EP0997555B1 - Process for producing a thin ceramic coating on a metallic substrate - Google Patents

Process for producing a thin ceramic coating on a metallic substrate Download PDF

Info

Publication number
EP0997555B1
EP0997555B1 EP19980203600 EP98203600A EP0997555B1 EP 0997555 B1 EP0997555 B1 EP 0997555B1 EP 19980203600 EP19980203600 EP 19980203600 EP 98203600 A EP98203600 A EP 98203600A EP 0997555 B1 EP0997555 B1 EP 0997555B1
Authority
EP
European Patent Office
Prior art keywords
process according
metal
bath
oxidation
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980203600
Other languages
German (de)
French (fr)
Other versions
EP0997555A1 (en
Inventor
Francois Hindryckx
Christine Mertens
Bruno Michel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aero Boosters SA
Original Assignee
Techspace Aero SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techspace Aero SA filed Critical Techspace Aero SA
Priority to DE69821942T priority Critical patent/DE69821942D1/en
Priority to EP19980203600 priority patent/EP0997555B1/en
Publication of EP0997555A1 publication Critical patent/EP0997555A1/en
Application granted granted Critical
Publication of EP0997555B1 publication Critical patent/EP0997555B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

L'invention concerne un procédé de réalisation d'un dépôt de céramique de faible épaisseur sur un substrat métallique.
Elle s'applique en particulier à la réalisation de revêtements céramique de type barrière thermique tels que ceux utilisés sur certains composants de moteurs aéronautiques ou aérospatiaux soumis à des gradients thermiques élevés.
Pour de nombreuses applications, il est connu de réaliser des revêtements de céramique pour protéger un substrat métallique et accroítre ainsi ses performances.
The invention relates to a method of producing a thin ceramic deposit on a metal substrate.
It applies in particular to the production of ceramic coatings of the thermal barrier type such as those used on certain components of aeronautical or aerospace engines subjected to high thermal gradients.
For many applications, it is known to produce ceramic coatings to protect a metal substrate and thus increase its performance.

Il existe différentes méthodes pour déposer une céramique sur un substrat métallique. Dans le cas de la réalisation d'un dépôt de céramique de type barrière thermique, ces méthodes utilisent des techniques de dépôt sous vide telles que la technique PVD (en anglais : physical vapor deposition) ou la technique EBPVD (en anglais : electron beam physical vapor deposition), ou des techniques de dépôt par projection plasma.There are different methods to deposit a ceramic on a metallic substrate. In the case of the realization of a thermal barrier type ceramic deposition, these methods use vacuum deposition techniques such as PVD technique (in English: physical vapor deposition) or the EBPVD technique (in English: electron beam physical vapor deposition), or projection deposition techniques plasma.

La structure du dépôt de céramique réalisé par PVD ou EBPVD est très bonne, cependant ces techniques de dépôt présentent l'inconvénient d'un prix prohibitif pour la plupart des applications. Par ailleurs ces techniques sont extrêmement difficiles à maítriser pour réaliser des pièces de grande dimension avec des formes complexes et elles imposent l'utilisation d'enceintes sous vide poussé.
La technique de dépôt de céramique par projection plasma ne permet pas d'obtenir une structure dense et ne permet pas de réaliser des dépôts de faible épaisseur inférieure à 50 µm.
En outre ces différentes méthodes ne permettent pas de moduler la structure des cristaux déposés : les techniques de dépôt sous vide donnent une structure colonnaire, les techniques de dépôt par projection plasma donnent une structure en couches successives.
The structure of the ceramic deposit made by PVD or EBPVD is very good, however these deposit techniques have the disadvantage of a prohibitive price for most applications. Furthermore, these techniques are extremely difficult to master in order to produce large parts with complex shapes and they require the use of chambers under high vacuum.
The technique of depositing ceramic by plasma spraying does not make it possible to obtain a dense structure and does not allow deposits to be made of thin thickness less than 50 μm.
In addition, these different methods do not allow the structure of the deposited crystals to be modulated: the vacuum deposition techniques give a columnar structure, the plasma spray deposition techniques give a structure in successive layers.

Le but de l'invention est de s'affranchir des inconvénients des méthodes connues et de déterminer un nouveau procédé de dépôt d'une céramique de type barrière thermique sur un substrat métallique permettant de réaliser des dépôts céramiques de faible épaisseur inférieure à 100 µm, voire inférieure à 50µm, avec une bonne adhérence, pour un coût réduit, permettant de contrôler la porosité du dépôt et la structure de la céramique telle que la taille des grains et l'orientation des cristaux, et permettant de recouvrir des pièces de forme complexe avec une maítrise des épaisseurs souhaitées.The object of the invention is to overcome the drawbacks known methods and to determine a new method of deposition of a thermal barrier type ceramic on a metal substrate for making deposits thin ceramics less than 100 µm, or even less than 50µm, with good adhesion, at a cost reduced, making it possible to control the porosity of the deposit and the ceramic structure such as grain size and the orientation of the crystals, and making it possible to cover pieces of complex shape with thickness control desired.

Selon l'invention, le procédé de réalisation d'un dépôt de céramique de faible épaisseur sur un substrat métallique, est caractérisé en ce qu'il consiste :

  • à effectuer un dépôt électrolytique de zirconium sur le substrat métallique,
  • à oxyder le métal déposé pour obtenir une céramique adhérente au substrat,
  • à incorporer un élément stabilisateur dans le revêtement de barrière thermique.
According to the invention, the process for producing a thin ceramic deposit on a metal substrate, is characterized in that it consists:
  • to carry out an electroplating of zirconium on the metal substrate,
  • oxidizing the deposited metal to obtain a ceramic adhering to the substrate,
  • incorporating a stabilizing element into the thermal barrier coating.

D'autres particularités ou avantages de l'invention apparaítront clairement dans la suite de la description donnée à titre d'exemple non limitatif.Other features or advantages of the invention will appear clearly in the following description given by way of nonlimiting example.

Selon l'invention, le dépôt de céramique sur un substrat métallique est effectué en utilisant une méthode de dépôt électrochimique combinée à une méthode d'oxydation électrochimique ou thermique. Ce type de dépôt peut être réalisé sur tous les substrats métalliques dont la température de fusion est supérieure à la température du bain d'électrolyse.According to the invention, the deposition of ceramic on a substrate metallic is done using a deposition method electrochemical combined with an oxidation method electrochemical or thermal. This type of deposit can be produced on all metallic substrates, the melting temperature is higher than the bath temperature electrolysis.

Le procédé de réalisation du revêtement céramique de type barrière thermique comporte deux étapes. La première étape consiste à effectuer un dépôt électrolytique dense d'un métal sur un substrat métallique, le métal étant apte, sous une forme oxydée, à former une céramique. Pour cela le substrat est immergé dans un bain de dépôt électrolytique du métal choisi et un système d'anode est disposé autour du substrat à revêtir. Le dépôt du métal peut être effectué en solution aqueuse ou en bain de sels fondus. A titre d'exemple, nous avons étudié le dépôt de zirconium qui est un métal très réactif de la famille du titane et dont l'oxyde, la zircone, est couramment utilisé comme barrière thermique. Le dépôt de zirconium est effectué en bain de sels fondus, par exemple un bain de fluorure porté à une température comprise entre 400°C et 900°C. Une tension est appliquée aux bornes de l'électrolyseur ; cette tension peut être continue, crénelée ou par impulsion. Par le réglage de la densité de courant cathodique appliquée et/ou l'ajout d'un inhibiteur de cristallisation, il est possible d'orienter les cristaux formés lors du dépôt électrolytique.
Les cristaux peuvent être orientés dans la direction du champ électrique appliqué de façon à obtenir une structure colonnaire ; les cristaux formés peuvent également être orientés parallèlement au substrat, ou ne pas avoir d'orientation privilégiée.
The process for producing the thermal barrier type ceramic coating comprises two steps. The first step consists in carrying out a dense electrolytic deposition of a metal on a metal substrate, the metal being able, in an oxidized form, to form a ceramic. For this, the substrate is immersed in an electrolytic deposition bath of the chosen metal and an anode system is arranged around the substrate to be coated. The metal can be deposited in an aqueous solution or in a bath of molten salts. As an example, we studied the deposition of zirconium which is a very reactive metal of the titanium family and whose oxide, zirconia, is commonly used as thermal barrier. The deposition of zirconium is carried out in a bath of molten salts, for example a fluoride bath brought to a temperature between 400 ° C. and 900 ° C. A voltage is applied to the terminals of the electrolyser; this voltage can be continuous, crenellated or pulse. By adjusting the cathodic current density applied and / or adding a crystallization inhibitor, it is possible to orient the crystals formed during electrolytic deposition.
The crystals can be oriented in the direction of the applied electric field so as to obtain a columnar structure; the crystals formed can also be oriented parallel to the substrate, or not have a preferred orientation.

La deuxième étape consiste à oxyder le métal déposé de façon à obtenir une céramique adhérente au substrat.
Cette opération d'oxydation peut être effectuée de différentes manières. L'oxydation peut être effectuée dans un four sous atmosphère contrôlée, c'est à dire à des températures comprises entre 300°C et 900°C dans une atmosphère dont la composition en oxygène est contrôlée.
The second step consists in oxidizing the deposited metal so as to obtain a ceramic adhering to the substrate.
This oxidation operation can be carried out in different ways. The oxidation can be carried out in an oven under a controlled atmosphere, that is to say at temperatures between 300 ° C. and 900 ° C. in an atmosphere in which the oxygen composition is controlled.

L'oxydation peut également être réalisée par une méthode électrochimique, appelée anodisation, en milieu aqueux ou en bain de sels fondus. L'anodisation est adaptée pour l'oxydation des métaux tels que le zirconium. Les épaisseurs d'oxyde réalisables sont fonction de la conductivité du film formé. A titre d'exemple, l'épaisseur d'oxyde réalisable sur du zirconium en milieu aqueux est de l'ordre de 13 à 15 nm par volt appliqué aux bornes de l'électrolyseur. Sur du titane, en milieu aqueux, l'épaisseur d'oxyde réalisable est de l'ordre de 5 à 10 nm par volt appliqué aux bornes de l'électrolyseur.Oxidation can also be carried out by a method electrochemical, called anodization, in an aqueous medium or in bath of molten salts. Anodizing is suitable for the oxidation of metals such as zirconium. The thicknesses of achievable oxide are a function of the film conductivity form. For example, the oxide thickness achievable on zirconium in an aqueous medium is of the order of 13 to 15 nm per applied volt across the electrolyser. On titanium, in the middle aqueous, the achievable oxide thickness is of the order of 5 to 10 nm per volt applied to the terminals of the electrolyser.

Des éléments d'addition peuvent être introduits dans le revêtement de céramique pour améliorer certaines caractéristiques de ce revêtement. Par exemple l'yttrium est un élément d'addition dans la zircone qui permet de stabiliser la phase haute température de la zircone et empêcher des changements dimensionnels de la maille cristalline lors des cycles thermiques. Cet élément augmente donc très considérablement la durée de vie des barrières thermiques en zircone. La quantité d'yttrium ajoutée est typiquement comprise entre 6 et 20 % en poids.Additions may be introduced into the ceramic coating to improve some characteristics of this coating. For example the yttrium is an addition element in zirconia which allows stabilize the high temperature phase of the zirconia and prevent dimensional changes of the mesh crystalline during thermal cycles. This element increases therefore very considerably the lifetime of the barriers zirconia thermal. The amount of yttrium added is typically between 6 and 20% by weight.

L'incorporation des éléments d'addition peut être effectuée de différentes façons. L'élément d'addition peut être introduit lors de la première phase du procédé par une codéposition avec le métal choisi, en ajoutant l'élément d'addition sous forme ionique dans le bain électrolytique. L'élément d'addition peut être également introduit lors de la deuxième phase du procédé en l'incorporant lors de l'oxydation du dépôt.
A titre d'exemple, nous avons réalisé une codêposition d'yttrium et de zirconium en utilisant une composition du bain de sels fondus comportant de l'yttrium et du zirconium et en appliquant un profil de tension crénelée aux bornes de l'électrolyseur
La composition du bain réalisé est la suivante :

  • Electrolyte : 0,465 de LiF, 0,42 de KF et 0.115 de NaF
  • Sels métalliques : 15 % du poids de l'électrolyte en ZrF4 + 15 % du poids de l'électrolyte en Yf3.
The incorporation of the addition elements can be carried out in different ways. The addition element can be introduced during the first phase of the process by codeposition with the chosen metal, by adding the addition element in ionic form in the electrolytic bath. The addition element can also be introduced during the second phase of the process by incorporating it during the oxidation of the deposit.
By way of example, we have made a codeposition of yttrium and zirconium by using a composition of the molten salt bath comprising yttrium and zirconium and by applying a crenellated voltage profile across the terminals of the electrolyser.
The composition of the bath produced is as follows:
  • Electrolyte: 0.465 LiF, 0.42 KF and 0.115 NaF
  • Metal salts: 15% of the weight of the electrolyte in ZrF4 + 15% of the weight of the electrolyte in Yf3.

L'électrolyse a été réalisée à une température comprise entre 700 et 800°C, avec un courant cyclique crénelé comportant un créneau de redissolution ionique et deux créneaux de déposition de métal aux potentiels de -2040mV et -2250mV. Les densités de courant appliquées sont de l'ordre de 165mA/cm2 et 400mA/cm2. La durée d'un cycle est de 2 secondes, il faut donc 30 minutes pour déposer 300µm d'un mélange Zr-Y. Le revêtement de zirconium ainsi réalisé comporte 2 à 15% d'yttrium.The electrolysis was carried out at a temperature of between 700 and 800 ° C., with a crenellated cyclic current comprising a niche of ionic redissolution and two niches of metal deposition at potentials of -2040mV and -2250mV. The current densities applied are of the order of 165mA / cm 2 and 400mA / cm 2 . The duration of a cycle is 2 seconds, so it takes 30 minutes to deposit 300 µm of a Zr-Y mixture. The zirconium coating thus produced comprises 2 to 15% of yttrium.

Claims (12)

  1. Process for producing a thin ceramic coating of the thermal barrier type on a metal substrate, characterized in that it consists:
    in electrolytically depositing zirconium on the metal substrate;
    in oxidizing the deposited metal in order to obtain a thermal barrier that adheres to the substrate; and
    in incorporating a stabilizing element in the thermal barrier coating.
  2. Process according to Claim 1, characterized in that the metal is electrolytically deposited in an aqueous medium.
  3. Process according to Claim 1, characterized in that the metal is electrolytically deposited in a molten salt bath.
  4. Process according to Claim 3, characterized in that the molten salt bath is a fluoride bath.
  5. Process according to Claim 1, characterized in that the stabilizing element is yttrium.
  6. Process according to Claim 1, characterized in that the stabilizing element is introduced in ionic form into the electrolytic bath for depositing the metal.
  7. Process according to Claim 6, characterized in that the bath comprises an electrolyte and metal salts, these salts representing 15% by weight of the ZrF4 electrolyte and 15% by weight of the YF3 electrolyte.
  8. Process according to Claim 7, characterized in that the electrolysis is carried out at a temperature between 700 and 800°C, with a square-wave cyclic current.
  9. Process according to Claim 1, characterized in that the stabilizing element is incorporated during oxidation of the deposited metal.
  10. Process according to Claim 1 or 9, characterized in that the oxidation is carried out in a furnace at temperatures between 300°C and 900°C in an atmosphere, the oxygen composition of which is controlled.
  11. Process according to Claim 1, characterized in that the oxidation is carried out by a method of anodizing in aqueous medium.
  12. Process according to Claim 1 or 9, characterized in that the oxidation is carried out by a method of anodizing in a molten salt bath.
EP19980203600 1998-10-26 1998-10-26 Process for producing a thin ceramic coating on a metallic substrate Expired - Lifetime EP0997555B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69821942T DE69821942D1 (en) 1998-10-26 1998-10-26 Process for producing a thin coating on a metallic substrate
EP19980203600 EP0997555B1 (en) 1998-10-26 1998-10-26 Process for producing a thin ceramic coating on a metallic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19980203600 EP0997555B1 (en) 1998-10-26 1998-10-26 Process for producing a thin ceramic coating on a metallic substrate

Publications (2)

Publication Number Publication Date
EP0997555A1 EP0997555A1 (en) 2000-05-03
EP0997555B1 true EP0997555B1 (en) 2004-02-25

Family

ID=8234263

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980203600 Expired - Lifetime EP0997555B1 (en) 1998-10-26 1998-10-26 Process for producing a thin ceramic coating on a metallic substrate

Country Status (2)

Country Link
EP (1) EP0997555B1 (en)
DE (1) DE69821942D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106902B1 (en) 2016-03-22 2018-10-23 Plasma Processes, Llc Zirconium coating of a substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271344A (en) * 1975-12-11 1977-06-14 Hitachi Koki Kk Surface treating method of high speed rotary member
JPH0426778A (en) * 1990-05-18 1992-01-29 Kawasaki Steel Corp Surface treated steel sheet excellent in corrosion resistance and heat resistance
CZ77395A3 (en) * 1992-10-05 1995-12-13 Siemens Ag Protection against corrosive and erosive attacks of a chrome steel substrate at temperatures up to 500 degrees of celsius scale

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106902B1 (en) 2016-03-22 2018-10-23 Plasma Processes, Llc Zirconium coating of a substrate

Also Published As

Publication number Publication date
DE69821942D1 (en) 2004-04-01
EP0997555A1 (en) 2000-05-03

Similar Documents

Publication Publication Date Title
US8852359B2 (en) Method of bonding a metal to a substrate
US20060019035A1 (en) Base for decorative layer
US8992696B2 (en) Method of bonding a metal to a substrate
EP1862849A1 (en) Electrochromic cell, its use in windowpanes and rear-view mirrors and its manufacturing method
EP3161187B1 (en) Electrode material and use thereof for the manufacture of an inert anode
JPH11200090A (en) Nanostructural body and its production
FR2757181A1 (en) METHOD FOR PRODUCING A PROTECTIVE COATING WITH HIGH EFFICIENCY AGAINST HIGH TEMPERATURE CORROSION FOR SUPERALLIAGES, PROTECTIVE COATING OBTAINED BY THIS PROCESS AND PARTS PROTECTED THEREBY
FR2948690A1 (en) PIECE COMPRISING A SUBSTRATE CARRYING A CERAMIC COATING LAYER
EP3277855B1 (en) Cermet electrode material
EP3377680B1 (en) Aircraft engine part comprising an erosion protective coating and process for manufacturing such a part
US4475794A (en) Aluminum, aluminum oxide, cromium, gold mirror
EP0997555B1 (en) Process for producing a thin ceramic coating on a metallic substrate
JPH11236664A (en) Backing plate of target for sputtering
US20100072073A1 (en) Method for the electrochemically coating or stripping the coating from components
EP2459781B1 (en) Method of manufacturing a thermal barrier
EP0879901B1 (en) Protective coating for metal pieces with a good resistance against corrosion in a saline atmosphere and metal pieces with such a protective coating
FR3008718A1 (en) PROCESS FOR PRODUCING A PLATINUM-BASED METAL SUB-LAYER ON A METALLIC SUBSTRATE
EP0005674B1 (en) Process of manufacturing a dimensionally stable anode
EP2486603B1 (en) Production of thin films having photovoltaic properties and containing a i-iii-vi2-type alloy, comprising successive electrodeposits and thermal post-treatment
CN114717626B (en) Method for prolonging service life of high-temperature alloy through prefabricated oxide film
EP4041930B1 (en) Aircraft part made of superalloy comprising rhenium and/or ruthenium and associated manufacturing method
EP3309841A1 (en) Method for producing an electrical contact on a graphite layer, contact obtained by such a method and electronic device using such a contact
RU2747058C1 (en) Method for electrochemical precipitation of niobium coatings from bromide melts
EP0725846B1 (en) Process for fabricating a refractory coating on a metal substrate
CN114808073A (en) Method for improving anti-stripping performance of high-temperature alloy oxide film

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000617

AKX Designation fees paid

Free format text: BE DE FR GB IT

17Q First examination report despatched

Effective date: 20021216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040225

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040225

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69821942

Country of ref document: DE

Date of ref document: 20040401

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041126

BERE Be: lapsed

Owner name: *TECHSPACE AERO

Effective date: 20041031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

BERE Be: lapsed

Owner name: *TECHSPACE AERO

Effective date: 20041031