EP1016830B1 - Brennkammer für eine Gasturbine - Google Patents

Brennkammer für eine Gasturbine Download PDF

Info

Publication number
EP1016830B1
EP1016830B1 EP99811182A EP99811182A EP1016830B1 EP 1016830 B1 EP1016830 B1 EP 1016830B1 EP 99811182 A EP99811182 A EP 99811182A EP 99811182 A EP99811182 A EP 99811182A EP 1016830 B1 EP1016830 B1 EP 1016830B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
chamber
torus
annular
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99811182A
Other languages
English (en)
French (fr)
Other versions
EP1016830A3 (de
EP1016830A2 (de
Inventor
Jakob J. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Vernova GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1016830A2 publication Critical patent/EP1016830A2/de
Publication of EP1016830A3 publication Critical patent/EP1016830A3/de
Application granted granted Critical
Publication of EP1016830B1 publication Critical patent/EP1016830B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers

Definitions

  • the present invention relates to the field of gas turbines. It affects a combustion chamber for a gas turbine, in which combustion chamber with fuel mixed with an air stream entering the combustion chamber and then is burned, and the resulting combustion air flow downstream of the combustion chamber is fed to a turbine.
  • a combustion chamber for a gas turbine in which combustion chamber with fuel mixed with an air stream entering the combustion chamber and then is burned, and the resulting combustion air flow downstream of the combustion chamber is fed to a turbine.
  • gas turbines are often designed in such a way that the one passed through them Air flow through two combustion chambers and, accordingly, twice over turbines is directed.
  • the air drawn in is initially passed through a compressor group led, and then passed into a primary combustion chamber, where supplied Fuel-air mixture is ignited and burned.
  • Fuel-air mixture is ignited and burned.
  • From the primary combustion chamber the hot combustion air flows over a first turbine and becomes downstream fed to the first turbine of a secondary combustion chamber, where fuel and if necessary additional air is added and the mixture ignites. Since the from the gases escaping from the first turbine are often very hot, i.e. above the auto-ignition temperature of the fuels can be in the secondary combustion chamber mostly do without active ignition. Downstream of the secondary combustion chamber there is then a second turbine, over which the hot combustion gases flow out of the secondary combustion chamber.
  • Such gas turbines the individual components usually in series along a major axis of the Gas turbine arranged.
  • a gas turbine group is from, for example EP 0 620 362 A1 known.
  • the individual channels for the air flows and the combustion chambers are mostly all in the form of hollow cylinders, which reach around the axis of the gas turbine.
  • Secondary combustion chambers for such gas turbines are generally proportionate simply designed because they do not need burners, but the fuel after a suitable swirling of the hot ones emerging from the first turbine Air can simply be injected into the air flow via nozzles, and itself the mixture ignites itself after a characteristic time.
  • the hollow-cylindrical secondary combustion chamber is, for example, out known from EP 0 669 500 A1.
  • the task is thereby in a combustion chamber of the type mentioned solved that the combustion chamber has an annular diffuser, in which the air flow enters that downstream of and in connection with the diffuser standing at least one substantially annular toroidal chamber arranged is that downstream of the annular toroidal chamber and over its circumference distributed mixing tubes branch, and that downstream of the mixing tubes an annular Combustion chamber is arranged, in which the mixing tubes open.
  • the core the invention consists in the combination of diffuser, toroidal ring Chamber and mixing tubes have a premixing structure available too place in which air flowing through in an optimal manner, i.e. fast and can be mixed efficiently with fuel. Another advantage comes from that the proposed configuration is reduced to thermoacoustic Oscillations tend.
  • a first preferred embodiment of the combustion chamber according to the invention is characterized in that the combustion chamber as a secondary combustion chamber is designed, and that the gas turbine has a primary combustion chamber, a downstream the primary combustion chamber acting first turbine, a downstream of the first turbine acting secondary combustion chamber, and one downstream of the secondary combustion chamber has acting second turbine.
  • the use of the combustion chamber as a secondary combustion chamber is advantageous, especially with such use at high Mach numbers short mixing times are required.
  • the ignition as described in a further embodiment, in the secondary combustion chamber is done by self-ignition, the quick and backflow-free mixing is in the proposed arrangement advantageous, and so it can controlled combustion in the area of the outlet of the mixing tubes in the combustion chamber or in Combustion chamber can be guaranteed.
  • the diffuser is designed such that the parallel air flow flowing to the gas turbine axis and entering the combustion chamber is initially deflected in a substantially radial direction, and that the Diffuser acts in a tangential manner on the toroidal chamber, so that the air flow entering the toroidal chamber curls up in the torus and swirls around the toroidal minor axis of the torus.
  • the mixing tubes on the one essentially opposite the diffuser Side attached in a manner essentially parallel to the axis of the gas turbine In this way, two swirls of different screw rotation meet in front of the mixing tubes on top of each other, and then flow with mutual mixing and Annihilation of the vertebrae through the mixing tubes.
  • the proposed design of the combustion chamber is based, among other things, on the spectacular merging and mixing behavior of colliding, with opposing Rotating, rotating, subcritical vortices. This phenomenon occurred on Flow behavior in front of and in radial outlet pipes of steam turbines discovered. It is shown there that only when radial outlet pipes are attached the loss of free flow of the rotating air is possible, while losses occur due to swirling in simple openings. A detailed look at the behavior of the air flow before and in one Such a radial outlet tube shows that two in front of the tubes with opposite directions Rotating, rotating subcritical vortices collide, and the rotation of the two vertebrae within a distance of less than one Completely cancel each other out.
  • FIG. 1 shows a longitudinal section along the axis 21 of a gas turbine.
  • the entire three-dimensional combustion chamber structure is essentially obtained by rotating the section about axis 21, i.e. it deals the channeling components with the exception of the mixing tubes 22 Axially symmetrical parts about the axis 21 of the gas turbine.
  • the hot one from the first Combustion chamber, the primary combustion chamber, escaping airflow flows at the shown gas turbine first via a first turbine 11, which in one Bearing 31 is stored.
  • There is a short one downstream of the first turbine 11 hollow cylindrical discharge line 12 through which the air flow from the first Turbine 10 flows parallel to the axis 21 of the gas turbine.
  • the outflow pipe 12 is preferably just long enough that the axial hollow cylindrical Flow profile in the airflow 10 can recover.
  • Downstream of the discharge line 12 is a diffuser 13 in which the air flow is controlled by the axial direction is deflected. The deflection occurs after in Figure 1 outside in an almost radial direction, but it is also conceivable in principle that Distraction inside.
  • the curvature of the diffuser 13 can with the help of the inverse Euler equations can be optimized. It is essentially in the diffuser 13 therefore, the average flow velocity of the air flow approximately cut in half.
  • the diffuser 13 abuts a toroidal ring in a tangential manner downstream Chamber 14 to.
  • the torus 14 is arranged perpendicular to the axis 21 of the generator, with a large torus radius 29 around axis 21, i.e. the major toric axis 27 and the axis 21 of the generator coincide.
  • the circular line of the large torus radius 29 forms the annular torus minor axis 26, and the Torus outer wall 30 is formed by a small torus radius 28 around the ring Secondary torus axis 26 formed.
  • a plurality are located downstream of the toroidal annular chamber 14 of mixing tubes 22 which are perpendicular to the toroidal secondary axis 26 of branch off the chamber 14 and are distributed over the circumference of the chamber 14. Through these mixing tubes 22, the air flow rolled up in the torus 14 flows out of the annular toroidal chamber 14 from.
  • the mixing tubes 22 are cylindrical or at least partially conical and preferably have a radius in the area of the small torus radius 28.
  • the actual combustion chamber 18, which again essentially as a hollow cylinder is formed around the axis 21, and downstream of this combustion chamber 18 is a second turbine arranged.
  • Figure 2 shows part of a conical section through the chamber 14 and Mixing tubes 22 along the plane X-X in Figure 1 in view from the outside in.
  • the behavior of the air flow in the chamber can be determined on the basis of this section 14 and the mixing tubes 22 illustrate.
  • Air flow which is tangent to the center between two mixing tubes 22 Diffuser 13 enters the chamber 14, this separates into two to the left and vertebrae 24 and 25 evading to the right, which are different Screw direction, 24 corresponds to a left-handed screw, 25 a clockwise.
  • Each of the partial vertebrae 24 and 25 now "screws" in Direction of the nearest mixing tube 22 to flow out of the chamber 14 there to be able to.
  • Nozzles 32 are arranged with which liquid or gaseous Fuel can be injected.
  • liquid Fuel can also be supplied through nozzles 20, which are located opposite the mixing tubes 22 Wall sides of the toroidal chamber 14 attached are injected into the air flow:
  • nozzles 20 which are located opposite the mixing tubes 22
  • Wall sides of the toroidal chamber 14 attached are injected into the air flow:
  • Auto-ignition characteristic of the injected fuel according to the temperature of the Airflow and flow velocity are formed by auto-ignition of the mixture due to the high air temperature a flame front, which either at the area of the outlet of the mixing tubes 22 or behind it in the combustion chamber 18 can come to rest.
  • a I u I A e u e .
  • a I and A E are the cross-sectional areas of the tangential entry of the diffuser 13 into the annular toroidal chamber 14 and the cross-sectional area 23 of the mixing tubes 22, and u I and u E are the corresponding flow velocities.
  • Table 1 gives the values for a secondary combustion chamber with 12 mixing tubes 22, each with an output radius of 300 mm.
  • Size unit Value 1 Value 2 Large radius of the torus m 0.0675 0.0675 Small radius of the torus m 0.0275 0.0275 Width of the entry slot m 0.0085 0.0135 Radius of the tangential input m 0.04425 0.04675 Area of the entrance slot per swirl arm, A I m ⁇ 2 0.01182 0.001983 Eccentricity radius , r I m 0.02325 0.02075 Cross-sectional area of the vertebral arm, A E m ⁇ 2 0.002376 0.002376 vertebrae 1.70 0.90

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

TECHNISCHES GEBIET
Die vorliegende Erfindung bezieht sich auf das Gebiet der Gasturbinen. Sie betrifft eine Brennkammer für eine Gasturbine, in welcher Brennkammer Brennstoff mit einem in die Brennkammer eintretenden Luftstrom vermischt und anschliessend verbrannt wird, und der entstehende Verbrennungsluftstrom stromab der Brennkammer einer Turbine zugeführt wird. Eine solche Anordnung ist aus der Schrift US-A-3,877,219 bekannt.
STAND DER TECHNIK
Gasturbinen werden heute häufig derart konstruiert, dass der hindurchgeführte Luftstrom durch zwei Brennkammern und entsprechend zweimal über Turbinen geleitet wird. Die angesaugte Luft wird dabei zunächst über eine Verdichtergruppe geführt, und anschliessend in eine Primärbrennkammer geleitet, wo zugeführtes Brennstoff-Luft-Gemisch gezündet und verbrannt wird. Aus der Primärbrennkammer strömt die heisse Verbrennungsluft über eine erste Turbine, und wird stromab der ersten Turbine einer Sekundärbrennkammer zugeführt, wo Brennstoff und nötigenfalls weitere Zuluft beigemischt wird und das Gemisch zündet. Da die aus der ersten Turbine ausströmenden Gase häufig sehr heiss, d.h. oberhalb der Selbstzündungstemperatur der Brennstoffe sind, kann in der Sekundärbrennkammer meist auf aktive Zündung verzichtet werden. Stromab der Sekundärbrennkammer befindet sich dann eine zweite Turbine, über welche die heissen Verbrennungsgase aus der Sekundärbrennkammer strömen.
Aus Platzgründen und zur technischen Vereinfachung werden bei derartigen Gasturbinen die einzelnen Komponenten meist in Serie entlang einer Hauptachse der Gasturbine angeordnet. Eine solche Gasturbogruppe ist beispielsweise aus der EP 0 620 362 A1 bekannt. Die einzelnen Kanäle für die Luftströme und die Brennkammern werden dabei meist alle im wesentlichen in Form von Hohlzylindern, welche um die Achse der Gasturbine herumgreifen, ausgebildet.
Sekundärbrennkammern für derartige Gasturbinen sind in der Regel verhältnismässig einfach gestaltet, da sie keine Brenner benötigen, sondern der Brennstoff nach einer geeigneten Verwirbelung der aus der ersten Turbine austretenden heissen Luft einfach über Düsen in den Luftstrom eingedüst werden kann, und sich das Gemisch nach einer charakteristischen Zeit von selbst entzündet. Eine einfache, hohlzylindrisch ausgebildete Sekundärbrennkammer ist beispielsweise aus der EP 0 669 500 A1 bekannt.
Infolge der u.a. wegen der kurzen Selbstzündungszeiten von insbesondere gasförmigen Brennstoffen notwendigerweise hohen Machzahlen in Sekundäbrennkammern treten in diesen häufig thermoakkustische Oszillationen grosser Amplitude auf. Ausserdem stellt sich die Problematik der schnellen und effektiven Vermischung von Luft und Brennstoff in der Brennkammer unter Vermeidung von Strömungsrückfluss. Meist werden dazu spezifische wirbelerzeugende Elemente vorgesehen. Des weiteren muss insbesondere in neuerer Zeit bei der Vermischung und der Verbrennungsführung darauf geachtet werden, dass die Emissionswerte innerhalb gesetzlich zulässiger Schranken bleiben.
DARSTELLUNG DER ERFINDUNG
Es ist daher Aufgabe der Erfindung, eine Brennkammer für Gasturbinen zu schaffen, welche Nachteile der bekannten Lösungen vermeidet und sich insbesondere durch gute und effiziente Vermischung von Brennstoff und zugeführter Luft auszeichnet.
Die Aufgabe wird bei einer Brennkammer der eingangs genannten Art dadurch gelöst, dass die Brennkammer einen ringförmigen Diffusor aufweist, in welchen der Luftstrom eintritt, dass stromab des Diffusors und mit diesem in Verbindung stehend mindestens eine im wesentlichen ringförmige toroidale Kammer angeordnet ist, dass stromab der ringförmigen toroidalen Kammer und über deren Umfang verteilt Mischröhren abzweigen, und dass stromab der Mischröhren ein ringförmiger Brennraum angeordnet ist, in welchen die Mischröhren einmünden. Der Kern der Erfindung besteht darin, durch die Kombination von Diffusor, ringförmig toroidaler Kammer und Mischröhren eine vormischende Struktur zur Verfügung zu stellen, in welcher sich hindurchströmende Luft in optimaler Weise, d.h. schnell und effizient mit Brennstoff vermischen lässt. Ein weiterer Vorteil ergibt sich daraus, dass die vorgeschlagene Konfiguration in reduziertem Masse zu thermoakkustischen Oszillationen neigt.
Eine erste bevorzugte Ausführungsform der erfindungsgemässen Brennkammer ist dadurch gekennzeichnet, dass die Brennkammer als Sekundärbrennkammer ausgelegt ist, und dass die Gasturbine eine Primärbrennkammer, eine stromab der Primärbrennkammer wirkende erste Turbine, eine stromab der ersten Turbine wirkende Sekundärbrennkammer, sowie eine stromab der Sekundärbrennkammer wirkende zweite Turbine aufweist. Der Einsatz der Brennkammer als Sekundärbrennkammer ist vorteilhaft, da gerade bei derartiger Verwendung bei hohen Machzahlen kurze Mischzeiten erforderlich sind. Insbesondere wenn die Zündung, wie in einer weiteren Ausführungsform beschrieben, in der Sekundärbrennkammer durch Selbstzündung erfolgt, ist das schnelle und rückstromfreie Mischen in der vorgeschlagenen Anordnung vorteilhaft, und es kann so eine kontrollierte Verbrennung im Bereich des Ausgangs der Mischröhren in den Brennraum oder im Brennraum gewährleistet werden.
Eine weitere bevorzugte Ausführungsform der Brennkammer nach der Erfindung zeichnet sich dadurch aus, dass der Diffusor derart ausgestaltet ist, dass der parallel zur Gasturbinenachse strömende und in die Brennkammer eintretende Luftstrom zunächst in im wesentlichen radiale Richtung abgelenkt wird, und dass der Diffusor in tangentialer Weise an die ringförmig toroidale Kammer angreift, so dass sich der in die ringförmig toroidale Kammer eintretende Luftstrom im Torus aufrollt und um die ringförmige Torusnebenachse wirbelt. Werden nun weiterhin bevorzugt die Mischröhren auf der im wesentlichen dem Diffusor entgegengesetzten Seite in im wesentlichen zur Achse der Gasturbine paralleler Weise angebracht, so treffen jeweils vor den Mischröhren zwei Wirbel unterschiedlichen Schraubendrehsinns aufeinander, und strömen dann unter gegenseitiger Vermischung und Vernichtung der Wirbel durch die Mischröhren. Dies ergibt die Möglichkeit, wie in einer weiteren Ausführungsform beschrieben, im oder vor dem Bereich dieser Vermischung der gegenläufigen Wirbel Mittel vorzusehen, mit welchen Brennstoff in den Luftstrom eingedüst werden kann. So kann der Mischprozess kurz gehalten und die Zündungsfront auf den gewünschten Ort eingestellt werden.
Weitere bevorzugte Ausführungsformen der Brennkammer ergeben sich aus den abhängigen Ansprüchen.
KURZE ERLÄUTERUNG DER FIGUREN
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit den Zeichnungen näher erläutert werden. Es zeigen
Fig. 1
einen axialen Längsschnitt durch einen Teil einer Gasturbine mit Sekundärbrennkammer;
Fig. 2
eine Teilansicht eines Schnittes entlang der Konusebene X-X aus Figur 1 in einer Ansicht von aussen nach innen; und
Fig. 3
die Wirbelzahl (swirl number) als Funktion des kleinen Torusradius (small radius of torus) in Metern.
WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
Die vorgeschlagene Gestaltung der Brennkammer beruht unter anderem auf dem spektakulären Vereinigungs- und Mischverhalten von kollidierenden, mit gegenläufig Drehsinn rotierenden, subkritischen Wirbeln. Dieses Phänomen wurde am Strömungsverhalten vor und in radialen Ausgangsrohren von Dampfturbinen entdeckt. Es zeigt sich nämlich dort, dass nur bei Anbringung von radialen Ausgangsrohren ein möglichst verlustfreies Ausströmen der rotierenden Luft möglich ist, während bei einfachen Öffnungen Verluste infolge von Verwirbelungen auftreten. Eine detaillierte Betrachtung des Verhaltens der Luftströmung vor und in einem solchen radialen Ausgangsrohr zeigt, dass vor den Rohren jeweils zwei mit gegenläufigem Drehsinn schraubend rotierende, subkritische Wirbel kollidieren, und sich die Rotation der zwei Wirbel innerhalb einer Distanz von weniger als einem Durchmesser des Ausgangsrohrs vollständig gegenseitig aufhebt.
Während normalerweise bei Brennkammern und insbesondere bei Sekundärbrennkammern nach dem Stand der Technik wirbelerzeugende Elemente wie Verwirbelungsbleche oder Störungslufteintritte vorgesehen werden müssen, um eine schnelle und effektive Vermischung von Luft und Brennstoff zu gewährleisten, beruht die Vermischung in der vorgeschlagenen Brennkammer auf einer Strukturierung und Führung der Strömungskanäle, welche eine kontrollierte Wirbelbildung und Vermischung der hindurchströmenden Luft inhärent ergibt.
Das neue Konzept ist in Figur 1 anhand einer Sekundärbrennkammer schematisch dargestellt. Figur 1 zeigt einen Längsschnitt entlang der Achse 21 einer Gasturbine. Im wesentlichen erhält man dabei die gesamte dreidimensionale Brennkammerstruktur indem man den Schnitt um die Achse 21 rotiert, d.h. es handelt sich bei den Kanalisierungskomponenten mit ausnahme der Mischrohre 22 um axialsymmetrische Teile um die Achse 21 der Gasturbine. Der heisse, aus der ersten Brennkammer, der Primärbrennkammer, austretende Luftstrom strömt bei der dargestellten Gasturbine zunächst über eine erste Turbine 11, welche in einem Lager 31 gelagert ist. Stromab der ersten Turbine 11 befindet sich eine kurze hohlzylindrische Ausströmleitung 12, durch welche der Luftstrom aus der ersten Turbine 10 parallel zur Achse 21 der Gasturbine hindurchströmt. Die Ausströmleitung 12 ist dabei bevorzugt gerade so lang, dass sich das axiale hohlzylindrische Strömungsprofil im Luftstrom 10 wieder erholen kann. Stromab der Ausströmleitung 12 befindet sich ein Diffusor 13, in welchem der Luftstrom kontrolliert von der axialen Richtung abgelenkt wird. Die Ablenkung geschieht dabei in Figur 1 nach aussen in beinahe radiale Richtung, es ist aber grundsätzlich auch denkbar, die Ablenkung nach innen vorzunehmen. Die Kurvatur des Diffusors 13 kann mit Hilfe der inversen Eulergleichungen optimiert werden. Es geht im Diffusor 13 im wesentlichen darum, die mittlere Strömungsgeschwindigkeit des Luftstroms ungefähr zu halbieren.
Der Diffusor 13 stösst stromabwärts in tangentialer Weise an eine ringförmig toroidale Kammer 14 an. Der Torus 14 ist senkrecht zur Achse 21 des Generators angeordnet, mit einem grossen Torusradius 29 um die Achse 21, d.h. die Torushauptachse 27 und die Achse 21 des Generators fallen zusammen. Die Kreislinie des grossen Torusradius 29 bildet die ringförmige Torusnebenachse 26, und die Torusaussenwand 30 wird durch einen kleinen Torusradius 28 um die ringförmige Torusnebenachse 26 gebildet. Infolge des tangentialen Einströmens des Luftstroms aus dem Diffusor 13 in die ringförmig toroidale Kammer 14 wird der Luftstrom in kontrollierter Weise um die ringförmige Torusnebenachse 26 umgelenkt und rollt sich in Form eines Torus nach innen auf, so wie das aus dem ersten Abschnitt der Trajektorie 15 des Wirbelzentrums in Figur 1 ersichtlich ist.
Stromabwärts der ringförmigen toroidalen Kammer 14 befinden sich eine Mehrzahl von Mischröhren 22, welche senkrecht zur ringförmigen Torusnebenachse 26 von der Kammer 14 abzweigen und auf dem Umfang der Kammer 14 verteilt sind. Durch diese Mischröhren 22 strömt der im Torus 14 aufgerollte Luftstrom aus der ringförmig toroidalen Kammer 14 ab. Die Mischröhren 22 sind zylindrisch oder wenigstens teilweise konisch ausgebildet und weisen vorzugsweise einen Radius im Bereich des kleinen Torusradius 28 auf. Stromab der Mischröhren 22 befindet sich der eigentliche Brennraum 18, welcher wieder im wesentlichen als Hohlzylinder um die Achse 21 ausgebildet ist, und stromab dieses Brennraums 18 ist eine zweite Turbine angeordnet.
Figur 2 zeigt einen Teil eines konischen Schnittes durch die Kammer 14 und die Mischröhren 22 entlang der Ebene X-X in Figur 1 in Sicht von aussen nach innen. Anhand dieses Schnittes lässt sich das Verhalten des Luftstromes in der Kammer 14 und den Mischröhren 22 illustrieren. Betrachtet man der Einfachheit halber den Luftstrom, der genau mittig zwischen zwei Mischröhren 22 tangential aus dem Diffusor 13 in die Kammer 14 eintritt, so trennt sich dieser in zwei nach links und nach rechts ausweichende Wirbel 24 und 25 auf, welche unterschiedlichen Schraubendrehsinn haben, 24 entspricht dabei einer linksdrehenden Schraube, 25 einer rechtsdrehenden. Jeder der Teilwirbel 24 und 25 "schraubt" sich nun in Richtung der nächstgelegenen Mischröhre 22, um dort aus der Kammer 14 ausströmen zu können. Wenn die geometrischen Abmessungen richtig gewählt werden, findet Strömungsumkehr, wenn überhaupt, nur in den stromaufwärts der Mischröhren 22 liegenden Bereichen der ringförmig toroidalen Kammer 14 auf. Unmittelbar von den Mischröhren 22 treffen nun jeweils zwei mit unterschiedlichem Schraubendrehsinn behaftete Wirbel aufeinander. Sobald die zwei Wirbelzentren in die Mischröhren 22 eintreten, hört jede Strömungsumkehr auf, und es bilden sich jet-artige Wirbelzentren. An einer bestimmten Stelle im Bereich des Eingangs der Mischröhren nähern sich die gegenläufigen Wirbel maximal an und genau in diesem Bereich setzt nun der heftige Vereinigungsprozess der beiden Wirbel ein, wobei sich die Verwirbelung vollständig aufhebt. Diese vollständige Aufhebung erfolgt üblicherweise innerhalb einer Distanz von weniger als einem Durchmesser der Mischröhren 22, und sie bringt die vollständige Vermischung der beiden Luftströme mit sich.
Gerade in dem Bereich, wo sich die beiden Wirbel maximal annähern, sollen vorteilhafterweise Düsen 32 angeordnet werden, mit welchen flüssiger oder gasförmiger Brennstoff eingedüst werden kann. Auf diese Weise wird eine optimale Vermischung von Brennstoff und Luft unter sicheren Bedingungen erreicht. Flüssiger Brennstoff kann auch durch Düsen 20, welche an der den Mischröhren 22 gegenüberliegenden Wandungsseiten der ringförmig toroidalen Kammer 14 angebracht sind, in den Luftstrom eingedüst werden: Je nach Ort der Eindüsung, nach Selbstzündungscharakteristik des eingedüsten Brennstoffes, nach Temperatur des Luftstromes und nach Strömungsgeschwindigkeit bildet sich durch Selbstzündung des Gemisches infolge der hohen Lufttemperatur eine Flammenfront, welche entweder beim Bereich des Ausgangs der Mischröhren 22 oder dahinter im Brennraum 18 zu liegen kommen kann.
Um die Dimensionierung der einzelnen Komponenten gezielt optimieren zu können, ist es vorteilhaft, die Wirbelzahländerungen des vorliegenden Konzeptes mit denjenigen solcher Bauarten zu vergleichen, für welche experimentelle Daten vorhanden sind. Die für die Kollision von subkritischen Wirbeln relevante Wirbelzahl kann folgendermassen gefunden werden. Erhaltung des Volumenflusses verlangt, dass gilt AIuI = AEuE , wobei AI und AE die Querschnittflächen des tangentialen Eingangs des Diffusors 13 in die ringförmige toroidale Kammer 14 und die Querschnittfläche 23 der Mischröhren 22, und uI und uE die entsprechenden Strömungsgeschwindigkeiten sind. Mit Hilfe des Exzentrizitätsradius' rI des tangentialen Eingangs und der effektiven Geschwindigkeitskomponente wE des Wirbels beim Ausgang kann die Bedingung für Drehimpulserhaltung folgendermassen ausgedrückt werden: rIuI = AE π wE .
Entsprechend kann die Wirbelzahl ξ der kollidierenden Wirbel ausgedrückt werden als ξ = wE uE = rI AE π AI .
Grösse Einheit Wert
Massenfluss kg/s 450.4
Dichte kg/m3 3.81
Anzahl Mischröhren 12
Austrittsgeschwindigkeit m/s 140
Grosser Torusradius m 1.4
Kleiner Torusradius m 0.15
Weite des Eintrittsschlitzes m 0.12
Volumenfluss m^3/s 118.215
Durchmesser der Mischröhren beim Ausgang m 0.2993
Gesamte Austrittsfläche m^2 0.8444
Radius des tangentialen Eingangs m 1.25
Gesamte Fläche des Eingangsschlitzes m^2 0.9425
Strömungsgeschwindigkeit beim Ausgangsschlitz m/s 125.43
Fläche des Eingangsschlitzes pro Wirbelarm, AI m^2 0.03927
Exzentrizitätsradius, rI m 0.09
Querschnittsfläche des Wirbel arms, AE m^2 0.07069
Wirbelzahl 1.08
Tabelle 1 gibt die Werte für eine Sekundärbrennkammer mit 12 Mischröhren 22 mit jeweils einem Ausgangsradius von 300mm. Der grosse Radius der Ausgänge der über die Kammer 14 kreisförmig um die Achse 21 verteilten Mischröhren 22 ist dabei 1161 mm, was eine umfangsmässige Beabstandung der Mischröhren von etwas mehr als zweimal einem Mischröhrendurchmesser ergibt.
Grösse Einheit Wert 1 Wert 2
Grosser Torusradius m 0.0675 0.0675
Kleiner Torusradius m 0.0275 0.0275
Weite des Eintrittsschlitzes m 0.0085 0.0135
Radius des tangentialen Eingangs m 0.04425 0.04675
Fläche des Eingangsschlitzes pro Wirbelarm, AI m^2 0.01182 0.001983
Exzentrizitätsradius, rI m 0.02325 0.02075
Querschnittsfläche des Wirbelarms, AE m^2 0.002376 0.002376
Wirbelzahl 1.70 0.90
Vergleicht man den in Tabelle 1 gegebenen Wert für die Wirbelzahl von 1.08 mit den in Tabelle 2 gegebenen experimentellen Werten für Ausgänge von Dampfturbinen, so sieht man, dass dort Wirbelzahlen von 0.9 bis 1.7 auftreten. Im Fall eines "twin-combustor" der Anmelderin, mit einer Fläche des Eingangsschlitzes pro Wirbelarm, AI , von 0.010278m2, einem Exzentrizitätsradius, rI , von 0.04375m und einer Querschnittsfläche des Wirbelarms, AE , von 0.047144m2 tritt eine hohe Wirbelzahl von ξ =1.64 auf.
Um einen optimalen Kompromiss zwischen schnellem Mischen und relativ unwichtigen Domänen von Strömungsumkehr stromaufwärts des Wirbelzentrums zu haben, sollte die Wirbelzahl ξ im Bereich von 1 liegen. Die wohl beste Strategie dafür ist die Variation des kleinen Torusradius 28 stromaufwärts der Mischröhren 22, wobei man mit einem Startwert von 150mm beginnen kann. Figur 3 zeigt die Wirbelzahl (swirl number) als Funktion des kleinen Torusradius' 28 (small radius of torus) in Metern, wobei alle anderen Werte gleich gehalten werden wie in Tabelle 1 gegeben. Man sieht, dass sich die Wirbelzahl stark ändern lässt, indem man den kleinen Torusradius 28 variiert, erfahrungsgemäss zeigt es sich, dass optimalerweise der kleine Torusradius 28 nicht stark vom typischen Mischröhrenradius abweichen sollte.
BEZUGSZEICHENLISTE
10
Luftstrom aus erster Turbine
11
erste Turbine
12
Ausstömleitung der ersten Turbine
13
Diffusor
14
ringförmig toroidale Kammer
15
Trajektorie des Wirbelzentrums
16
Wandung der Mischröhre
17
Ausgang der Mischröhre
18
Brennraum
19
Ausgang von 18 zur zweiten Turbine
20
Einspritzdüse für flüssigen Brennstoff
21
Achse der Gasturbine
22
Mischröhre
23
Querschnittsfläche der Mischröhre
24,25
gegenläufig rotierende Teilströme des Luftstroms
26
Torusnebenachse
27
Torushauptachse
28
kleiner Torusradius
29
grosser Torusradius
30
Torusaussenwand
31
Lager der ersten Turbine
32
Einspritzdüsen für Brennstoff
33
Verbrennungsluftstrom

Claims (12)

  1. Brennkammer (13,14,18,22) für eine Gasturbine, in welcher Brennkammer (13,14,18,22) Brennstoff mit einem in die Brennkammer (13,14,18,22) eintretenden Luftstrom (10) vermischt und anschliessend verbrannt wird, und der entstehende Verbrennungsluftstrom (33) stromab der Brennkammer (13,14,18,22) einer Turbine zugeführt wird,
    dadurch gekennzeichnet, dass
    die Brennkammer (13,14,18,22) einen ringförmigen Diffusor (13) aufweist, in welchen der Luftstrom (10) eintritt, dass stromab des Diffusors (13) und mit diesem in Verbindung stehend mindestens eine im wesentlichen ringförmige toroidale Kammer (14) angeordnet ist, dass stromab der ringförmigen toroidalen Kammer (14) und über deren Umfang verteilt Mischröhren (22) abzweigen, und dass stromab der Mischröhren (22) ein ringförmiger Brennraum (18) angeordnet ist, in welchen die Mischröhren (22) einmünden.
  2. Brennkammer (13,14,18,22) nach Anspruch 1, dadurch gekennzeichnet, dass die Brennkammer als Sekundärbrennkammer (13,14,18,22) ausgebildet ist, und dass die Gasturbine eine Primärbrennkammer, eine stromab der Primärbrennkammer wirkende erste Turbine (11), eine stromab der ersten Turbine (11) wirkende Sekundärbrennkammer (13,14,18,22), sowie eine stromab der Sekundärbrennkammer (13,14,18,22) wirkende zweite Turbine aufweist.
  3. Brennkammer (13,14,18,22) nach Anspruch 2, dadurch gekennzeichnet, dass die ringförmige toroidale Kammer (14) eine ringförmige Torusnebenachse (26) aufweist, welche mit einem grossen Torusradius (29) um eine Torushauptachse (27) verläuft, und bei welcher ringförmigen toroidalen Kammer (14) eine Torusaussenwand (30) mit einem kleinen Torusradius (28) um die Torusnebenachse (26) gebildet wird, und dass die Torushauptachse (27) im wesentlichen parallel zur Achse (21) der Gasturbine ausgerichtet ist.
  4. Brennkammer (13,14,18,22) nach Anspruch 3, dadurch gekennzeichnet, dass die Mischröhren (22) im wesentlichen konisch oder zylindrisch ausgebildet sind, und dass die Achsen der Mischröhren (22) ausserhalb der Ebene der ringförmigen toroidalen Kammer (14) und im wesentlichen senkrecht zur ringförmigen Torusnebenachse (26) angeordnet sind.
  5. Brennkammer (13,14,18,22) nach Anspruch 3, dadurch gekennzeichnet, dass der Radius der Mischröhren (22) im Bereich oder insbesondere bevorzugt gleich wie der kleine Torusradius (28) ausgebildet ist.
  6. Brennkammer (13,14,18,22) nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass die Primärbrennkammer eine Ringbrennkammer ist, dass zwischen der ersten Turbine (11) und dem Diffusor (13) eine als Hohlzylinder ausgebildete Ausströmleitung (12) angeordnet ist, und dass die Achse der Ausströmleitung (12) parallel zur Achse (21) der Gasturbine verläuft.
  7. Brennkammer (13,14,18,22) nach Anspruch 6, dadurch gekennzeichnet, dass der ringförmige Diffusor (13) derart ausgebildet ist, dass der durch die Ausströmleitung (12) parallel zur Achse (21) der Gasturbine strömende Luftstrom (10) vom Diffusor (13) abgelenkt wird, und dass insbesondere bevorzugt diese Ablenkung in im wesentlichen radial zur Achse (21) der Gasturbine verlaufender Richtung bewirkt wird.
  8. Brennkammer (13,14,18,22) nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass der Diffusor (13) in tangentialer Weise an die ringförmig toroidale Kammer (14) angreift.
  9. Brennkammer (13,14,18,22) nach Anspruch 8, dadurch gekennzeichnet, dass Diffusor (13) derart ausgebildet ist, dass der Luftstrom (10) vom Diffusor (13) im wesentlichen radial nach aussen umgeleitet wird, und dass der Diffusor (13) in tangentialer Weise von innen an die ringförmige toroidale Kammer (14) angreift.
  10. Brennkammer (13,14,18,22) nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Mischröhren (16) im wesentlichen der Eintrittsöffnung des Diffusors (13) in die ringförmige toroidale Kammer (14) gegenüber angeordnet sind, und dass sie im wesentlichen parallel zur Achse (21) der Gasturbine ausgerichtet sind.
  11. Brennkammer (13,14,18,22) nach Anspruch 10, dadurch gekennzeichnet, dass entweder auf der den Mischröhren (16) abgewandten Rückseite der ringförmigen toroidalen Kammer (14) oder im zentralen Bereich der Mischröhren (16) stromab der ringförmigen toroidalen Kammer (14) Mittel (20,32).angeordnet sind, mit welchen flüssiger Brennstoff eingedüst werden kann.
  12. Brennkammer (13,14,18,22) nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass im zentralen Bereich der Mischröhren (16) stromab der ringförmigen toroidalen Kammer (14) Mittel (32) angeordnet sind, über welche gasförmiger Brennstoff eingedüst werden kann.
EP99811182A 1998-12-29 1999-12-21 Brennkammer für eine Gasturbine Expired - Lifetime EP1016830B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19860583 1998-12-29
DE19860583A DE19860583A1 (de) 1998-12-29 1998-12-29 Brennkammer für eine Gasturbine

Publications (3)

Publication Number Publication Date
EP1016830A2 EP1016830A2 (de) 2000-07-05
EP1016830A3 EP1016830A3 (de) 2002-07-24
EP1016830B1 true EP1016830B1 (de) 2004-05-26

Family

ID=7893029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99811182A Expired - Lifetime EP1016830B1 (de) 1998-12-29 1999-12-21 Brennkammer für eine Gasturbine

Country Status (3)

Country Link
US (1) US6272864B1 (de)
EP (1) EP1016830B1 (de)
DE (2) DE19860583A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175046B2 (en) 2019-05-09 2021-11-16 General Electric Company Combustor premixer assembly including inlet lips
CN116892736B (zh) * 2023-07-10 2025-10-17 中国人民解放军空军工程大学 一种旋转爆震燃烧室分布式喷油装置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1011670B (de) * 1955-06-03 1957-07-04 H C Ernst Schmidt Dr Ing Dr Re Ringfoermige Misch- oder Brennkammer, insbesondere fuer Gasturbinen
US3309866A (en) * 1965-03-11 1967-03-21 Gen Electric Combustion process and apparatus
DE2232025A1 (de) * 1972-06-30 1974-01-17 Motoren Turbinen Union Gasturbinenanlage, insbesondere triebwerk mit gleichraumverbrennung
US4081957A (en) * 1976-05-03 1978-04-04 United Technologies Corporation Premixed combustor
US4073137A (en) * 1976-06-02 1978-02-14 United Technologies Corporation Convectively cooled flameholder for premixed burner
GB2098719B (en) * 1981-05-20 1984-11-21 Rolls Royce Gas turbine engine combustion apparatus
EP0193029B1 (de) * 1985-02-26 1988-11-17 BBC Brown Boveri AG Brennkammer für Gasturbinen
JPS62158927A (ja) 1986-01-07 1987-07-14 Nissan Motor Co Ltd 環型燃焼器
US4838029A (en) * 1986-09-10 1989-06-13 The United States Of America As Represented By The Secretary Of The Air Force Externally vaporizing system for turbine combustor
CH679799A5 (de) * 1988-07-25 1992-04-15 Christian Reiter
DE3942042A1 (de) * 1989-12-20 1991-06-27 Bmw Rolls Royce Gmbh Brennkammer fuer eine gasturbine mit luftunterstuetzten brennstoffzerstaeuberduesen
DE4236071C2 (de) * 1992-10-26 2002-12-12 Alstom Verfahren für eine Mehrstufenverbrennung in Gasturbinen
US5575153A (en) * 1993-04-07 1996-11-19 Hitachi, Ltd. Stabilizer for gas turbine combustors and gas turbine combustor equipped with the stabilizer
CH687269A5 (de) 1993-04-08 1996-10-31 Abb Management Ag Gasturbogruppe.
CA2141066A1 (en) * 1994-02-18 1995-08-19 Urs Benz Process for the cooling of an auto-ignition combustion chamber
EP0870990B1 (de) * 1997-03-20 2003-05-07 ALSTOM (Switzerland) Ltd Gasturbine mit toroidaler Brennkammer

Also Published As

Publication number Publication date
DE19860583A1 (de) 2000-07-06
US6272864B1 (en) 2001-08-14
EP1016830A3 (de) 2002-07-24
DE59909580D1 (de) 2004-07-01
EP1016830A2 (de) 2000-07-05

Similar Documents

Publication Publication Date Title
DE60007946T2 (de) Eine Brennkammer
EP0675322B1 (de) Vormischbrenner
EP0918191B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP1141628B1 (de) Brenner zum betrieb eines wärmeerzeugers
EP1828684A1 (de) Vormischbrenner mit mischstrecke
EP0481111B1 (de) Brennkammer einer Gasturbine
EP0718561B1 (de) Brennkammer
EP0777081B1 (de) Vormischbrenner
DE2404039A1 (de) Verbesserte brennstoffinjektionseinrichtung
EP1807656B1 (de) Vormischbrenner
DE19640198A1 (de) Vormischbrenner
EP0401529A1 (de) Brennkammer einer Gasturbine
EP0851172B1 (de) Brenner und Verfahren zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
EP1182398A1 (de) Verfahren zur Erhöhung der strömungsmechanischen Stabilität eines Vormischbrenners sowie Vormischbrenner zur Durchführung des Verfahrens
EP0994300B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0909921B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
DE19527453B4 (de) Vormischbrenner
EP0394800A1 (de) Vormischbrenner für die Heissgaserzeugung
EP0751351A1 (de) Brennkammer
EP0483554B1 (de) Verfahren zur Minimierung der NOx-Emissionen aus einer Verbrennung
EP0742411A2 (de) Luftzuströmung zu einer Vormischbrennkammer
DE19537636B4 (de) Kraftwerksanlage
EP0882932B1 (de) Brennkammer
EP0740108A2 (de) Brenner
EP1016830B1 (de) Brennkammer für eine Gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 23R 3/42 A, 7F 23R 3/02 B, 7F 23R 3/52 B, 7F 02C 6/00 B

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

17P Request for examination filed

Effective date: 20030109

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20030401

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59909580

Country of ref document: DE

Date of ref document: 20040701

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040812

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081216

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091221