EP0005674B1 - Process of manufacturing a dimensionally stable anode - Google Patents

Process of manufacturing a dimensionally stable anode Download PDF

Info

Publication number
EP0005674B1
EP0005674B1 EP79400313A EP79400313A EP0005674B1 EP 0005674 B1 EP0005674 B1 EP 0005674B1 EP 79400313 A EP79400313 A EP 79400313A EP 79400313 A EP79400313 A EP 79400313A EP 0005674 B1 EP0005674 B1 EP 0005674B1
Authority
EP
European Patent Office
Prior art keywords
core
coating
conducting coating
process according
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79400313A
Other languages
German (de)
French (fr)
Other versions
EP0005674A3 (en
EP0005674A2 (en
Inventor
Roger Anger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0005674A2 publication Critical patent/EP0005674A2/en
Publication of EP0005674A3 publication Critical patent/EP0005674A3/en
Application granted granted Critical
Publication of EP0005674B1 publication Critical patent/EP0005674B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Definitions

  • the present invention relates, in general, to electrolysis cells and relates more particularly to an anode electrode stable in dimensions, of the type comprising a core of electroconductive material and an electrocatalytic conductive coating.
  • the invention also relates to a method of manufacturing such an electrode.
  • electrolytic cells in which the anode is constituted by a core of a metal called stop metal, of the type used for rectifiers with stop layer are expensive and require difficult and expensive machining.
  • stop metals which include in particular titanium, tantalum, niobium, zirconium, molybdenum and tungsten, are expensive and require difficult and expensive machining.
  • the core of the anode can also be produced from oxides of stop metals.
  • Anode electrodes of the aforementioned type consisting almost entirely of stop metals, noble metals or oxides of these metals, are particularly stable in size over time.
  • a drawback results from the difficulty of treatment, in particular of mechanical treatment, of such materials.
  • the anodes to resist during the operation of the electrolysis, in particular thermal and mechanical voltages, it is essential that the geometrical configuration of the anodes is determined with precision.
  • Anodes of the known type do not allow complex geometric configurations to be easily carried out.
  • One of the aims of the present invention consists precisely in enabling anodes to be produced at a reduced cost and in a simplified manner, while offering the possibility of improving the shape of the anodes constructed, without appreciably affecting their electrical properties.
  • an anode electrode stable in dimensions of the type comprising a core of electroconductive material and an electrocatalytic conductive coating, characterized in that an electroconductive core is first produced by molding. from a common metal melting at high temperature, such as iron, an iron alloy, aluminum, copper, in that said core is then introduced into a first electrolytic bath melted at high temperature, consisting of a mixture of alkali chlorides and stop metal chlorides, to form a first conductive coating on the core, and in that said core provided with its first coating is then introduced into a second electrolytic bath comprising noble metals to form a second electrocatalytic conductive coating on the core provided with its first conductive coating.
  • a common metal melting at high temperature such as iron, an iron alloy, aluminum, copper
  • a first electrolytic bath melted at high temperature consisting of a mixture of alkali chlorides and stop metal chlorides
  • the second electrolytic bath can also optionally consist of an aqueous solution of noble metal, such as platinum, ruthenium, iridium, palladium.
  • noble metal such as platinum, ruthenium, iridium, palladium.
  • an inexpensive metal or alloy of metals is used for the core of the anode and is easily worked by molding.
  • the manufacturing cost is thus very reduced, while the manufacturing flexibility is greatly improved.
  • the core is made of iron or ferrous alloy, aluminum or aluminum alloy, copper or copper alloy, a coating of stop metals or oxides of stop metals , then a second coating of noble metals such as platinum or oxides of these noble metals or of noble metals associated with stop metals such as titanium, the mechanical and electrical qualities of the anode remain excellent compared to the electrodes anodic whose core is made entirely of stop metal such as titanium or tantalum.
  • the advantageous characteristic is the formation of the molded core based on iron or ferrous alloy by molding molten metals.
  • the second electrocatalytic conductive coating can be produced from a mixture of alkali halides and either halides of a noble metal or of several noble metals, or halides of noble metals and stop metals.
  • stop metal should be understood to mean a metal of the type used for rectifiers with a stop layer. Titanium, tantalum, niobium, zirconium, molybdenum and tungsten belong to this family.
  • the operations of coating the electroconductive core are carried out in an inert atmosphere such as an argon or helium atmosphere.
  • the temperature of the molten electrolytic baths is between 300 and 1000 ° C, this temperature naturally depending on the type of core and the metals to be treated.
  • the electrode provided with its two coatings is then subjected to an oxidation heat treatment.
  • an anode core is produced by melting and molding inexpensive common metals, such as iron or an iron alloy, aluminum, copper or alloys of these metals.
  • the core could also be made from a metal such as iron, for example semi-worked.
  • the molding technique makes it easier to produce anodes of very different geometries.
  • the core of the anode then receives a cathodic electrolytic deposit of a stop metal, such as titanium, tantalum or tungsten.
  • a stop metal such as titanium, tantalum or tungsten.
  • This deposit makes it possible to coat the core of the anode with a layer of stop metal, the thickness of which can be very reduced, for example less than 3 mm.
  • the quantities of stop metal used are thus very reduced, although the electrode is coated over its entire surface and therefore has interesting electrical and mechanical qualities.
  • the molten electrolytic bath allowing the deposition of a stop metal is a high temperature bath comprising a mixture of alkali chlorides, such as sodium chloride, potassium chloride, lithium chloride, or alkaline fluorides, such than sodium fluoride and potassium fluoride or fluorides and chlorides of stop metals or compounds of stop metals, such as tungsten compounds.
  • Anodic corrosion of the stop metal and of the mixture of molten chlorides can thus take place with the intervention of tetrachloride of the stop metal and the intervention of fluorinated compounds of the stop metal.
  • the coating operation of the iron-based core is carried out in an inert atmosphere of rare gases such as argon or helium.
  • the melting temperature of the electrolytic bath can be between approximately 300 and 1000 ° C.
  • the density of the anode currents can reach 10 kA / m 2 using for the cathodic deposition of stop metal a soluble anode having the same composition as that of the stop metal to be deposited.
  • the deposit is obtained at anode and cathode potentials controlled and at anode and cathode current density always controlled with cell voltages between 0 and 7 volts.
  • the current densities can be, for example, from 100 to 700 Nm2 at the cathode and from 10 to 90 A / m 2 at the anode.
  • the second coating can be carried out using the same technique as for the first coating, that is to say using a molten electrolytic bath at high temperature, of a mixture of alkali halides and noble metal halides, which may optionally be combined with stop metal halides.
  • the noble metal can also be deposited by aqueous baths, that is to say galvanic baths.
  • the present invention lends itself well to the manufacture of anodes of very diverse shapes, in particular of anodes provided with several electrode connections coupled to the anode barrier, since in particular the molding technique makes it possible to form cores with the most varied shapes. .
  • An anode produced according to the present invention has excellent mechanical and chemical resistance, especially to corrosion, including for temperatures above normal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

La présente invention se rapporte, d'une manière générale, aux cellules d'électrolyse et concerne plus particulièrement une électrode anodique stable en dimensions, du type comprenant une âme en matière électroconductrice et un revêtement conducteur électrocatalytique. L'invention concerne également un procédé de fabrication d'une telle électrode.The present invention relates, in general, to electrolysis cells and relates more particularly to an anode electrode stable in dimensions, of the type comprising a core of electroconductive material and an electrocatalytic conductive coating. The invention also relates to a method of manufacturing such an electrode.

On connaît, à côté de cellules électrolytiques classiques mettant en oeuvre des anodes en graphite, des cellules électrolytiques dans lesquelles l'anode est constituée par une âme en un métal dit métal d'arrêt, du type utilisé pour les redresseurs à couche d'arrêt. De tels métaux d'arrêt, qui comprennent notamment le titane, le tantale, le niobium, le zirconium, le molybdène et le tungstène, sont d'un prix élevé et nécessitent un usinage difficile et coûteux. L'âme de l'anode peut encore être réalisée à partir d'oxydes de métaux d'arrêt.We know, next to conventional electrolytic cells using graphite anodes, electrolytic cells in which the anode is constituted by a core of a metal called stop metal, of the type used for rectifiers with stop layer . Such stop metals, which include in particular titanium, tantalum, niobium, zirconium, molybdenum and tungsten, are expensive and require difficult and expensive machining. The core of the anode can also be produced from oxides of stop metals.

Il est également connu de revêtir une anode du type précité à l'aide d'une couche conductrice électrocatalytique constituée par exemple par un mélange d'oxydes métalliques de métaux nobles ou de métaux d'arrêt.It is also known to coat an anode of the aforementioned type using an electrocatalytic conductive layer constituted for example by a mixture of metallic oxides of noble metals or of stop metals.

Les électrodes anodiques du type précité, constituées pratiquement intégralement de métaux d'arrêt, métaux nobles ou oxydes de ces métaux, sont particulièrement stables en dimensions au cours du temps. Toutefois, outre le coût élevé du matériau de base constituant de telles anodes, un inconvénient résulte de la difficulté de traitement, notamment de traitement mécanique, de tels matériaux. Or, pour que les anodes résistent, au cours du fonctionnement de l'électrolyse, aux tensions notamment thermiques et mécaniques, il est essentiel que la configuration géométrique des anodes soit déterminée avec précision. Les anodes du type connu ne permettent pas de réaliser facilement des configurations géométriques complexes.Anode electrodes of the aforementioned type, consisting almost entirely of stop metals, noble metals or oxides of these metals, are particularly stable in size over time. However, in addition to the high cost of the base material constituting such anodes, a drawback results from the difficulty of treatment, in particular of mechanical treatment, of such materials. However, for the anodes to resist, during the operation of the electrolysis, in particular thermal and mechanical voltages, it is essential that the geometrical configuration of the anodes is determined with precision. Anodes of the known type do not allow complex geometric configurations to be easily carried out.

Un des buts de la présente invention consiste précisément à permettre la réalisation d'anodes à un coût réduit et de façon simplifiée, tout en offrant la possibilité d'améliorer la forme des anodes construites, sans affecter sensiblement leurs propriétés électriques.One of the aims of the present invention consists precisely in enabling anodes to be produced at a reduced cost and in a simplified manner, while offering the possibility of improving the shape of the anodes constructed, without appreciably affecting their electrical properties.

Ces buts sont atteints grâce à un procédé de fabrication d'une électrode anodique stable en dimensions, du type comprenant une âme en matière électroconductrice et un revêtement conducteur électrocatalytique, caractérisé en ce que l'on réalise d'abord une âme électroconductrice, par moulage à partir d'un métal commun fondant à haute température, tel que du fer, un alliage de fer, de l'aluminium, du cuivre, en ce que l'on introduit ensuite ladite âme dans un premier bain électrolytique fondu à haute température, constitué d'un mélange de chlorures alcalins et de chlorures de métaux d'arrêt, pour former un premier revêtement conducteur sur l'âme, et en ce que l'on introduit ensuite ladite âme munie de son premier revêtement dans un second bain électrolytique comprenant des métaux nobles pour former un second revêtement conducteur électrocatalytique sur l'âme munie de son premier revêtement conducteur.These objects are achieved by a method of manufacturing an anode electrode stable in dimensions, of the type comprising a core of electroconductive material and an electrocatalytic conductive coating, characterized in that an electroconductive core is first produced by molding. from a common metal melting at high temperature, such as iron, an iron alloy, aluminum, copper, in that said core is then introduced into a first electrolytic bath melted at high temperature, consisting of a mixture of alkali chlorides and stop metal chlorides, to form a first conductive coating on the core, and in that said core provided with its first coating is then introduced into a second electrolytic bath comprising noble metals to form a second electrocatalytic conductive coating on the core provided with its first conductive coating.

Le second bain électrolytique peut encore éventuellement être constitué par une solution aqueuse de métal noble, tel que le platine, le ruthénium, l'iridium, le palladium.The second electrolytic bath can also optionally consist of an aqueous solution of noble metal, such as platinum, ruthenium, iridium, palladium.

Ainsi, contrairement aux anodes stabilisées en dimensions de type classique, on utilise, pour le coeur de l'anode, un métal ou un alliage de métaux peu coûteux et facilement travaillable par moulage. Le coût de fabrication est ainsi très réduit, tandis que la souplesse de fabrication est grandement améliorée.Thus, unlike anodes stabilized in dimensions of the conventional type, an inexpensive metal or alloy of metals is used for the core of the anode and is easily worked by molding. The manufacturing cost is thus very reduced, while the manufacturing flexibility is greatly improved.

De façon surprenante, si l'on réalise sur l'âme en fer ou alliage ferreux, en aluminium ou alliage d'aluminium, en cuivre ou alliage de cuivre, un revêtement de métaux d'arrêt ou d'oxydes de métaux d'arrêt, puis un second revêtement de métaux nobles tels que du platine ou des oxydes de ces métaux nobles ou de métaux nobles associés à des métaux d'arrêt tels que le titane, les qualités mécaniques et électriques de l'anode restent excellentes par rapport aux électrodes anodiques dont le coeur est réalisé entièrement en métal d'arrêt tel que le titane ou le tantale.Surprisingly, if the core is made of iron or ferrous alloy, aluminum or aluminum alloy, copper or copper alloy, a coating of stop metals or oxides of stop metals , then a second coating of noble metals such as platinum or oxides of these noble metals or of noble metals associated with stop metals such as titanium, the mechanical and electrical qualities of the anode remain excellent compared to the electrodes anodic whose core is made entirely of stop metal such as titanium or tantalum.

La formation de l'âme moulée à base de fer ou d'alliage ferreux par un moulage de métaux fondus constitue une caractéristique avantageuse.The advantageous characteristic is the formation of the molded core based on iron or ferrous alloy by molding molten metals.

Le second revêtement conducteur électrocatalytique peut être réalisé à partir d'un mélange d'halogénures alcalins et soit d'halogénures d'un métal noble ou de plusieurs métaux nobles, soit d'halogénures de métaux nobles et de métaux d'arrêt.The second electrocatalytic conductive coating can be produced from a mixture of alkali halides and either halides of a noble metal or of several noble metals, or halides of noble metals and stop metals.

Par métal d'arrêt, il faut comprendre un métal du type utilisé pour des redresseurs à couche d'arrêt. Le titane, le tantale, le niobium, le zirconium, le molybdène et le tungstène appartiennent à cette famille.The term "stop metal" should be understood to mean a metal of the type used for rectifiers with a stop layer. Titanium, tantalum, niobium, zirconium, molybdenum and tungsten belong to this family.

Selon une caractéristique de l'invention, les opérations de revêtement de l'âme électroconductrice sont réalisées dans une atmosphère inerte telle qu'une atmosphère d'argon ou d'hélium. La température des bains électrolytiques fondus est comprise entre 300 et 1 000 °C cette température dépendant naturellement du type d'âme et des métaux à traiter. On soumet ensuite l'électrode munie de ses deux revêtements à un traitement thermique d'oxydation.According to a characteristic of the invention, the operations of coating the electroconductive core are carried out in an inert atmosphere such as an argon or helium atmosphere. The temperature of the molten electrolytic baths is between 300 and 1000 ° C, this temperature naturally depending on the type of core and the metals to be treated. The electrode provided with its two coatings is then subjected to an oxidation heat treatment.

Un exemple particulier de réalisation non limitatif sera décrit ci-dessous pour mieux expliciter l'invention.A particular non-limiting example of embodiment will be described below to better explain the invention.

On réalise d'abord une âme d'anode par fusion et moulage de métaux communs peu coûteux, tels que le fer ou un alliage de fer, l'aluminium, le cuivre ou des alliages de ces métaux. L'âme pourrait être également réalisée à partir d'un métal tel que le fer, par exemple semi-travaillé. Toutefois, la technique du moulage permet de réaliser plus facilement des anodes de géométries très diverses.First an anode core is produced by melting and molding inexpensive common metals, such as iron or an iron alloy, aluminum, copper or alloys of these metals. The core could also be made from a metal such as iron, for example semi-worked. However, the molding technique makes it easier to produce anodes of very different geometries.

L'âme de l'anode reçoit alors un dépôt électrolytique cathodique d'un métal d'arrêt, tel que le titane, le tantale ou le tungstène.The core of the anode then receives a cathodic electrolytic deposit of a stop metal, such as titanium, tantalum or tungsten.

Ce dépôt permet de revêtir l'âme de l'anode d'une couche de métal d'arrêt dont l'épaisseur peut être très réduite, par exemple inférieure à 3 mm.This deposit makes it possible to coat the core of the anode with a layer of stop metal, the thickness of which can be very reduced, for example less than 3 mm.

Les quantités de métal d'arrêt utilisées sont ainsi très réduites, bien que l'électrode soit revêtue sur toute sa surface et présente donc des qualités électriques et mécaniques intéressantes. Le bain électrolytique fondu permettant le dépôt d'un métal d'arrêt est un bain à haute température comprenant un mélange de chlorures alcalins, tels que le chlorure de sodium, le chlorure de potassium, le chlorure de lithium, ou de fluorures alcalins, tels que le fluorure de sodium et le fluorure de potassium ou des fluorures et chlorures de métaux d'arrêt ou de composés de métaux d'arrêt, tels que des composés du tungstène.The quantities of stop metal used are thus very reduced, although the electrode is coated over its entire surface and therefore has interesting electrical and mechanical qualities. The molten electrolytic bath allowing the deposition of a stop metal is a high temperature bath comprising a mixture of alkali chlorides, such as sodium chloride, potassium chloride, lithium chloride, or alkaline fluorides, such than sodium fluoride and potassium fluoride or fluorides and chlorides of stop metals or compounds of stop metals, such as tungsten compounds.

Il peut ainsi intervenir une corrosion anodique du métal d'arrêt et du mélange de chlorures fondus avec intervention de tétrachlorure du métal d'arrêt et intervention de composés fluorés du métal d'arrêt.Anodic corrosion of the stop metal and of the mixture of molten chlorides can thus take place with the intervention of tetrachloride of the stop metal and the intervention of fluorinated compounds of the stop metal.

L'opération de revêtement de l'âme à base de fer est réalisée dans une ambiance inerte de gaz rares tels que l'argon ou l'hélium.The coating operation of the iron-based core is carried out in an inert atmosphere of rare gases such as argon or helium.

La température de fusion du bain électrolytique peut être comprise entre environ 300 et 1 000 °C. La densité des courants anodiques peut attein- dre 10 kA/m2 en utilisant pour le dépôt cathodique de métal d'arrêt une anode soluble ayant la même composition que celle du métal d'arrêt à déposer.The melting temperature of the electrolytic bath can be between approximately 300 and 1000 ° C. The density of the anode currents can reach 10 kA / m 2 using for the cathodic deposition of stop metal a soluble anode having the same composition as that of the stop metal to be deposited.

Le dépôt s'obtient à potentiels anodiques et cathodiques contrôlés et à densité de courant anodique et cathodique toujours contrôlée avec des tensions de cellule comprises entre 0 et 7 volts. Les densités de courant peuvent être, par exemple, de 100 à 700 Nm2 à la cathode et de 10 à 90 A/m2 à l'anode.The deposit is obtained at anode and cathode potentials controlled and at anode and cathode current density always controlled with cell voltages between 0 and 7 volts. The current densities can be, for example, from 100 to 700 Nm2 at the cathode and from 10 to 90 A / m 2 at the anode.

L'anode à base d'un métal bon marché, tel que du fer, de l'aluminium, du cuivre, munie de son premier revêtement de métal d'arrêt, reçoit ensuite un second revêtement électrocatalytique constitué de métaux nobles ou d'un mélange de métaux nobles et de métaux d'arrêt, ou de composés intermétalliques de métaux nobles et de métaux d'arrêt ou encore de composés de métaux d'arrêt tels que le carbure de tungstène. Le deuxième revêtement peut être effectué à l'aide de la même technique que pour, le premier revêtement, c'est-à-dire à l'aide d'un bain électrolytique fondu à haute température, d'un mélange d'halogénures alcalins et d'halogénures de métaux nobles, auxquels peuvent être éventuellement associés des halogénures de métaux d'arrêt.The anode based on a cheap metal, such as iron, aluminum, copper, provided with its first coating of stop metal, then receives a second electrocatalytic coating consisting of noble metals or a mixture of noble metals and stop metals, or intermetallic compounds of noble metals and stop metals or even compounds of stop metals such as tungsten carbide. The second coating can be carried out using the same technique as for the first coating, that is to say using a molten electrolytic bath at high temperature, of a mixture of alkali halides and noble metal halides, which may optionally be combined with stop metal halides.

Le métal noble peut encore être déposé par des bains aqueux, c'est-à-dire galvaniques.The noble metal can also be deposited by aqueous baths, that is to say galvanic baths.

On notera également que, selon une variante de réalisation, après le dépôt par électrolyse, au moyen d'un bain fondu d'un premier revêtement conducteur éiectrocathodique ou électroanodi- que en métal d'arrêt, tel que le titane, sur une base en métal commun, tel que de l'acier, il est possible de réaliser par électrolyse selon la même technique, un second revêtement conducteur en métal d'arrêt, tel que du tungstène, puis de réaliser à haute température une carburation de ce dernier revêtement, auquel cas il n'est pas alors nécessaire de déposer de métal noble.It will also be noted that, according to an alternative embodiment, after deposition by electrolysis, by means of a molten bath of a first conductive electro-cathodic or electroanodic coating of stop metal, such as titanium, on a base common metal, such as steel, it is possible to produce, by electrolysis according to the same technique, a second conductive coating of stop metal, such as tungsten, then to carry out at high temperature a carburation of this latter coating, in which case it is not then necessary to deposit a noble metal.

La présente invention se prête bien à la fabrication d'anodes de formes très diverses, notamment d'anodes munies de plusieurs branchements d'électrode couplés à la barrière anodique, puisque notamment la technique du moulage permet de former des âmes aux formes les plus variées.The present invention lends itself well to the manufacture of anodes of very diverse shapes, in particular of anodes provided with several electrode connections coupled to the anode barrier, since in particular the molding technique makes it possible to form cores with the most varied shapes. .

Une anode réalisée selon la présente invention présente une excellente résistance mécanique et chimique, notamment à la corrosion, y compris pour des températures supérieures à la normale.An anode produced according to the present invention has excellent mechanical and chemical resistance, especially to corrosion, including for temperatures above normal.

Claims (8)

1. A process for manufacturing an anodic electrode, stable in dimensions, of the type comprising a core made of electroconducting material and an electrocatalytic conducting coating, characterized in that an electroconducting core is firstly made from a common metal melting at high temperature, such as iron, an iron alloy, aluminium, an aluminium alloy, copper, a copper alloy, said core is then introduced into a first molten high temperature electrolytic bath constituted by a mixture of alkali metal chlorides and of chlorides of valve metals, to form a first conducting coating on the core, said core provided with its first coating is then introduced into a second electrolytic bath comprising noble metals, to form a second electrocatalytic conducting coating on the core provided with its first conducting coating.
2. A process according to claim 1, characterized in that the second electrolytic bath is constituted by an aqueous solution of one or more noble metals.
3. A process according to claim 1 or 2, characterized in that the operations for coating the electroconducting core are effected in an inert atmosphere such as an atmosphere of argon or helium.
4. A process according to any one of claims 1 to 3, characterized in that the temperature of the molten electrolytic baths is between 300 and 1 000 °C.
5. A process according to any one of claims 1 to 4, characterized in that the electrode provided with its two coatings is subjected to a thermal oxidation treatment.
6. A process according to any one of claims 1 to 5, characterized in that upon formation of a conducting coating on the core of the electrode to be manufactured, the deposit of metal is obtained at controlled anodic and cathodic potentials and at controlled anodic and cathodic current density, with cell voltages of between 0 and 7 volts.
7. A process according to claim 6, characterized in that, upon formation of a conducting coating on the core of the electrode to be manufactured, the current densities are included between 100 and 700 A/m2 at the cathode and 10 and 90 A/m2 at the anode.
8. A process of manufacturing an anodic electrode, stable in dimensions, of the type comprising a core made of electroconducting material and an electrocatalytic conducting coating, characterized in that : an electroconducting core is firstly made from a common metal melting at high temperature, such as iron, an iron alloy, aluminium, an aluminium alloy, copper, a copper alloy, said core is then introduced into a first molten high temperature electrolytic bath constituted by a mixture of alkali chlorides and of chlorides of valve metals, to form a first conducting coating on the core, said core provided with its first coating is then introduced into a second electrolytic bath constituted by a mixture of alkali halides and of halides of valve metals, to form a second conducting coating on the core provided with its first conducting coating, and a carburization of the second coating is effected at high temperature.
EP79400313A 1978-05-19 1979-05-18 Process of manufacturing a dimensionally stable anode Expired EP0005674B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7814920A FR2426095A1 (en) 1978-05-19 1978-05-19 ANODIC ELECTRODE STABLE IN DIMENSIONS AND MANUFACTURING PROCESS
FR7814920 1978-05-19

Publications (3)

Publication Number Publication Date
EP0005674A2 EP0005674A2 (en) 1979-11-28
EP0005674A3 EP0005674A3 (en) 1979-12-12
EP0005674B1 true EP0005674B1 (en) 1983-02-16

Family

ID=9208470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400313A Expired EP0005674B1 (en) 1978-05-19 1979-05-18 Process of manufacturing a dimensionally stable anode

Country Status (3)

Country Link
EP (1) EP0005674B1 (en)
DE (1) DE2964788D1 (en)
FR (1) FR2426095A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411762A (en) * 1981-11-09 1983-10-25 Diamond Shamrock Corporation Titanium clad copper electrode and method for making
US4657652A (en) * 1986-02-28 1987-04-14 Pennwalt Corporation Electrolytic cell and anode for brine electrolytes
DE3905082A1 (en) * 1989-02-18 1990-08-23 Bayer Ag STABLE ANODES AND THEIR USE IN THE PRODUCTION OF ALKALIDICHROMATES AND CHROME ACID
FR2735386B1 (en) * 1995-06-15 1997-08-29 Electricite De France ANODE WITH IMPROVED LONGEVITY SUPPORTING A HIGH ANODIC POTENTIAL DURING AN ELECTROCHEMICAL PROCESS AND PROCESS FOR ITS MANUFACTURING
DE10029837B4 (en) * 2000-06-16 2005-02-17 Degussa Galvanotechnik Gmbh Process for the production of unilaterally platinated plates and expanded metal gratings of refractory metals

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL88097C (en) * 1951-12-31
BE534961A (en) * 1954-01-19
US3547789A (en) * 1968-05-07 1970-12-15 Us Interior Electrodeposition of thick coatings of palladium
FR2067802A5 (en) * 1969-11-18 1971-08-20 Paris Rene Metal boride electrodes

Also Published As

Publication number Publication date
DE2964788D1 (en) 1983-03-24
FR2426095A1 (en) 1979-12-14
EP0005674A3 (en) 1979-12-12
EP0005674A2 (en) 1979-11-28
FR2426095B1 (en) 1980-11-07

Similar Documents

Publication Publication Date Title
US4960494A (en) Ceramic/metal composite material
AU2004232697B2 (en) Sinter-bonded direct pin connections for inert anodes
FR2599050A1 (en) SUSTAINABLE ELECTRODES FOR ELECTROLYSIS WITH ANODE OXYGEN RELEASE AND PROCESS THEREOF
CA1247047A (en) Electrolytic production of hydrogen on a cathode
US6248227B1 (en) Slow consumable non-carbon metal-based anodes for aluminium production cells
EP0005674B1 (en) Process of manufacturing a dimensionally stable anode
AU755103B2 (en) Nickel-iron alloy-based anodes for aluminium electrowinning cells
EP0131978A1 (en) Process for manufacturing an electrode for electrochemical processes, and cathode for the electrolytic production of hydrogen
FR2723107A1 (en) PROCESS FOR THE ELECTROLYTIC REDUCTION OF A DISULFIDE AND A PRODUCT THUS OBTAINED
EP1060818B1 (en) Highly porous three-dimensional chromium containing alloy structures
FR2461023A1 (en) PROCESS FOR PREPARING CONDUCTIVE SUBSTRATES AND ELECTRODES FOR THE ELECTROLYSIS OF A BRINE, AND THE LOW-VOLTAGE ELECTRODE THUS OBTAINED
US4488941A (en) Electroplating method for producing porous tantalum capacitor electrode
EP1678349B1 (en) Device and method for connecting inert anodes for the production of aluminium by fused-salt electrolysis
US4212725A (en) Electrodes for electrolysis purposes
US20070207338A1 (en) X-ray target and method for manufacturing same
Fung et al. Electrochemical deposition of superconductor alloy precursor in a low melting molten salt medium
US20080105084A1 (en) Method of production of tantalum powder with low impurity level
CH451638A (en) Process for the deposition of refractory metals by electrolytic means
EP0997555B1 (en) Process for producing a thin ceramic coating on a metallic substrate
JPH01176086A (en) Electrode for electrolysis having durability and manufacture thereof
Kuznetsov et al. Electrochemical synthesis of niobium-hafnium coatings in molten salts
JPH06293998A (en) Insoluble iridium oxide coated electrode and its production
JPH05140783A (en) Anode for electrochemical fluorination and manufacturing of fluorine and preparation thereof
FR2735386A1 (en) Long life high potential electrochemical anode
JP2549962B2 (en) Iridium oxide insoluble electrode and method for producing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE GB IT NL SE

AK Designated contracting states

Designated state(s): CH DE GB IT NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19830216

Ref country code: NL

Effective date: 19830216

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19830216

REF Corresponds to:

Ref document number: 2964788

Country of ref document: DE

Date of ref document: 19830324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19830531

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19840201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT