EP1001223B1 - Kleingasturbine mit einer Radial- oder Slinger-Brennkammer - Google Patents

Kleingasturbine mit einer Radial- oder Slinger-Brennkammer Download PDF

Info

Publication number
EP1001223B1
EP1001223B1 EP99122467A EP99122467A EP1001223B1 EP 1001223 B1 EP1001223 B1 EP 1001223B1 EP 99122467 A EP99122467 A EP 99122467A EP 99122467 A EP99122467 A EP 99122467A EP 1001223 B1 EP1001223 B1 EP 1001223B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
fuel
compressor
rotor shaft
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99122467A
Other languages
English (en)
French (fr)
Other versions
EP1001223A2 (de
EP1001223A3 (de
Inventor
Alexander Böck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP1001223A2 publication Critical patent/EP1001223A2/de
Publication of EP1001223A3 publication Critical patent/EP1001223A3/de
Application granted granted Critical
Publication of EP1001223B1 publication Critical patent/EP1001223B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/38Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising rotary fuel injection means

Definitions

  • the invention relates to a small gas turbine with a radial or Slinger combustion chamber as well as with a radial compressor or diagonal compressor upstream of the radial or Slinger combustion chamber and a turbine part connected to the latter by means of a rotor shaft which runs in the axial direction and is supported by at least one roller bearing, the fuel passing through A delivery pipe provided in the impeller of the radial compressor / diagonal compressor enters an intersection part of the rotor shaft located in the region of the combustion chamber near the compressor and is supplied to the combustion chamber via supply holes running essentially in the radial direction thereof, and in or upstream of the intersection part (s) there is an upstream of the supply holes Centrifugal siphon through which fuel flows is provided.
  • a delivery pipe provided in the impeller of the radial compressor / diagonal compressor enters an intersection part of the rotor shaft located in the region of the combustion chamber near the compressor and is supplied to the combustion chamber via supply holes running essentially in the radial direction thereof, and in or upstream of the intersection part (s
  • the fuel is produced by one concentric to the axis of rotation of the radial compressor (under this term also referred to as the diagonal compressors) or the rotor shaft Bore in the compressor impeller or through a delivery pipe provided therein directed to the combustion chamber. It flows due to the rotary motion of the rotor shaft or the compressor impeller due to the resulting centrifugal forces Fuel as a thin film along the wall of the bore or the delivery pipe to just below the primary zone of the combustion chamber. There he becomes known State of the art by a suitable tear-off edge or by individual radially arranged Sprayed nozzles into the primary zone of the combustion chamber.
  • the pressure difference between the combustion chamber and that at the start of the delivery pipe to balance the horizontal fuel injection point must be a suitable one Seal or conveyor arranged between these locations his.
  • This function can be a so-called centrifugal siphon, which acts as a hydraulic seal works and is shown, for example, in the last-mentioned document.
  • the fuel can advantageously be almost pressureless be introduced into the conveyor tube, so that for this an extremely small dimension Fuel pump can be used.
  • a critical component in such small gas turbines is in particular the turbine part side Rolling bearings for the rotor shaft, since this is in the very hot area is located between the combustion chamber and the turbine disk of the turbine part.
  • This rolling bearing must therefore be cooled and lubricated. Since now such Small gas turbines usually have to be constructed very inexpensively Fuel used as a lubricant and coolant, not a separate lubricating oil system to make necessary. However, a high-pressure fuel pump will then be used again needed to lubricate and Cooling purposes can be injected into the roller bearing or bearings.
  • Reference number 1 denotes a Slinger combustion chamber of a small gas turbine, which - as shown in particular in FIG. 1 - has a radial compressor 2 upstream.
  • the so-called turbine part 5 of the small gas turbine or more precisely the turbine disk 5a of the turbine part 5 is connected to the compressor impeller 2a of this radial compressor 2 via a rotor shaft 4 running in the axial direction 3.
  • the compressor impeller 2a, the rotor shaft 4 and the turbine disk 5a rotate about the so-called central axis 19 of the small gas turbine.
  • the rotor shaft 4 is mounted by means of two roller bearings 35, 36 in the housing of the small gas turbine designated in its entirety with the reference number 37.
  • a first roller bearing 35 is provided in the inflow region of the compressor impeller 2a and is therefore also referred to as a roller bearing 35 on the compressor part side, while the second roller bearing 36 provided upstream just before the turbine part 5 is also referred to as a turbine part side bearing 36.
  • the radial compressor 2 promotes one to be fed to the combustion chamber 1 in the direction of the arrow 6 Airflow that is used within the combustion of the further the Combustion chamber 1 supplied fuel is required. Part of this simplicity for the sake of air flow also designated with the reference number 6 due to the differences in the different zones of the small gas turbine Pressure ratios, however, not into the combustion chamber 1, but instead on this or on its end wall facing the radial compressor 2 on the outside past in the so-called compressor back space 8. Furthermore, a small subset leak air from the combustion chamber also get into the compressor rear space 8. These two air flows mixing in the compressor rear space 8 are generally referred to as leakage air 6a.
  • the compressor rear space 8 located on the rear side of the compressor impeller 2a must therefore be ventilated, i.e. the leakage air 6a must come from the compressor back space 8 can also be removed again.
  • This is done at least in some areas, here, however, completely hollow rotor shaft 4, or more precisely about the interior 4a.
  • the front of the compressor impeller 2a facing end of the rotor shaft 4 is flange-shaped and represents a so-called Crossing part 4b.
  • this flange-like crossing part 4b here preferably three evenly distributed over the circumference of the intersection part 4b
  • Vent holes 9 through which thus a connection between the rotor shaft interior 4a and ultimately the compressor rear space 8. in the the rest is via this flange-like crossing part 4b, the rotor shaft 4 with the compressor impeller 2a non-rotatably connected.
  • the leakage air 6a is emitted via the crossing part 4b of the rotor shaft 4 discharged to the compressor rear space 8, but at the same time that in the combustion chamber 1 fuel to be burned supplied to the combustion chamber 1.
  • the fuel is usually used one concentric to the axis of rotation of the radial compressor 2 or the rotor shaft 4 extending bore 11 in the compressor impeller 2a or more precisely through a provided therein Delivery pipe 12 ultimately directed to the combustion chamber 1.
  • the fuel introduced in this way thus passes through the delivery pipe 12 and via a centrifugal siphon 14, which is explained in more detail below, into a preferred centrally in the intersection 4b of the rotor shaft 4, but away from the ventilation holes 9 provided distribution chamber 15, of which several in the radial direction Branch off 16 supply holes 17.
  • supply holes 17 which are offset from the ventilation holes 9 are arranged so that the supply holes 17 and Do not cut vent holes 9, the fuel can therefore ultimately in reach the combustion chamber 1.
  • Three such supply bores are preferred 17 evenly distributed over the circumference of the intersection part 4b.
  • centrifugal siphon 14 which is provided between the delivery pipe 12 and the distributor chamber 15, for the sake of clarity, reference is made in particular to the enlarged illustration in FIG. 2 .
  • the purpose of this centrifugal siphon 14 is to seal the initial area of the fuel injection system, namely the fuel injection tube 13 and the delivery pipe 12, from the combustion chamber 1, in particular in order to ensure excellent controllability of the entire fuel injection system of the small gas turbine, even at low speeds, and beyond Ensure the possibility of a windmill start often desired in small gas turbines as best as possible.
  • the fuel brought in via the injection tube 13 comes out of the delivery pipe 12 again under the influence of centrifugal force onto the inner surface of a so-called distributor cone 20 and over this due to a baffle plate 21 provided in the intersection part 4b along the same via one between the free end of the distributor cone 20 and the baffle plate 21 provided first gap space 33 in the radial direction 16 outwards into the area of at least one, but in particular a plurality of axial grooves 22 made in the edge of the baffle plate 21.
  • the fuel then passes through or through these grooves 22 along the Distribution cone 20 side facing away, ie along the side of the baffle plate 21 facing the combustion chamber 1 in the radial direction 16 viewed inward via a so-called second gap space 34, ie in the direction of the central axis 19 into the distribution chamber 15 already described.
  • a screw connection designated by reference numeral 23 via which the compressor impeller 2a is flanged to the rotor shaft 4 or to the crossing part 4b thereof.
  • the centrifugal siphon 14 or, more precisely, the one located within it Amount of fuel due to the rotation of the rotor shaft 4 acting centrifugal forces has / have the consequence that in the second gap 34 of the centrifugal siphon 14 a certain There is fuel pressure, i.e. in the second gap space 34 it is current in it fuel is compressed to a certain pressure value. This The fact is now used in such a way that one out of this second gap space 34 Branch of fuel branched off and ultimately the turbine bearing bearing 36 is supplied for lubrication and cooling purposes.
  • a capillary tube 38 For this purpose branches off from the centrifugal siphon 14 on the combustion chamber side and thereby (with respect to the Fuel flow direction) upstream of the supply bores 17, i.e. from the second Gap space 34 of the centrifugal siphon 14, a capillary tube 38, via which one Part of the fuel quantity is supplied to the roller bearing 36 on the turbine part side.
  • the term "Capillary tube” makes it clear that this is a fuel subset the element feeding the turbine part-side roller bearing 36 around a pipe or Tube or the like. In which there is a flow bore 38a with a relatively small flow cross-section.
  • capillary tube 38 instead of a capillary tube (38) also another suitable element can be used that serves the same purpose, for example a hose with a relatively small flow cross-section.
  • a correspondingly thin (flow) bore (38a) directly in the rotor shaft 4 be provided, via which a subset of fuel to the turbine part Rolling bearings 36 branched from the second gap 34 of the centrifugal siphon 14 fed becomes; also such (not shown here for the sake of simplicity) Embodiment should fall under the term of the capillary tube 38.
  • capillary tube 38 is on the inlet side, i.e. suspended in the area of the centrifugal siphon 14, in the crossing part 4b of the rotor shaft 4 or in a suitably arranged receiving bore 39 in the crossing part 4b inserted.
  • the capillary tube 38 then continues within the rotor shaft 4 and in sections in the interior 4a of the same, but in sections also in the wall of the rotor shaft (not denoted by a separate reference number) 4.
  • the capillary tube 38 is suitable for this purpose in the rotor shaft wall inserted blind hole 40 inserted.
  • the capillary tube opens 38 in the closed end of the blind hole 40, one of which is the wall of the Rotor shaft 4 branches off in the radial direction 16 penetrating bore 41, so that the capillary tube 38 under the influence of the centrifugal siphon 14th and starting from this introduced fuel subset through this hole 41 can get into a so-called bearing annulus 42, in which the turbine part Rolling bearing 36 is arranged.
  • Said bearing annular space 42 is thus inward in the radial direction 16 the outside of the rotor shaft 4 and in the radial direction 16 to the outside by a not specified section of the housing 37 of the small gas turbine limited.
  • the bearing annulus 42 (right side) by the turbine part side Rolling bearing 36 and viewed against the direction of flow (i.e. left side and thus towards the combustion chamber 1) by a labyrinth seal in particular Seal 43 limited.
  • This seal 43 allows a slight passage of combustion chamber gas, i.e.
  • the capillary tube 38 in the blind hole 40 is spaced slightly apart from the wall of the rotor shaft 4 over wide areas, so that the partial fuel quantity guided in the capillary tube 38 is as little as possible is heated by the hot rotor shaft 4.
  • the use of an actual capillary tube 38 is considerably cheaper than if the fuel subset were supplied to the roller bearing 36 via a bore provided directly in the rotor shaft wall, since in the latter case the fuel subset would be heated until it evaporated, but can this and a large number of further details, in particular of a constructive nature, may be designed to deviate from the exemplary embodiment shown, without departing from the content of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft eine Kleingasturbine mit einer Radial- oder Slinger-Brennkammer sowie mit einem der Radial- oder Slinger-Brennkammer vorgelagerten Radialverdichter oder Diagonalverdichter und einem mit diesem über eine in Axialrichtung verlaufende, über zumindest ein Wälzlager gelagerte Rotorwelle verbundenen Turbinenteil, wobei der Brennstoff durch ein im Laufrad des Radialverdichters / Diagonalverdichters vorgesehenes Förderrohr in ein im verdichternahen Bereich der Brennkammer liegendes Kreuzungsteil der Rotorwelle gelangt und über in diesem im wesentlichen in Radialrichtung verlaufende Zulieferbohrungen der Brennkammer zugeführt wird, und wobei im oder stromauf des Kreuzungsteil(es) ein den Zulieferbohrungen vorgelagerter vom Brennstoff durchströmter Fliehkraftsiphon vorgesehen ist.
Zum technischen Umfeld wird neben der US 5,526,640 insbesondere auf die nicht vorveröffentlichte deutsche Patentanmeldung 198 46 976 verwiesen.
Bei einer Radial-Brennkammer mit den oben genannten Merkmalen, die üblicherweise auch als Slinger-Brennkammer bezeichnet wird, wird der Brennstoff durch eine konzentrisch zur Drehachse des Radialverdichters (unter diesen Begriff sollen im weiteren auch die sog. Diagonalverdichter fallen) oder der Rotorwelle verlaufende Bohrung im Verdichter-Laufrad oder durch ein darin vorgesehenes Förderrohr zur Brennkammer geleitet. Dabei fließt aufgrund der Drehbewegung der Rotorwelle bzw. des Verdichter-Laufrades infolge der dadurch entstehenden Fliehkräfte der Brennstoff als dünner Film entlang der Wandung der Bohrung oder des Förderrohres bis direkt unter die Primärzone der Brennkammer. Dort wird er im bekannten Stand der Technik durch eine geeignete Abrisskante oder durch einzelne radial angeordnete Düsen in die Primärzone der Brennkammer abgespritzt.
Um den Druckunterschied zwischen der Brennkammer und der zu Beginn des Förderrohres liegenden Brennstoff-Einspritzstelle auszugleichen, muß eine geeignete Dichtung oder auch Fördervorrichtung zwischen diesen genannten Stellen angeordnet sein. Diese Funktion kann ein sog. Fliehkraftsiphon, der als hydraulische Dichtung wirkt und bspw. in der eingangs letztgenannten Schrift gezeigt ist, übernehmen. Mit einem derartigen System kann der Brennstoff vorteilhafterweise nahezu drucklos in das Förderrohr eingebracht werden, so daß hierfür eine äußerst klein dimensionierte Brennstoffpumpe zum Einsatz kommen kann.
Ein kritisches Bauteil stellt bei derartigen Kleingasturbinen insbesondere das turbinenteilseitige Wälzlager für die Rotorwelle dar, da sich dieses im sehr heißen Bereich zwischen der Brennkammer und der Turbinenscheibe des Turbinenteils befindet. Dieses Wälzlager muß daher gekühlt und geschmiert werden. Da nun derartige Kleingasturbinen sehr kostengünstig aufgebaut sein müssen, wird üblicherweise der Brennstoff als Schmier- und Kühlmittel verwendet, um kein eigenständiges Schmierölsystem erforderlich zu machen. Allerdings wird dann wieder eine Hochdruck-Brennstoffpumpe benötigt, mit Hilfe derer eine Brennstoff-Teilmenge zu Schmierund Kühlzwecken in das oder die Wälzlager eingespritzt werden kann.
Maßnahmen aufzuzeigen, mit Hilfe derer auch bei einer Kleingasturbine ohne Hochdruck-Brennstoffpumpe nach dem Oberbegriff des Anspruchs 1 eine Schmierung bzw. Kühlung des turbinenteilseitigen Wälzlagers mit Brennstoff möglich ist, ist Aufgabe der vorliegenden Erfindung.
Zur Lösung dieser Aufgabe ist vorgesehen, daß vom Fliehkraftsiphon brennkammerseitig und dabei stromauf der Zulieferbohrungen ein Kapillarrohr abzweigt, über welches eine Brennstoff-Teilmenge dem turbinenteilseitigen Wälzlager zugeführt wird. Vorteilhafte Aus- und Weiterbildungen sind Inhalt der Unteransprüche.
Näher erläutert wird die Erfindung anhand eines in den beigefügten Figuren dargestellten bevorzugten Ausführungsbeispieles, wobei sämtliche näher beschriebenen Merkmale erfindungswesentlich sein können. Dabei zeigt
Fig.1
einen Längsschnitt durch eine erfindungsgemäße Kleingasturbine, in welchem neben der Brennkammer der Radialverdichter sowie das Turbinenteil mit dem zugeordneten Wälzlager dargestellt sind,
Fig.2
das Brennstoffeinspritzsystem aus Fig.1 mit dem Fliehkraftsiphon und dem davon abzweigenden Kapillarrohr in vergrößerter Darstellung, sowie
Fig.3
den Bereich des turbinenteilseitigen Wälzlagers aus Fig.1 in vergrößerter Darstellung.
Mit der Bezugsziffer 1 ist eine Slinger-Brennkammer einer Kleingasturbine bezeichnet, der - wie insbesondere Fig.1 zeigt - ein Radialverdichter 2 vorgelagert ist. Mit dem Verdichter-Laufrad 2a dieses Radialverdichters 2 ist über eine in Axialrichtung 3 verlaufende Rotorwelle 4 das sog. Turbinenteil 5 der Kleingasturbine bzw. genauer die Turbinenscheibe 5a des Turbinenteiles 5 verbunden. Das Verdichter-Laufrad 2a, die Rotorwelle 4 und die Turbinenscheibe 5a rotieren dabei um die sog. Zentralachse 19 der Kleingasturbine. Hierzu ist die Rotorwelle 4 mittels zweier Wälzlager 35, 36 im in seiner Gesamtheit mit der Bezugsziffer 37 bezeichneten Gehäuse der Kleingasturbine gelagert. Dabei ist wie ersichtlich ein erstes Wälzlager 35 im Einströmbereich des Verdichter-Laufrades 2a vorgesehen und wird demzufolge auch als verdichterteilseitiges Wälzlager 35 bezeichnet, während das zweite stromauf kurz vor dem Turbinenteil 5 vorgesehene Wälzlager 36 auch als turbinenteilseitiges Wälzlager 36 bezeichnet wird.
Der Radialverdichter 2 fördert gemäß Pfeilrichtung 6 einen der Brennkammer 1 zuzuführenden Luftstrom, der innerhalb dieser zur Verbrennung des desweiteren der Brennkammer 1 zugeführten Brennstoffes benötigt wird. Ein Teil dieses der Einfachheit halber ebenfalls mit der Bezugsziffer 6 bezeichneten Luftstromes gelangt aufgrund der in den verschiedenen Zonen der Kleingasturbine vorliegenden unterschiedlichen Druckverhältnisse jedoch nicht in die Brennkammer 1 hinein, sondern an dieser bzw. an deren dem Radialverdichter 2 zugewandten Stirnwand außenseitig vorbei in den sog. Verdichter-Rückraum 8. Ferner kann eine geringe Teilmenge von Leckluft aus der Brennkammer ebenfalls in den Verdichter-Rückraum 8 gelangen. Diese beiden sich im Verdichter-Rückraum 8 vermischenden Luftströme werden dabei generell als Leckluft 6a bezeichnet.
Der sich rückseitig des Verdichter-Laufrades 2a befindende Verdichter-Rückraum 8 muß folglich belüftet werden, d.h. die Leckluft 6a muß aus dem Verdichter-Rückraum 8 auch wieder abgeführt werden. Dies erfolgt über die zumindest bereichsweise, hier jedoch vollständig hohl ausgeführte Rotorwelle 4, bzw. genauer über deren Innenraum 4a. Wie ersichtlich ist das vordere dem Verdichter-Laufrad 2a zugewandte Ende der Rotorwelle 4 flanschartig ausgebildet und stellt dabei ein sog. Kreuzungsteil 4b dar. Durch dieses flanschartige Kreuzungsteil 4b gehen mehrere (hier bevorzugt über dem Umfang des Kreuzungsteiles 4b gleichmäßig verteilt drei) Entlüftungsbohrungen 9 hindurch, die somit eine Verbindung zwischen dem Rotorwellen-Innenraum 4a sowie letztendlich dem Verdichter-Rückraum 8 herstellen. Im übrigen ist über dieses flanschartige Kreuzungsteil 4b die Rotorwelle 4 mit dem Verdichter-Laufrad 2a drehfest verbunden.
Nachdem nun also die Leckluft 6a aus dem Verdichter-Rückraum 8 über die Entlüftungsbohrungen 9 im Kreuzungsteil 4b in den Innenraum 4a der Rotorwelle 4 gelangt ist, wird sie aus diesem über ein im dem Turbinenteil 5 zugewandten Endbereich der Rotorwelle 4 vorgesehenes Abführrohr 4c, welches die Turbinenscheibe 5a in einer zentralen Austrittsöffnung 10 durchdringt, letztendlich in die Umgebung abgeführt, und zwar genauer über die hier nicht figürlich dargestellte Schubdüse der Kleingasturbine.
Über das Kreuzungsteil 4b der Rotorwelle 4 wird jedoch nicht nur die Leckluft 6a aus dem Verdichter-Rückraum 8 abgeführt, sondern gleichzeitig der in der Brennkammer 1 zu verbrennende Brennstoff der Brennkammer 1 zugeführt. Wie an Kleingasturbinen mit Slinger-Brennkammern üblich wird nämlich der Brennstoff durch eine konzentrisch zur Drehachse des Radialverdichters 2 oder der Rotorwelle 4 verlaufende Bohrung 11 im Verdichter-Laufrad 2a bzw. genauer durch ein darin vorgesehenes Förderrohr 12 letztendlich zur Brennkammer 1 geleitet. Hierzu mündet im hier linksseitigen Anfangsbereich des Förderrohres 12 ein mit einer nicht gezeigten relativ schwach dimensionierten und insbesondere nicht als Hochdruckpumpe ausgebildeten Brennstoffpumpe, die aus einem ebenfalls nicht gezeigten Vorratsbehälter den Brennstoff für den Betrieb der Kleingasturbine fördert, verbundenes Brennstoff-Einspritzröhrchen 13.
Der hierüber eingebrachte Brennstoff gelangt somit durch das Förderrohr 12 und über einen im folgenden noch näher erläuterten Fliehkraftsiphon 14 in eine bevorzugt zentral im Kreuzungsteil 4b der Rotorwelle 4, dabei jedoch abseits der Entlüftungsbohrungen 9 vorgesehene Verteilerkammer 15, von welcher mehrere in Radialrichtung 16 verlaufende Zulieferbohrungen 17 abzweigen. Über diese ebenfalls im Kreuzungsteil 4b vorgesehenen Zulieferbohrungen 17, die versetzt zu den Entlüftungsbohrungen 9 angeordnet sind, so daß sich die Zulieferbohrungen 17 und die Entlüftungsbohrungen 9 nicht schneiden, kann daher der Brennstoff letztendlich in die Brennkammer 1 gelangen. Bevorzugt sind dabei drei derartige Zulieferbohrungen 17 gleichmäßig über dem Umfang des Kreuzungsteiles 4b verteilt vorgesehen.
Bezüglich des im folgenden beschriebenen, zwischen dem Förderrohr 12 sowie der Verteilerkammer 15 vorgesehenen Fliehkraftsiphons 14 wird der Übersichtlichkeit halber insbesondere auf die vergrößerte Darstellung nach Fig. 2 verwiesen. Der Sinn dieses Fliehkraftsiphons 14 liegt darin, den Anfangsbereich des Brennstoffeinspritzsystemes, nämlich das Brennstoff-Einspritzröhrchen 13 sowie das Förderrohr 12 gegenüber der Brennkammer 1 abzudichten, insbesondere um eine ausgezeichnete Regelbarkeit des gesamten Brennstoffeinspritzsystemes der Kleingasturbine auch bei niedrigen Drehzahlen derselben zu gewährleisten und um darüber hinaus die Möglichkeit eines bei Kleingasturbinen oftmals angestrebten Windmillstarts bestmöglich sicherzustellen.
Wie Fig.2 zeigt, gelangt der über das Einspritzröhrchen 13 herangeführte Brennstoff aus dem Förderrohr 12 austretend abermals unter Fliehkrafteinfluß auf die innere Oberfläche eines sog. Verteilerkonus 20 und über diesen aufgrund einer im Kreuzungsteil 4b vorgesehenen Prallplatte 21 entlang derselben über einen zwischen dem freien Ende des Verteilerkonus 20 sowie der Prallplatte 21 vorgesehenen ersten Spaltraum 33 in Radialrichtung 16 nach außen in den Bereich zumindest einer, insbesondere jedoch mehrerer in den Rand der Prallplatte 21 eingebrachter axialer Nuten 22. Über bzw. durch diese Nuten 22 gelangt der Brennstoff dann entlang der dem Verteilerkonus 20 abgewandten Seite, d.h. entlang der der Brennkammer 1 zugewandten Seite der Prallplatte 21 in Radialrichtung 16 betrachtet über einen sog. zweiten Spaltraum 34 nach innen, d.h. in Richtung der Zentralachse 19 in die bereits beschriebene Verteilerkammer 15.
Im übrigen erkennt man in Fig.2 genauer eine mit der Bezugsziffer 23 bezeichnete Schraubverbindung, über welche das Verdichter-Laufrad 2a an die Rotorwelle 4 bzw. an das Kreuzungsteil 4b derselben angeflanscht ist.
Der Fliehkraftsiphon 14 bzw. genauer die innerhalb dessen auf die darin befindliche Brennstoffmenge durch die Rotation der Rotorwelle 4 einwirkenden Zentrifugalkräfte hat/haben zur Folge, daß im zweiten Spaltraum 34 des Fliehkraftsiphons 14 ein gewisser Brennstoffdruck herrscht, d.h. im zweiten Spaltraum 34 ist der sich darin aktuell befindende Brennstoff quasi auf einen gewissen Druckwert verdichtet. Diese Tatsache wird nun in der Weise genutzt, daß aus diesem zweiten Spaltraum 34 eine Teilmenge von Brennstoff abgezweigt und letztlich dem turbinenteilseitigen Wälzlager 36 zu Schmier- und Kühlzwecken zugeführt wird.
Hierzu zweigt vom Fliehkraftsiphon 14 brennkammerseitig und dabei (bezüglich der Brennstoff-Strömungsrichtung) stromauf der Zulieferbohrungen 17, d.h. vom zweiten Spaltraum 34 des Fliehkraftsiphons 14, ein Kapillarrohr 38 ab, über welches eine Brennstoff-Teilmenge dem turbinenteilseitigen Wälzlager 36 zugeführt wird. Der Begriff "Kapillarrohr" verdeutlicht dabei, daß es sich bei dem eine Brennstoff-Teilmenge dem turbinenteilseitigen Wälzlager 36 zuführenden Element um ein Rohr oder Röhrchen oder dgl. handelt, in welchem sich eine Durchflußbohrung 38a mit einem relativ geringem Durchflußquerschnitt befindet. In diesem Zusammenhang sei ausdrücklich darauf hingewiesen, daß anstelle eines Kapillarrohres (38) auch ein anderes geeignetes Element verwendet werden kann, welches den gleichen Zweck erfüllt, so bspw. ein Schlauch mit relativ geringen Durchflußquerschnitt. Alternativ kann auch eine entsprechend dünne (Durchfluß-)Bohrung (38a) direkt in der Rotorwelle 4 vorgesehen sein, über welche eine Brennstoff-Teilmenge dem turbinenteilseitigen Wälzlager 36 abzweigend vom zweiten Spaltraum 34 des Fliehkraftsiphons 14 zugeführt wird; auch eine derartige (hier der Einfachheit halber nicht figürlich dargestellte) Ausführungsform soll unter den Begriff des Kapillarrohres 38 fallen.
Was nun die Anordnung des hier im Rahmen eines bevorzugten Ausführungsbeispieles figürlich dargestellten Kapillarrohres 38 betrifft, so ist dieses eintrittsseitig, d.h. im Bereich des Fliehkraftsiphons 14, im Kreuzungsteil 4b der Rotorwelle 4 aufgehängt bzw. in eine geeignet angeordnete Aufnahmebohrung 39 im Kreuzungsteil 4b eingesteckt. Das Kapillarrohr 38 verläuft dann weiter innerhalb der Rotorwelle 4 und dabei abschnittsweise im Innenraum 4a derselben, abschnittsweise jedoch auch in der (nicht mit einer separaten Bezugsziffer bezeichneten) Wand der Rotorwelle 4. Wie ersichtlich ist das Kapillarrohr 38 hierzu in ein geeignet in die Rotorwellenwand eingebrachtes Sackloch 40 eingesteckt. Dabei mündet das Kapillarrohr 38 in das geschlossene Ende des Sackloches 40, von welchem eine die Wand der Rotorwelle 4 im wesentlichen in Radialrichtung 16 durchdringende Bohrung 41 abzweigt, so daß die über das Kapillarrohr 38 unter Einfluß des Fliehkraftsiphons 14 sowie ausgehend von diesem herangeführte Brennstoff-Teilmenge durch diese Bohrung 41 in einen sog. Lager-Ringraum 42 gelangen kann, in welchem das turbinenteilseitige Wälzlager 36 angeordnet ist.
Der genannte Lager-Ringraum 42 wird somit in Radialrichtung 16 nach innen durch die Außenseite der Rotorwelle 4 und in Radialrichtung 16 nach außen durch einen nicht näher bezeichneten Abschnitt des Gehäuses 37 der Kleingasturbine begrenzt. In Axialrichtung 3 bzw. in Strömungsrichtung der Kleingasturbinen-Arbeitsgase betrachtet wird der Lager-Ringraum 42 (rechtsseitig) durch das turbinenteilseitige Wälzlager 36 und gegen die Strömungsrichtung betrachtet (d.h. linksseitig und somit zur Brennkammer 1 hin) durch eine insbesondere als Labyrinth-Dichtung ausgebildete Dichtung 43 begrenzt. Diese Dichtung 43 erlaubt einen geringfügigen Durchtritt von Brennkammergas, d.h. von den in der Brennkammer 1 befindlichen Gasen, nachdem die hier figürlich dargestellten, jedoch nicht näher mit Bezugsziffern versehenen Brennkammerwände - wie bei Kleingasturbinen üblich - nicht absolut dicht sind, so daß über diese Dichtung 43 ein Bruchteil des Brennkammergases in den Lager-Ringraum 42 eindringt, dort den aus der Bohrung 41 austretenden Brennstoff mitreißt und diesen somit in Axialrichtung 3 direkt in das Wälzlager 36 einleitet. Somit wird das Wälzlager 36 einfach und zuverlässig mit einer Brennstoff-Teilmenge zu Schmier- und Kühlzwecken versorgt.
Abgeführt wird diese dem Wälzlager 36 aufgrund der die Dichtung 43 passierenden Brennkammergase in Nebelform zugeführte Brennstoff-Teilmenge über den sich in Axialrichtung 3 hinter dem Wälzlager 36 befindenden Lager-Rückraum 44, von welchem aus die Brennstoff-Teilmenge inclusive der Brennkammergase dann in den Arbeitsgas-Strömungskanal 45 gelangen kann, d.h. die Abfuhr erfolgt über das Turbinenteil 5 letztendlich in die Umgebung.
Sowohl in Fig.2 als auch in Fig.3 erkennt man im übrigen, daß das Kapillarrohr 38 im Sackloch 40 über weiten Bereichen geringfügig von der Wand der Rotorwelle 4 beabstandet ist, so daß die im Kapillarrohr 38 geführte Brennstoff-Teilmenge so wenig als möglich von der heißen Rotorwelle 4 aufgeheizt wird. Insofern ist die Verwendung eines eigentlichen Kapillarrohres 38 wesentlich günstiger, als wenn die Brennstoff-Teilmenge dem Wälzlager 36 über eine direkt in der Rotorwellen-Wand vorgesehene Bohrung zugeführt würde, da im letztgenannten Fall die Brennstoff-Teilmenge bis zum Verdampfen erwärmt werden würde, jedoch kann dies sowie eine Vielzahl weiterer Details insbesondere konstruktiver Art durchaus abweichend vom gezeigten Ausführungsbeispiel gestaltet sein, ohne den Inhalt der Patentansprüche zu verlassen.
Bezugszeichenliste:
1
Radial- oder Slinger-Brennkammer, auch nur Brennkammer genannt
2
Radialverdichter
2a
Verdichter-Laufrad
3
Axialrichtung
4
Rotorwelle
4a
Innenraum von 4
4b
(flanschartiges) Kreuzungsteil von 4
4c
Abführrohr
5
Turbinenteil
5a
Turbinenscheibe
6
der Brennkammer zugeführter Luftstrom, von 2 gefördert
6a
Leckluft
8
Verdichter-Rückraum
9
Entlüftungsbohrung (in 4b)
10
(zentrale) Austrittsöffnung (in 5a)
11
(zentrale) Bohrung in 2a, die 12 aufnimmt
12
Förderrohr (für Brennstoff, in 2a verlaufend)
13
Brennstoff-Einspritzröhrchen
14
Fliehkraftsiphon
15
Verteilerkammer (für Brennstoff, in 4b)
16
Radialrichtung
17
Zulieferbohrung (für Brennstoff, in 4b)
19
Zentralachse (der Kleingasturbine)
20
Verteilerkonus
21
Prallplatte
22
axiale Nut(en) im Rand von 21
23
Schraubverbindung
33
erster Spaltraum
34
zweiter Spaltraum
35
verdichterteilseitiges Wälzlager
36
turbinenteilseitiges Wälzlager
37
Gehäuse (der Kleingasturbine)
38
Kapillarrohr
38a
Durchflußbohrung
39
Aufnahmebohrung (für 38 in 4b)
40
Sackloch
41
Bohrung
42
Lager-Ringraum
43
Dichtung
44
Lager-Rückraum
45
Arbeitsgas-Strömungskanal

Claims (4)

  1. Kleingasturbine mit einer Radial- oder Slinger-Brennkammer sowie mit einem der Radial- oder Slinger-Brennkammer (1) vorgelagerten Radialverdichter (2) oder Diagonalverdichter und einem mit diesem über eine in Axialrichtung (3) verlaufende, über zumindest ein Wälzlager (36) gelagerte Rotorwelle (4) verbundenen Turbinenteil (5), wobei der Brennstoff durch ein im Laufrad (2a) des Radialverdichters / Diagonalverdichters vorgesehenes Förderrohr (12) in ein im verdichternahen Bereich der Brennkammer (1) liegendes Kreuzungsteil (4b) der Rotorwelle (4) gelangt und über in diesem im wesentlichen in Radialrichtung (16) verlaufende Zulieferbohrungen (17) der Brennkammer (1) zugeführt wird,
    und wobei im oder stromauf des Kreuzungsteil(es) (4b) ein den Zulieferbohrungen (17) vorgelagerter vom Brennstoff durchströmter Fliehkraftsiphon (14) vorgesehen ist,
    dadurch gekennzeichnet, daß vom Fliehkraftsiphon (14) brennkammerseitig und dabei stromauf der Zulieferbohrungen (17) ein Kapillarrohr (38) abzweigt, über welches eine Brennstoff-Teilmenge dem turbinenteilseitigen Wälzlager (36) zugeführt wird.
  2. Kleingasturbine nach Anspruch 1, wobei der Fliehkraftsiphon (14) durch eine sich an das Ende des Förderrohres (12) unter Ausbildung eines sich in Radialrichtung (16) nach außen erstreckenden ersten Spaltraumes (33) anschließende Prallplatte (21) gebildet wird, wobei der aus dem Förderrohr (12) austretende Brennstoff über diesen ersten Spaltraum (33) in in den Bereich zumindest einer in den Rand der Prallplatte (21) eingebrachter axialer Nut (22) gelangt und über diese auf der der Brennkammer (1) zugewandten Seite der Prallplatte (21) über einen zweiten Spaltraum (34) wieder in Radialrichtung nach innen in eine Verteilerkammer (15) geführt wird, von welcher die Zulieferbohrungen (17) abzweigen,
    dadurch gekennzeichnet, daß das Kapillarrohr (38) stromauf der Verteilerkammer (15) vom zweiten Spaltraum (34) abzweigt.
  3. Kleingasturbine nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß das Kapillarrohr (38) in der Rotorwelle (4) verläuft und vor einer die Wand der Rotorwelle (4) durchdringenden Bohrung (41) mündet, über welche die Brennstoff-Teilmenge in einen Lager-Ringraum (42) gelangt, in welchem das Wälzlager (36) angeordnet ist.
  4. Kleingasturbine nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß der Lager-Ringraum (42) zur Seite der Brennkammer (1) hin mittels einer insbesondere als Labyrinth-Dichtung ausgebildeten Dichtung (43), die einen geringfügigen Durchtritt von Brennkammergas ermöglicht, abgegrenzt ist.
EP99122467A 1998-11-16 1999-11-11 Kleingasturbine mit einer Radial- oder Slinger-Brennkammer Expired - Lifetime EP1001223B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19852768A DE19852768A1 (de) 1998-11-16 1998-11-16 Kleingasturbine mit einer Radial- oder Slinger-Brennkammer
DE19852768 1998-11-16

Publications (3)

Publication Number Publication Date
EP1001223A2 EP1001223A2 (de) 2000-05-17
EP1001223A3 EP1001223A3 (de) 2002-07-17
EP1001223B1 true EP1001223B1 (de) 2003-07-23

Family

ID=7887943

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99122467A Expired - Lifetime EP1001223B1 (de) 1998-11-16 1999-11-11 Kleingasturbine mit einer Radial- oder Slinger-Brennkammer

Country Status (2)

Country Link
EP (1) EP1001223B1 (de)
DE (2) DE19852768A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3045719B1 (fr) * 2015-12-18 2020-09-18 Snecma Procede de lubrification et de refroidissement d'organes mecaniques d'une turbomachine par du carburant
FR3114866B1 (fr) * 2020-10-01 2022-08-19 Safran Helicopter Engines Système d’injection de carburant dans une chambre de combustion centrifuge
US12065971B2 (en) * 2022-09-30 2024-08-20 Raytheon Technologies Corporation Centrifugally pumped fuel system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1135244B (de) * 1959-03-28 1962-08-23 Bmw Triebwerkbau Ges M B H Gasturbinenanlage, insbesondere Kleingasturbinenanlage
US4038815A (en) * 1973-03-30 1977-08-02 Northern Research And Engineering Corporation Gas turbine
DE3637776A1 (de) * 1986-11-06 1988-05-11 Kloeckner Humboldt Deutz Ag Schmiersystem fuer ein gasturbinentriebwerk
DE3714990A1 (de) * 1987-05-06 1988-12-01 Mtu Muenchen Gmbh Propfan-turbotriebwerk
IT1219194B (it) * 1988-04-11 1990-05-03 Aris Spa Turboreattore leggero modulare
US5526640A (en) * 1994-05-16 1996-06-18 Technical Directions, Inc. Gas turbine engine including a bearing support tube cantilevered from a turbine nozzle wall
DE19846976A1 (de) 1998-10-12 2000-04-13 Bmw Rolls Royce Gmbh Brennstoffeinspritzsystem für eine Radial- oder Slinger-Brennkammer einer Kleingasturbine

Also Published As

Publication number Publication date
DE59906345D1 (de) 2003-08-28
DE19852768A1 (de) 2000-05-18
EP1001223A2 (de) 2000-05-17
EP1001223A3 (de) 2002-07-17

Similar Documents

Publication Publication Date Title
DE2325614C2 (de) Notsystem zur Zuführung eines Schmiermittels
EP1103706B1 (de) Lagerkammer für ein Gasturbinen-Triebwerk
DE2408839C2 (de) Zweiwellen-Gasturbinentriebwerk
DE69607718T2 (de) Wälzlager mit dynamischer, ölversorgter Drainage
EP2071131B1 (de) Abdichtung mindestens einer Welle mit mindestens einer hydraulischen Dichtung
DE2363339C2 (de) Enteisungsanlage für Strömungsmaschinen von Luftfahrzeugen
DE69605014T2 (de) Zentrifugalölabscheider für ein Schmierungsgehäuse
WO2009130124A1 (de) Lageranordnung mit einem doppelreihigen wälzlager, turbolader und verfahren zur zufürhung eines schmiermittels zu den wälzkörperreihen eines doppelreihigen wälzlagers
EP2167792B1 (de) Turbolader von einem fahrzeug mit einer spezifischen dichtungsanordnung
DE2008209A1 (de) Schmiersystem bei einem Turbinenmotor
DE3015650A1 (de) Oelnebel-notschmiersystem fuer turbinenlager o.dgl.
EP0718541A1 (de) Verfahren und vorrichtung zur Eigenschmierung der Wälzlager von Turbomaschinen
DE3007092A1 (de) Schmiereinrichtung fuer waelzlager
EP3069051A1 (de) Planetenträger mit integrierter schmierstoffversorgung
DE102007023380A1 (de) Gasturbine
EP1327802B1 (de) Hydraulische Dichtungsanordnung
DE29724492U1 (de) Vorrichtung zum Aufteilen einer mittels einer Gasströmung transportierten viskosen Flüssigkeit
DE2733377A1 (de) Schmiersystem fuer eine lageranordnung in einer turbine mit treibstoffzufuhr
EP0123989B1 (de) Zentrigufal-Schmierölpumpe eines Abgasturboladers
DE1751639B2 (de) Dichtungsanordnung für ein Gasturbinentriebwerk mit Hohl- und Innenwelle
EP2824289A1 (de) Vorrichtung und Verfahren zum Ableiten von Sperrluft in einem Turbofan-Triebwerk sowie zugehöriges Turbofan-Triebwerk
EP1001223B1 (de) Kleingasturbine mit einer Radial- oder Slinger-Brennkammer
DE3201008A1 (de) Duese mit doppelfunktion fuer notoel/nebel-system
EP1121561B1 (de) Brennstoffeinspritzsystem für eine radial- oder slinger-brennkammer einer kleingasturbine
EP0123991B1 (de) Selbstansaugende Zentrifugal-Schmierölpumpe eines Abgasturboladers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000427

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 23R 3/38 A, 7F 01D 25/18 B, 7F 01M 9/04 B

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

AKX Designation fees paid

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOECK, ALEXANDER

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOECK, ALEXANDER

AK Designated contracting states

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030723

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59906345

Country of ref document: DE

Date of ref document: 20030828

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030723

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040102

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091127

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091125

Year of fee payment: 11

Ref country code: FR

Payment date: 20091201

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101111

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59906345

Country of ref document: DE

Effective date: 20110601

Ref country code: DE

Ref legal event code: R119

Ref document number: 59906345

Country of ref document: DE

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101111