1 (de) Relais mit brueckenkontaktanordnung und verfahren zu deren herstellung
DE2463132C3 (de) Elektromagnetisches Schaltgerät
DE2557901C2 (de) Bistabiles elektromagnetisches Relais

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 20010306

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020508

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE BREITER + WIEDMER AG

REF Corresponds to:

Ref document number: 59804089

Country of ref document: DE

Date of ref document: 20020613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020808

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051102

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051117

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20051125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060102

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: AXICOM LTD

Free format text: AXICOM LTD#SEESTRASSE 295, POSTFACH 220#8804 AU-WAEDENSWIL (CH) -TRANSFER TO- AXICOM LTD#SEESTRASSE 295, POSTFACH 220#8804 AU-WAEDENSWIL (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061106

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130