EP1017686A1 - Procede de fabrication d'un oxiranne - Google Patents

Procede de fabrication d'un oxiranne

Info

Publication number
EP1017686A1
EP1017686A1 EP98951373A EP98951373A EP1017686A1 EP 1017686 A1 EP1017686 A1 EP 1017686A1 EP 98951373 A EP98951373 A EP 98951373A EP 98951373 A EP98951373 A EP 98951373A EP 1017686 A1 EP1017686 A1 EP 1017686A1
Authority
EP
European Patent Office
Prior art keywords
oxirane
extraction solvent
process according
mixture
diluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98951373A
Other languages
German (de)
English (en)
Inventor
Michel Strebelle
Patrick Gilbeau
Dominique Balthasart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay SA
Original Assignee
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay SA filed Critical Solvay SA
Publication of EP1017686A1 publication Critical patent/EP1017686A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/32Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids

Definitions

  • the present invention relates to a process for manufacturing an oxirane, more particularly to a process for separating the constituents of the reaction mixture obtained during the reaction between an olefinic compound and a peroxide compound in a liquid medium containing a diluent. It is known, in particular from patent application EP-A-1001 19, to transform an olefinic compound (that is to say an organic compound comprising at least one carbon-carbon double bond) into the corresponding oxirane by reaction with hydrogen peroxide in a liquid medium containing an alcohol.
  • an olefinic compound that is to say an organic compound comprising at least one carbon-carbon double bond
  • oxirane is systematically obtained as a mixture with alcohol and water.
  • the mixture of reaction products obtained at the outlet of the epoxidation reactor most often also contains unprocessed reactants as well as, optionally, certain impurities of the reactants and various reaction by-products.
  • the separation of the reaction product mixture into its constituents by distillation has serious drawbacks. It has in fact been observed that, when this mixture is subjected to distillation, a significant fraction of the oxirane produced can be degraded by hydrolysis and / or by alcoholysis. In addition, other parasitic reactions can also occur between different constituents of the reaction mixture during distillation, affecting the productivity of the process and which can complicate the production of an oxirane that meets the purity requirements.
  • the subject of the invention is a simple process for the manufacture of an oxirane by reaction between an olefinic compound and a peroxide compound, which makes it possible to easily obtain the oxirane in a substantially pure form, without degradation of a significant fraction of l oxirane during the separation step of the constituents of the reaction product mixture.
  • the invention therefore relates to a process for the manufacture of an oxirane by reaction between an olefinic compound and a peroxide compound in a liquid medium containing a diluent which is at least partially soluble in water, according to which a mixture of products is collected.
  • reaction comprising oxirane, diluent and water as well as, optionally, unconverted reactants
  • the said mixture is brought into contact with an extraction solvent so as to obtain two distinct liquid phases, namely, on the one hand , an extract containing at least part of the extraction solvent and at least 10% of the quantity of oxirane produced, and, on the other hand, a raffinate containing at least part of the diluent and at least part of the water, and said extract and said raffinate are then treated separately by distillation.
  • the extraction solvent can contain one or more compounds.
  • an extraction solvent is used which dissolves the oxirane well and in which the diluent is very slightly soluble. Solvents in which water is very sparingly or insoluble are very suitable. It is usually carried out in the absence of a water-soluble solvent. It may be advantageous to operate in the absence of salt.
  • an extraction solvent is used which, in addition, dissolves the starting olefinic compound well.
  • a substantially stable and chemically inert extraction solvent with respect to the constituents of the reaction product mixture under the extraction conditions, as well as in the subsequent distillation step.
  • Extraction solvents which give good results are those whose specific gravity differs from that of the mixture of reaction products by at least 0.02 g / cm- 5 , in particular at least 0.04 g / cm ⁇ . The best results are obtained when these specific weights differ by at least 0.05 g / cm ⁇ .
  • Compounds which can be used as extraction solvent in the process according to the invention are optionally halogenated saturated hydrocarbons containing from 3 to 20 carbon atoms, for example from 3 to 6 or from 10 to 20 carbon atoms, linear or branched, aliphatic or cyclic. Examples that may be mentioned include n-decane, n-tridecane, 1,2,3-trichloropropane and decaline (decahydronaphthalene). N-decane works well.
  • the extraction solvent can also be chosen from unsaturated hydrocarbons. These can optionally be halogenated. They generally contain from 3 to 20 carbon atoms. By way of example, mention may be made of allyl chloride.
  • Particularly efficient extraction solvents contain at least one compound chosen from o-dichlorobenzene, m-dichlorobenzene, 1,3,5-trimethylbenzene, decaline, o-chlorotoluene, 1,2,3- trichloropropane, allyl chloride, nitrobenzene, n-decane and their mixtures.
  • aromatic hydrocarbons optionally containing alkyl, halogen and / or nitrogen substituents. These generally contain from 6 to 12 carbon atoms. Examples that may be mentioned include o-, m- and p-xylenes, 1,3,5-trimethylbenzene, o-, m- and p-dichlorobenzenes, o-, m- and p-chlorotoluenes and nitrobenzene.
  • a mixture of at least two different solvents It may be advantageous to use a mixture of at least two different solvents. It may for example be mixtures of an aromatic hydrocarbon as described above with an aliphatic hydrocarbon as described above. Other mixtures which may be suitable are mixtures of aliphatic hydrocarbons. Mention may be made, by way of examples, of the mixtures of alkanes sold under the name ISOPAR® H and characterized by a range of boiling temperatures from 175 to 185 ° C. It can also be mixtures of aromatic hydrocarbons. Mention may be made, by way of examples, of the mixtures of alkylbenzenes marketed under the name SOLVESSO® 150 and characterized by a range of boiling temperatures from 190 to 196 ° C.
  • the oxirane prepared by the process according to the invention and present in the mixture of reaction products is an organic compound generally containing from 2 to 20 carbon atoms and comprising at least one epoxide group c ⁇ - c ' ⁇ O
  • the olefinic compounds which can be used in the process according to the invention generally contain from 2 to 20 carbon atoms. They are preferably those which contain 2, 3 or from 5 to 20 carbon atoms, more particularly 2, 3 or from 5 to 10 carbon atoms, for example 2 or 3 carbon atoms.
  • Examples of olefinic compounds which can be used in the process according to the invention are propylene, 1-butene, 2-methyl-1-propylene, 3-hexene, 1-octene, 1-decene and chloride of allyle.
  • the preferred olefinic compounds are propylene and allyl chloride.
  • Examples of oxirannes which can be separated by the process according to the invention are 1,2-epoxypropane, 1,2-epoxybutane, 1,2-epoxy-2-methylpropane, 3,4-epoxyhexane, 1,2-epoxyoctane, 1,2-epoxydecane and epichlorohydrin.
  • the process according to the invention is particularly suitable for the manufacture of epichlorohydrin. It also gives very good results for the manufacture of 1,2-epoxypropane.
  • the diluent used in the process according to the invention can be chosen from all organic solvents which are at least partially soluble in water. Solvents which are well suited are alcohols. Preferred alcohols contain from 1 to 5 carbon atoms and have only one -OH group. Examples that may be mentioned are methanol, ethanol, n-propanol, isopropanol, butanol and pentanol. Most often, it is methanol or tert-butanol.
  • the peroxide compound used in the process according to the invention can be chosen from hydrogen peroxide and any peroxide compound containing active oxygen and capable of carrying out an epoxidation.
  • any peroxide compound containing active oxygen and capable of carrying out an epoxidation As examples, mention may be made of the peroxide compounds obtained by oxidation of organic compounds such as ethylbenzene, isobutane and isopropanol. Inorganic peroxide compounds are well suited. Hydrogen peroxide is preferred.
  • the reaction product mixture generally contains at least 1% by weight of oxirane, most often at least 5% by weight. Usually, it contains at most 50% by weight. Preferably, it does not contain more than 20% thereof.
  • the reaction product mixture generally contains at least 30% by weight of diluent, most often at least 50% by weight. Usually, it contains at most 90% by weight. Preferably, it does not contain more than 75% thereof.
  • the reaction product mixture contains 5 to 25% water.
  • the content of unconverted olefinic compound in the reaction product mixture is generally from 5 to 20% by weight.
  • the molar ratio of the amount of olefinic compound used to the amount of peroxide compound used is generally at least 0.5, in particular at least 1.
  • the molar ratio is usually less than or equal to 10, especially at 4.
  • the contact between the extraction solvent and the mixture of reaction products is carried out according to conventional liquid-liquid extraction methods.
  • an extraction column is used in which the mixture of reaction products is brought into countercurrent contact with the extraction solvent.
  • the temperature at which the extraction solvent and the reaction product mixture are contacted is not critical. It can vary from 0 to 80 ° C. Temperatures above 40 ° C are suitable. In practice, it is advantageous to work at the temperature at which the reaction between the olefinic compound and the peroxide compound has been carried out.
  • the contacting of the extraction solvent with the mixture of reaction products is generally carried out at a pressure which can vary from atmospheric pressure to a pressure of 30 bars.
  • the pressure is advantageously greater than or equal to 1 bar and less than or equal to 20 bars.
  • the weight ratio between the extraction solvent and the mixture of reaction products depends on the solvent used and the extraction equipment used. In practice, the weight ratio between the extraction solvent and the mixture of reaction products is generally at least equal to 0.1. Preferably, it is equal to or greater than 1. This ratio usually does not exceed 5. Most often , it does not exceed 20. Good results have been obtained with a ratio of 1 to 5.
  • the subsequent stages of distillation of the extract and of the raffinate are carried out in a conventional manner and make it possible to easily collect the oxirane in a substantially pure form, to remove the water, to recycle the diluent and the reagents not converted to step of manufacturing the oxirane and the extraction solvent in the step of extracting the reaction product mixture.
  • the process according to the invention has proved to be very advantageous for separating 1,2-epoxy-3-chloropropane from the mixtures obtained by reaction of allyl chloride with hydrogen peroxide in the presence of a catalyst in a liquid medium containing an alcohol, in particular methanol.
  • the catalysts which can be used in these reactions generally contain a zeolite, namely a solid containing silica which has a microporous crystalline structure.
  • the zeolite is advantageously free of aluminum. It preferably contains titanium.
  • the zeolite can have a crystal structure of the ZSM-5, ZSM-11, MCM-41 type. Crystal structures different from that of beta zeolite are well suited.
  • ZSM-5 type zeolites are particularly suitable. Those with an infrared absorption band at about 950-960 cm ⁇ l are preferred.
  • Zeolites which are particularly suitable are titanium silicalites. Those corresponding to the formula xTi ⁇ 2 (lx) Si ⁇ 2 in which x is
  • 0.0001 to 0.5, preferably 0.001 to 0.05 are effective.
  • Materials of this type known as TS-1 and having a crystal structure of the ZSM-5 type, give particularly favorable results.
  • Examples 1 and 2 (in accordance with the invention) A mixture of reaction products was used comprising 67.3% by weight of methanol, 10.0% by weight of allyl chloride, 12.0% by weight of epichlorohydrin and 10.7% by weight of water. The specific gravity of this mixture was 0.85 kg / 1.
  • Example 2 decalin was used as the extraction solvent.
  • the partition coefficient was 0.21.
  • Example 3 (in accordance with the invention) The operations of Example 1 were repeated with the exception of the volumes used. 3 volumes of extraction solvent were brought into contact with 1 volume of reaction product mixture. Different extraction solvents were used (see Table 1 which also indicates the specific gravity and the boiling point of the solvents). The partition coefficients obtained are shown in Table 1. Table 1 Ex. Solvent Coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Un oxiranne préparé par époxydation d'un composé oléfinique par un composé peroxydé en milieu liquide est séparé du milieu réactionnel par extraction liquide-liquide au moyen d'un solvant d'extraction.

Description

Procédé de fabrication d'un oxiranne
La présente invention se rapporte à un procédé de fabrication d'un oxiranne, plus particulièrement à un procédé de séparation des constituants du mélange réactionnel obtenu lors de la réaction entre un composé oléfinique et un composé peroxyde dans un milieu liquide contenant un diluant. II est connu, notamment par la demande de brevet EP-A-1001 19, de transformer un composé oléfinique (c'est-à-dire un composé organique comportant au moins une double liaison carbone-carbone) en l'oxiranne correspondant par réaction avec du peroxyde d'hydrogène dans un milieu liquide contenant un alcool. Ce procédé permet par exemple de synthétiser du 1,2- époxypropane ou du l,2-époxy-3-chloropropane (épichlorhydrine) au départ, respectivement, de propylène ou de chlorure d'allyle, selon l'équation générale su
Dans ce procédé connu, l'oxiranne est systématiquement obtenu en mélange avec l'alcool et de l'eau. Le mélange de produits réactionnels obtenu à la sortie du réacteur d'époxydation contient le plus souvent également des réactifs non transformés ainsi que, éventuellement, certaines impuretés des réactifs et divers sous-produits de réaction. La séparation du mélange de produits réactionnels en ses constituants par distillation présente de graves inconvénients. On a en effet observé que, lorsque l'on soumet ce mélange à une distillation, une fraction notable de l'oxiranne produit peut être dégradée par hydrolyse et/ou par alcoolyse. De plus, d'autres réactions parasites peuvent également intervenir entre différents constituants du mélange réactionnel lors de la distillation, affectant la productivité du procédé et pouvant compliquer l'obtention d'un oxiranne répondant aux exigences de pureté. Par exemple, lorsque ce procédé connu est appliqué à la synthèse d'épichlorhydrine par réaction entre du chlorure d'allyle et du peroxyde d'hydrogène dans du méthanol, le chlorure d'allyle, souvent utilisé en excès, et le méthanol peuvent former, dans des conditions habituelles de distillation, des quantités notables de 3-méthoxyprop-l-ène, lequel peut générer du l,2-époxy-3-méthoxypropane par réaction avec du peroxyde d'hydrogène. L'épichlorhydrine et le l,2-époxy-3-méthoxypropane ont pratiquement le même point d'ébullition. On ne peut par conséquent pas les séparer aisément par distillation.
L'invention a pour objet un procédé simple de fabrication d'un oxiranne par réaction entre un composé oléfinique et un composé peroxyde, qui permette d'obtenir aisément l'oxiranne sous une forme substantiellement pure, sans dégradation d'une fraction notable de l'oxiranne lors de l'étape de séparation des constituants du mélange de produits réactionnels.
L'invention concerne dès lors un procédé de fabrication d'un oxiranne par réaction entre un composé oléfinique et un composé peroxyde dans un milieu liquide renfermant un diluant qui est au moins partiellement soluble dans l'eau, selon lequel on recueille un mélange de produits réactionnels comprenant l'oxiranne, le diluant et de l'eau ainsi que, éventuellement des réactifs non convertis, on met ledit mélange en contact avec un solvant d'extraction de manière à obtenir deux phases liquides distinctes, à savoir, d'une part, un extrait contenant au moins une partie du solvant d'extraction et au moins 10 % de la quantité d'oxiranne produit, et, d'autre part, un raffinât contenant au moins une partie du diluant et au moins une partie de l'eau, et on traite ensuite séparément par distillation ledit extrait et ledit raffinât.
Le solvant d'extraction peut contenir un ou plusieurs composés. Avantageusement, on utilise un solvant d'extraction qui dissout bien l'oxiranne et dans lequel le diluant est très peu soluble. Les solvants dans lesquels l'eau est très peu ou non soluble conviennent bien. On opère habituellement en l'absence de solvant soluble dans l'eau. Il peut être avantageux d'opérer en l'absence de sel. De préférence, on utilise un solvant d'extraction qui, en outre, dissout bien le composé oléfinique de départ. On préfère particulièrement un solvant d'extraction substantiellement stable et inerte chimiquement vis-à-vis des constituants du mélange de produits réactionnels dans les conditions d'extraction, ainsi que dans l'étape ultérieure de distillation. On travaille de manière tout particulièrement préférée avec un solvant d'extraction dont la présence en faible quantité dans le milieu réactionnel, par exemple de l'ordre de 5 % en poids, n'a aucun effet négatif sur la réaction d'époxydation. Dans certains cas particulièrement avantageux, il est possible d'utiliser comme solvant d'extraction le composé oléfinique de départ lui-même. Ceci s'avère particulièrement efficace lorsque le composé oléfinique est le chlorure d'allyle. Des solvants d'extraction qui donnent de bons résultats sont ceux dont le poids spécifique diffère de celui du mélange de produits réactionnels d'au moins 0,02 g/cm-5, en particulier d'au moins 0,04 g/cm^. Les meilleurs résultats sont obtenus lorsque ces poids spécifiques diffèrent d'au moins 0,05 g/cm^.
On utilise habituellement des solvants d'extraction dont le point d'ebullition diffère de celui de l'oxiranne d'au moins 5 °C, en particulier d'au moins 10 °C. Les meilleurs résultats sont obtenus lorsque ces points d'ebullition diffèrent d'au moins 15 °C.
Des composés qui peuvent être utilisés comme solvant d'extraction dans le procédé selon l'invention sont les hydrocarbures saturés éventuellement halogènes comportant de 3 à 20 atomes de carbone, par exemple de 3 à 6 ou de 10 à 20 atomes de carbone, linéaires ou ramifiés, aliphatiques ou cycliques. On peut citer à titre d'exemples notamment le n-décane, le n-tridécane, le 1,2,3- trichloropropane et la décaline (décahydronaphtalène). Le n-décane convient bien.
Le solvant d'extraction peut également être choisi parmi les hydrocarbures insaturés. Ceux-ci peuvent éventuellement être halogènes. Ils comportent généralement de 3 à 20 atomes de carbone. On peut citer à titre d'exemple le chlorure d'allyle.
Des solvants d'extraction particulièrement performants contiennent au moins un composé choisi parmi l'o-dichlorobenzène, le m-dichlorobenzène, le 1,3,5- triméthylbenzène, la décaline, l'o-chlorotoluène, le 1,2,3-trichloropropane, le chlorure d'allyle, le nitrobenzène, le n-décane et leurs mélanges.
D'autres composés utilisables comme solvant d'extraction sont les hydrocarbures aromatiques contenant éventuellement des substituants alkylés, halogènes et/ou azotés. Ceux-ci comportent généralement de 6 à 12 atomes de carbone. On peut citer à titre d'exemples les o-, m- et p-xylènes, le 1,3,5- triméthylbenzène, les o-, m- et p-dichlorobenzènes, les o-, m- et p-chlorotoluènes et le nitrobenzène.
Il peut être avantageux d'utiliser un mélange d'au moins deux solvants différents. Il peut par exemple s'agir de mélanges d'un hydrocarbure aromatique tel que décrit plus haut avec un hydrocarbure aliphatique tel que décrit plus haut. D'autres mélanges qui peuvent convenir sont les mélanges d'hydrocarbures aliphatiques. On peut citer à titre d'exemples les mélanges d'alcanes commercialisés sous le nom ISOPAR® H et caractérisés par un intervalle de températures d'ebullition de 175 à 185 °C. Il peut également s'agir de mélanges d'hydrocarbures aromatiques. On peut citer à titre d'exemples les mélanges d'alkylbenzènes commercialisés sous le nom SOLVESSO® 150 et caractérisés par un intervalle de températures d'ebullition de 190 à 196 °C. L'oxiranne préparé par le procédé selon l'invention et présent dans le mélange de produits réactionnels est un composé organique contenant généralement de 2 à 20 atomes de carbone et comportant au moins un groupe époxyde c \- c' \ O
De préférence, il comporte de 3 à 10 atomes de carbone. Il peut renfermer des atomes d'halogène, en particulier de chlore. Les composés oléfiniques utilisables dans le procédé selon l'invention contiennent généralement de 2 à 20 atomes de carbone. Il s'agit de préférence de ceux qui contiennent 2, 3 ou de 5 à 20 atomes de carbone, plus particulièrement 2, 3 ou de 5 à 10 atomes de carbone, par exemple 2 ou 3 atomes de carbone. Des exemples de composés oléfiniques utilisables dans le procédé selon l'invention sont le propylène, le 1 -butène, le 2-méthyl-l -propylène, le 3-hexène, le 1-octène, le 1 -décène et le chlorure d'allyle. Les composés oléfiniques préférés sont le propylène et le chlorure d'allyle. Des exemples d'oxirannes qui peuvent être séparés par le procédé selon l'invention sont le 1,2-époxypropane, le 1,2-époxybutane, le l,2-époxy-2-méthylpropane, le 3,4-époxyhexane, le 1,2-époxyoctane, le 1,2-époxydécane et l'épichlorhydrine. Le procédé selon l'invention convient particulièrement bien pour la fabrication d'épichlorhydrine. Il donne également de très bons résultats pour la fabrication de 1,2-époxypropane.
Le diluant utilisé dans le procédé selon l'invention peut être choisi parmi tous les solvants organiques qui sont au moins partiellement solubles dans l'eau. Des solvants qui conviennent bien sont les alcools. Les alcools préférés contiennent de 1 à 5 atomes de carbone et comportent un seul groupe -OH. On peut citer à titre d'exemples le méthanol, l'ethanol, le n-propanol, l'isopropanol, le butanol et le pentanol. Le plus souvent, il s'agit de méthanol ou de tert-butanol.
Le composé peroxyde utilisé dans le procédé selon l'invention peut être choisi parmi le peroxyde d'hydrogène et tout composé peroxyde contenant de l'oxygène actif et capable d'effectuer une époxydation. On peut citer à titre d'exemples les composés peroxydes obtenus par oxydation de composés organiques tels que l'éthylbenzène, l'isobutane et l'isopropanol. Les composés peroxydes inorganiques conviennent bien. Le peroxyde d'hydrogène est préféré. Le mélange de produits réactionnels contient généralement au moins 1 % en poids d'oxiranne, le plus souvent au moins 5 % en poids. Habituellement, il en contient au plus 50 % en poids. De préférence, il n'en contient pas plus de 20 %. Le mélange de produits réactionnels contient généralement au moins 30 % en poids de diluant, le plus souvent au moins 50 % en poids. Habituellement, il en contient au plus 90 % en poids. De préférence, il n'en contient pas plus de 75 %.
Typiquement, le mélange de produits réactionnels contient de 5 à 25 % d'eau. La teneur en composé oléfinique non converti dans le mélange de produits réactionnels est généralement de 5 à 20 % en poids.
Le rapport molaire de la quantité de composé oléfinique mise en oeuvre à la quantité de composé peroxyde mise en oeuvre est généralement d'au moins 0,5, en particulier d'au moins 1. Le rapport molaire est habituellement inférieure ou égale à 10, en particulier à 4.
La mise en contact entre le solvant d'extraction et le mélange de produits réactionnels est effectuée selon les méthodes classiques d'extraction liquide- liquide. Avantageusement, on utilise une colonne d'extraction dans laquelle le mélange de produits réactionnels est mis en contact à contre-courant avec le solvant d'extraction.
La température à laquelle on met en contact le solvant d'extraction et le mélange de produits réactionnels n'est pas critique. Elle peut varier de 0 à 80 °C. Les températures supérieures à 40 °C conviennent bien. En pratique, on travaille avantageusement à la température à laquelle a été réalisée la réaction entre le composé oléfinique et le composé peroxyde.
La mise en contact du solvant d'extraction avec le mélange de produits réactionnels est généralement réalisée à une pression qui peut varier de la pression atmosphérique à une pression de 30 bars. La pression est avantageusement supérieure ou égale à 1 bar et inférieure ou égale à 20 bars. Le rapport pondéral entre le solvant d'extraction et le mélange de produits réactionnels dépend du solvant mis en oeuvre et de l'appareillage d'extraction utilisé. En pratique, le rapport pondéral entre le solvant d'extraction et le mélange de produits réactionnels est généralement au moins égal à 0, 1. De préférence, il est égal ou supérieur à 1. Ce rapport ne dépasse habituellement pas 5. Le plus souvent, il ne dépasse pas 20. De bons résultats ont été obtenus avec un rapport de 1 à 5.
Les étapes ultérieures de distillation de l'extrait et du raffinât sont réalisées de manière classique et permettent de récolter aisément l'oxiranne sous une forme substantiellement pure, d'éliminer l'eau, de recycler le diluant et les réactifs non convertis à l'étape de fabrication de l'oxiranne et le solvant d'extraction à l'étape d'extraction du mélange de produits réactionnels. Le procédé selon l'invention s'est révélé très avantageux pour séparer le 1,2- époxy-3-chloropropane des mélanges obtenus par réaction de chlorure d'allyle avec du peroxyde d'hydrogène en présence d'un catalyseur dans un milieu liquide renfermant un alcool, en particulier du méthanol. Il convient également pour la séparation du 1,2-époxy propane des mélanges obtenus par réaction de propylène avec du peroxyde d'hydrogène en présence d'un catalyseur. Les catalyseurs utilisables dans ces réactions contiennent généralement une zéolite, à savoir un solide contenant de la silice qui présente une structure cristalline microporeuse. La zéolite est avantageusement exempte d'aluminium. Elle contient de préférence du titane. La zéolite peut avoir une structure cristalline de type ZSM-5, ZSM-11, MCM-41. Les structures cristallines différentes de celle de la zéolite bêta conviennent bien. Les zéolites de type ZSM-5 conviennent particulièrement bien. Celles présentant une bande d'absorption infrarouge à environ 950-960 cm~l sont préférées. Les zéolites qui conviennent particulièrement bien sont les silicalites au titane. Celles répondant à la formule xTiθ2(l-x)Siθ2 dans laquelle x est de
0,0001 à 0,5, de préférence de 0,001 à 0,05 sont performantes. Des matériaux de ce type, connus sous le nom de TS-1 et présentant une structure cristalline de type ZSM-5, donnent des résultats particulièrement favorables. Exemples 1 et 2 (conformes à l'invention) On a mis en oeuvre un mélange de produits réactionnels comprenant 67,3 % en poids de méthanol, 10,0 % en poids de chlorure d'allyle, 12,0 % en poids d'épichlorhydrine et 10, 7 % en poids d'eau. Le poids spécifique de ce mélange était de 0,85 kg/1.
On a mis en contact des volumes égaux de ce mélange et de solvant d'extraction. Après extraction (réalisée à température ambiante et sous pression atmosphérique), on a mesuré la concentration en épichlorhydrine dans l'extrait (exprimé en g d'épichlorhydrine par kg de solvant d'extraction) et dans le raffinât (exprimé en g d'épichlorhydrine par kg de méthanol). Le rapport de ces concentrations correspond au coefficient de partage. Dans l'exemple 1 on a utilisé comme solvant d'extraction un mélange d'hydrocarbures aliphatiques saturés ISOPAR® H (présentant une intervalle de distillation de 175-185 °C et un poids spécifique de 0,76 kg/1). Le coefficient de partage était de 0,20.
Dans l'exemple 2 on a utilisé de la décaline comme solvant d'extraction. Le coefficient de partage était de 0,21.
Exemples 3 à 8 (conformes à l'invention) Les opérations de l'exemple 1 ont été répétées à l'exception des volumes mis en oeuvre. 3 volumes de solvant d'extraction ont été mis en contact avec 1 volume de mélange de produits réactionnels. Différents solvants d'extraction ont été utilisés (voir tableau 1 qui indique également le poids spécifique et le point d'ebullition des solvants). Les coefficients de partage obtenus sont indiqués dans le tableau 1. Tableau 1 Ex. Solvant Coefficient
Nature Poids spécifique Point d'éb. de partage
3 2-chlorotoluène 1,08 kg/1 159 °C 0,61
4 nitrobenzène 1,20 211 0,57
5 1 ,2-dichlorobenzène 1,30 181 0,64
6 mélange d'alkyl0,89 190-196 0,59 benzènes SOLVESSO® 150
7 1,2,3-trichloro- 1,39 157 1,76 propane
8 chlorure d'allyle 0,94 45 1,67

Claims

R E V E N D I C A T I O N S
1 - Procédé de fabrication d'un oxiranne par réaction entre un composé oléfinique et un composé peroxyde, de préférence inorganique, dans un milieu liquide renfermant un diluant qui est au moins partiellement soluble dans l'eau, selon lequel on recueille un mélange de produits réactionnels comprenant l'oxiranne, le diluant et de l'eau ainsi que, éventuellement des réactifs non convertis, on met ledit mélange en contact avec un solvant d'extraction de manière à obtenir deux phases liquides distinctes, à savoir, d'une part, un extrait contenant au moins une partie du solvant d'extraction et au moins 10 % de la quantité d'oxiranne produit, et, d'autre part, un raffinât contenant au moins une partie du diluant et au moins une partie de l'eau, et on traite ensuite séparément par distillation ledit extrait et ledit raffinât.
2 - Procédé selon la revendication 1, dans lequel le poids spécifique du solvant d'extraction diffère de celui du mélange de produits réactionnels d'au moins 0,04 g/cm- .
3 - Procédé selon la revendication 1 ou 2, dans lequel le point d'ebullition du solvant d'extraction diffère de celui de l'oxiranne d'au moins 5 °C.
4 - Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le solvant d'extraction est choisi parmi les hydrocarbures saturés éventuellement halogènes comportant de 3 à 20 atomes de carbone, de préférence de 3 à 6 ou de 10 à 20 atomes de carbone, les hydrocarbures insaturés éventuellement halogènes comportant de 3 à 20 atomes de carbone, les hydrocarbures aromatiques contenant éventuellement des substituants alkylés, halogènes et/ou azotés, comportant de 6 à 12 atomes de carbone, et leurs mélanges.
5 - Procédé selon la revendication 4, dans lequel le solvant d'extraction est choisi parmi l'o-dichlorobenzène, le m-dichlorobenzène, le 1,3,5- triméthylbenzène, la décaline, l'o-chlorotoluène, le 1,2,3-trichloropropane, le chlorure d'allyle, le nitrobenzène, le n-decane et leurs mélanges.
6 - Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le mélange de produits réactionnels est mis en contact à contre-courant avec le solvant d'extraction dans une colonne d'extraction liquide-liquide, à une température de 0 à 80°C.
7 - Procédé selon l'une quelconque des revendications 1 à 6, dans lequel le rapport pondéral entre le solvant d'extraction et le mélange de produits réactionnels est au moins égal à 0, 1 et ne dépasse pas 20.
8 - Procédé selon l'une quelconque des revendications 1 à 7, dans lequel on renvoie le diluant et les réactifs non convertis, récoltés lors de la distillation, à l'étape de fabrication de l'oxiranne.
9 - Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le composé peroxyde est le peroxyde d'hydrogène, le composé oléfinique est le chlorure d'allyle, le diluant est un alcool, de préférence du méthanol, et l'oxiranne est le l,2-époxy-3-chloropropane obtenu en présence d'un catalyseur à base d'une zéolite différente de zéolite bêta.
10 - Procédé selon l'une quelconque des revendications 1 à 9, dans lequel le composé peroxyde est le peroxyde d'hydrogène, le composé oléfinique est le propylène et l'oxiranne est le 1,2-époxypropane obtenu en présence d'un catalyseur à base d'une zéolite différente de zéolite bêta.
EP98951373A 1997-09-18 1998-09-10 Procede de fabrication d'un oxiranne Withdrawn EP1017686A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BE9700756A BE1011456A3 (fr) 1997-09-18 1997-09-18 Procede de fabrication d'un oxiranne.
BE9700756 1997-09-18
PCT/EP1998/005750 WO1999014208A1 (fr) 1997-09-18 1998-09-10 Procede de fabrication d'un oxiranne

Publications (1)

Publication Number Publication Date
EP1017686A1 true EP1017686A1 (fr) 2000-07-12

Family

ID=3890733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98951373A Withdrawn EP1017686A1 (fr) 1997-09-18 1998-09-10 Procede de fabrication d'un oxiranne

Country Status (10)

Country Link
US (1) US6350888B1 (fr)
EP (1) EP1017686A1 (fr)
JP (2) JP5073132B2 (fr)
AR (1) AR023007A1 (fr)
AU (1) AU9742598A (fr)
BE (1) BE1011456A3 (fr)
BR (1) BR9812516A (fr)
SA (1) SA98190748B1 (fr)
WO (1) WO1999014208A1 (fr)
ZA (1) ZA988398B (fr)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122249A1 (fr) 2000-02-02 2001-08-08 SOLVAY (Société Anonyme) Procédé de fabrication d'un oxiranne
EP1420014A4 (fr) * 2001-08-22 2004-09-29 Sumitomo Chemical Co Procede permettant de produire de l'oxyde de propylene
FR2846965B1 (fr) * 2002-11-12 2006-10-13 Procede de fabrication de 1,2-epoxy-3-chloropropane
FR2846964B1 (fr) * 2002-11-12 2006-07-21 Procede de fabrication de 1,2-epoxy-3-chloropropane
US7169945B2 (en) 2002-11-26 2007-01-30 Degussa Ag Process for the epoxidation of olefins
WO2004078739A1 (fr) 2003-03-06 2004-09-16 Sumitomo Chemical Company, Limited Procede de production d'oxyde de propylene
ATE511498T1 (de) 2003-11-20 2011-06-15 Solvay Verfahren zur herstellung von dichlorpropanol aus glycerin und einem chlorinierungsmittel in anwesenheit von einem katalysator ausgewählt aus adipin- und glutarsaeure
KR20080037613A (ko) 2005-05-20 2008-04-30 솔베이(소시에떼아노님) 폴리히드록실화 지방족 탄화수소의 클로로히드린으로의전환 방법
EA017149B1 (ru) * 2005-05-20 2012-10-30 Солвей (Сосьете Аноним) Непрерывный способ получения хлоргидринов
US7939696B2 (en) * 2005-11-08 2011-05-10 Solvay Societe Anonyme Process for the manufacture of dichloropropanol by chlorination of glycerol
KR100979372B1 (ko) * 2006-06-14 2010-08-31 솔베이(소시에떼아노님) 조 글리세롤계 생성물, 그 정제방법 및 디클로로프로판올의제조에의 그 용도
KR100846435B1 (ko) * 2006-12-22 2008-07-16 한화석유화학 주식회사 옥시란 화합물의 제조 방법
US20100032617A1 (en) * 2007-02-20 2010-02-11 Solvay (Societe Anonyme) Process for manufacturing epichlorohydrin
FR2913421B1 (fr) * 2007-03-07 2009-05-15 Solvay Procede de fabrication de dichloropropanol.
FR2913684B1 (fr) 2007-03-14 2012-09-14 Solvay Procede de fabrication de dichloropropanol
CN101293882B (zh) * 2007-04-24 2011-04-20 中国石油化工股份有限公司 一种环氧氯丙烷的分离方法
TW200911740A (en) 2007-06-01 2009-03-16 Solvay Process for manufacturing a chlorohydrin
TW200911693A (en) 2007-06-12 2009-03-16 Solvay Aqueous composition containing a salt, manufacturing process and use
TW200911773A (en) * 2007-06-12 2009-03-16 Solvay Epichlorohydrin, manufacturing process and use
WO2009043796A1 (fr) * 2007-10-02 2009-04-09 Solvay (Société Anonyme) Utilisation de compositions contenant du silicium pour améliorer la résistance à la corrosion de récipients
FR2925045B1 (fr) 2007-12-17 2012-02-24 Solvay Produit a base de glycerol, procede pour son obtention et son utilisation dans la fabrication de dichloropropanol
TWI478875B (zh) * 2008-01-31 2015-04-01 Solvay 使水性組成物中之有機物質降解之方法
EP2103604A1 (fr) * 2008-03-17 2009-09-23 Evonik Degussa GmbH Procédé de fabrication d'épichlorhydrine
EA201071157A1 (ru) 2008-04-03 2011-04-29 Солвей (Сосьете Аноним) Композиция, содержащая глицерин, способ ее получения и применение в производстве дихлорпропанола
EP2149570A1 (fr) * 2008-08-01 2010-02-03 Hexion Specialty Chemicals Research Belgium S.A. Procédé de fabrication d'épichlorhydrine avec peroxyde d'hydrogène et un complexe manganèse
EP2149569A1 (fr) * 2008-08-01 2010-02-03 Hexion Specialty Chemicals Research Belgium S.A. Procédé de fabrication d'un 1,2-epoxyde
FR2935968B1 (fr) 2008-09-12 2010-09-10 Solvay Procede pour la purification de chlorure d'hydrogene
CN101880263B (zh) * 2009-05-09 2012-07-11 中国石油化工集团公司 一种环氧氯丙烷的制备方法
ES2522929T3 (es) * 2009-07-16 2014-11-19 Basf Se Método para separar acetonitrilo de agua
EP2343288A1 (fr) 2009-11-27 2011-07-13 Momentive Specialty Chemicals Research Belgium S.A. Processus de fabrication d'oxyde de propylène
EP2354131A1 (fr) 2010-02-02 2011-08-10 Momentive Specialty Chemicals Research Belgium Procédé de fabrication de 1,2-époxyde et dispositif pour effectuer ce procédé
KR20140009163A (ko) 2010-09-30 2014-01-22 솔베이(소시에떼아노님) 천연유래 에피클로로히드린의 유도체
FR2966825B1 (fr) * 2010-10-29 2014-05-16 Solvay Procede de fabrication d'epichlorhydrine
EP2668173A1 (fr) 2011-01-27 2013-12-04 Solvay SA Procédé de production de 1,2-époxy-3-chloropropane
EA201391089A1 (ru) 2011-01-27 2014-06-30 Солвей Са Способ изготовления 1,2-эпокси-3-хлорпропана
CN105439983A (zh) * 2011-02-04 2016-03-30 蓝立方知识产权有限责任公司 混合物的相分离
CN103420949B (zh) * 2012-05-18 2016-05-25 中国石油化工股份有限公司 一种环氧氯丙烷的分离方法
CN103420947B (zh) * 2012-05-18 2016-07-06 中国石油化工股份有限公司 一种环氧氯丙烷的分离方法
CN103420946B (zh) * 2012-05-18 2016-08-03 中国石油化工股份有限公司 一种环氧氯丙烷的分离方法
CN103420948B (zh) * 2012-05-18 2016-05-25 中国石油化工股份有限公司 一种环氧氯丙烷的分离方法
CN104003961B (zh) * 2013-02-27 2016-05-25 中国石油化工股份有限公司 一种连续萃取环氧氯丙烷的方法
EP3059228A1 (fr) 2015-02-17 2016-08-24 Evonik Degussa GmbH Procédé pour l'époxydation de chlorure d'allyle avec du peroxyde d'hydrogène
CN111592506A (zh) * 2020-06-02 2020-08-28 中国科学院理化技术研究所 环氧氯丙烷分离工艺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541114A (en) * 1967-01-13 1970-11-17 Celanese Corp Recovery of hydrophobic oxirane compounds
IT1122214B (it) * 1979-07-19 1986-04-23 Donegani Guido Ist Processo per l'epossidazione catalitica di olefine con acqua ossigenata
US4379025A (en) * 1982-05-24 1983-04-05 Atlantic Richfield Company Water removal from butylene oxides by liquid extraction with selected extractive solvents
IT1152299B (it) 1982-07-28 1986-12-31 Anic Spa Procedimento per l'espossidazione di composti olefinici
US5127997A (en) * 1991-05-09 1992-07-07 Texaco Chemical Company Purification of propylene oxide by liquid extraction
JPH05237392A (ja) * 1992-02-24 1993-09-17 Tosoh Corp 酸化触媒およびエポキシ化法
US5262550A (en) * 1992-04-30 1993-11-16 Arco Chemical Technology, L.P. Epoxidation process using titanium-rich silicalite catalysts
US5412122A (en) * 1993-12-23 1995-05-02 Arco Chemical Technology, L.P. Epoxidation process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9914208A1 *

Also Published As

Publication number Publication date
ZA988398B (en) 2000-03-22
US6350888B1 (en) 2002-02-26
AR023007A1 (es) 2002-09-04
JP5073132B2 (ja) 2012-11-14
BE1011456A3 (fr) 1999-09-07
WO1999014208A1 (fr) 1999-03-25
SA98190748B1 (ar) 2006-05-01
JP2001516753A (ja) 2001-10-02
AU9742598A (en) 1999-04-05
BR9812516A (pt) 2000-07-25
JP2010159281A (ja) 2010-07-22

Similar Documents

Publication Publication Date Title
EP1017686A1 (fr) Procede de fabrication d'un oxiranne
BE1011576A3 (fr) Produit a base d'epichlorhydrine et procede de fabrication de ce produit.
van Vliet et al. Alumina: A cheap, active and selective catalyst for epoxidations with (aqueous) hydrogen peroxide
FR2919609A1 (fr) Procede de fabrication de glycidol
EP1122249A1 (fr) Procédé de fabrication d'un oxiranne
EP0061393B1 (fr) Procédé continu de préparation de l'oxyde de propylène
EP0138669B1 (fr) Procédé de fabrication de silane à partir de méthyldichlorosilane et de chlorosilanes
EP0004407B1 (fr) Procédé pour la fabrication de peracides carboxyliques et utilisation ceux ci pour la fabrication d'époxydes à partir d'oléfines
WO2008078861A1 (fr) Procédé de préparation d'un oxiranne
EP0025381B1 (fr) Procédé de fabrication d'acides percarboxyliques
EP1028934B1 (fr) Procede pour separer un compose organique d'un milieu aqueux
FR2589155A1 (fr) Procede d'epoxydation d'une olefine
EP0084286B1 (fr) Procédé perfectionné de fabrication de l'epsilon-caprolactone
EP0019322A1 (fr) Procédé pour la fabrication d'oxydes d'oléfines
BE1011531A3 (fr) Procede de fabrication d'un compose organique.
EP0037349A1 (fr) Procédé de préparation d'O,O-diméthyl-phosphorodithioate de mercaptosuccinate d'ethyl (malathion(R))
EP0025620A1 (fr) Procédé pour la fabrication d'anthraquinones substituées
EP0026533A1 (fr) Procédé pour la récupération d'acides carboxyliques à partir de mélanges contenant des esters de glycols dérivés de ces acides
EP0822184B1 (fr) Procédé de préparation de lactames N-substitués
EP0022396A1 (fr) Nouveau procédé de préparation d'acides percarboxyliques
BE897842A (fr) Catalyseur et procede d'epoxydation
BE838953A (fr) Procede catalytique de production d'un oxyde d'olefine en phase liquide
EP0488834A1 (fr) Dérivés de spiro-époxy-cyclohexane, leur préparation et leur utilisation en chimie des polymères
CH505813A (fr) Procédé de fabrication de composés époxydiques
FR2667056A1 (fr) Procede de preparation d'oxyde borique, sous forme anhydre ou hydratee, par hydrolyse de borate de methyle.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000418

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030415

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050401