EP1021274B1 - Method of making articles in sheet form, particularly abrasive articles - Google Patents
Method of making articles in sheet form, particularly abrasive articles Download PDFInfo
- Publication number
- EP1021274B1 EP1021274B1 EP97948245A EP97948245A EP1021274B1 EP 1021274 B1 EP1021274 B1 EP 1021274B1 EP 97948245 A EP97948245 A EP 97948245A EP 97948245 A EP97948245 A EP 97948245A EP 1021274 B1 EP1021274 B1 EP 1021274B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- particles
- flame
- polymeric sheet
- nozzle
- polymeric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000002245 particle Substances 0.000 claims description 175
- 238000000034 method Methods 0.000 claims description 40
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 11
- 239000006229 carbon black Substances 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 7
- 239000011324 bead Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 239000003245 coal Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000002893 slag Substances 0.000 claims description 3
- 229910052580 B4C Inorganic materials 0.000 claims description 2
- 229910052582 BN Inorganic materials 0.000 claims description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 2
- 229910003460 diamond Inorganic materials 0.000 claims description 2
- 239000010432 diamond Substances 0.000 claims description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims description 2
- 239000002223 garnet Substances 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 description 40
- 238000000576 coating method Methods 0.000 description 29
- 239000000463 material Substances 0.000 description 27
- 229920000642 polymer Polymers 0.000 description 25
- 239000011248 coating agent Substances 0.000 description 22
- 230000008569 process Effects 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 11
- 230000001070 adhesive effect Effects 0.000 description 11
- 239000010410 layer Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000007921 spray Substances 0.000 description 9
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- -1 polyethylene Polymers 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000004677 Nylon Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 238000005266 casting Methods 0.000 description 6
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 6
- 229920001778 nylon Polymers 0.000 description 6
- 229920001169 thermoplastic Polymers 0.000 description 6
- 239000004416 thermosoftening plastic Substances 0.000 description 6
- 239000007822 coupling agent Substances 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 229920000554 ionomer Polymers 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 229920001568 phenolic resin Polymers 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 4
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical compound C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 239000012745 toughening agent Substances 0.000 description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 3
- 229920003182 Surlyn® Polymers 0.000 description 3
- 239000003082 abrasive agent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 229920003298 Nucrel® Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 102100031746 Bone sialoprotein 2 Human genes 0.000 description 1
- 229920003261 Durez Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920003317 Fusabond® Polymers 0.000 description 1
- 101000707248 Homo sapiens Bone sialoprotein 2 Proteins 0.000 description 1
- 229920002633 Kraton (polymer) Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 239000004957 Zytel Substances 0.000 description 1
- 229920006102 Zytel® Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 125000006177 alkyl benzyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- ABOYDMHGKWRPFD-UHFFFAOYSA-N phenylmethanesulfonamide Chemical class NS(=O)(=O)CC1=CC=CC=C1 ABOYDMHGKWRPFD-UHFFFAOYSA-N 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000010094 polymer processing Methods 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000010433 powder painting Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical class OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000001052 yellow pigment Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D11/00—Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D11/00—Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
- B24D11/001—Manufacture of flexible abrasive materials
- B24D11/005—Making abrasive webs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
- B24D18/0054—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for by impressing abrasive powder in a matrix
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/65—Processes of preheating prior to molding
Definitions
- the present invention generally relates to a method of making an article, particularly an abrasive article, comprising embedding heated particles into a polymeric sheet substrate using a flame or thermal sprayer.
- Coated abrasive articles are conventionally produced by a multi-step coating process which typically involves applying a first polymeric binder or adhesive (known as a make coat) to a backing sheet or substrate; depositing abrasive particles on the make coat; drying and/or curing the make coat; and optionally, applying a second polymeric binder or adhesive (known as a size coating) to further aid the bond or adhesion of the abrasive particles to the sheet.
- a first polymeric binder or adhesive known as a make coat
- a second polymeric binder or adhesive known as a size coating
- U.S. -A-2,712,987 reports a process of making an abrasive belt by softening a nylon substrate with a suitable solvent, and then distributing abrasive particles over the softened surface. The particles become embedded by gravity in the softened surface, after which any remaining solvent is evaporated and the nylon is hardened.
- U.S.-A-2,899,288 (Barclay) also reports a process for making an abrasive product in which a thermoplastic backing sheet is softened by heat and then abrasive particles are spread over the softened surface and pressed into the sheet by nip rollers.
- U.S.-A-2,411,724 reports a method for making an endless tubular abrasive element for a tool such as a rasp or file.
- a thermoplastic or thermosetting polymer is extruded to form a backing and, while the backing is hot, abrasive particles are blown into the backing which is then solidified.
- U.S. -A-3,813,231 reports a process where the abrasive particles are distributed over the surface of a polymeric film, which is then heated in a platen press to bond the particles to the film.
- US-A-4 388 373 which is regarded as the closest prior art, relates to flame spraying mineral coatings onto plastic substrates and compositions suitable thereof.
- the plastic substrates can be flame sprayed with a mineral powder which has been admixed with small amounts of nylon and epoxy polymers in powder form.
- Pavement marking materials and retroreflective articles such as used on streets and in cross walks and on traffic signs use light reflective particles typically glass beads, bonded to or into a sheet of flexible and weather resistant sheet material. These types of articles have been made in many of the same processes as used to make abrasive articles except that light reflective particles are adhered to the substrate.
- One embodiment of the present invention is a method of making a sheet article, comprising the steps of passing particles through a thermal sprayer to heat the particles and impinging the heated particles into a polymeric sheet so that the particles are at least partially embedded in the polymeric sheet.
- the polymeric sheet is heated before impingement of the heated particles.
- One preferred method of softening the sheet is by the heat from the thermal sprayer.
- the resulting sheet article may be, for example, an abrasive article, a retroreflective article (such as retroreflective traffic signs), a pavement marking article, or a traction or non-skid article.
- Another embodiment of the present invention is a method of using a flame sprayer as defined in claim 12.
- FIG. 1 is a cross-section of one embodiment of an article made according to the present invention.
- FIG. 2 is a cross-section of an alternate embodiment of an article made according to the present invention.
- FIGs. 3a and 3b are schematics of a plurality of conventional flame sprayers.
- FIG. 4 is a schematic of a process of the present invention.
- FIGs. 5a and 5b are isometric and cross-sectional views of one type of flame sprayer apparatus.
- FIGs. 6a and 6b are isometric and cross-sectional views of another type of flame sprayer apparatus.
- FIG. 7 is an isometric view of a process embodying the present invention.
- the present invention provides a method of making a polymeric sheet or polymeric material having particles therein.
- FIG. 1 illustrates article 10 comprising polymeric sheet or substrate 12 having particles 14 embedded therein. Particles 14 are embedded in substrate 12 while particles 14 are hot and preferably while substrate 12 is at least partially molten or softened.
- FIG. 2 illustrates another embodiment of the invention, article 20.
- FIG. 4 is a schematic of one embodiment of the process of the present invention.
- Polymeric resin stored in hopper 41 is fed into extruder 42 which then produces polymeric sheet 40.
- Particles 44 stored in hopper 49, are fed to flame sprayer 45 which heats particles 44 and impinges them into substrate 40.
- substrate 40 is in direct contact with casting roll 43 during the time that heated particles 44 are being impinged into substrate 40.
- Resulting article 50 is collected on take-up roll 52.
- Flame sprayer 45 is fueled by combustion gas fed from source 48.
- a polymeric sheet or polymeric substrate which may be used in the method of the present invention generally has properties appropriate for the intended use of a resulting article.
- the polymer sheet or substrate should have a relatively high melt temperature, be heat and water resistant, and have a degree of toughness appropriate to its use.
- the polymer should be resistant to both ultraviolet light and environmental conditions (such as freeze/thaw cycles).
- the polymeric sheet may be either a thermoplastic, thermoplastic elastomer, thermosetting material, or combinations of these materials. If combined, it is preferred that the mixture be homogenous. However, in some instances, it may be preferred that the polymeric sheet have areas of different materials, depending on the desired properties.
- the polymeric material is either a thermoplastic or thermoplastic elastomer. Suitable thermoplastic materials include polyethylene, polyesters. polystyrenes, polycarbonates, polypropylene, polyamides, polyurethanes, or related mixtures.
- thermoplastic polymeric materials include "SURLYN", an ionically crosslinked polymer derived from ethylene/methacrylic acid copolymers and "NUCREL", an ethylene acid copolymer both commercially available from DuPont, as well as “3365” polypropylene commercially available from Fina Oil & Chemical.
- suitable thermoset materials include phenolic resins, rubbers, polyvinyl chlorides, nylon, acrylics and acetates.
- the polymeric sheet or substrate is preferably in the form of a sheet or web, that is, having a width and length significantly greater than the thickness of the substrate.
- the sheet is generally 25 micrometers to 2.5 millimeters (1 mil to 100 mils) thick, and may range in width from about 3 cm to 1 meter or greater.
- the sheet can be a single layer of polymer or multilayered. In some situations, it may be desired to use a polymeric web comprising fibers, such as a lofty nonwoven web. In other situations, it may be desired to add reinforcing fibers, for example, fine thread-like pieces with an aspect ratio of at least about 100:1, to the polymeric web. Preferably, such reinforcing fibers or fibrous material is distributed throughout the polymeric web.
- a suitable sheet or web may be extruded directly before impingement of the particles.
- Any suitable extruder may be used to provide the polymeric sheet or substrate.
- extruders include twin screw and single screw extruders.
- the barrel of the extruder may optionally be rifled.
- the diameter of the barrel may vary within the range from about 25 mm to 30 cm, depending on the desired production output.
- the length to diameter ratio for the screw of the extruder depends on the desired output and on the types of polymer to be extruded. Suitable length to diameter ratios typically range from 24:1 to 48:1. Typical screw speeds are in a range of from 5 rpm to 550 rpm.
- a processing agent or lubricant to the polymer before extruding to help in the extrusion process.
- Extrusion of the polymeric sheet directly prior to impingement of the heated particles is generally preferred because the polymer may still be in a softened, or even semi-molten state, at the impingement point which improves the embedding of the particles.
- Preformed films may be a layered material, that is, having multiple layers.
- a polymeric material may be layered with a second polymer layer or with a conventional backing such as paper, cloth, or metal foil. It is feasible to use multi-layered films having as many as 30 and more layers.
- the various layers may be laminated together or may be co-extruded.
- the paper, cloth, or any other layer may be treated with a resinous adhesive or other primer or treatment to modify the physical properties of the layer.
- the provided heat of the thermal sprayer may also soften the film material in addition to heating of the particles.
- the preformed polymeric film may be softened, for example by heated nip rolls or an oven, prior to impingement of the particles.
- a resin, adhesive or other primer or coating for example ethylene acrylic acid or any other suitable primer, on the polymeric web prior to impingement of the particles.
- additives may be loaded into the extruder so that the additive is homogeneous throughout the polymer.
- Useful additives include, for example, pigments, dyes, reinforcing materials, toughening agents, coupling agents, anti-static compounds (for example carbon black or humectants), anti-oxidants, polymer processing additives, plasticizers, fillers (including grinding aids which are well known in the abrasives art), stabilizers, expanding agents, suspending agents, initiators, photosensitizers, lubricants, wetting agents, surfactants, foaming agents and fire retardants. The amounts of these additives are selected to provide the properties desired.
- Toughening agents may be added to the polymer to increase the impact resistance of the polymer.
- toughening materials include rubber-type polymers and plasticizers. Specific examples of rubber-type toughening materials include toluene sulfonamide derivatives, styrene butadiene copolymers polyether backbone polyamide commercially available from Atochem under the trade designation "PEBAX”, rubber grafted onto nylon commercially available from DuPont under the trade designation "ZYTEL FN", and a triblock polymer of styrene-ethylene butylene-styrene commercially available from Shell Chemical Co. under the trade designation "KRATON 1901X”. Typically a polymer will contain between about 1% to 30% toughener, but this range may vary depending upon the particular toughening agent employed.
- plasticizers examples include polyvinyl chloride, dibutyl phthalate, alkyl benzyl phthalate, polyvinyl acetate, polyvinyl alcohol, cellulose esters, phthalate, silicone oils, adipate and sebacate esters, polyols, polyol derivatives, tricresyl phosphate and castor oil.
- Coupling agents may be added to the polymer to increase the adhesion of the polymer to the particles.
- useful coupling agents include "FUSABOND” from DuPont and "UNITE” from Artistech Chemical Corp., Pittsburgh, PA.
- One embodiment of the present invention heats particles with a thermal sprayer and then impinges the heated or hot particles into the polymeric sheet.
- the polymeric sheet is softened, preferably to the point where it is at least partially molten.
- the polymeric sheet is generally softened by thermal energy or radiation.
- suitable thermal energy sources include ovens and furnaces, heated nip or calendar rolls, flames, infrared waves, microwaves, and radio frequency waves.
- radiation sources include electron beam, ultraviolet and visible light.
- the preferred method to soften the polymeric sheet is to use the heat of the same flame sprayer used for impingement of the particles.
- Flame sprayers known in the art are generally not designed for use in sheet or web coating applications. Most commercial flame sprayers are designed to coat small pieces, for example, individual parts, via hand held or robot controlled spray guns. Examples of typical uses for flame spray guns include powder painting farm machinery and construction equipment, and retrofit machine parts and components.
- a conventional flame sprayer has a single nozzle which can coat an area approximately one to four inches wide (approximately 2.5 to 10 cm). Because of this narrow coverage width, numerous nozzles would therefore be required to span a wide web. The use of multiple nozzles can produce a very non-uniform temperature gradient across the substrate being heated.
- FIGs. 3a and 3b show methods used to provide a wide coating area using multiple conventional flame sprayers. In both FIGs. 3a and 3b, multiple conventional flame sprayers are arranged to cover a set width. The arrangement in FIG. 3a utilizes three flame sprayers and the arrangement in FIG. 3b utilizes four flame sprayers to provide coverage over the width.
- the temperature gradient across a set width is non-uniform.
- areas “a1” and “a2” receive either less heat or even no heat from the multiple flame sprayers and resultant heated particles than the areas thoroughly covered by the spray from these nozzles.
- areas “b1", “b2” and “b3” receive more heat than the areas with no overlap.
- areas such as “a1”, “a2”, “b1”, “b2” and “b3” the density or coverage of resultant heated particles will not be uniform in the areas directly under the spray because of the inconsistent heating.
- Areas “a1” and “a2” may be completely devoid of particles after the spraying processes, because those areas are not within the spray pattern of the flame sprayers. Alternately, areas “b1", “b2”, and “b3” may have too great a particle density, or even possibly, the heat from the four flame sprayers and heated particles could be so great that holes are melted in the polymeric web.
- a thermal sprayer which may be used in the method of the present invention comprises a wide elongated nozzle having an equal amount of energy (joules or BTU) output across its width.
- the width of the nozzle (that is, in the cross-web direction), can generally be about 2.5 cm to 1 meter, preferably about 45 cm to 90 cm, although a nozzle 6 meters in width could easily be constructed and used. It is preferable that the nozzle span the entire desired width of the web substrate. Otherwise, several nozzles may be arranged across the width of the web, however this should generally be avoided because the same problems as shown in FIGs. 3a and 3b may occur.
- the thickness of the nozzle (that is, the width of the nozzle in the down-web direction) at the point of exit of the flame, can generally be 1 mm to at least 5 cm, preferably 0.5 cm to 3 cm.
- the nozzle is generically described as a slot or a ribbon, that is, having a width (that is, cross web) substantially greater than its thickness (that is, downweb). It is preferred that the width of the nozzle is at least 1.5 times greater than the thickness, preferably at least 10 times greater, more preferably at least 50 times greater.
- a thermal sprayer or slot burner differs from a conventional flame sprayer only in that for the thermal sprayer or slot burner the flame itself does not emit from the nozzle of the sprayer, but rather, gas heated by a flame source emits.
- the resulting properties and mode of operation of a thermal sprayer or slot burner is very similar to those of a flame sprayer, and can be considered to be essentially equivalent.
- FIGs. 5a and 5b show a preferred thermal sprayer 45.
- Flame sprayer 45 has elongate nozzle 56 which is generally hollow throughout and has a pattern of holes created by a metal ribbon through which flame 57 emits. Particles 44 are impinged from tubes 59 which can be adjacent yet outside of nozzle as shown in FIG. 5a. Alternatively, tubes 59 can pass through the interior of nozzle 56a as shown in FIG. 6a.
- FIG. 5b is a schematic of the cross section of nozzle 56 fitted with ribbon burner 57 and baffles 58. Flame 70 is shown emitting from nozzle 56.
- the flame emits from generally the entire width of the nozzle.
- Tubes generally spaced equally along the width of the nozzle, carry the particles which are eventually impinged into the heated polymer web.
- the tubes are typically located adjacent the nozzle outside of the area of the flame (that is, just on the outer edge of the nozzle). Alternatively, the tubes may pass through the nozzle itself so that the particles are ejected from within the area of the flame.
- the tubes are spaced equidistant down the width of the nozzle with approximately 2.54 cm from the center of one tube to the center of the next tube.
- the tube cross-sectional area may be any known shape (that is, square, circle, ellipse, rectangle, etc.) but the cross-sectional area is generally circular with the diameter of the tubes generally about 0.6 cm but alternatively may be between about 0.08 to 5 cm.
- the tubes are preferably copper tubes, but may be made of any material which will withstand the heat of the flame, for example, stainless steel, ceramic lined tubes, and high temperature plastic tubes (TeflonTM and silicone).
- the flame of the sprayer is fed by a combustion gas including air, oxygen. nitrogen, and/or other gas blends provided by source 48.
- the temperature of the flame is dictated by the combustion gas composition (that is, ratios of gases such as propane, oxygen, natural gas, and/or air). Examples of combustion gases include, but are not limited to. methane, propane, butane, and natural gas.
- the temperature emitting from the nozzle is preferably within the range of 1200 to 2880°C (2200 to 5200°F). Heat output from the flame is generally dictated by the flow rate of the feed gas.
- Traditional flame sprayers are designed to consume a great amount of energy, on the order of 20,770-83,100 kJ/cm (50,000-200,000 BTU/inch) of coating area.
- amounts of energy of about 519 to 12,460 kJ/cm (1250 to 30,000 BTU/in) are used. It is desired that there are minimal fluctuations in temperature and amounts of energy (joules or BTUs) across the width.
- FIG. 5a depicts how the particulate stream (denoted as vector 100) and flame 70 intersect.
- the angle between the particulate stream along vector 100 and flame 70 may vary from between 0° to 180°, but is preferably between about 10° to 60°.
- the angle between the particle stream and the flame is measured as the inclusive angle between particulate stream vector and flame when viewed from the perspective of nozzle 56.
- FIG. 5a shows an angle of approximately 60° between the particulate stream 100 and flame 70.
- An angle of 0° would exist when the particulate stream and the flame are parallel and in the same direction; an angle of 90° would exist when the particulate stream is perpendicular to the flame; and an angle of 180° would exist when the particulate stream is parallel to the flame but in the opposite direction.
- an external force such as for example gravity or a magnetic or electrostatic field, would also need to be used to orient the particles toward the heated polymeric sheet.
- Particles 44 are heated by flame 70 as they pass either through or in close proximity to the flame.
- the resulting temperature of particles 44 can be adjusted by altering the angle of intersection between the particulate stream and the flame to change the residence time in the flame. Additionally, the initial temperature of the particles and the temperature of the flame will impact the resulting temperature of the particles.
- the amount of heating and softening of the polymeric sheet by the flame may be controlled, for example, by the distance between the polymeric sheet and the nozzle, the width of the nozzle, optional multiple nozzles, by the temperature and amount of energy (joules or BTUs) produced by the flame, and by the temperature of the particles. It may also be controlled by the casting or back-up roll used (shown as casting roll 43 in FIG. 4), the line speed of the process, and the thickness of the polymeric web.
- a preferred flame sprayer consumes significantly less energy than a conventional flame sprayer because of the continuous, non-overlapping method which provides complete coverage across the web.
- Most conventional flame sprayers are designed to heat any particles which pass through its flame to at least 1000°C, generally several thousand degrees.
- the preferred flame sprayer is designed to heat the particles to only several hundred degrees, generally 93°C (200°F) to 316°C (600°F), however, colder and hotter temperatures can be obtained by, for example, increasing particle speed and increasing the energy of the flame (joule/cm or BTU/inch), respectively.
- the preferred flame sprayer generally consumes approximately 85%, generally 90%, and preferably 95% less energy (or fuel) to produce the same particle temperature.
- Another conventional flame sprayer designed specifically for powder coating, commercially available from Plastic Flamecoat Systems under the trade designation "124 POWDER MASTER” utilizes approximately 400 cm 3 /sec (51 SCFH) for a 1 inch coating area, or 4837 cm 3 /sec (617 SCFH) for a 12 inch wide spray area.
- 124 POWDER MASTER utilizes approximately 400 cm 3 /sec (51 SCFH) for a 1 inch coating area, or 4837 cm 3 /sec (617 SCFH) for a 12 inch wide spray area.
- a preferred flame sprayer utilizes approximately 196 cm 3 /sec (25 SCFH) for a 12 inch width to obtain the same particle temperature.
- the nozzle of the thermal sprayer may optionally be cooled with jets of air or by water or other heat transfer fluids. Cooling of the nozzle helps to minimize the amount of material which may become adhered to the nozzle surface. Where a low melting particle (for example, phenolic resin) is being used, cooling of the nozzle is especially useful for minimizing the build-up of resin on the nozzle.
- a low melting particle for example, phenolic resin
- a multiplicity of wide nozzles may be used in series in the down-web direction of the polymeric web substrate.
- Several rows of nozzles can be used to apply different types of particles.
- the first nozzle could spray a layer of brown aluminum oxide particles
- a second nozzle could spray ceramic alumina abrasive particles
- a third nozzle could overspray a polymeric size coating.
- Several rows of nozzles could alternately be used to increase to coating speed by applying several layers of the same particulate. Additional nozzles could also be used to preheat or flame-treat the polymeric web substrate prior to impingement of the particles.
- Examples of usable particles for use in the present invention include, but are not limited to, abrasive particles, reflective (or retroreflective) particles, and friction particles.
- the average size of the particles is generally 5 to 6550 micrometers, preferably 25 to 500 micrometers.
- abrasive particle sizes useful in the method of the present invention include 7 to 6545 micrometers (approximately ANSI Grade 900 to 4).
- Examples of abrasive particles include fused aluminum oxide (including fused alumina-zirconia), ceramic aluminum oxide, silicon carbide (including green silicon carbide), garnet, diamond, cubic boron nitride, boron carbide, chromia, ceria, and combinations thereof.
- abrasive particles may be blended or mixed prior to being fed through the thermal sprayer, though it is recommended that the different particles be comparable in size for the sake of heat and mass transfer requirements.
- a retroreflective material 30 to 850 micrometer particles are particularly useful. Glass and ceramic particles such as beads and bubbles are typically used as particles in retroreflective sheet materials. Examples of particles generally used for friction surfaces include coal slag, graphite, carbon black, aluminum oxide, silicon carbide, quartz, and ceramic spheres. In some instances, metal particles may be desirable. To produce a conductive material, carbon black or graphite particles can be used.
- Thermoplastic and thermosetting particles for example polyester and nylon, and melamine formaldehyde and phenol formaldehyde, could also be used as the particle, but care should be taken so that the particles retain their integrity when being applied by the thermal sprayer.
- These polymeric particles may include fillers in the polymer such as graphite or carbon black or any other fillers.
- the particles used in the present invention may be irregular or precisely shaped.
- Irregularly shaped abrasive particles may be made, for example, by crushing a precursor material.
- shaped abrasive particles include rods (having any cross-sectional area), pyramids, and thin faced particles having polygonal faces. Shaped abrasive particles and methods of making them are described, for example, in U.S.-A-5,090,968 (Pellow) and 5,201,916 (Berg et al.).
- Polymeric particles can be any shape either irregular or shaped (for example, cubes, spheres, discs, etc.). Spherical glass or polymeric beads are typically used for pavement marking applications.
- the particles used in the present invention may be in the form of an agglomerate, that is, multiple particles bonded together to form an agglomerate.
- Abrasive agglomerates are further described in U.S.-A-4,311,489 (Kressner), 4,652,275 (Bloecher et al.), 4,799,939 (Bloecher et al.), 5,039,311 (Bloecher), and 5,500,273 (Holmes et al.).
- a surface coating on the particles may be used to increase the adhesion of the polymeric sheet to the particle, alter the abrading characteristics of abrasive particles, improve the processability through the thermal sprayer, or for other desired purposes.
- Examples of surface coatings on abrasive particles are taught, for example, in U.S. -A-4,997,461 (Markhoff-Matheny et al.), 5,011,508 (Wald et al.), 5,131,926 (Rostoker), 5,213,591 (Celikkaya et al.), and 5,474,583 (Celikkaya).
- Coupling agents such as silanes, titanates, and zirconates are common coatings used on particles to increase their adhesion to organic materials.
- a particularly useful coupling agent is available from Union Carbide Corp. (Danbury, CT), under the trade designation "A-1100” brand silane coupling agent.
- Suitable particles may be preheated prior to their passage through the thermal sprayer. Preheating of the particles may be done, for example, in a rotary kiln, tunnel oven, or standard convection oven. Alternately, heated gas (generally air) may be used as the carrier gas for the particles instead of ambient temperature air.
- heated gas generally air
- the particles, once heated by the thermal sprayer and impinged into the polymeric web, are embedded in the polymeric material at least 25% as measured by a thickness of the sheet or substrate containing imbedded particle compared to total thickness of coated sheet or substrate adjusted to include the average particle size or particles not imbedded in the sheet or substrate, more preferably at least 40%, and most preferably at least 50%.
- the greater the depth of penetration of the particle into the polymeric sheet the greater the adhesion of the particle to the web.
- the greater the penetration the less exposed area of the particle remains which can be utilized.
- the desired depth of penetration of the particle into the polymeric web is approximately 60% of the particle.
- An abrasive particle in an abrasive article endures significant pressures and forces during grinding and polishing operations.
- the depth of penetration acceptable can be less because of the less intensive applications, and is generally approximately 50% penetration of the particle.
- FIG. 2 illustrates another article made by the method of the present invention.
- Article 20 comprises particles 14 embedded in polymeric substrate 12, over which is applied size coat 22.
- the size coat may be applied directly over the particles after the particles have been impinged into the polymer or the size coat may be applied at a later point in time.
- the size coating may be the same material as the base polymeric sheet or may be a different type of material.
- a size coat layer may be applied to the polymeric sheet or substrate with a similar flame sprayer apparatus.
- the size coat may be applied by a second flame sprayer located downweb from or directly adjacent a first thermal sprayer or may be applied by the same thermal sprayer which heats and impinges the particles. It is also possible to blend or mix particles which form a size coat with other types of particles (that is, abrasive particles, etc.) prior to being fed through the thermal sprayer, although it is recommended that the different particles are comparable in size for the sake of heat and mass transfer requirements.
- FIG. 7 illustrates one embodiment of applying a size coat over an abrasive article by applying a powered resin size coat with the same flame sprayer as used to impinge the abrasive particles.
- Sheet substrate 40 is extruded by extruder 42. While still slightly molten, substrate 40 passes under flame sprayer 45.
- particles 44 fed from hopper 49 are passed through a flame and heated prior to being impinged into substrate 40.
- powdered resin particles 64 fed from hopper 69 are sprayed onto particles 44 and substrate 40.
- Resulting article 60 comprises substrate 40 into which are impinged particles 44, the entire construction having a size coat thereover.
- the nozzle of the flame sprayer is cooled to decrease the amount of resin which may become melted onto and adhered to the nozzles.
- suitable size coat particles include, for example, polyester resin particles commercially available from Ferro Corp. under the trade designation “VEDOC” and from Reichhold Chemicals, Inc. under the trade designation “FINE-CLAD”, phenolic resin particles commercially available from OxyChem under the trade designations “DUREZ” and “VARCUM”, and ethylene acrylic acid particles commercially available from Sulzer-Metco under the trade designation "LTP".
- the size of the size coat particles is generally in the range of 10 to 350 micrometers, typically between 30 and 100, although larger and smaller particles may also be used.
- the thickness of the size coating is controlled by the combination of the line speed of the polymeric web and the flow rate of the size coat particles. Factors such as particle size, particle velocity, and viscosity of the particles when melted may also have an effect on coating thickness.
- a conventional liquid size coat can be applied over the polymeric web and particles by conventional means such as a roll coater or conventional spray coater.
- a size coat is generally applied as a liquid.
- a second size coat or supersize coating typically is a phenolic resin which includes either grinding aids to improve abrasive grinding performance or anti-loading agents such as stearates which decrease the amount of swarf and debris collected on the surface of the abrasive article.
- An attachment system or other additional layers may be provided on the back of the article prior to, during, or after manufacture of the article (that is, after impingement of the particles into the web).
- a pressure sensitive adhesive (PSA) coating can be co-extruded simultaneously with the polymeric sheet.
- PSA pressure sensitive adhesive
- either half of an attachment system such as a hook and loop fastener system may be laminated to the polymeric sheet or substrate once the particles have been embedded therein.
- the attachment system may be incorporated with the sheet substrate before the polymer is optionally softened and the particles embedded therein.
- FIG. 2 illustrates a pressure sensitive adhesive attachment system 26 on the back of polymeric substrate 12.
- Example 1 an abrasive article, was prepared by extruding polypropylene (commercially available from Fina Oil & Chemical of Dallas, TX under the trade designation "3365") into a 0.25 mm (10 mil) thick 30.5 cm (12 inch) wide web using a conventional single screw extruder at 100-130 rpm and 246°C (475°F). The film was cast using electrostatic pinning on a cooling roll. Approximately 10 cm after the extruder, a modified flame sprayer was positioned so it would soften the polypropylene sheet. The flame sprayer consisted of one 35.5 cm (14 inch) wide ribbon burner, commercially available from Flynn Burner Corporation, New Rochelle, NY, Designation No. HC-511-18, DP No.
- Copper particle feed tubes 0.6 cm (0.25 inch) diameter, were spaced at 5 cm (2 inch) increments along the width of the burner.
- Propane gas was fed at a rate of 157 cm 3 /sec (20 SCFH) and ambient temperature air at a rate of 3836 cm 3 /sec (488 SCFH) in order to create the flame.
- the approximate temperature was 1925°C (3500°F).
- Aluminum oxide abrasive particles (ANSI Grade 80, having an average particle size of approximately 175 micrometers) were fed through the tubing at an approximately rate of 5 meters/second and dispersed across the flame of the flame sprayer and impinged into the softened web.
- the speed of the web was approximately 4 meters/minute (13 ft/minute).
- the web was carried by idler rolls for 4.6 meters (15 feet) through ambient atmosphere to cool the web before it was wound on a take-up reel.
- the abrasive particles were embedded approximately 50% into the polymer.
- Comparative Example A was prepared by applying a 76 micrometer (3 mil) thick coating of urethane adhesive (commercially available from Mobay Chemical under the trade designation "DESMODUR”) onto a 76 micrometer (3 mil) thick polyester backing.
- urethane adhesive commercially available from Mobay Chemical under the trade designation "DESMODUR”
- Aluminum oxide abrasive particles as described in Example 1
- a size coating consisting of the same urethane adhesive was applied and dried so that the dried thickness was approximately 63.5 micrometers (2.5 mils).
- Comparative Example B was prepared by coating a 114 micrometer (4.5 mil) thick layer of ethylene acrylic acid (EAA) adhesive onto an aluminum foil backing.
- EAA ethylene acrylic acid
- the polymer was softened by heating in a funnel oven at 177°C (350°F) for approximately 45 seconds to soften the EAA.
- Aluminum oxide abrasive particles (as described in Example 1) were dropped onto the adhesive and allowed to sink into the polymer.
- the coated backing was passed through a 45.7 meter (150 foot) long tunnel oven at a speed of 18.3 meters/min (60 ft/min), which provided a residence time of 2.5 minutes, to further embed the particles.
- the temperature in the oven was 210°C (410°F). The article was removed from the oven and allowed to cool to room temperature.
- Example 1 and Comparative Examples A and B were tested for wear resistance using a Taber Abrasion Tester, Model 503, available from Taber Industries of Tonawanda, NY.
- a sample was placed on the rotating platform and a "H-18" wheel was brought into contact under a 250 gram load. The wheel contacted the sample article and "abraded" the sample. After the requisite number of cycles, the weight loss of the sample was measured. The number of cycles and the results are listed in Table 1, below.
- Ex. 1 Comp. Ex. A Comp. Ex. B Ex. 1 Comp. Ex. A Comp. Ex. B cycles 100 100 100 100 200 200 200 avg. wt. loss 0.10 0.07 0.10 0.12 0.11 0.16 std dev 0.046 0.011 0.006 0.049 0.013 0.01 No. of samples 4 18 3 4 9 3
- Example 2 a non-skid traction article, was prepared by extruding a blend of 99% by weight ethylene acid ionomer (commercially available from DuPont under the trade designation "SURLYN 1705") and 1% carbon black concentrate (50% “SURLYN 1705” and 50% carbon black by weight). (The resulting extrudate was thus 0.5% by weight carbon black).
- the blend was extruded to 0.38-0.64 mm (15-25 mil) thick 30.5 cm (12 inch) wide web using a conventional single screw extruder at 100-130 rpm and 246°C (475°F).
- the film was cast using a vacuum assist on the casting roll.
- the ionomer sheet was softened with the flame sprayer as described in Example 1.
- Coal slag particles (ANSI Grade 50/70, having an average particle size of between about 215 and 300 micrometers) were embedded into the softened web and further processed as described in Example 1. The speed of the web was approximately 6-9 meters/minute (20-30 ft/min).
- Example 3 a non-skid traction article, was prepared as described in Example 2, except that methane gas was fed at a rate of 394 cm 3 /sec (50 SCFH) and air at a rate of 3836 cm 3 /sec (488 SCFH) in order to create the flame.
- Example 4 an abrasive article, was prepared as described in Example 2 except 100% ionomer was extruded to 0.38-0.51 mm (15-20 mil) thick 35.6 cm (14 inch) wide.
- Aluminum oxide particles (ANSI Grade 80, having an average particle size of approximately 180 micrometers) were embedded into the softened web and further processed as described in Example 2. The speed of the web was approximately 7.6 meters/minute (25 ft/min).
- Example 5 an abrasive article, was prepared by extruding the ionomer of Example 4 into a 0.076-0.15 mm (3-6 mil) thick 30.5 cm (12 inch) wide film using a conventional single screw extruder at 40-70 rpm and 246°C (475°F). The film was cast using vacuum assist on the casting roll. The ionomer sheet was softened with the flame sprayer as described in Example 1.
- Aluminum oxide particles (ANSI Grade 180, having an average particle size of approximately 86 micrometers) were embedded into the softened web and further processed as described in Example 1. The speed of the web was approximately 6-9 meters/minute (20-30 ft/min).
- Example 6 a reflective pavement marking article, was prepared by extruding a yellow preblend consisting of 97% ethylene acrylic acid (commercially available from DuPont under the trade designation "NUCREL"), 1% amorphous silica, 1% titanium dioxide, and 1% yellow pigment (amine compound). The blend was extruded to 0.38-0.51 mm (15-20 mil) thick 30.5 cm (12 inch) wide film using a conventional single screw extruder at 100-130 rpm and 165°C (330°F). The film was cast using vacuum assist on the casting roll. The polymer sheet was softened with the flame sprayer as described in Example 1.
- NUCREL 97% ethylene acrylic acid
- NUCREL 1% amorphous silica
- titanium dioxide 1% titanium dioxide
- amine compound amine compound
- Glass beads having a 1.5 refractive index were embedded into the softened web and further processed as described in Example 1.
- the speed of the web was approximately 6-9 meters/minute (20-30 ft/min).
- the particles were embedded approximately 50% into the polymer.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US896091 | 1997-07-17 | ||
US08/896,091 US6024824A (en) | 1997-07-17 | 1997-07-17 | Method of making articles in sheet form, particularly abrasive articles |
PCT/US1997/020582 WO1999003642A1 (en) | 1997-07-17 | 1997-11-12 | Method of making articles in sheet form, particularly abrasive articles |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1021274A1 EP1021274A1 (en) | 2000-07-26 |
EP1021274B1 true EP1021274B1 (en) | 2002-06-26 |
Family
ID=25405614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97948245A Expired - Lifetime EP1021274B1 (en) | 1997-07-17 | 1997-11-12 | Method of making articles in sheet form, particularly abrasive articles |
Country Status (8)
Families Citing this family (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9238207B2 (en) | 1997-04-04 | 2016-01-19 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9221154B2 (en) | 1997-04-04 | 2015-12-29 | Chien-Min Sung | Diamond tools and methods for making the same |
US9868100B2 (en) | 1997-04-04 | 2018-01-16 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9199357B2 (en) | 1997-04-04 | 2015-12-01 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9463552B2 (en) | 1997-04-04 | 2016-10-11 | Chien-Min Sung | Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods |
US9409280B2 (en) | 1997-04-04 | 2016-08-09 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US6228133B1 (en) * | 1998-05-01 | 2001-05-08 | 3M Innovative Properties Company | Abrasive articles having abrasive layer bond system derived from solid, dry-coated binder precursor particles having a fusible, radiation curable component |
US6991843B2 (en) * | 1999-01-15 | 2006-01-31 | Velcro Industries B.V. | Fasteners engageable with loops of nonwoven fabrics and with other open structures, and methods and machines for making fasteners |
IT1306664B1 (it) * | 1999-05-25 | 2001-10-02 | Bp Europack Spa | Procedimento per la realizzazione di un film in materia plastica concaratteristiche migliorate, attrezzatura per realizzare il |
US6354521B1 (en) * | 2000-04-14 | 2002-03-12 | 3M Innovative Properties Company | Quick disconnect and release hose couplings |
US20010052384A1 (en) * | 2000-04-24 | 2001-12-20 | Michael Hannington | Adhesive articles with improved air egress and methods of making the same |
US7060351B2 (en) * | 2000-04-24 | 2006-06-13 | Avery Dennison Corporation | Adhesive article with improved air egress |
US6652970B1 (en) | 2000-07-07 | 2003-11-25 | 3M Innovative Properties Company | Degradable crosslinkers, compositions therefrom, and methods of their preparation and use |
US6475316B1 (en) | 2000-07-07 | 2002-11-05 | 3M Innovative Properties Company | Methods of enhancing adhesion |
KR20040012671A (ko) * | 2000-10-17 | 2004-02-11 | 네오포토닉스 코포레이션 | 반응성 증착에 의한 코팅 형성 |
CA2326257C (en) * | 2000-11-17 | 2003-07-08 | Interwrap Industries Inc. | Sheet material with anti-slip surface |
USRE42475E1 (en) | 2001-06-04 | 2011-06-21 | Velcro Industries B.V. | Fasteners engageable with loops of nonwoven fabrics and with other open structures, and methods and machines for making fasteners |
GB0114738D0 (en) * | 2001-06-16 | 2001-08-08 | Reflec Plc | Retroreflective fabric production |
US6863921B2 (en) * | 2001-09-06 | 2005-03-08 | Japan Vilene Company Ltd. | Process and apparatus for manufacturing fiber and fiber sheet carrying solid particles and fiber and fiber sheet carrying solid particles |
KR100711687B1 (ko) * | 2001-10-01 | 2007-05-02 | 엔테그리스, 아이엔씨. | 유체 온도 조절용 장치 |
US20030108700A1 (en) * | 2001-11-21 | 2003-06-12 | 3M Innovative Properties Company | Plastic shipping and storage containers and composition and method therefore |
WO2003097349A1 (en) * | 2002-05-15 | 2003-11-27 | W. R. Grace & Co. Conn | Skid resistant moisture barriers and process for making same |
US20030215607A1 (en) * | 2002-05-20 | 2003-11-20 | Horwitz David James | Scratch resistant thermoplastic article |
DE10233830A1 (de) * | 2002-07-25 | 2004-02-12 | Creavis Gesellschaft Für Technologie Und Innovation Mbh | Verfahren zur Flammpulverbeschichtung von Oberflächen zur Erzeugung des Lotus-Effektes |
US7297170B2 (en) * | 2002-07-26 | 2007-11-20 | 3M Innovative Properties Company | Method of using abrasive product |
US6833014B2 (en) * | 2002-07-26 | 2004-12-21 | 3M Innovative Properties Company | Abrasive product, method of making and using the same, and apparatus for making the same |
US7044989B2 (en) * | 2002-07-26 | 2006-05-16 | 3M Innovative Properties Company | Abrasive product, method of making and using the same, and apparatus for making the same |
US20040115477A1 (en) * | 2002-12-12 | 2004-06-17 | Bruce Nesbitt | Coating reinforcing underlayment and method of manufacturing same |
US7195799B2 (en) * | 2003-07-22 | 2007-03-27 | The Board Of Regents Of The University Of Texas System | Polymer composition for traction on ice |
US20050118397A1 (en) * | 2003-12-02 | 2005-06-02 | Horwitz David J. | Repairable thermoplastic material |
KR20050075973A (ko) * | 2004-01-19 | 2005-07-26 | 주식회사 리폼시스템 | 콘크리트 구조물 보강용 로드부재 |
CN101052853B (zh) | 2004-03-02 | 2010-06-16 | 贝卡尔特股份有限公司 | 用于传送幅料的红外线干燥设备 |
FR2867263B1 (fr) * | 2004-03-02 | 2006-05-26 | Solaronics Irt | Installation de sechage pour une bande defilante, notamment pour une bande de papier |
US7260431B2 (en) * | 2004-05-20 | 2007-08-21 | Cardiac Pacemakers, Inc. | Combined remodeling control therapy and anti-remodeling therapy by implantable cardiac device |
AU2005266935A1 (en) * | 2004-07-22 | 2006-02-02 | Cryovac, Inc. | Additive delivery laminate and packaging article comprising same |
US20070060026A1 (en) * | 2005-09-09 | 2007-03-15 | Chien-Min Sung | Methods of bonding superabrasive particles in an organic matrix |
DE102004042384A1 (de) * | 2004-09-02 | 2006-03-09 | Mtu Aero Engines Gmbh | Schleifscheibe und Verfahren zur Herstellung derselben |
SE529166C2 (sv) * | 2004-11-26 | 2007-05-22 | Pakit Int Trading Co Inc | Massaform |
WO2006076116A1 (en) | 2005-01-12 | 2006-07-20 | Avery Dennison Corporation | Adhesive article having improved application properties |
US20060210744A1 (en) * | 2005-03-17 | 2006-09-21 | Cryovac, Inc. | Retortable packaging film with grease-resistance |
US7147634B2 (en) * | 2005-05-12 | 2006-12-12 | Orion Industries, Ltd. | Electrosurgical electrode and method of manufacturing same |
US8814861B2 (en) | 2005-05-12 | 2014-08-26 | Innovatech, Llc | Electrosurgical electrode and method of manufacturing same |
US9724802B2 (en) | 2005-05-16 | 2017-08-08 | Chien-Min Sung | CMP pad dressers having leveled tips and associated methods |
US8678878B2 (en) | 2009-09-29 | 2014-03-25 | Chien-Min Sung | System for evaluating and/or improving performance of a CMP pad dresser |
US8398466B2 (en) | 2006-11-16 | 2013-03-19 | Chien-Min Sung | CMP pad conditioners with mosaic abrasive segments and associated methods |
US9138862B2 (en) | 2011-05-23 | 2015-09-22 | Chien-Min Sung | CMP pad dresser having leveled tips and associated methods |
US8393934B2 (en) | 2006-11-16 | 2013-03-12 | Chien-Min Sung | CMP pad dressers with hybridized abrasive surface and related methods |
US8622787B2 (en) * | 2006-11-16 | 2014-01-07 | Chien-Min Sung | CMP pad dressers with hybridized abrasive surface and related methods |
US20060263530A1 (en) * | 2005-05-19 | 2006-11-23 | General Electric Company | Process for making non-continuous articles with microstructures |
CN101238178B (zh) | 2005-06-29 | 2012-04-11 | 圣戈本磨料股份有限公司 | 用于研磨产品的高性能树脂 |
US9240131B2 (en) | 2007-06-04 | 2016-01-19 | Avery Dennison Corporation | Adhesive articles having repositionability or slidability characteristics |
US20090110787A1 (en) * | 2007-10-24 | 2009-04-30 | Kyle David R | Additive delivery laminate containing styrene-ethylene/butylene-styrene copolymer |
TW200940258A (en) * | 2007-11-13 | 2009-10-01 | Chien-Min Sung | CMP pad dressers |
TWI388402B (en) * | 2007-12-06 | 2013-03-11 | Methods for orienting superabrasive particles on a surface and associated tools | |
WO2010014929A2 (en) * | 2008-08-01 | 2010-02-04 | Bates Aaron P | Process for forming a reflective surface |
US8840956B2 (en) * | 2008-10-31 | 2014-09-23 | Potters Industries, Llc | Retroreflective coating and method for applying a retroreflective coating on a structure |
US20110146168A1 (en) * | 2009-12-18 | 2011-06-23 | Van Genderen Bas | Paper Laminated Stair Tread and Methods of Making and Using Same |
US20110159174A1 (en) * | 2009-12-30 | 2011-06-30 | Environtics, Vill. | Recycling using magnetically-sensitive particle doping |
CN103221180A (zh) | 2010-09-21 | 2013-07-24 | 铼钻科技股份有限公司 | 具有基本平坦颗粒尖端的超研磨工具及其相关方法 |
DE102010051090A1 (de) * | 2010-11-12 | 2012-05-31 | Carsten Malcher | Suspension zum Auftragen auf Sportgeräte |
US8758461B2 (en) | 2010-12-31 | 2014-06-24 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
CN103329253B (zh) | 2011-05-23 | 2016-03-30 | 宋健民 | 具有平坦化尖端的化学机械研磨垫修整器 |
CN103702800B (zh) | 2011-06-30 | 2017-11-10 | 圣戈本陶瓷及塑料股份有限公司 | 包括氮化硅磨粒的磨料制品 |
CN103764349B (zh) | 2011-06-30 | 2017-06-09 | 圣戈本陶瓷及塑料股份有限公司 | 液相烧结碳化硅研磨颗粒 |
GB2483750B (en) * | 2011-08-10 | 2013-05-15 | Thermagrip Ltd | Anti-slip step treatment |
EP2760639B1 (en) | 2011-09-26 | 2021-01-13 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming |
PL2797716T3 (pl) | 2011-12-30 | 2021-07-05 | Saint-Gobain Ceramics & Plastics, Inc. | Kompozytowe ukształtowane cząstki ścierne i sposób ich formowania |
CN104125875B (zh) | 2011-12-30 | 2018-08-21 | 圣戈本陶瓷及塑料股份有限公司 | 成形磨粒及其形成方法 |
EP2798032A4 (en) | 2011-12-30 | 2015-12-23 | Saint Gobain Ceramics | MANUFACTURE OF SHAPED GRINDING PARTICLES |
BR112014017050B1 (pt) | 2012-01-10 | 2021-05-11 | Saint-Gobain Ceramics & Plastics, Inc. | partícula abrasiva moldada |
WO2013106602A1 (en) | 2012-01-10 | 2013-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US9592529B2 (en) * | 2012-01-13 | 2017-03-14 | Innovative Construction Materials (H.K.) Ltd. | Weather resistive barrier with drainage surface |
US9242346B2 (en) | 2012-03-30 | 2016-01-26 | Saint-Gobain Abrasives, Inc. | Abrasive products having fibrillated fibers |
KR101996215B1 (ko) | 2012-05-23 | 2019-07-05 | 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 | 형상화 연마입자들 및 이의 형성방법 |
EP2864545B1 (en) | 2012-05-30 | 2020-08-12 | 3M Innovative Properties Company | Marking tape, method of applying and method of manufacturing the marking tape |
EP2866977B8 (en) | 2012-06-29 | 2023-01-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
RU2614488C2 (ru) | 2012-10-15 | 2017-03-28 | Сен-Гобен Абразивс, Инк. | Абразивные частицы, имеющие определенные формы, и способы формирования таких частиц |
US9074119B2 (en) | 2012-12-31 | 2015-07-07 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
ES2984562T3 (es) | 2013-03-29 | 2024-10-29 | Saint Gobain Abrasives Inc | Partículas abrasivas que tienen formas particulares y métodos de formación de dichas partículas |
TW201502263A (zh) | 2013-06-28 | 2015-01-16 | Saint Gobain Ceramics | 包含成形研磨粒子之研磨物品 |
CN110591645A (zh) | 2013-09-30 | 2019-12-20 | 圣戈本陶瓷及塑料股份有限公司 | 成形磨粒及其形成方法 |
EP3089851B1 (en) | 2013-12-31 | 2019-02-06 | Saint-Gobain Abrasives, Inc. | Abrasive article including shaped abrasive particles |
US9771507B2 (en) | 2014-01-31 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
US9803119B2 (en) | 2014-04-14 | 2017-10-31 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
MX394114B (es) | 2014-04-14 | 2025-03-24 | Saint Gobain Ceramics | Articulo abrasivo que incluye particulas abrasivas conformadas. |
WO2015184355A1 (en) | 2014-05-30 | 2015-12-03 | Saint-Gobain Abrasives, Inc. | Method of using an abrasive article including shaped abrasive particles |
US9707529B2 (en) | 2014-12-23 | 2017-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
US9914864B2 (en) | 2014-12-23 | 2018-03-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US9676981B2 (en) | 2014-12-24 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle fractions and method of forming same |
TWI634200B (zh) | 2015-03-31 | 2018-09-01 | 聖高拜磨料有限公司 | 固定磨料物品及其形成方法 |
WO2016161157A1 (en) | 2015-03-31 | 2016-10-06 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
CA3118262C (en) | 2015-06-11 | 2023-09-19 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
CN107709668B (zh) | 2015-06-18 | 2021-09-24 | 3M创新有限公司 | 热塑性道路标记带 |
IN2015CH03895A (enrdf_load_stackoverflow) | 2015-07-29 | 2015-08-14 | Wipro Ltd | |
US20180291637A1 (en) * | 2015-10-06 | 2018-10-11 | 3M Innovative Properties Company | Slip-resistant, self illuminated front lit article |
KR102313436B1 (ko) | 2016-05-10 | 2021-10-19 | 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 | 연마 입자들 및 그 형성 방법 |
ES2922927T3 (es) | 2016-05-10 | 2022-09-21 | Saint Gobain Ceramics & Plastics Inc | Procedimientos de formación de partículas abrasivas |
WO2018005677A1 (en) * | 2016-06-29 | 2018-01-04 | Saint-Gobain Ceramics & Plastics, Inc. | Coated abrasive articles and methods for forming same |
EP3519134B1 (en) | 2016-09-29 | 2024-01-17 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10865148B2 (en) | 2017-06-21 | 2020-12-15 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
US20190010335A1 (en) * | 2017-07-05 | 2019-01-10 | Saudi Arabian Oil Company | Hydrophobic coating for corrosion protection and method of fabrication |
CN109605236B (zh) * | 2019-01-27 | 2023-08-01 | 浙江工业大学 | 基于弹性模量连续变化研抛盘的层积式制备装置及方法 |
DE102019205745A1 (de) * | 2019-04-18 | 2020-10-22 | Ecocoat Gmbh | Beschichtetes abrasives Werkzeug und Verfahren zum Herstellen desselben |
KR20200136650A (ko) | 2019-05-28 | 2020-12-08 | 전한용 | 마찰성 지오멤브레인 시트의 제조방법 |
WO2021133888A1 (en) | 2019-12-27 | 2021-07-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles and methods of forming same |
WO2021133901A1 (en) | 2019-12-27 | 2021-07-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles and methods of forming same |
US12129422B2 (en) | 2019-12-27 | 2024-10-29 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles and methods of forming same |
US20220170218A1 (en) * | 2020-12-01 | 2022-06-02 | 3M Innovative Properties Company | Thermoplastic pavement marking tapes |
WO2023130053A1 (en) | 2021-12-30 | 2023-07-06 | Saint-Gobain Abrasives, Inc. | Abrasive articles and methods of forming same |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2899288A (en) * | 1959-08-11 | Method of forming an abrasive sheet | ||
US2411724A (en) * | 1943-11-12 | 1946-11-26 | Western Electric Co | Method of making tubular abrasive bodies |
US2375584A (en) * | 1944-06-12 | 1945-05-08 | Ramey Mason Lloyd | Elevator |
US2712987A (en) * | 1951-10-09 | 1955-07-12 | Hartford Special Machinery Co | Abrading belt and method of making it |
US2741508A (en) * | 1952-05-03 | 1956-04-10 | Columbia Cable & Electric Corp | Spray nozzle |
US3036928A (en) * | 1959-12-18 | 1962-05-29 | Cataphote Corp | Retroreflective composition and method of applying same |
US3190178A (en) * | 1961-06-29 | 1965-06-22 | Minnesota Mining & Mfg | Reflex-reflecting sheeting |
US3664242A (en) * | 1970-06-15 | 1972-05-23 | Minnesota Mining & Mfg | Method for marking roadways |
US4031048A (en) * | 1972-03-30 | 1977-06-21 | Minnesota Mining And Manufacturing Company | Paint composition for marking paved surfaces |
US3813231A (en) * | 1972-07-31 | 1974-05-28 | Gulf Research Development Co | Sandpaper |
US3914468A (en) * | 1973-08-29 | 1975-10-21 | Minnesota Mining & Mfg | Method for marking paved surfaces |
US4240807A (en) * | 1976-01-02 | 1980-12-23 | Kimberly-Clark Corporation | Substrate having a thermoplastic binder coating for use in fabricating abrasive sheets and abrasive sheets manufactured therewith |
US4058641A (en) * | 1976-07-02 | 1977-11-15 | Minnesota Mining And Manufacturing Company | Improved pavement marking method |
JPS5646853Y2 (enrdf_load_stackoverflow) * | 1977-11-15 | 1981-11-02 | ||
US4311489A (en) * | 1978-08-04 | 1982-01-19 | Norton Company | Coated abrasive having brittle agglomerates of abrasive grain |
US4388373A (en) * | 1981-06-02 | 1983-06-14 | Metco, Inc. | Coating plastic substrates with minerals |
JPS6074768A (ja) * | 1983-09-30 | 1985-04-27 | Canon Inc | 記録装置 |
US4652275A (en) * | 1985-08-07 | 1987-03-24 | Minnesota Mining And Manufacturing Company | Erodable agglomerates and abrasive products containing the same |
US4799939A (en) * | 1987-02-26 | 1989-01-24 | Minnesota Mining And Manufacturing Company | Erodable agglomerates and abrasive products containing the same |
US4836447A (en) * | 1988-01-15 | 1989-06-06 | Browning James A | Duct-stabilized flame-spray method and apparatus |
US4836448A (en) * | 1988-02-04 | 1989-06-06 | The Perkin-Elmer Corporation | Thermal spray gun with fan spray |
US5011508A (en) * | 1988-10-14 | 1991-04-30 | Minnesota Mining And Manufacturing Company | Shelling-resistant abrasive grain, a method of making the same, and abrasive products |
US4997461A (en) * | 1989-09-11 | 1991-03-05 | Norton Company | Nitrified bonded sol gel sintered aluminous abrasive bodies |
US5039311A (en) * | 1990-03-02 | 1991-08-13 | Minnesota Mining And Manufacturing Company | Abrasive granules |
US5090968A (en) * | 1991-01-08 | 1992-02-25 | Norton Company | Process for the manufacture of filamentary abrasive particles |
US5131926A (en) * | 1991-03-15 | 1992-07-21 | Norton Company | Vitrified bonded finely milled sol gel aluminous bodies |
US5297733A (en) * | 1991-09-16 | 1994-03-29 | Plastic Flamecoat Systems, Inc. | Flame spray gun |
US5316812A (en) * | 1991-12-20 | 1994-05-31 | Minnesota Mining And Manufacturing Company | Coated abrasive backing |
US5201916A (en) * | 1992-07-23 | 1993-04-13 | Minnesota Mining And Manufacturing Company | Shaped abrasive particles and method of making same |
US5213591A (en) * | 1992-07-28 | 1993-05-25 | Ahmet Celikkaya | Abrasive grain, method of making same and abrasive products |
JPH07509511A (ja) * | 1992-07-28 | 1995-10-19 | ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー | 金属酸化物被膜を有する砥粒,その製造方法および研磨製品 |
JPH074768A (ja) | 1993-06-17 | 1995-01-10 | Hitachi Ltd | 蓄熱型空気調和システム |
US5549962A (en) * | 1993-06-30 | 1996-08-27 | Minnesota Mining And Manufacturing Company | Precisely shaped particles and method of making the same |
US5505747A (en) * | 1994-01-13 | 1996-04-09 | Minnesota Mining And Manufacturing Company | Method of making an abrasive article |
US5612081A (en) * | 1994-11-25 | 1997-03-18 | Netlon Limited | Applying grit particles to a continuous web |
GB9423853D0 (en) * | 1994-11-25 | 1995-01-11 | Netlon Ltd | Applying grit particles to a continuous web |
WO1997021536A1 (en) * | 1995-12-08 | 1997-06-19 | Minnesota Mining And Manufacturing Company | Sheet material incorporating particulate matter |
US5681361A (en) * | 1996-01-11 | 1997-10-28 | Minnesota Mining And Manufacturing Company | Method of making an abrasive article and abrasive article produced thereby |
US5728424A (en) * | 1996-04-10 | 1998-03-17 | Gse Lining Technology, Inc. | Method for forming a textured surface on a geomembrane |
-
1997
- 1997-07-17 US US08/896,091 patent/US6024824A/en not_active Expired - Lifetime
- 1997-11-12 AU AU54344/98A patent/AU738552B2/en not_active Ceased
- 1997-11-12 CA CA002295694A patent/CA2295694C/en not_active Expired - Fee Related
- 1997-11-12 DE DE69713628T patent/DE69713628T2/de not_active Expired - Lifetime
- 1997-11-12 WO PCT/US1997/020582 patent/WO1999003642A1/en not_active Application Discontinuation
- 1997-11-12 KR KR1020007000484A patent/KR20010021920A/ko not_active Ceased
- 1997-11-12 EP EP97948245A patent/EP1021274B1/en not_active Expired - Lifetime
- 1997-11-12 JP JP2000502915A patent/JP4139559B2/ja not_active Expired - Lifetime
-
1999
- 1999-04-23 US US09/298,277 patent/US6258201B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CA2295694A1 (en) | 1999-01-28 |
AU5434498A (en) | 1999-02-10 |
DE69713628T2 (de) | 2002-10-31 |
US6024824A (en) | 2000-02-15 |
KR20010021920A (ko) | 2001-03-15 |
WO1999003642A1 (en) | 1999-01-28 |
AU738552B2 (en) | 2001-09-20 |
US6258201B1 (en) | 2001-07-10 |
JP4139559B2 (ja) | 2008-08-27 |
JP2001510097A (ja) | 2001-07-31 |
DE69713628D1 (de) | 2002-08-01 |
CA2295694C (en) | 2006-05-02 |
EP1021274A1 (en) | 2000-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1021274B1 (en) | Method of making articles in sheet form, particularly abrasive articles | |
US7491251B2 (en) | Method of making a structured abrasive article | |
CN106794570B (zh) | 具有多重化磨料颗粒结构的带涂层磨料制品及制备方法 | |
KR100339099B1 (ko) | 정확하게성형된연마입자,이의제조방법및이를포함하는연마제품 | |
US6884157B2 (en) | Abrasive article | |
CN106457526B (zh) | 具有不同组的多个研磨元件的磨料及其制备工具 | |
US6197076B1 (en) | Abrasive article method of making same and abrading apparatus | |
EP0702615B1 (en) | Patterned abrading articles and methods making and using same | |
US3906684A (en) | Abrasive articles and their method of manufacture | |
AU683688B2 (en) | Abrasive articles comprising a make coat transferred by lamination | |
CA2182495A1 (en) | Coated abrasives and methods of making same | |
EP0885091B1 (en) | Coated abrasives and backing therefor | |
JPH05229071A (ja) | ポリマー支持体層で補強された表面仕上げ用不織材料およびその製造方法 | |
MXPA97002267A (en) | Abrasive article coated, method for preparing it and method for using an abrasive article coated to submit abrasion a working piece d | |
JPH06143480A (ja) | 層状成形体 | |
JP2000218693A (ja) | 曲面転写方法及び曲面転写装置 | |
JPH06170996A (ja) | 耐摩耗性基材の製造方法 | |
JP2003025505A (ja) | 耐摩耗性ゴムシート、その製造方法及び用途 | |
MXPA05004364A (en) | Film for protecting surfaces using a non-woven structure and/or a buffer polymer, for reducing damages caused by the impact of objects projected in free fall and/or collision |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000127 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FI FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20001031 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FI FR GB IT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020626 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69713628 Country of ref document: DE Date of ref document: 20020801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020926 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021220 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20071128 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20071128 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081112 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20141110 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20161108 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69713628 Country of ref document: DE |