EP1014395B1 - Method and apparatus for reducing the noise of electromagnetically operated devices - Google Patents
Method and apparatus for reducing the noise of electromagnetically operated devices Download PDFInfo
- Publication number
- EP1014395B1 EP1014395B1 EP99123805A EP99123805A EP1014395B1 EP 1014395 B1 EP1014395 B1 EP 1014395B1 EP 99123805 A EP99123805 A EP 99123805A EP 99123805 A EP99123805 A EP 99123805A EP 1014395 B1 EP1014395 B1 EP 1014395B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- current
- switching
- value
- partial range
- regulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/18—Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/20—Valve-gear or valve arrangements actuated non-mechanically by electric means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2201/00—Electronic control systems; Apparatus or methods therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/18—Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
- H01F2007/1894—Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings minimizing impact energy on closure of magnetic circuit
Definitions
- the invention relates to a method for reducing the noise in the operation of electromagnetically actuated devices, wherein a switching operation of the device takes place in the region of a transition function with a limited slope of the current-time curve of the electromagnet.
- a method of the type mentioned is known from the closest prior art DE-C2-3425574. It will go through the entire range between the minimum current (zero amperes) and the maximum current of the solenoid with a gradual increase. In this case, the point at which the plunger of the electromagnet begins with its movement, always in the range of said increase. If the period of time within which the electromagnet is to switch is relatively short, this will cause the current to rise at a relatively steep slope, which may cause the switching of the Electromagnets at a higher current than was absolutely necessary. This would lead to unwanted noise and can increase wear.
- the invention has for its object to enable an accurate switching of the solenoid at the lowest possible rate of change (slope) of the stream.
- Another advantage of the invention is that the current can be traversed very rapidly from its lowest value, usually zero amps, to that value at which the slope of the current curve, which is different from a very large slope, can be traversed very rapidly.
- the range between the current at the end of the gradual slope up to the maximum possible value of the current can also be traversed very quickly (current jump).
- the semiconductor switch element can hold the solenoid in this state without hesitation for a long time, possibly many hours, without thermally compromising the semiconductor switch element.
- a control is provided, which ensures that the switching operation is in the range of the gradual slope.
- the entire current range is passed through once in the form of a gradually rising curve. Thereafter, a region limited in time and current may be extracted around the point of switching of the electromagnet, and the current may increase abruptly from zero to the beginning of this range and may continue to rise abruptly from its maximum to its maximum value.
- the intermediate region of the curve can be provided with a transition function of the current-time curve with a smaller slope than in the just described overall passage through the current region in the form of a rising curve.
- This embodiment of the invention is particularly suitable for having devices that contain a circuit according to the invention to be automatically checked after production or even after each longer periods of time to (re) adjust or readjust the optimal switching time of the solenoid (adaptation).
- the values obtained in such a passage through the entire current range can be stored in a permanent memory which is accommodated in the device which contains the electromagnet are then available even after longer periods in which the electromagnet was not in operation.
- a device according to the invention which carries out the method according to the invention, has for this purpose a control device which is controllable with regard to its parameters for influencing the course of the current, and advantageously a memory in which parameters for the control device can be stored.
- the time at which the solenoid switches can be determined. According to one embodiment of the invention, this is done by examining the current or the voltage applied to the coil of the electromagnet. In fact, as the armature or general moving part of the electromagnet starts to move, the inductance of the magnet assembly changes, and this manifests itself in a sudden voltage change and current change, the time of which can be detected metrologically. In addition, according to one embodiment, the amplitude of this current change or voltage change can be detected. The amount or energy content of this change is an indication of the size of the surplus energy and thus the final velocity of the anchor.
- the switching operation is detected by a pressure sensor.
- the pressure sensor may be arranged to detect a change in pressure in the fluid caused by movement of the movable valve member.
- other sensors may be used: eg a microphone mounted so that in this example it will be the magnet and / or valve used in switching (in particular in the case of Striking the armature or a valve disk upon reaching its final state) receives sound generated, or an acceleration sensor that absorbs shocks.
- the microphone may also be mounted to detect the sound in the fluid. If properly selected, therefore, the pressure sensor may also take over the task of the microphone.
- FIG. 1 shows schematically an exemplary current profile, in which initially an electromagnet is switched by a rising current and then reversed by lowering the current flowing through its magnetic coil, the switching operation, and
- Fig. 2 is a schematic representation of the circuit of a device which carries out the inventive method.
- the current IA5 at the beginning of the falling ramp at time t5 is lower than at t2; in other embodiments, the current IA5 could be equal to or even greater than the current IE2. From time t6 to t7, the current is zero.
- Fig. 2 shows an arrangement 1 with a solenoid valve 3, which contains an electromagnet with a magnetic coil 4.
- the solenoid valve 3 is located in a conduit 7 in which there is a fluid (in the example a gas), which is provided by a fluid source 8, which in the example is equipped with an electric compressor for air and can provide air with different pressure, through the conduit 7 is conveyed under pressure to a container 9 when the solenoid valve 3 is open (permeable) and the container 9 is to be filled. If the pressure of the fluid source 8 is brought to a smaller value than in Container 9, the container 9 is emptied with open solenoid valve 3 or the pressure in it is reduced.
- a pressure sensor 11 is connected, which serves on the one hand to ensure the operation of the arrangement and for any monitoring tasks, on the other hand also serves to detect the switching time of the solenoid valve.
- the current through the magnetic coil 4 of the solenoid valve 3 is controlled by a current control device which, in conjunction with a controllable semiconductor switching element, namely a transistor 17 in the example, provides a current source.
- the control electrode (base) of the transistor 17 is connected to the output of an operational amplifier 19.
- the transistor 17 enables a blocking, a low-impedance switching, or a continuous change in resistance. Its collector is connected via the series-connected solenoid coil 4 with a positive supply voltage UB.
- the driving of the operational amplifier 19 is changed via a device temperature protection 22, whereby a change in the current waveform in the magnetic coil 4 is effected. If a microcontroller with an analog input is available, the coil temperature can be detected as described without any noticeable additional effort.
- the pressure sensor 11 upon detecting a pressure change, which is characteristic for the beginning of a change in state of the solenoid valve 3, more precisely for the start of the movement of the armature of the electromagnet, a signal to a block 23 "adaptation", which includes a control device, which with a electronic memory 25 cooperates.
- the block 23 provides a signal to a state transition controller 27 through which the current in the solenoid 4 is regulated. It is also shown the possibility that the voltage UL is tapped at the solenoid 4 and a block 29 "stop detection" is supplied, which is connected to the block 23. In this case, in addition to the time of a voltage change and their amplitude is detected and concluded therefrom on the final speed of the armature.
- the state transition controller 27 includes a processor that generates, in accordance with the desired time history of the current-time curve, a pulse width modulated signal PWM signal), which by integration results in an analog signal supplied to the operational amplifier 19.
- the processor is associated with multiple circuits in accordance with FIG. 2. Overall, the control is performed so that the switching time is as accurate as possible in the middle of the gradually increasing or decreasing part of the current-time curve that this said parts are temporally as short as possible, taking into account the required switching accuracy and the possibility of interference, and that when disturbances occur during operation, a control to achieve the conditions just mentioned as quickly as possible or to prevent a disturbing deviation.
- the rise (and fall) of the current does not have to be in the form of an approximately linear ramp, but a largely arbitrary waveform (transition function) is possible here. This does not necessarily have to be monotonously increasing or decreasing. It may have bends or kinks. According to the invention, this transition function or the ramp practically at the moment in which the armature of the electromagnet is moving (especially with increasing current), which is detected, obtained by controlling a short-term gradient, so that the anchor is accelerated as little as possible.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Magnetically Actuated Valves (AREA)
- Valve Device For Special Equipments (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Vermindern der Geräuschentwicklung bei der Betätigung von elektromagnetisch betätigten Vorrichtungen, wobei ein Schaltvorgang der Vorrichtung im Bereich einer Übergangsfunktion mit begrenzter Steigung der Strom-Zeit-Kurve des Elektromagnets erfolgt.The invention relates to a method for reducing the noise in the operation of electromagnetically actuated devices, wherein a switching operation of the device takes place in the region of a transition function with a limited slope of the current-time curve of the electromagnet.
Elektromagnetisch betätigte Vorrichtungen sind unter anderem elektromagnetische Ventile (Magnetventile) und Relais. Sie weisen einen Elektromagnet mit einer Magnetspule auf. Ein Anker (= vom Elektromagnet angetriebenes bewegliches Teil) ändert seine Lage (dies wird hier als der Schaltvorgang des Elektromagnets bezeichnet), wenn ein Strom in der Magnetspule z.B. bei seinem Anstieg einen bestimmten Wert erreicht.Electromagnetically actuated devices include electromagnetic valves (solenoid valves) and relays. They have an electromagnet with a magnetic coil. An armature (= electromagnet-driven movable member) changes its position (this is referred to herein as the switching operation of the solenoid) when a current in the solenoid coil is e.g. at its rise reaches a certain value.
Ein Verfahren der eingangs genannten Art ist aus nächstliegendem Stand der Technik DE-C2-3425574 bekannt. Es wird der gesamte Bereich zwischen dem minimalen Strom (Null Ampere) und dem maximalen Strom der Magnetspule mit einem allmählichen Anstieg durchlaufen. Dabei liegt der Punkt, an dem der Tauchkern des Elektromagnets mit seiner Bewegung beginnt, immer im Bereich des genannten Anstiegs. Wenn der Zeitraum, innerhalb von dem der Elektromagnet schalten soll, relativ kurz ist, so führt dies dazu, daß der Strom in einer relativ steilen Steigung ansteigen muß, was dazu führen kann, daß das Schalten des Elektromagnets bei einem höheren Strom erfolgt, als unbedingt nötig wäre. Dies würde zu unerwünscht starker Geräuschentwicklung führen und kann den Verschleiß erhöhen.A method of the type mentioned is known from the closest prior art DE-C2-3425574. It will go through the entire range between the minimum current (zero amperes) and the maximum current of the solenoid with a gradual increase. In this case, the point at which the plunger of the electromagnet begins with its movement, always in the range of said increase. If the period of time within which the electromagnet is to switch is relatively short, this will cause the current to rise at a relatively steep slope, which may cause the switching of the Electromagnets at a higher current than was absolutely necessary. This would lead to unwanted noise and can increase wear.
Aus der US 5,645,097 ist ein Verfahren zum Betreiben einer elektromagnetisch betätigten Vorrichtung zu entnehmen, bei dem ein kurzzeitiges Ausschalten bewirkt werden soll. Beim Ausschalten wird der Strom zunächst von 100% voll auf Null abgesenkt und ein anfängliches Beschleunigen mit voller Kraft erzeugt, was vor dem Aufschlag durch bereits wieder ansteigende Bestromung abgefangen wird.From US 5,645,097 a method for operating an electromagnetically actuated device can be seen, in which a short-term switching is to be effected. When switching off, the current is first lowered from 100% fully to zero and generates an initial acceleration with full force, which is intercepted before the impact by already increasing current supply.
Der Erfindung liegt die Aufgabe zugrunde, ein genaues Schalten des Elektromagnets bei möglichst geringer Änderungsgeschwindigkeit (Steigung) des Stroms zu ermöglichen.The invention has for its object to enable an accurate switching of the solenoid at the lowest possible rate of change (slope) of the stream.
Diese Aufgabe wird gemäß der Erfindung durch Verfahren gemäß Anspruch 1 oder 2, und durch die Vorrichtung gemäß Anspruch 6 gelöst.This object is achieved according to the invention by the method according to
Ein Vorteil der Erfindung liegt darin, daß der Elektromagnet mit einer geringstmöglichen Energie geschaltet werden kann; dadurch ist der Energieüberschuß, der auf den Anker (= das bewegliche Teil der Magnetanordnung) des Elektromagnets übertragen wird, gering, und dies führt zu geringen Geräuschen und kann den Verschleiß (z. B. von Relaiskontakten) verringern.An advantage of the invention is that the solenoid can be switched with the lowest possible energy; as a result, the excess of energy transferred to the armature (= the movable part of the magnet assembly) of the electromagnet is small and this leads to low noise and can reduce the wear (eg of relay contacts).
Ein weiterer Vorteil der Erfindung liegt darin, daß der Strom von seinem geringsten Wert, normalerweise Null Ampere, bis zu demjenigen Wert, an dem die Steigung der Stromkurve, die von einer sehr großen Steigung unterschiedlich ist, beginnt, sehr schnell durchlaufen werden kann. Außerdem kann der Bereich zwischen dem Strom am Ende der allmählichen Steigung bis zum maximal möglichen Wert des Stroms ebenfalls sehr schnell durchlaufen werden (Stromsprung). Vorteile liegen hierbei darin, daß zum Erzeugen des Stroms in der Spule des Elektromagnets verwendete Halbleiter-Schalterelemente nur relativ kurzzeitig in einem Bereich arbeiten, in dem sie einen gesteuerten Widerstand bilden; in diesem Bereich entsteht nämlich merkliche Wärme entsprechend dem Produkt UxI. Dies ist der Bereich, in dem der Strom mit der Zeit allmählich ansteigt (oder abfällt). In den anderen Bereichen dagegen steigt der Strom innerhalb sehr kurzer Zeit an (begrenzt durch die zur Verfügung stehende Spannung und die Induktivität), so daß in diesen Bereichen wenig Wärme im Halbleiter-Schalterelement gebildet wird.Another advantage of the invention is that the current can be traversed very rapidly from its lowest value, usually zero amps, to that value at which the slope of the current curve, which is different from a very large slope, can be traversed very rapidly. In addition, the range between the current at the end of the gradual slope up to the maximum possible value of the current can also be traversed very quickly (current jump). advantages lie in the fact that used for generating the current in the coil of the electromagnet semiconductor switch elements only relatively briefly in an area in which they form a controlled resistance; Namely, noticeable heat corresponding to the product UxI is produced in this area. This is the area where the current gradually increases (or decreases) with time. In the other areas, however, the current increases within a very short time (limited by the available voltage and the inductance), so that little heat is formed in the semiconductor switch element in these areas.
Schließlich erreicht der Strom am Ende des soeben geschilderten Vorgangs seinen maximalen Wert, und dies erfolgt dadurch, daß das Halbleiter-Schalterelement in einen möglichst niederohmigen Zustand (Sättigungsbereich, nichtlinear) gebracht wird, in welchem kaum Stromwärmeverluste entstehen. Daher kann das Halbleiter-Schalterelement den Elektromagnet in diesem Zustand ohne Bedenken längere Zeit, möglicherweise viele Stunden, halten, ohne daß das Halbleiter-Schalterelement thermisch gefährdet wird.Finally, the current reached at the end of the process just described its maximum value, and this is done by the semiconductor switch element in a low-impedance state (saturation region, non-linear) is brought in which hardly arise heat losses. Therefore, the semiconductor switch element can hold the solenoid in this state without hesitation for a long time, possibly many hours, without thermally compromising the semiconductor switch element.
Weiterhin wird durch die geschilderte Art der Ansteuerung des Elektromagnets in jedem Falle sichergestellt, daß der Elektromagnet schaltet, soweit genügend Spannung zur Verfügung steht.Furthermore, it is ensured by the described type of control of the electromagnet in each case that the solenoid switches, as far as enough voltage is available.
Bei einer Ausführungsform der Erfindung ist vorgesehen, daß der Zeitpunkt, an dem der Elektromagnet schaltet, meßtechnisch erfaßt wird, und daß eine Regelung vorgesehen ist, die dafür sorgt, daß der Schaltvorgang im Bereich der allmählichen Steigung liegt. Ein Vorteil liegt darin, daß Änderungen der Eigenschaften des Elektromagnets oder der Umgebungsbedingungen, beispielsweise der Temperatur, die zu einem unterschiedlichen Ansprechen des Elektromagnets führen könnten (z.B. wegen der Temperaturabhängigkeit der mechanischen Reibung), wodurch der Schaltvorgang außerhalb des Bereichs der allmählichen Steigung zu liegen kommen könnte, sich nicht auf den Zeitpunkt oder Zeitbereich des Schaltvorgangs auswirken. Weiter ist hierbei von Vorteil, daß der Zeitpunkt, in dem der Schaltvorgang eintritt, relativ eng eingeschränkt werden kann.In one embodiment of the invention, it is provided that the time at which the solenoid switches, is detected by measurement, and that a control is provided, which ensures that the switching operation is in the range of the gradual slope. One advantage is that Changes in the characteristics of the electromagnet or environmental conditions, such as temperature, which could lead to a different response of the electromagnet (eg due to the temperature dependence of the mechanical friction), whereby the switching operation could be outside the range of the gradual slope, not on the Affect the timing or time range of the shift. Next, it is advantageous that the time at which the switching occurs, can be relatively narrowly restricted.
Bei einer Ausführungsform der Erfindung ist vorgesehen, daß zum Feststellen, an welchem Punkt der Strom-Zeit-Kurve der Elektromagnet schaltet, der gesamte Strombereich in Form einer allmählich steigenden Kurve einmalig durchlaufen wird. Anschließend kann dann ein zeitlich und bezüglich des Stroms eingeschränkter Bereich um den Punkt des Schaltens des Elektromagnets herum herausgegriffen werden und der Strom kann vom Wert Null aus zum Beginn dieses Bereichs sprungartig ansteigen und vom Ende dieses Bereichs weiterhin sprungartig zu seinem Maximalwert ansteigen. Der dazwischen liegende Bereich der Kurve kann mit einer Übergangsfunktion der Strom-Zeit-Kurve mit geringerer Steigung versehen werden als bei dem soeben geschilderten gesamten Durchlaufen des Strombereichs in Form einer ansteigenden Kurve. Diese Ausführungsform der Erfindung eignet sich besonders dafür, Geräte, die eine erfindungsgemäße Schaltung enthalten, nach der Fertigung oder auch nach jeweils längeren Zeiträumen sich automatisch überprüfen zu lassen, um den optimalen Schaltzeitpunkt des Elektromagnets (wieder) einzustellen bzw. nachzuregeln (Adaption). Die bei einem derartigen Durchlaufen des gesamten Strombereichs ermittelten Werte können in einem dauerhaften Speicher, der in dem Gerät, das den Elektromagnet enthält, untergebracht ist, gespeichert werden und stehen dann auch nach längeren Zeiten, in denen der Elektromagnet nicht in Betrieb war, zur Verfügung.In one embodiment of the invention it is provided that to determine at which point of the current-time curve the solenoid switches, the entire current range is passed through once in the form of a gradually rising curve. Thereafter, a region limited in time and current may be extracted around the point of switching of the electromagnet, and the current may increase abruptly from zero to the beginning of this range and may continue to rise abruptly from its maximum to its maximum value. The intermediate region of the curve can be provided with a transition function of the current-time curve with a smaller slope than in the just described overall passage through the current region in the form of a rising curve. This embodiment of the invention is particularly suitable for having devices that contain a circuit according to the invention to be automatically checked after production or even after each longer periods of time to (re) adjust or readjust the optimal switching time of the solenoid (adaptation). The values obtained in such a passage through the entire current range can be stored in a permanent memory which is accommodated in the device which contains the electromagnet are then available even after longer periods in which the electromagnet was not in operation.
Eine erfindungsgemäße Vorrichtung, die das erfindungsgemäße Verfahren ausführt, weist hierzu eine hinsichtlich ihrer Parameter steuerbare Steuervorrichtung zum Beeinflussen des Stromverlaufs auf, sowie vorteilhaft einen Speicher, in dem Parameter für die Steuervorrichtung speicherbar sind.A device according to the invention, which carries out the method according to the invention, has for this purpose a control device which is controllable with regard to its parameters for influencing the course of the current, and advantageously a memory in which parameters for the control device can be stored.
Erfindungsgemäß bestehen zahlreiche Möglichkeiten, wie der Zeitpunkt, an dem der Elektromagnet schaltet, festgestellt werden kann. Gemäß einer Ausführungsform der Erfindung erfolgt dies durch Untersuchung des Stroms oder der Spannung, die an der Spule des Elektromagnets anliegt. In dem Augenblick, in dem sich der Anker oder allgemeinen das bewegliche Teil des Elektromagnets in Bewegung setzt, ändert sich nämlich die Induktivität der Magnetanordnung, und dies macht sich in einer plötzlichen Spannungsänderung und Stromänderung bemerkbar, deren Zeitpunkt meßtechnisch erfaßt werden kann. Zusätzlich kann gemäß einer Ausführungsform die Amplitude dieser Stromänderung oder Spannungsänderung erfaßt werden. Die Höhe bzw. der Energieinhalt dieser Änderung ist ein Hinweis auf die Größe der überschüssigen Energie und somit auf die Endgeschwindigkeit des Anker.According to the invention, there are numerous possibilities, such as the time at which the solenoid switches, can be determined. According to one embodiment of the invention, this is done by examining the current or the voltage applied to the coil of the electromagnet. In fact, as the armature or general moving part of the electromagnet starts to move, the inductance of the magnet assembly changes, and this manifests itself in a sudden voltage change and current change, the time of which can be detected metrologically. In addition, according to one embodiment, the amplitude of this current change or voltage change can be detected. The amount or energy content of this change is an indication of the size of the surplus energy and thus the final velocity of the anchor.
Bei einer anderen Ausführungsform der Erfindung wird der Schaltvorgang durch einen Drucksensor erkannt. Wenn der Elektromagnet Teil eines Ventils für ein Fluid ist, kann der Drucksensor so angeordnet sein, daß er eine durch die Bewegung des beweglichen Ventilteils verursachte Änderung des Drucks in dem Fluid erkennt. Zusätzlich oder stattdessen können andere Sensoren benutzt werden: z.B. ein Mikrophon, das so montiert ist, daß es in diesem Beispiel den vom Magnet und / oder Ventil beim Schalten (insbesondere beim Anschlagen des Ankers oder eines Ventiltellers beim Erreichen seines Endzustands) erzeugten Schall aufnimmt, oder ein Beschleunigungssensor, der Erschütterungen aufnimmt. Das Mikrophon kann auch so montiert sein, daß es den Schall im Fluid erfaßt. Bei geeigneter Auswahl mag daher der Drucksensor auch die Aufgabe des Mikrophons übernehmen.In another embodiment of the invention, the switching operation is detected by a pressure sensor. When the solenoid is part of a valve for a fluid, the pressure sensor may be arranged to detect a change in pressure in the fluid caused by movement of the movable valve member. In addition or instead, other sensors may be used: eg a microphone mounted so that in this example it will be the magnet and / or valve used in switching (in particular in the case of Striking the armature or a valve disk upon reaching its final state) receives sound generated, or an acceleration sensor that absorbs shocks. The microphone may also be mounted to detect the sound in the fluid. If properly selected, therefore, the pressure sensor may also take over the task of the microphone.
Weitere Möglichkeiten und Einrichtungen für das Feststellen des Schaltzeitpunkts des Ankers bestehen in einer Lichtschranke, Feststellung der Durchflußänderung des Fluids, Feststellung der Änderung eines Lastkreises, z.B. bei einem Relais.Further possibilities and means for determining the switching time of the armature are in a photoelectric barrier, detecting the flow change of the fluid, detecting the change of a load circuit, e.g. at a relay.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung anhand der Zeichnung, die erfindungswesentliche Einzelheiten zeigt, und aus den Ansprüchen. Die einzelnen Merkmale können je einzeln für sich oder zu mehreren in beliebiger Kombination bei einer Ausführungsform der Erfindung verwirklicht sein. Es zeigenFurther features and advantages of the invention will become apparent from the following description of embodiments of the invention with reference to the drawing, which shows details essential to the invention, and from the claims. The individual features may be implemented individually for themselves or for several in any combination in an embodiment of the invention. Show it
Fig. 1 schematisch einen beispielhaften Stromverlauf, in dem zunächst ein Elektromagnet durch einen ansteigenden Strom geschaltet wird und anschließend durch Absenken des seine Magnetspule durchfließenden Stroms der Schaltvorgang rückgängig gemacht wird, und1 shows schematically an exemplary current profile, in which initially an electromagnet is switched by a rising current and then reversed by lowering the current flowing through its magnetic coil, the switching operation, and
Fig. 2 eine schematische Darstellung der Schaltung einer Vorrichtung, die das erfindungsgemäße Verfahren ausführt.Fig. 2 is a schematic representation of the circuit of a device which carries out the inventive method.
In Fig. 1 erfolgt das Einschalten zwischen Zeitpunkten t0 und t3, und das Ausschalten zwischen Zeitpunkten t4 und t7, und zwar beim normalen Betrieb in demgegenüber eingeschränkten Bereichen t1 bis t2 (Einschalten) bzw. t5 bis t6 (Ausschalten).In Fig. 1, the switch-on between times t0 and t3, and switching off between times t4 and t7, in the normal operation in contrast to restricted areas t1 to t2 (turn on) and t5 to t6 (switch off).
Zwischen diesen beiden Schaltvorgängen liegt ein Zeitbereich (t2 bis t5), bei dem der Strom seinen Maximalwert hat.Between these two switching processes lies a time range (t2 to t5) at which the current has its maximum value.
Vom Zeitpunkt t0 bis zum Zeitpunkt t1 ist der Strom Null. Bei t1 steigt der Strom sehr rasch auf einen Wert IE1 an, bei dem ein Schaltvorgang des Elektromagnets mit Sicherheit noch nicht stattfindet. Anschließend folgt eine in diesem Beispiel etwa lineare Rampenfunktion oder ein allmählicher Anstieg des Stroms bis zum Zeitpunkt t2, an dem der Strom den Wert IE2 hat. Innerhalb dieser Rampe zwischen den Zeitpunkten t1 und t2 erfolgt das Einschalten des Elektromagnets. Anschließend wird das Halbleiter-Schalterelement, das als Stellglied für den Strom dient, auf einen weitestgehend niederohmigen Wert geschaltet, was zu dem Maximalstrom Iein in Fig. 1 führt. Beim Ausschalten liegt im Beispiel der Strom IA5 beim Beginn der fallenden Rampe im Zeitpunkt t5 niedriger als bei t2; bei anderen Ausführungsformen könnte der Strom IA5 gleich wie oder sogar größer als der Strom IE2 sein. Vom Zeitpunkt t6 bis t7 ist der Strom Null.From time t0 to time t1, the current is zero. At t1, the current rises very rapidly to a value IE1 at which a switching operation of the electromagnet certainly does not take place yet. This is followed by an approximately linear ramp function in this example, or a gradual increase in the current until time t2 when the current has the value IE2. Within this ramp between the times t1 and t2, the switching on of the electromagnet takes place. Subsequently, the semiconductor switch element, which serves as an actuator for the current, switched to a substantially low value, which leads to the maximum current Iein in Fig. 1. When turning off in the example, the current IA5 at the beginning of the falling ramp at time t5 is lower than at t2; in other embodiments, the current IA5 could be equal to or even greater than the current IE2. From time t6 to t7, the current is zero.
Fig. 2 zeigt eine Anordnung 1 mit einem Magnetventil 3, das einen Elektromagnet mit einer Magnetspule 4 enthält. Das Magnetventil 3 liegt in einer Rohrleitung 7, in der sich ein Fluid (im Beispiel ein Gas) befindet, das von einer Fluidquelle 8, die im Beispiel mit einem elektrischen Kompressor für Luft ausgestattet ist und Luft mit unterschiedlichem Druck bereitstellen kann, durch die Rohrleitung 7 unter Druck zu einem Behälter 9 gefördert wird, wenn das Magnetventil 3 offen (durchlässig) ist und der Behälter 9 befüllt werden soll. Wird der Druck der Fluidquelle 8 auf einen kleineren Wert gebracht als im Behälter 9, so wird bei offenem Magnetventil 3 der Behälter 9 entleert bzw. der Druck in ihm vermindert. An die Rohrleitung 7 ist ein Drucksensor 11 angeschlossen, der einerseits zur Sicherstellung des Betriebs der Anordnung und für beliebige Überwachungsaufgaben dient, andererseits auch dazu dient, den Schaltzeitpunkt des Magnetventils zu erkennen.Fig. 2 shows an
Der Strom durch die Magnetspule 4 des Magnetventils 3 wird durch eine Stromregelvorrichtung geregelt, die in Verbindung mit einem steuerbaren Halbleiter-Schaltelement, nämlich im Beispiel einem Transistor 17, eine Stromquelle bereitstellt. Die Steuerelektrode (Basis) des Transistors 17 ist mit dem Ausgang eines Operationsverstärkers 19 verbunden. Der Transistor 17 ermöglicht eine Sperrung, eine niederohmige Durchschaltung, oder eine kontinuierliche Widerstandsänderung. Sein Kollektor ist über die in Serie geschaltete Magnetspule 4 mit einer positiven Versorgungsspannung UB verbunden.The current through the
Eine Temperaturerfassung 21 erfaßt die Versorgungsspannung UB und den durch den Transistor 17 (im niederohmigen Zustand = Sättigungszustand) fließenden Strom unter Berücksichtigung des Spannungsabfalls an einem Widerstand R mit bekanntem Wert, der in die Zuleitung zum Emitter des Transistors 17 geschaltet ist. Bei bekanntem Widerstand des Transistors 17 im Sättigungszustand (bzw. bei bekanntem Spannungsabfall am Transistor) wird der Widerstand der Magnetspule 4 ermittelt, und durch Vergleich mit einem zuvor bei einer bekannten Temperatur gemessenen (und gespeicherten) Spulenwiderstand wird auf die augenblickliche Temperatur der Magnetspule geschlossen. Die Temperaturerfassung 21 leitet dann, wenn die Spulentemperatur eine vorgegebene Grenztemperatur überschreitet, Schutzmaßnahmen oder Gegenmaßnahmen ein. Im Beispiel wird in einem solchen Fall die Ansteuerung des Operationsverstärkers 19 über eine Einrichtung Temperaturschutz 22 geändert, wodurch eine Änderung des Stromverlaufs in der Magnetspule 4 bewirkt wird. Wenn ein Mikrocontroller mit einem Analogeingang zur Verfügung steht, so kann ohne merklichen Mehraufwand die Spulentemperatur, wie geschildert, erfaßt werden.A
Der Drucksensor 11 liefert beim Erkennen einer Druckänderung, die für den Beginn einer Zustandsänderung des Magnetventils 3, genauer für den Beginn der Bewegung des Ankers des Elektromagnets charakteristisch ist, ein Signal an einen Block 23 "Adaption", der eine Steuereinrichtung enthält, die mit einem elektronischen Speicher 25 zusammenwirkt. Der Block 23 liefert ein Signal an eine Zustandsübergangssteuerung 27, durch die der Strom in der Magnetspule 4 geregelt wird. Es ist außerdem noch die Möglichkeit eingezeichnet, daß die Spannung UL an der Magnetspule 4 abgegriffen wird und einem Block 29 "Anschlagserkennung" zugeführt wird, der mit dem Block 23 verbunden ist. Dabei wird neben dem Zeitpunkt einer Spannungsänderung auch deren Amplitude erfaßt und daraus auf die Endgeschwindigkeit des Ankers geschlossen.The
Die Zustandsübergangssteuerung 27 enthält einen Prozessor, der entsprechend dem gewünschten zeitlichen Verlauf der Strom-Zeit-Kurve ein Pulsweiten-moduliertes Signal PWM-Signal) erzeugt, das durch Integration ein analoges Signal ergibt, das dem Operationsverstärker 19 zugeführt wird. Bei anderen Ausführungsbeispielen ist der Prozessor mehreren Schaltungen gemäß Fig. 2 gemeinsam zugeordnet. Insgesamt erfolgt die Steuerung so, daß der Schaltzeitpunkt möglichst genau in der Mitte des allmählich ansteigenden bzw. abfallenden Teils der Strom-Zeit-Kurve liegt, daß diese genannten Teile unter Berücksichtigung der erforderlichen Schaltgenauigkeit und der Störungsmöglichkeiten zeitlich möglichst kurz sind, und daß bei auftretenden Störungen während des Betriebs eine Regelung erfolgt, um die soeben genannten Bedingungen möglichst schnell wieder zu erreichen bzw. eine störende Abweichung zu verhindern.The
Es kann durchaus sinnvoll sein, zusätzlich zu der Erkennung des Schaltvorgangs mittels Drucksensor auch eine Erkennung des Beginns der Bewegung des beweglichen Teil des Elektromagnets durch die Erfassung der Spannung (oder des Stroms) vorzusehen, wie dargestellt.It may well be useful, in addition to the detection of the switching operation by means of a pressure sensor, also to provide detection of the beginning of the movement of the movable part of the electromagnet by the detection of the voltage (or of the current), as shown.
Der Anstieg (und Abfall) des Stroms muß nicht in Form einer etwa linearen Rampe erfolgen, sondern es ist hier eine weitgehend beliebige Kurvenform (Übergangsfunktion) möglich. Diese muß nicht notwendigerweise monoton ansteigend bzw. abfallend verlaufen. Sie kann Krümmungen oder Knicke aufweisen. Erfindungsgemäß kann diese Übergangsfunktion oder auch die Rampe praktisch in dem Augenblick, in dem sich der Anker des Elektromagnets in Bewegung setzt (besonders bei steigendem Strom), was erfaßt wird, durch Steuerung einen kurzzeitig abfallenden Verlauf erhalten, damit der Anker möglichst wenig beschleunigt wird.The rise (and fall) of the current does not have to be in the form of an approximately linear ramp, but a largely arbitrary waveform (transition function) is possible here. This does not necessarily have to be monotonously increasing or decreasing. It may have bends or kinks. According to the invention, this transition function or the ramp practically at the moment in which the armature of the electromagnet is moving (especially with increasing current), which is detected, obtained by controlling a short-term gradient, so that the anchor is accelerated as little as possible.
Oben wurde beschrieben, daß zum Feststellen, an welchem Punkt der Strom-Zeit-Kurve der Elektromagnet schaltet, der gesamte Strombereich in Form einer allmählich steigenden Kurve einmalig durchlaufen wird. Dies erfolgt in Fig. 1 vom Zeitpunkt t0 bis zum Zeitpunkt t3.It has been described above that in order to determine at which point of the current-time curve the solenoid switches, the entire current range is passed once in the form of a gradually rising curve. This takes place in FIG. 1 from time t0 to time t3.
Claims (11)
- Method for operating electromagnetically (4) actuated devices (3),a) wherein the current is regulated with a limited slope from a minimum value (Ioff) to a maximum value (Ion) by means of a current regulation during a switching-on process of the device,
characterised in thatb) the current regulation regulates the current in three partial ranges,b1) wherein in a first partial range (prior to t1) the current is regulated with a steep slope to a first current value (IE1) which is higher relative to the minimum value (loff),b2) the current is regulated in a subsequent second partial range (t1 to t2) with a smaller slope relative to the first partial range to a second current value (IE2) which is higher relative to the first current value (IE1) and smaller than the maximum value (Ion) andb3) in a subsequent third partial range (from t2) the current is again regulated with a steep slope to the maximum value (Ion),c) wherein the first and second current value (IE1, IE2) are determined in such a way that the switching process of the device takes place in the second partial region between the first and second current value (IE1, IE2). - Method for operating electromagnetically (4) actuated devices (3),a) wherein the current is regulated with a limited slope from a maximum value (Ion) to a minimum value (loff) during a switching-off process of the device by means of a current regulation,
characterised in thatb) the current regulation regulates the current in three partial ranges,b1) wherein in a first partial range (prior to t5) the current is regulated with a steep slope from the maximum value (Ion) to a first current value (IA5) which is lower relative to the maximum value (Ion),b2) the current is regulated in a subsequent second partial range (t5 to t6) with a smaller slope relative to the first partial range from the first current value (IA5) to a second current value (IA6) which is lower relative to the first current value (IA5) and greater than the minimum value (Ioff) andb3) in a subsequent third partial range (from t6) the current is again regulated with a steep slope to the minimum value (Ioff),c) wherein the first and second current value (IA5, IA6) are determined in such a way that the switching process of the device takes place in the second partial range between the first and second current value (IA5, IA6). - Method according to claim 1 or 2, characterised in that the starting instant of the switching process is determined by means of a sensor and a check is made as to whether the switching process takes place in the second partial range (t1 to t2, t5 to t6) and that when this is not the case, the first or second current value (IE1, IE2, IA5, IA6), and/or the slope in the second partial range (t1 to t2, t5 to t6), are changed such that in subsequent switching processes these lie in the second partial range (t1 to t2, t5 to t6).
- Method according to claim 3, characterised in that the instant of the switching process is detected electrically or optically or is determined by sound or vibration sensors.
- Method according to any one of the preceding claims, characterised in that the current values (Ioff, IE1, IE2, Ion, IA5, IA6), and slopes in the three partial ranges are stored as a current-time curve in an electronic memory (25).
- Electromagnetically (4) actuated device (3) with a current regulating device which regulates the current according to the method according to any one of the preceding claims, characterised in that this device has a sensor for determining the switching instant of an electromagnet (3), a device for establishing at what point on the current-time curve the switching instant lies, and a device for changing said curve for temporally later switching processes, such that the switching instant is located in a central region of the curve.
- Device according to claim 6, characterised in that to determine the switching instant, an electrical or optical sensor, a sound or vibration sensor is provided.
- Device according to either of claims 6 or 7, characterised by an electronic memory (25) for storing the data of said curve.
- Device according to any one of claims 6 to 8, characterised in that a semiconductor switching element (transistor 17) receiving the current through the magnet coil (4) is in a low-impedance operating state (saturation range of the semiconductor) at maximum current through the magnet coil (4).
- Device according to any one of claims 6 to 9, characterised in that a device (temperature detection device 21, temperature protection device 22) is provided to protect the magnet coil (4) from thermal overloading.
- Use of a device according to any one of the preceding claims 6 to 10 to control a solenoid valve.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19860272A DE19860272B4 (en) | 1998-12-24 | 1998-12-24 | Method and device for reducing noise in electromagnetically actuated devices |
DE19860272 | 1998-12-24 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1014395A2 EP1014395A2 (en) | 2000-06-28 |
EP1014395A3 EP1014395A3 (en) | 2001-11-14 |
EP1014395B1 true EP1014395B1 (en) | 2006-04-12 |
Family
ID=7892813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99123805A Expired - Lifetime EP1014395B1 (en) | 1998-12-24 | 1999-12-01 | Method and apparatus for reducing the noise of electromagnetically operated devices |
Country Status (3)
Country | Link |
---|---|
US (1) | US6560088B1 (en) |
EP (1) | EP1014395B1 (en) |
DE (2) | DE19860272B4 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10005424A1 (en) * | 2000-02-08 | 2001-08-09 | Bosch Gmbh Robert | Control circuit for fitting to a controllable electro-magnetic valve for a motor vehicle braking installation feeds actual control range values like deceleration, wheel slippage or vehicle speed back into preset tolerance band |
DE10124847A1 (en) * | 2001-05-22 | 2002-11-28 | Abb Patent Gmbh | Operating actuator drive e.g. for pipeline, involves maximum actuation speed during first phase, and reducing actuation speed continuously with defined gradient from predefined position in second phase |
DE10130335C1 (en) * | 2001-06-26 | 2003-02-13 | Zf Lemfoerder Metallwaren Ag | Locking and unlocking mechanism with electromagnet |
WO2003023211A1 (en) * | 2001-08-16 | 2003-03-20 | Robert Bosch Gmbh | Method and device for controlling an electromagnetic consumer |
DE10140432B4 (en) * | 2001-08-17 | 2010-02-11 | GM Global Technology Operations, Inc., Detroit | Method and device for noise and vibration reduction on a solenoid valve |
WO2005051740A1 (en) * | 2003-11-26 | 2005-06-09 | Robert Bosch Gmbh | Method for controlling a two-stage selector valve |
US6889121B1 (en) * | 2004-03-05 | 2005-05-03 | Woodward Governor Company | Method to adaptively control and derive the control voltage of solenoid operated valves based on the valve closure point |
DE102004019152B4 (en) * | 2004-04-21 | 2007-05-31 | Robert Bosch Gmbh | Method for operating a solenoid valve for quantity control |
DE102005060414A1 (en) * | 2005-12-15 | 2007-06-21 | Bosch Rexroth Ag | Electro hydraulic control device e.g. for control devices, has valve with control electronics for electrical control of valve as function of control signal |
US20070230665A1 (en) * | 2006-03-31 | 2007-10-04 | General Electric Company | Noise reduction in brakes & clutches |
DE102006058085A1 (en) * | 2006-06-06 | 2007-12-13 | Continental Teves Ag & Co. Ohg | Method for controlling analogously controlled hydraulic inlet valves |
US7950622B2 (en) * | 2007-07-25 | 2011-05-31 | Honeywell International, Inc. | System, apparatus and method for controlling valves |
US8360394B2 (en) * | 2008-07-30 | 2013-01-29 | GM Global Technology Operations LLC | Control system and method for transitioning between position control and force control for multi-stage turbo engine turbine bypass valve |
US8149558B2 (en) * | 2009-03-06 | 2012-04-03 | Cobasys, Llc | Contactor engagement system and method |
US9435459B2 (en) * | 2009-06-05 | 2016-09-06 | Baxter International Inc. | Solenoid pinch valve apparatus and method for medical fluid applications having reduced noise production |
DE102010022536A1 (en) * | 2010-06-02 | 2011-12-08 | Continental Automotive Gmbh | Method and device for controlling a valve |
DE102010042589A1 (en) | 2010-10-18 | 2012-04-19 | Robert Bosch Gmbh | Method for automatically braking a vehicle |
DE102012206419B4 (en) | 2012-04-19 | 2021-08-12 | Magna Pt B.V. & Co. Kg | Control for a pressure regulating valve |
JP6266933B2 (en) * | 2013-09-25 | 2018-01-24 | 本田技研工業株式会社 | Braking device valve system |
DE102014220929B4 (en) * | 2014-10-15 | 2022-05-25 | Vitesco Technologies GmbH | Method for controlling an inductive actuator |
WO2016153972A1 (en) | 2015-03-20 | 2016-09-29 | Dana Automotive Systems Group, Llc | Induction based position sensing in an electromagnetic actuator |
DE102015219197B4 (en) | 2015-10-05 | 2019-07-04 | Conti Temic Microelectronic Gmbh | Pneumatic solenoid valve |
DE102015219182B4 (en) | 2015-10-05 | 2019-07-04 | Conti Temic Microelectronic Gmbh | Pneumatic solenoid valve |
DE102015219176B3 (en) | 2015-10-05 | 2017-03-30 | Conti Temic Microelectronic Gmbh | Pneumatic solenoid valve |
DE102016103249A1 (en) * | 2016-02-24 | 2017-08-24 | Truma Gerätetechnik GmbH & Co. KG | Gas valve and method for its control |
BR112018069759B1 (en) * | 2016-03-30 | 2023-01-10 | Honda Motor Co., Ltd | WINDSCREEN CONTROL DEVICE |
DE102017102637A1 (en) * | 2017-02-10 | 2018-08-16 | Pilz Gmbh & Co. Kg | Circuit arrangement for operating at least one relay |
DE102017207685A1 (en) * | 2017-05-08 | 2018-11-08 | Robert Bosch Gmbh | Method for controlling at least one solenoid valve |
DE102018202392A1 (en) * | 2018-02-16 | 2019-08-22 | Audi Ag | Method for laminating a noise of a motor vehicle and motor vehicle |
WO2020035171A1 (en) * | 2018-08-15 | 2020-02-20 | Tiko Energy Solutions Ag | System and method for quick and low noise relay switching operation |
DE102018213998B4 (en) | 2018-08-20 | 2020-12-10 | Continental Teves Ag & Co. Ohg | Method for controlling an electromagnetic valve and compressed air system with an electromagnetic valve |
CN113576563B (en) * | 2021-09-02 | 2022-10-04 | 深圳市理康医疗器械有限责任公司 | Electromagnetic ballistic impulse wave generator |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1251165A (en) * | 1970-06-30 | 1971-10-27 | ||
JPS6018903A (en) * | 1983-07-12 | 1985-01-31 | Sharp Corp | Driving system of solenoid |
DE3843138A1 (en) * | 1988-12-22 | 1990-06-28 | Bosch Gmbh Robert | METHOD OF CONTROLLING AND DETECTING THE MOVEMENT OF AN ARMATURE OF AN ELECTROMAGNETIC SWITCHING DEVICE |
US5053911A (en) * | 1989-06-02 | 1991-10-01 | Motorola, Inc. | Solenoid closure detection |
DE4013393A1 (en) * | 1990-04-26 | 1991-10-31 | Lucas Ind Plc | Electromagnetic valve function monitoring method - measuring coil voltage and/or current fluctuations after applying actuating current |
DE4305488A1 (en) * | 1993-02-23 | 1994-08-25 | Bosch Gmbh Robert | Control circuit for a solenoid valve |
DE4317109A1 (en) * | 1993-05-21 | 1994-11-24 | Herion Werke Kg | Method for checking solenoid valves and associated measuring arrangement |
US5381297A (en) * | 1993-06-18 | 1995-01-10 | Siemens Automotive L.P. | System and method for operating high speed solenoid actuated devices |
FR2714998B1 (en) * | 1994-01-07 | 1996-02-09 | Peugeot | Method for controlling a bistable electromagnetic actuator and device for its implementation. |
GB9420617D0 (en) * | 1994-10-13 | 1994-11-30 | Lucas Ind Plc | Drive circuit |
DE19544207C2 (en) * | 1995-11-28 | 2001-03-01 | Univ Dresden Tech | Process for model-based measurement and control of movements on electromagnetic actuators |
DE19611885B4 (en) * | 1996-03-26 | 2007-04-12 | Robert Bosch Gmbh | Method and device for controlling an electromagnetic switching element |
DE19714518A1 (en) * | 1997-04-08 | 1998-10-15 | Bayerische Motoren Werke Ag | Current control method for an electromagnetically operated lift valve of an internal combustion engine |
DE19742038A1 (en) * | 1997-09-24 | 1999-03-25 | Wabco Gmbh | Solenoid valve state detection method |
US6031707A (en) * | 1998-02-23 | 2000-02-29 | Cummins Engine Company, Inc. | Method and apparatus for control of current rise time during multiple fuel injection events |
-
1998
- 1998-12-24 DE DE19860272A patent/DE19860272B4/en not_active Expired - Lifetime
-
1999
- 1999-12-01 EP EP99123805A patent/EP1014395B1/en not_active Expired - Lifetime
- 1999-12-01 DE DE59913326T patent/DE59913326D1/en not_active Expired - Lifetime
- 1999-12-24 US US09/472,707 patent/US6560088B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE19860272A1 (en) | 2000-07-06 |
US6560088B1 (en) | 2003-05-06 |
EP1014395A2 (en) | 2000-06-28 |
EP1014395A3 (en) | 2001-11-14 |
DE59913326D1 (en) | 2006-05-24 |
DE19860272B4 (en) | 2005-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1014395B1 (en) | Method and apparatus for reducing the noise of electromagnetically operated devices | |
EP0449852B1 (en) | Process and device for controlling and detecting the movement of an armature of an electromagnetic switching device | |
DE2811345C2 (en) | Pressure regulators for pneumatic pressures, in particular in vehicles | |
DE102012213883B4 (en) | Equalization of the current flow through a fuel injector for different partial injection processes of a multiple injection | |
EP3211280B1 (en) | Gas valve and method for its control | |
EP0980575A1 (en) | Electronic control circuit | |
DE2813752C2 (en) | Control device for an electromechanical converter | |
WO2007079767A1 (en) | Method and device for operating a switching device | |
DE2805876C2 (en) | ||
DE19533452A1 (en) | Method of adapting control for an electromagnetic actuator for IC engine gas-exchange valve | |
DE19742038A1 (en) | Solenoid valve state detection method | |
DE60101770T2 (en) | ELECTRICALLY ACTUATED MOTOR VALVE WITH OUTPUT OF A POSITION SIGNAL | |
DE102007063479A1 (en) | Method for producing signal, involves displaying armature of electromagnets, which attain end position and current is measured continuously which is flowing by electromagnets | |
DE10057900B4 (en) | Device for controlling brake valves | |
DE10315282B4 (en) | Circuit arrangement and method for driving a bistable solenoid valve | |
EP1234316A1 (en) | Electromagnetic switchgear comprising a controlled drive, a corresponding method and a circuit | |
DE102016226272A1 (en) | Method and device for controlling a solenoid valve | |
DE202008005238U1 (en) | Vacuum valve system with position detection | |
DE102007003211A1 (en) | Device and method for controlling an electromagnetic valve | |
DE10129153A1 (en) | Electromagnetic valve with holding current reduction has switching arrangement that changes to lower holding current depending on parameter variation when valve switched | |
DE69608348T2 (en) | Control circuit | |
DE10010756A1 (en) | Method of regulating the movement characteristic of an armature e.g. for electromagnetic actuator of internal combustion (IC) engine gas-exchange valve, involves detecting a detector magnitude | |
DE102014202106B3 (en) | Method for operating an injection valve and method for operating a plurality of injection valves | |
DE102018221930A1 (en) | Control unit for controlling a solenoid valve | |
DE10315584B4 (en) | Method for actuating an electromagnetic actuating device and device for carrying it out |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Kind code of ref document: A2 Designated state(s): DE ES FR GB IT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20011201 |
|
17Q | First examination report despatched |
Effective date: 20020207 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CONTI TEMIC MICROELECTRONIC GMBH |
|
AKX | Designation fees paid |
Free format text: DE ES FR GB IT SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060412 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060412 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59913326 Country of ref document: DE Date of ref document: 20060524 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060723 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20060412 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070115 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20181219 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181231 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59913326 Country of ref document: DE |