EP1678349B1 - Device and method for connecting inert anodes for the production of aluminium by fused-salt electrolysis - Google Patents

Device and method for connecting inert anodes for the production of aluminium by fused-salt electrolysis Download PDF

Info

Publication number
EP1678349B1
EP1678349B1 EP04817090A EP04817090A EP1678349B1 EP 1678349 B1 EP1678349 B1 EP 1678349B1 EP 04817090 A EP04817090 A EP 04817090A EP 04817090 A EP04817090 A EP 04817090A EP 1678349 B1 EP1678349 B1 EP 1678349B1
Authority
EP
European Patent Office
Prior art keywords
anode
conductor
assembly
manufacturing
brazing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04817090A
Other languages
German (de)
French (fr)
Other versions
EP1678349A2 (en
Inventor
Airy-Pierre Lamaze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Priority to SI200431992T priority Critical patent/SI1678349T1/en
Publication of EP1678349A2 publication Critical patent/EP1678349A2/en
Application granted granted Critical
Publication of EP1678349B1 publication Critical patent/EP1678349B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/532Conductor
    • Y10T29/53204Electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/532Conductor
    • Y10T29/53209Terminal or connector

Definitions

  • the invention relates to the production of aluminum by igneous electrolysis. It relates more particularly to the anodes used for this production and the electrical connection of these anodes to current leads.
  • Aluminum metal is produced industrially by igneous electrolysis, namely by electrolysis of alumina in solution in a bath based on molten cryolite, called an electrolyte bath, in particular according to the well-known Hall-Héroult process.
  • the electrolysis is carried out in cells comprising a crucible of refractory material capable of containing the electrolyte, at least one cathode and at least one anode.
  • the electrolysis current which circulates in the electrolyte via the anodes and cathodes, effects the aluminum reduction reactions and also makes it possible to maintain, by the Joule effect, the electrolyte bath at the reaction temperature. intended operation, which is typically of the order of 950 ° C.
  • the electrolysis cell is regularly supplied with alumina so as to compensate for the consumption of alumina produced by the electrolysis reactions.
  • the anodes are made of carbon material and are consumed by the aluminum reduction reactions. The consumption of the carbonaceous material releases large amounts of carbon dioxide.
  • inert anodes The environmental constraints and costs associated with the manufacture and use of carbon anodes have, for many decades, led aluminum producers to look for anodes made of non-consumable materials, called “inert anodes”.
  • ceramic materials such as SnO 2 and ferrites
  • metallic materials and composite materials such as the materials - known under the name "cermet" - containing a ceramic phase and a metal phase (especially nickel ferrites containing a copper-based metal phase).
  • inert anodes for the production of aluminum by electrolysis lie not only in the choice and manufacture of the material constituting the anode, but also in the electrical connection between each anode and the conductor or conductors for the power supply of the electrolysis cell.
  • Several methods and connection devices have been proposed for inert anodes.
  • the patent US 4,500,406 proposes to use an anode having an active part, a metal part, suitable for connection, and a composition gradient between the active part and the metal part.
  • the patent US 4,541,912 discloses an assembly formed by hot isostatic pressing of a cermet material on a metal conductive substrate.
  • Licences US 4,468,298 , US 4,468,299 and US 4,468,300 describe joints formed by diffusion, friction or other welding.
  • the patent US 4,457,811 discloses a connection having one or more resilient blades welded to the inner or outer surface of an anode. These solutions require a chemical reduction of the contact surface before the formation of the joints, which considerably complicates the manufacture of the anodes. These solutions also have the disadvantage of complicating the assembly of electrical connections.
  • said brazed joint is capable of being consolidated during the use of said assembly in an aluminum production cell by electrolysis.
  • it advantageously comprises at least one element chosen from aluminum, silver, copper, magnesium, manganese, titanium and zinc.
  • the anode typically takes the form of a cylindrical pocket, or "thimble", whose outer surface of the closed end is rounded, or rounded quadrangular whose angles of the outer surface of the closed end are rounded.
  • connection methods which bring the electric current directly to the center or near the portion immersed in the bath, lead to a bad distribution of the current lines, in particular in the anodes having the shape of a pocket . It also noted that this distribution of current lines could lead to low current densities in some locations (ie typically less than about 0.5 A / cm 2 ), which locally promotes corrosion. and too strong at other locations (i.e., typically greater than 1.5 A / cm 2 or even greater than 2.5 A / cm 2 ), which locally accelerates degradation by electrochemical dissolution.
  • the Applicant has had the idea of using a brazed joint which is consolidated during a heat treatment, either (in whole or in part) before the use of the assembly in an electrolysis cell, either (in all or part) in situ when using the assembly in an electrolysis cell.
  • the brazed joint makes it possible to avoid putting the part of the inert anode used for the mechanical connection under mechanical tension.
  • the brazed joint provides a common and efficient mechanical and electrical connection, which greatly simplifies the manufacturing process.
  • This type of seal is advantageous in that it allows the use of a mechanical assembly which is dimensioned so as to be sufficient to provide satisfactory temporary mechanical retention of the anode up to the consolidation of the brazed joint, but not necessarily sufficient to provide all the mechanical requirements of the required connection in use, because the consolidation of the brazed joint provides the additional mechanical strength required in use.
  • the invention also relates to a method for manufacturing anode assemblies according to the invention.
  • the invention also relates to the use of at least one anode assembly according to the invention, or obtained by the manufacturing method of the invention, for the production of aluminum by igneous electrolysis.
  • the invention also relates to an igneous electrolysis aluminum production cell comprising at least one anode assembly according to the invention or obtained by the manufacturing method of the invention.
  • the Figures 1 to 7 relate to the invention.
  • the figures 1 and 3 to 6 illustrate anode assemblies according to the invention, seen in longitudinal section.
  • the figure 2 illustrates two elements of the anodic assembly of the figure 1 .
  • the figure 7 illustrates the morphological evolution of the brazing material during soldering.
  • the hollow shape of the anode makes it possible to limit the manufacturing cost and to free a useful space (21) inside the anode.
  • This space or cavity (21) can be used, for example, to introduce one or more heating resistors (9) for heating the anode before immersion in the liquid electrolyte bath.
  • the anode has an inner surface (210) and an outer surface (230).
  • the thickness E of the wall (23) of the anode may be different at different locations of the anode.
  • the thickness of the side portion (23 ') of the wall (23) of the anode may be uniform or not.
  • the anodes and the connecting conductors have an axial symmetry with respect to a central axis A.
  • the closed end (24) of the anode (2) has a surface (240), called “active”, intended to be immersed in a bath of molten salt electrolyte.
  • the active surface (240) of the anode is preferably free of sharp angles to avoid peak effects in the distribution of the electric current in use; it may be hemispherical or have polygons with rounded corners.
  • the open end (22) of the anode (2) which is opposed to the closed end (24), is used to effecfute a mechanical and electrical connection to at least one connecting conductor (3). , 4, 4 ', 5).
  • the seal (31) is located at the connection area (25) of the anode.
  • the elements of the anode assembly according to the invention in particular said mechanical connection means (26, 27, 28, 29, 44, 45, 46), can be dimensioned so as to be sufficient to ensure only a satisfactory temporary mechanical maintenance of the anode up to the consolidation of the brazed joint, before use or in use in an electrolysis cell
  • Said seal (31) is located between all or part of at least one surface (20, 20 ', 20 ") of the open end (22) of the anode (2) and all or part of at least one surface (40, 40 ', 40 ") of the connecting end (42) of the conductor (3, 4, 4', 5).
  • connection conductor (3, 4, 4 ', 5) is for the power supply of the anode (2). It may comprise a centered cavity (8).
  • the nickel-based alloy is advantageously an alloy UNS N06625, called “alloy 625”, and more advantageously an alloy UNS N06025, called “alloy 602", whose added aluminum content gives it a better resistance to hot corrosion.
  • the connecting conductor (3, 4, 4 ', 5) may comprise an intermediate conductor (4), typically a nickel-based alloy, for establishing the mechanical and electrical connection with the anode, and a conductor "Outside" (5) for the mechanical support of the anode assembly and the electrical connection to the outside of the electrolysis cell, generally by external connection means (6).
  • the connecting conductor (3, 4, 4 ', 5) may comprise two or more intermediate conductors (4, 4'). The parts (3, 4, 4 ', 5) are fixed together by one or more intermediate connections (7).
  • the connecting conductor (3, 4, 4 ', 5) typically has an elongated, possibly tubular shape.
  • the mechanical connection means (26, 27, 28, 29) of the anode (2) are located close to the open end (22). They cover a portion of the open end (22) of the anode typically representing less than 10% or even less than 5% of the total length L of the anode.
  • the total area of the one or more connecting surfaces (20, 20 ', 20 ") of the anode is such that, at the nominal intensity in use, the surface density of current is preferably between 1 and 50 A / cm 2 , more preferably between 2 and 20 A / cm 2 , and more preferably between 5 and 15 A / cm 2. This represents surface values typically between 1 and 20 %, or even between 5% and 15%, of the total area of the outer surface (230) of the anode.
  • the mechanical connection means (26, 27, 28, 29) of the anode (2) typically comprise at least one element chosen from the flanges (26), the annular cavities (27) and the annular grooves (28). and the annular shoulders (29). These shapes are easy to obtain on inert anodes with axial symmetry.
  • the mechanical connection means (44, 45, 46) of the conductor (3, 4, 4 ', 5) are preferably located near the connection end (42).
  • the one or more mechanical connection means (44, 45, 46) of the conductor (3, 4, 4 ', 5) typically comprise at least one element chosen from the annular grooves (44), the skirts (45) and the annular shoulders. (46). These shapes are easy to obtain - typically by bar turning - on metal parts with axial symmetry.
  • connection means of the anode (26, 27, 28, 29) and the conductor (44, 45, 46) advantageously cooperate by at least one of the means chosen from screwing, snapping, friction, insertion or fitting.
  • the insertion and fitting can be performed after heating the anode and / or the connecting conductor.
  • the anode assembly (1) may comprise one or more complementary assembly means (34, 340, 36), such as one or more clamping rings (34, 340) and one or more rings (36) open or closed .
  • connection surface or surfaces (20, 20 ', 20 ") of the anode (2) typically comprise at least one flat surface element whose tangent forms an angle ⁇ between 45 ° and 90 °, or between 60 ° and 90 °, with the main axis A of the anode.
  • the connecting surfaces (20, 20 ', 20 ") are typically at least partly on the outer surface (230) of the anode (2) when the constituent material of the anode has a coefficient of expansion less than that of the constituent material of the connecting conductor, they are typically at least partly on the inner surface (210) of the anode in the opposite case.
  • the anode assembly (1) may also comprise at least one additional seal (33) intended to confine the brazed joint (31), generally by means of a limitation of the flow of the brazing material. This flow may occur during heat treatment or during use.
  • the additional seal (33) is typically selected from open and closed rings and rings.
  • the additional seal (33) may be metallic or non-metallic.
  • the assembly of the conductor (3, 4, 4 ', 5) and the anode (2) does not involve any clamping or stress between the driver and the anode.
  • connection means (26, 27, 28, 29, 44, 45, 46) are located in a part of the cell at least partially isolated from the corrosive gases and at a temperature significantly lower than that of the bath (and preferably less than 850 ° C), which is achieved by adaptation of the length L of the inert anode.
  • the periphery of the opening (200) of the anode (2) comprises a flange (26) facing outwardly of the anode and an annular cavity (27), also facing outwardly of the anode .
  • the connecting conductor (3, 4, 5) has a skirt (45) threaded inwards.
  • the connection means further comprise a clamping ring (34) threaded outwards and adapted to be screwed inside the skirt (45).
  • the metal seal (31) is formed from a solder material in the form of a thin, flat ring placed in the space (32) between the connecting surfaces (20, 20 ") and (40, 40 ").
  • the connecting means may comprise a ring (33) for limiting the flow of the brazing material.
  • the threaded clamping ring (34) is screwed inside the skirt (45) so as to bring the connecting surfaces (20, 20 ") closer to the brazing ring (31). ) and (40, 40 ").
  • the connection surfaces may optionally be brought into contact with, or rest on, the soldering ring.
  • the metal seal (31) can be formed from a brazing material wholly or partly derived from at least one reservoir (35).
  • the space (32, 32 ') is intended to accumulate the brazing material and form a seal (31) during brazing.
  • the surface (20) near the opening (200) is preferably inclined to prevent the flow of solder material into the cavity (21) of the anode.
  • the threaded clamping ring (34) is screwed into the skirt (45) so as to bring the connecting surfaces (20, 20 ') and (40, 40') closer together from each other while leaving a space (32, 32 ') for accumulating the brazing material and forming a seal (31) during brazing.
  • the periphery of the opening (200) of the anode (2) comprises an annular groove (28) facing outwardly of the anode
  • the connecting conductor (3, 4, 5) has a skirt (45) provided with an annular groove (44) facing inwards.
  • the connection means further comprise a snap ring (36) adapted to cooperate with the annular grooves (28) and (44) so as to establish a loose mechanical connection between the conductor (4) and the anode (2).
  • the anode (2) is inserted inside the skirt (45) until the grooves (28) and (44) click into place before the soldering operation.
  • the connecting surfaces (20,20 ') and (40,40') form a space (32).
  • the periphery of the opening (200) of the anode (2) comprises a flange (26) facing outwardly of the anode and an annular cavity (27), also facing outwardly of the anode .
  • the connecting conductor (3, 4, 4 ', 5) comprises a skirt (45) on which a clamping ring (340) can be fixed, typically by means of fasteners (37) such as bolts.
  • the clamping ring (340) Prior to the brazing operation, the clamping ring (340) is attached to the skirt (45) so as to trap the flange (26) while leaving a gap (32, 32 ') for accumulating soldering material and forming a seal (31) during soldering.
  • the connection between the conductor (4) and the anode (2) remains loose until brazing.
  • the connecting means may comprise a ring ( figures 1 and 5 ) or a ring ( figure 3 ) (33) to limit the flow of the brazing material.
  • the connecting conductor (4) has an annular shoulder (46) adapted to cooperate with a corresponding annular shoulder (29) on the anode (2).
  • These shoulders have dimensions such that the assembly can be made by a hot expansion of one of the two parts: (A) hot, space G between the parts is sufficient to allow the insertion of the anode in the driver; (B) cold, the shoulders fit into one another and allow a temporary mechanical support until the consolidation of the brazed joint (31).
  • the heating temperature, for assembly is preferably lower than the melting temperature of the brazing material in order to prevent its flow during assembly.
  • the space (32 ') between some facing surfaces (20', 40 ') to be brazed may be substantially vertical or conical.
  • the brazing material can change position and shape during soldering.
  • the brazing material which initially has an initial shape and determined position (31 ') ( Figure 7A )
  • the initial position may be wholly or partly in a tank (35).
  • the anode assembly may comprise a thermal insulator (10) in the central cavity (21) of the anode, in order to avoid, in particular, the superheating of the external connection conductor (5) by the internal radiation of the anode.
  • the anode (2) is typically chosen from anodes comprising a ceramic material, the anodes comprising a metal material and the anodes comprising a cermet material.
  • the brazed joint (31) is formed between said surfaces (20, 20 ', 20 ", 40, 40', 40") and thus constitutes a mechanical and electrical connection between the conductor and the anode.
  • brazing materials chosen from alloys or mixtures comprising copper, silver, manganese and / or zinc.
  • Said surfaces (20, 20 ', 20 ", 40, 40', 40") may be coated wholly or partly with a wettable material by the solder material (s).
  • the brazing material or materials are introduced wholly or partly into the space separating the surfaces (20, 20 ', 20 ") and (40, 40', 40"). intended to be brazed.
  • said placing comprises the introduction of at least a part of the brazing material or materials between all or part of at least one surface (20, 20 ', 20 ") of the open end. (22) of the anode (2) and all or part of at least one surface (40, 40 ', 40 ") of the connecting end (42) of the conductor (3, 4, 4', 5) .
  • the conductor (3, 4, 4 ', 5) comprises at least one reservoir (35), said placing comprises the introduction of at least one brazing material into at least one a reservoir (35) before the heat treatment, and the assembly of the conductor (3, 4, 4 ', 5) and the anode (2) is performed so as to leave a free space (32, 32') between the driver and the anode.
  • the brazing material or materials are introduced between all or part of at least one surface (20, 20 ', 20 ") of the open end (22) of the anode (2) and all or part of at least a surface (40, 40 ', 40 ") of the connecting end (42) of the conductor (3, 4, 4', 5) by flow of said material during the heat treatment.
  • the heat treatment is advantageously carried out during the use of the anode assembly (1) in an electrolysis cell.
  • connection methods are at the temperature of the immersed portion of the anode, and therefore close to the temperature of the electrolysis bath, while the connection according to the invention gives a very homogeneous temperature, while maintaining the temperature of the connection to a value significantly lower than the electrolysis temperature, which reduces the electrical, mechanical and chemical constraints on the connection.
  • connection test was carried out with a device similar to that of the figure 5 .
  • the anode was in cermet whose ceramic phase included a nickel ferrite and the metal phase was copper-based.
  • the brazing material was a CuZn alloy with 6.0 wt% Cu and 40 wt% Zn. The melting range of this alloy was 870 to 900 ° C.
  • the connection was preheated to 900 ° C before use of the anode in an electrolytic cell whose bath was based on molten cryolite. The partial melting of the brazing material at the time of preheating was sufficient to give the connection a satisfactory electrical connection. Upon disassembly, it was observed that the zinc had partially evaporated and oxidized and that the use had caused a further treatment which had resulted in the increase of the seal melting temperature well above 900 ° C.
  • connection test was carried out with a device similar to that of the figure 6 .
  • the anode was made of cermet having the same composition as the test 1.
  • the brazing material was a CuZn alloy, with 30% by weight of Cu and 70% by weight of Zn.
  • the melting range of this alloy was 700 to 820 ° C.
  • the brazing heat treatment was carried out entirely in situ. It gave a soldered joint providing a stable electrical connection over time and low electrical resistivity.
  • the outer diameter C anode was typically in the order of 70 to 75% of the length L of the anode.
  • the inside diameter D of the anode was equal to about 60 to 65% of the outer diameter.
  • the thickness E of the side wall was uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

Domaine de l'inventionField of the invention

L'invention concerne la production d'aluminium par électrolyse ignée. Elle concerne plus particulièrement les anodes utilisées pour cette production et le raccordement électrique de ces anodes à des conducteurs d'amenée de courant.The invention relates to the production of aluminum by igneous electrolysis. It relates more particularly to the anodes used for this production and the electrical connection of these anodes to current leads.

Etat de la techniqueState of the art

L'aluminium métal est produit industriellement par électrolyse ignée, à savoir par électrolyse de l'alumine en solution dans un bain à base de cryolithe fondue, appelé bain d'électrolyte, notamment selon le procédé bien connu de Hall-Héroult. L'électrolyse est réalisée dans des cellules comportant un creuset en matériau réfractaire apte à contenir l'électrolyte, au moins une cathode et au moins une anode.Aluminum metal is produced industrially by igneous electrolysis, namely by electrolysis of alumina in solution in a bath based on molten cryolite, called an electrolyte bath, in particular according to the well-known Hall-Héroult process. The electrolysis is carried out in cells comprising a crucible of refractory material capable of containing the electrolyte, at least one cathode and at least one anode.

Le courant d'électrolyse, qui circule dans l'électrolyte par l'intermédiaire des anodes et des cathodes, opère les réactions de réduction de l'aluminium et permet également de maintenir, par effet Joule, le bain d'électrolyte à la température de fonctionnement visée, qui est typiquement de l'ordre de 950 °C. La cellule d'électrolyse est régulièrement alimentée en alumine de manière à compenser la consommation en alumine produite par les réactions d'électrolyse.The electrolysis current, which circulates in the electrolyte via the anodes and cathodes, effects the aluminum reduction reactions and also makes it possible to maintain, by the Joule effect, the electrolyte bath at the reaction temperature. intended operation, which is typically of the order of 950 ° C. The electrolysis cell is regularly supplied with alumina so as to compensate for the consumption of alumina produced by the electrolysis reactions.

Dans la technologie standard, les anodes sont en matériau carboné et sont consommées par les réactions de réduction de l'aluminium. La consommation du matériau carboné libère des quantités importantes de dioxyde de carbone.In standard technology, the anodes are made of carbon material and are consumed by the aluminum reduction reactions. The consumption of the carbonaceous material releases large amounts of carbon dioxide.

Les contraintes environnementales et les coûts associés à la fabrication et à l'utilisation des anodes en matériau carboné ont, depuis de nombreuses décennies, conduit les producteurs d'aluminium à rechercher des anodes en matériaux non-consommables, dites « anodes inertes ». Plusieurs matériaux ont été proposés, notamment des matériaux céramiques (tels que SnO2 et des ferrites), des matériaux métalliques et des matériaux composites, tels que les matériaux - connus sous la dénomination « cermet » - contenant une phase céramique et une phase métallique (notamment des ferrites de nickel contenant une phase métallique à base de cuivre).The environmental constraints and costs associated with the manufacture and use of carbon anodes have, for many decades, led aluminum producers to look for anodes made of non-consumable materials, called "inert anodes". Several materials have been proposed, including ceramic materials (such as SnO 2 and ferrites), metallic materials and composite materials, such as the materials - known under the name "cermet" - containing a ceramic phase and a metal phase ( especially nickel ferrites containing a copper-based metal phase).

Les problèmes rencontrés dans le développement des anodes inertes pour la production d'aluminium par électrolyse résident non seulement dans le choix et la fabrication du matériau constitutif de l'anode, mais également dans le raccordement électrique entre chaque anode et le ou les conducteurs destinés à l'alimentation électrique de la cellule d'électrolyse. Plusieurs procédés et dispositifs de raccordement ont été proposés pour les anodes inertes.The problems encountered in the development of inert anodes for the production of aluminum by electrolysis lie not only in the choice and manufacture of the material constituting the anode, but also in the electrical connection between each anode and the conductor or conductors for the power supply of the electrolysis cell. Several methods and connection devices have been proposed for inert anodes.

Le brevet US 4 500 406 propose d'utiliser une anode possédant une partie active, une partie métallique, apte au raccordement, et un gradient de composition entre la partie active et la partie métallique. Le brevet US 4 541 912 décrit un assemblage formé par compression isostatique à chaud d'un matériau cermet sur un substrat conducteur métallique. Ces solutions rendent plus difficile l'élaboration de l'anode et imposent des contraintes sur les paramètres de cuisson de la partie active de l'anode.The patent US 4,500,406 proposes to use an anode having an active part, a metal part, suitable for connection, and a composition gradient between the active part and the metal part. The patent US 4,541,912 discloses an assembly formed by hot isostatic pressing of a cermet material on a metal conductive substrate. These solutions make it more difficult to develop the anode and impose constraints on the baking parameters of the active part of the anode.

Le brevet américain US 4 623 555 décrit la formation d'un raccordement à l'aide d'un gradient de composition formé par pulvérisation plasma. Cette solution nécessite une parfaite maîtrise du procédé de formation de la couche intermédiaire et impose une étape supplémentaire complexe.The US patent US 4,623,555 describes the formation of a connection using a composition gradient formed by plasma spraying. This solution requires perfect control of the formation process of the intermediate layer and imposes a complex additional step.

Les brevets US 4 468 298 , US 4 468 299 et US 4 468 300 décrivent des joints formés par soudure diffusion, friction ou autre. Le brevet US 4 457 811 décrit un raccordement comportant une ou plusieurs lames élastiques soudées sur la surface intérieure ou extérieure d'une anode. Ces solutions nécessitent une réduction chimique de la surface de contact avant la formation des joints, ce qui complique considérablement la fabrication des anodes. Ces solutions présentent également l'inconvénient de compliquer l'assemblage des raccordements électriques.Licences US 4,468,298 , US 4,468,299 and US 4,468,300 describe joints formed by diffusion, friction or other welding. The patent US 4,457,811 discloses a connection having one or more resilient blades welded to the inner or outer surface of an anode. These solutions require a chemical reduction of the contact surface before the formation of the joints, which considerably complicates the manufacture of the anodes. These solutions also have the disadvantage of complicating the assembly of electrical connections.

Les brevets américains US 4 357 226 et US 4 840 718 décrivent des racordements mécaniques applicables à des ensembles d'anodes pleines. Ces modes de raccordement sont complexes.US patents US 4,357,226 and US 4,840,718 describe mechanical connections applicable to solid anode assemblies. These connection methods are complex.

Les brevets américains US 4 456 517 , US 4 450 061 , US 4 609 249 et US 6 264 810 décrivent des raccordements mécaniques applicables à des anodes possédant une cavité centrale. Ces raccordements sont sensibles à l'évolution des propriétés mécaniques de ses éléments constitutifs lors de l'utilisation des anodes et introduisent des tensions mécaniques entre l'anode et les pièces métalliques. En outre, ces solutions sont sensibles à l'atmosphère ambiante corrosive des cellules d'électrolyse. Afin de pallier cette difficulté, certains de ces brevets proposent également d'ajouter des écrans et/ou des matériaux inertes de remplissage. Ces moyens de protection complémentaires compliquent la réalisation des raccordements et la rendent plus coûteuse. La solution proposée par le brevet US 6 264 810 présente l'inconvénient supplémentaire de nécessiter un grand nombre de pièces distinctes qui doivent maintenir leurs caractéristiques mécaniques sur une longue période de temps.US patents US 4,456,517 , US 4,450,061 , US 4,609,249 and US 6,264,810 describe mechanical connections applicable to anodes having a central cavity. These connections are sensitive to the evolution of the mechanical properties of its constituent elements during the use of the anodes and introduce mechanical tensions between the anode and the metal parts. In addition, these solutions are sensitive to the corrosive ambient atmosphere of the electrolysis cells. In order to overcome this difficulty, some of these patents also propose the addition of screens and / or inert filler materials. These additional protection means complicate the making of the connections and make it more expensive. The solution proposed by the patent US 6,264,810 has the additional disadvantage of requiring a large number of distinct parts which must maintain their mechanical characteristics over a long period of time.

La demanderesse a donc recherché des solutions pour éviter les inconvénients de l'art antérieur.The applicant has therefore sought solutions to avoid the disadvantages of the prior art.

Description de l'inventionDescription of the invention

L'invention a pour objet un assemblage anodique destiné à une cellule de production d'aluminium par électrolyse ignée et comprenant :

  • au moins une anode inerte en forme de poche, de longueur L, comportant une cavité, une extrémité ouverte comportant une ouverture, une paroi entourant la
  • au moins un conducteur de raccordement destiné à l'alimentation électrique de l'anode comportant une extrémité de raccordement, et au moins un moyen de raccordement mécanique apte à coopérer avec le ou les moyens de raccordement mécaniques de l'anode de manière à établir une liaison mécanique lâche entre le conducteur et l'anode ;
  • au moins un joint métallique brasé ou au moins un matériau de brasage susceptible de former un joint métallique brasé par brasage en tout ou partie en cours d'utilisation, ledit joint étant situé entre tout ou partie d'an moins une surface de l'extrémité ouverte de l'anode et tout ou partie d'au moins une surface de l'extrémité de raccordement du conducteur.
The invention relates to an anode assembly for an aluminum production cell by igneous electrolysis and comprising:
  • at least one pocket-shaped inert anode, of length L, having a cavity, an open end having an opening, a wall surrounding the
  • at least one connecting conductor for the electrical supply of the anode having a connecting end, and at least one mechanical connecting means adapted to cooperate with the connection means or means mechanical mechanisms of the anode so as to establish a loose mechanical connection between the conductor and the anode;
  • at least one brazed metal gasket or at least one brazing material capable of forming a brazed or soldered metal gasket in whole or in part during use, said gasket being located between all or part of at least one surface of the end open of the anode and all or part of at least one surface of the connecting end of the conductor.

L'utilisation d'une liaison mécanque lâche entre le conducteur et l'anode permet d'éviter des tensions mécaniques au niveau de la partie de l'anode inerte qui sert au raccordement mécanique.The use of a loose mechanical connection between the conductor and the anode makes it possible to avoid mechanical stresses at the part of the inert anode used for the mechanical connection.

Dans un mode de réalisation avantageux de l'invention, ledit joint brasé est susceptible de se consolider au cours de l'utilisation dudit ensemble dans une cellule de production d'aluminium par électrolyse. A cette fin, il comporte avantageusement au moins un élément choisi parmi l'aluminium, l'argent, le cuivre, le magnésium, le manganèse, le titane et le zinc.In an advantageous embodiment of the invention, said brazed joint is capable of being consolidated during the use of said assembly in an aluminum production cell by electrolysis. For this purpose, it advantageously comprises at least one element chosen from aluminum, silver, copper, magnesium, manganese, titanium and zinc.

L'anode prend typiquement la forme d'une poche cylindrique, ou "doigt de gant", dont la surface extérieure de l'extrémité fermée est arrondie, ou quadrangulaire arrondie dont les angles de la surface extérieure de l'extrémité fermée sont arrondis. Ces formes permettent d'éviter les disparités de densité de courant locale en utilisation, lorsque l'extrémité fermée est immergée dans un bain d'électrolyte à base de sel fondu.The anode typically takes the form of a cylindrical pocket, or "thimble", whose outer surface of the closed end is rounded, or rounded quadrangular whose angles of the outer surface of the closed end are rounded. These forms make it possible to avoid local current density disparities in use, when the closed end is immersed in a molten salt electrolyte bath.

La demanderesse a noté que les modes de raccordement connus, qui amènent le courant électrique directement au centre ou à proximité de la partie immergée dans le bain, entraînent une mauvaise répartition des lignes de courant, notamment dans les anodes ayant la forme d'une poche. Elle a également noté que cette répartition des lignes de courant pouvait conduire à des densités de courant trop faibles à certains endroits (c'est-à-dire typiquement inférieures à environ 0,5 A/cm2), ce qui favorise localement la corrosion, et trop fortes à d'autres endroits (c'est-à-dire typiquement supérieures à 1,5 A/cm2, voire supérieures à 2,5 A/cm2), ce qui accélère localement la dégradation par dissolution électrochimique.The Applicant has noted that the known connection methods, which bring the electric current directly to the center or near the portion immersed in the bath, lead to a bad distribution of the current lines, in particular in the anodes having the shape of a pocket . It also noted that this distribution of current lines could lead to low current densities in some locations (ie typically less than about 0.5 A / cm 2 ), which locally promotes corrosion. and too strong at other locations (i.e., typically greater than 1.5 A / cm 2 or even greater than 2.5 A / cm 2 ), which locally accelerates degradation by electrochemical dissolution.

La demanderesse a eu l'idée d'utiliser un joint brasé qui se consolide lors d'un traitement thermique, soit (en tout ou partie) avant l'utilisation de l'assemblage dans une cellule d'électrolyse, soit (en tout ou partie) in situ lors de l'utilisation de l'assemblage dans une cellule d'électrolyse. Le joint brasé permet d'éviter de mettre sous tension mécanique la partie de l'anode inerte qui sert au raccordement mécanique. Le joint brasé permet d'obtenir une liaison mécanique et électrique commune et efficace, ce qui simplifie considérablement le procédé de fabrication. Ce type de joint est avantageux par le fait qu'il autorise l'utilisation d'un assemblage mécanique qui est dimensionné de manière à être suffisant pour assurer un maintien mécanique temporaire satisfaisant de l'anode jusqu'à la consolidation du joint brasé, mais pas nécessairement suffisant pour assurer la totalité des besoins mécaniques du raccordement requis en cours d'utilisation, car la consolidation du joint brasé apporte le complément de tenue mécanique requis en utilisation.The Applicant has had the idea of using a brazed joint which is consolidated during a heat treatment, either (in whole or in part) before the use of the assembly in an electrolysis cell, either (in all or part) in situ when using the assembly in an electrolysis cell. The brazed joint makes it possible to avoid putting the part of the inert anode used for the mechanical connection under mechanical tension. The brazed joint provides a common and efficient mechanical and electrical connection, which greatly simplifies the manufacturing process. This type of seal is advantageous in that it allows the use of a mechanical assembly which is dimensioned so as to be sufficient to provide satisfactory temporary mechanical retention of the anode up to the consolidation of the brazed joint, but not necessarily sufficient to provide all the mechanical requirements of the required connection in use, because the consolidation of the brazed joint provides the additional mechanical strength required in use.

L'invention a également pour objet un procédé de fabrication des assemblages anodiques selon l'invention.The invention also relates to a method for manufacturing anode assemblies according to the invention.

L'invention a encore pour objet l'utilisation d'au moins un assemblage anodique selon l'invention, ou obtenu par le procédé de fabrication de l'invention, pour la production d'aluminium par électrolyse ignée.The invention also relates to the use of at least one anode assembly according to the invention, or obtained by the manufacturing method of the invention, for the production of aluminum by igneous electrolysis.

L'invention a encore pour objet une cellule de production d'aluminium par électrolyse ignée comportant au moins un assemblage anodique selon l'invention ou obtenu par le procédé de fabrication de l'invention.The invention also relates to an igneous electrolysis aluminum production cell comprising at least one anode assembly according to the invention or obtained by the manufacturing method of the invention.

L'invention sera mieux comprise à l'aide de la description détaillée de modes de réalisation particuliers et des figures annexées.The invention will be better understood from the detailed description of particular embodiments and the accompanying figures.

Les figures 1 à 7 sont relatives à l'invention. Les figures 1 et 3 à 6 illustrent des assemblages anodiques selon l'invention, vus en section longitudinale. La figure 2 illustre deux éléments de l'assemblage anodique de la figure 1. La figure 7 illustre l'évolution morphologique du matériau de brasage en cours de brasage.The Figures 1 to 7 relate to the invention. The figures 1 and 3 to 6 illustrate anode assemblies according to the invention, seen in longitudinal section. The figure 2 illustrates two elements of the anodic assembly of the figure 1 . The figure 7 illustrates the morphological evolution of the brazing material during soldering.

La forme creuse de l'anode permet de limiter le coût de fabrication et de libérer un espace (21) utile à l'intérieur de celle-ci. Cet espace ou cavité (21) peut être utilisé, par exemple, pour y introduire une ou plusieurs résistances chauffantes (9) destinées à chauffer l'anode avant son immersion dans le bain d'électrolyte liquide.The hollow shape of the anode makes it possible to limit the manufacturing cost and to free a useful space (21) inside the anode. This space or cavity (21) can be used, for example, to introduce one or more heating resistors (9) for heating the anode before immersion in the liquid electrolyte bath.

L'anode possède une surface intérieure (210) et une surface extérieure (230). L'épaisseur E de la paroi (23) de l'anode peut être différente à différents endroits de l'anode. L'épaisseur de la partie latérale (23') de la paroi (23) de l'anode peut être uniforme ou non.The anode has an inner surface (210) and an outer surface (230). The thickness E of the wall (23) of the anode may be different at different locations of the anode. The thickness of the side portion (23 ') of the wall (23) of the anode may be uniform or not.

Dans un mode de réalisation particulier de l'invention, les anodes et les conducteurs de raccordement ont une symétrie axiale par rapport à un axe central A.In a particular embodiment of the invention, the anodes and the connecting conductors have an axial symmetry with respect to a central axis A.

L'extrémité fermée (24) de l'anode (2) possède une surface (240), dite "active", destinée à être immergée dans un bain d'électrolyte à base de sel fondu. La surface active (240) de l'anode est de préférence exempte d'angles vifs afin d'éviter les effets de pointe dans la distribution du courant électrique en utilisation ; elle peut être de forme hémisphérique ou comporter des polygones à angles arrondis.The closed end (24) of the anode (2) has a surface (240), called "active", intended to be immersed in a bath of molten salt electrolyte. The active surface (240) of the anode is preferably free of sharp angles to avoid peak effects in the distribution of the electric current in use; it may be hemispherical or have polygons with rounded corners.

Selon l'invention, l'extrémité ouverte (22) de l'anode (2), qui est opposée à l'extrémité fermée (24), est utilisée pour effecfuer un raccordement mécanique et électrique à au moins un conducteur de raccordement (3, 4, 4', 5). Le joint (31) est situé au niveau de la zone de raccordement (25) de l'anode.According to the invention, the open end (22) of the anode (2), which is opposed to the closed end (24), is used to effecfute a mechanical and electrical connection to at least one connecting conductor (3). , 4, 4 ', 5). The seal (31) is located at the connection area (25) of the anode.

Plus précisément, l'assemblage anodique (1) destiné à une cellule de production d'aluminium par électrolyse ignée selon l'invention comprend :

  • au moins une anode inerte (2) en forme de poche, de longueur L, comportant une cavité (21), une extrémité ouverte (22) comportant une ouverture (200), une paroi (23) entourant la cavité (21), une extrémité fermée (24), et au moins un moyen de raccordement mécanique (26, 27, 28, 29) ;
  • au moins un conducteur de raccordement (3, 4, 4', 5) comportant une extrémité de raccordement (42), et au moins un moyen de raccordement mécanique (44, 45, 46) apte à coopérer avec le ou les moyens de raccordement mécaniques (26, 27, 28, 29) de l'anode (2) de manière à établir une liaison mécanique lâche entre le conducteur et l'anode ;
  • au moins un joint métallique brasé (31) ou au moins un matériau de brasage susceptible de former un joint métallique brasé (31) par brasage en tout ou partie en cours d'utilisation, ledit joint (31) étant situé entre tout ou partie d'au moins une surface (20, 20', 20") de l'extrémité ouverte (22) de l'anode (2) et tout ou partie d'au moins une surface (40, 40', 40") de l'extrémité de raccordement (42) du conducteur (3, 4, 4', 5).
More specifically, the anode assembly (1) intended for an igneous electrolysis aluminum production cell according to the invention comprises:
  • at least one pocket-shaped inert anode (2), of length L, having a cavity (21), an open end (22) having an opening (200), a wall (23) surrounding the cavity (21), a closed end (24), and at least one mechanical connection means (26, 27, 28, 29);
  • at least one connecting conductor (3, 4, 4 ', 5) having a connecting end (42), and at least one mechanical connecting means (44, 45, 46) adapted to cooperate with the connection means or means mechanical (26, 27, 28, 29) the anode (2) so as to establish a loose mechanical connection between the conductor and the anode;
  • at least one brazed metal joint (31) or at least one brazing material capable of forming a brazed metal joint (31) by brazing in whole or in part in use, said joint (31) being located between all or part of at least one surface (20, 20 ', 20 ") of the open end (22) of the anode (2) and all or part of at least one surface (40, 40', 40") of the connecting end (42) of the conductor (3, 4, 4 ', 5).

De manière avantageuse, les éléments de l'assemblage anodique selon l'invention, notamment lesdits moyens de raccordement mécanique (26, 27, 28, 29, 44, 45, 46), peuvent être dimensionnés de manière à être suffisants pour assurer uniquement un maintien mécanique temporaire satisfaisant de l'anode jusqu'à la consolidation du joint brasé, avant utilisation ou en cours d'utilisation dans une cellule d'électrolyseAdvantageously, the elements of the anode assembly according to the invention, in particular said mechanical connection means (26, 27, 28, 29, 44, 45, 46), can be dimensioned so as to be sufficient to ensure only a satisfactory temporary mechanical maintenance of the anode up to the consolidation of the brazed joint, before use or in use in an electrolysis cell

Ledit joint (31) est situé entre tout ou partie d'au moins une surface (20, 20', 20") de l'extrémité ouverte (22) de l'anode (2) et tout ou partie d'au moins une surface (40, 40', 40") de l'extrémité de raccordement (42) du conducteur (3, 4, 4', 5).Said seal (31) is located between all or part of at least one surface (20, 20 ', 20 ") of the open end (22) of the anode (2) and all or part of at least one surface (40, 40 ', 40 ") of the connecting end (42) of the conductor (3, 4, 4', 5).

Le conducteur de raccordement (3, 4, 4', 5) est destiné à l'alimentation électrique de l'anode (2). Il peut comporter une cavité centrée (8). Le conducteur de raccordement (3, 4, 4', 5), qui peut être formé de plusieurs pièces, comporte avantageusement au moins un élément (4) en alliage à base nickel (c'est-à-dire contenant plus de 50 % pds. de nickel) et l'extrémité de raccordement (42) se situe avantageusement sur cet élément (4). L'alliage à base nickel est avantageusement un alliage UNS N06625, dit "alliage 625", et plus avantageusement un alliage UNS N06025, dit "alliage 602", dont la teneur en aluminium ajouté lui confère une meilleure résistance à la corrosion à chaud.The connection conductor (3, 4, 4 ', 5) is for the power supply of the anode (2). It may comprise a centered cavity (8). The connecting conductor (3, 4, 4 ', 5), which may be formed of several parts, advantageously comprises at least one element (4) made of nickel-based alloy (that is to say containing more than 50% nickel) and the connecting end (42) is advantageously located on this element (4). The nickel-based alloy is advantageously an alloy UNS N06625, called "alloy 625", and more advantageously an alloy UNS N06025, called "alloy 602", whose added aluminum content gives it a better resistance to hot corrosion.

Tel qu'illustré aux figures 1, 3 et 4, le conducteur de raccordement (3, 4, 4', 5) peut comporte un conducteur intermédiaire (4), typiquement en alliage à base nickel, destiné à établir la liaison mécanique et électrique avec l'anode, et un conducteur "extérieur" (5) destiné au support mécanique de l'ensemble anodique et au raccordement électrique à l'extérieur de la cellule d'électrolyse, généralement par un moyen raccordement extérieur (6). Tel qu'illustré à la figure 5, le conducteur de raccordement (3, 4, 4', 5) peut comporter deux ou plusieurs conducteurs intermédiaires (4, 4'). Les pièces (3, 4, 4', 5) sont fixées entre elles par un ou plusieurs raccordements intermédiaires (7).As illustrated in figures 1 , 3 and 4 the connecting conductor (3, 4, 4 ', 5) may comprise an intermediate conductor (4), typically a nickel-based alloy, for establishing the mechanical and electrical connection with the anode, and a conductor "Outside" (5) for the mechanical support of the anode assembly and the electrical connection to the outside of the electrolysis cell, generally by external connection means (6). As illustrated in figure 5 the connecting conductor (3, 4, 4 ', 5) may comprise two or more intermediate conductors (4, 4'). The parts (3, 4, 4 ', 5) are fixed together by one or more intermediate connections (7).

Le conducteur de raccordement (3, 4, 4', 5) a typiquement une forme allongée, éventuellement tubulaire.The connecting conductor (3, 4, 4 ', 5) typically has an elongated, possibly tubular shape.

Le ou les moyens de raccordement mécanique (26, 27, 28, 29) de l'anode (2) sont situés à proximité de l'extrémité ouverte (22). Ils couvrent une partie de l'extrémité ouverte (22) de l'anode représentant typiquement moins de 10 %, voire moins de 5 %, de la longueur L totale de l'anode.The mechanical connection means (26, 27, 28, 29) of the anode (2) are located close to the open end (22). They cover a portion of the open end (22) of the anode typically representing less than 10% or even less than 5% of the total length L of the anode.

Afin d'assurer un contact électrique suffisant, l'aire totale de la ou des surfaces de raccordement (20, 20', 20") de l'anode est telle que, à l'intensité nominale en utilisation, la densité surfacique de courant est comprise de préférence entre 1 et 50 A/cm2, de préférence encore entre 2 et 20 A/cm2, et de préférence encore entre 5 et 15 A/cm2. Ceci représente des valeurs de surface typiquement comprise entre 1 et 20 %, voire encore entre 5 % et 15 %, de l'aire totale de la surface extérieure (230) de l'anode.In order to ensure sufficient electrical contact, the total area of the one or more connecting surfaces (20, 20 ', 20 ") of the anode is such that, at the nominal intensity in use, the surface density of current is preferably between 1 and 50 A / cm 2 , more preferably between 2 and 20 A / cm 2 , and more preferably between 5 and 15 A / cm 2. This represents surface values typically between 1 and 20 %, or even between 5% and 15%, of the total area of the outer surface (230) of the anode.

Le ou les moyens de raccordement mécanique (26, 27, 28, 29) de l'anode (2) comprennent typiquement au moins un élément choisi parmi les collerettes (26), les cavités annulaires (27), les rainures annulaires (28) et les épaulements annulaires (29). Ces formes sont faciles à obtenir sur des anodes inertes à symétrie axiale.The mechanical connection means (26, 27, 28, 29) of the anode (2) typically comprise at least one element chosen from the flanges (26), the annular cavities (27) and the annular grooves (28). and the annular shoulders (29). These shapes are easy to obtain on inert anodes with axial symmetry.

Le ou les moyens de raccordement mécanique (44, 45, 46) du conducteur (3, 4, 4', 5) sont de préférence situés à proximité de l'extrémité de raccordement (42).The mechanical connection means (44, 45, 46) of the conductor (3, 4, 4 ', 5) are preferably located near the connection end (42).

Le ou les moyens de raccordement mécanique (44, 45, 46) du conducteur (3, 4, 4', 5) comprennent typiquement au moins un élément choisi parmi les rainures annulaires (44), les jupes (45) et les épaulements annulaires (46). Ces formes sont faciles à obtenir - typiquement par décolletage - sur des pièces métalliques à symétrie axiale.The one or more mechanical connection means (44, 45, 46) of the conductor (3, 4, 4 ', 5) typically comprise at least one element chosen from the annular grooves (44), the skirts (45) and the annular shoulders. (46). These shapes are easy to obtain - typically by bar turning - on metal parts with axial symmetry.

Les moyens de raccordement de l'anode (26, 27, 28, 29) et du conducteur (44, 45, 46) coopèrent avantageusement par au moins un des moyens choisis parmi le vissage, l'encliquetage, la friction, l'insertion ou l'emmanchement. L'insertion et l'emmanchement peuvent être effectués après avoir chauffé l'anode et/ou le conducteur de raccordement.The connection means of the anode (26, 27, 28, 29) and the conductor (44, 45, 46) advantageously cooperate by at least one of the means chosen from screwing, snapping, friction, insertion or fitting. The insertion and fitting can be performed after heating the anode and / or the connecting conductor.

L'assemblage anodique (1) peut comporter un ou plusieurs moyens d'assemblage complémentaires (34, 340, 36), tels qu'un ou des anneaux de serrage (34, 340) et une ou des bagues (36) ouvertes ou fermées.The anode assembly (1) may comprise one or more complementary assembly means (34, 340, 36), such as one or more clamping rings (34, 340) and one or more rings (36) open or closed .

Les surfaces de raccordement (20) situées à proximité de l'ouverture (200) de l'anode (2) sont avantageusement inclinées (typiquement par rapport à l'axe A de l'assemblage) de manière à éviter l'écoulement du matériau de brasage (31') dans la cavité (21) lors du brasage et/ou de l'utilisation de l'assemblage anodique. A cette fin, la ou les surfaces de raccordement (20, 20', 20") de l'anode (2) comporte(nt) typiquement au moins un élément de surface (20) plat dont la tangente forme un angle α compris entre 45° et 90°, voire entre 60° et 90°, avec l'axe principal A de l'anode.The connecting surfaces (20) located near the opening (200) of the anode (2) are advantageously inclined (typically with respect to the axis A of the assembly) so as to prevent the flow of the material brazing (31 ') in the cavity (21) during brazing and / or use of the anode assembly. For this purpose, the connection surface or surfaces (20, 20 ', 20 ") of the anode (2) typically comprise at least one flat surface element whose tangent forms an angle α between 45 ° and 90 °, or between 60 ° and 90 °, with the main axis A of the anode.

Les surfaces de raccordement (20, 20', 20") sont typiquement au moins en partie sur la surface extérieure (230) de l'anode (2) lorsque le matériau constitutif de l'anode possède un coefficient de dilation inférieur à celui du matériau constitutif du conducteur de raccordement ; elles sont typiquement au moins en partie sur la surface intérieure (210) de l'anode dans le cas contraire.The connecting surfaces (20, 20 ', 20 ") are typically at least partly on the outer surface (230) of the anode (2) when the constituent material of the anode has a coefficient of expansion less than that of the constituent material of the connecting conductor, they are typically at least partly on the inner surface (210) of the anode in the opposite case.

L'assemblage anodique (1) peut également comporter au moins un joint complémentaire (33) destiné à confiner le joint brasé (31), généralement par une limitation de l'écoulement du matériau de brasage. Cet écoulement peut se produire lors du traitement thermique ou lors de l'utilisation. Le joint complémentaire (33) est typiquement choisi parmi les anneaux et les bagues ouvertes ou fermées. Le joint complémentaire (33) peut être métallique ou non métallique.The anode assembly (1) may also comprise at least one additional seal (33) intended to confine the brazed joint (31), generally by means of a limitation of the flow of the brazing material. This flow may occur during heat treatment or during use. The additional seal (33) is typically selected from open and closed rings and rings. The additional seal (33) may be metallic or non-metallic.

De préférence, afin de limiter le développement de tensions mécaniques avant et/ou durant le brasage, l'assemblage du conducteur (3, 4, 4', 5) et de l'anode (2) ne comporte ni serrage ni contrainte entre le conducteur et l'anode.Preferably, in order to limit the development of mechanical tensions before and / or during brazing, the assembly of the conductor (3, 4, 4 ', 5) and the anode (2) does not involve any clamping or stress between the driver and the anode.

De préférence, en utilisation, les moyens de raccordement (26, 27, 28, 29, 44, 45, 46) se situent dans une partie de la cellule au moins partiellement isolée des gaz corrosifs et à une température notablement plus basse que celle du bain (et de préférence inférieure à 850 °C), ce qui est réalisé par adaptation de la longueur L de l'anode inerte.Preferably, in use, the connection means (26, 27, 28, 29, 44, 45, 46) are located in a part of the cell at least partially isolated from the corrosive gases and at a temperature significantly lower than that of the bath (and preferably less than 850 ° C), which is achieved by adaptation of the length L of the inert anode.

Dans les modes de réalisation illustrés aux figures 1, 3 et 5, la périphérie de l'ouverture (200) de l'anode (2) comprend une collerette (26) tournée vers l'extérieur de l'anode et une cavité annulaire (27), également tournée vers l'extérieur de l'anode. Le conducteur de raccordement (3, 4, 5) comporte une jupe (45) filetée vers l'intérieur. Les moyens de raccordements comprennent en outre un anneau de serrage (34) fileté vers l'extérieur et apte à se visser à l'intérieur de la jupe (45).In the embodiments illustrated in figures 1 , 3 and 5 , the periphery of the opening (200) of the anode (2) comprises a flange (26) facing outwardly of the anode and an annular cavity (27), also facing outwardly of the anode . The connecting conductor (3, 4, 5) has a skirt (45) threaded inwards. The connection means further comprise a clamping ring (34) threaded outwards and adapted to be screwed inside the skirt (45).

Dans le mode de réalisation de la figure 1, le joint métallique (31) est formé à partir d'un matériau de brasage sous forme d'un anneau mince et plat, placé dans l'espace (32) entre les surfaces de raccordement (20, 20") et (40, 40"). Les moyens de raccordement peuvent comprendre un anneau (33) pour limiter l'écoulement du matériau de brasage. Avant l'opération de brasage, l'anneau de serrage (34) fileté est vissé à l'intérieur de la jupe (45) de manière à rapprocher de l'anneau de brasage (31) les surfaces de raccordement (20, 20") et (40, 40"). Les surfaces de raccordement peuvent éventuellement être mises en contact avec, ou en appui sur, l'anneau de brasage.In the embodiment of the figure 1 the metal seal (31) is formed from a solder material in the form of a thin, flat ring placed in the space (32) between the connecting surfaces (20, 20 ") and (40, 40 "). The connecting means may comprise a ring (33) for limiting the flow of the brazing material. Before the brazing operation, the threaded clamping ring (34) is screwed inside the skirt (45) so as to bring the connecting surfaces (20, 20 ") closer to the brazing ring (31). ) and (40, 40 "). The connection surfaces may optionally be brought into contact with, or rest on, the soldering ring.

Tel qu'illustre aux figures 3 à 5, le joint métallique (31) peut être formé à partir d'un matériau de brasage provenant en tout ou partie d'au moins un réservoir (35). L'espace (32, 32') est destiné à accumuler le matériau de brasage et à former un joint (31) lors du brasage. La surface (20) à proximité l'ouverture (200) est de préférence inclinée de manière à empêcher l'écoulement du matériau de brasage dans la cavité (21) de l'anode.As illustrated in Figures 3 to 5 the metal seal (31) can be formed from a brazing material wholly or partly derived from at least one reservoir (35). The space (32, 32 ') is intended to accumulate the brazing material and form a seal (31) during brazing. The surface (20) near the opening (200) is preferably inclined to prevent the flow of solder material into the cavity (21) of the anode.

Dans le mode de réalisation de la figure 3, avant l'opération de brasage, l'anneau de serrage (34) fileté est vissé à l'intérieur de la jupe (45) de manière à rapprocher les surfaces de raccordement (20, 20') et (40, 40') l'une de l'autre tout en laissant un espace (32, 32') destiné à accumuler le matériau de brasage et à former un joint (31) lors du brasage.In the embodiment of the figure 3 before the brazing operation, the threaded clamping ring (34) is screwed into the skirt (45) so as to bring the connecting surfaces (20, 20 ') and (40, 40') closer together from each other while leaving a space (32, 32 ') for accumulating the brazing material and forming a seal (31) during brazing.

Dans le mode de réalisation illustré à la figure 4, la périphérie de l'ouverture (200) de l'anode (2) comprend une rainure annulaire (28) tournée vers l'extérieur de l'anode Le conducteur de raccordement (3, 4, 5) comporte une jupe (45) munie d'une rainure annulaire (44) tournée vers l'intérieur. Les moyens de raccordements comprennent en outre une bague d'encliquetage (36) apte à coopérer avec les rainures annulaires (28) et (44) de manière à établir une liaison mécanique lâche entre le conducteur (4) et l'anode (2). Dans ces modes de réalisation, l'anode (2) est insérée à l'intérieur de la jupe (45) jusqu'à l'encliquetage des rainures (28) et (44) avant l'opération de brasage. Les surfaces de raccordement (20,20') et (40,40') forment un espace (32).In the embodiment illustrated in figure 4 , the periphery of the opening (200) of the anode (2) comprises an annular groove (28) facing outwardly of the anode The connecting conductor (3, 4, 5) has a skirt (45) provided with an annular groove (44) facing inwards. The connection means further comprise a snap ring (36) adapted to cooperate with the annular grooves (28) and (44) so as to establish a loose mechanical connection between the conductor (4) and the anode (2). . In these embodiments, the anode (2) is inserted inside the skirt (45) until the grooves (28) and (44) click into place before the soldering operation. The connecting surfaces (20,20 ') and (40,40') form a space (32).

Dans le mode de réalisation illustré à la figure 5, la périphérie de l'ouverture (200) de l'anode (2) comprend une collerette (26) tournée vers l'extérieur de l'anode et une cavité annulaire (27), également tournée vers l'extérieur de l'anode. Le conducteur de raccordement (3, 4, 4', 5) comporte une jupe (45) sur laquelle peut être fixe un anneau de serrage (340), typiquement à l'aide de moyens de fixations (37) tels que des boulons. Avant l'opération de brasage, l'anneau de serrage (340) est fixé à la jupe (45) de manière à emprisonner la collerette (26) tout en laissant un espace (32, 32') destiné à accumuler le matériau de brasage et à former un joint (31) lors du brasage. La jonction entre le conducteur (4) et l'anode (2) reste lâche jusqu'au brasage.In the embodiment illustrated in figure 5 , the periphery of the opening (200) of the anode (2) comprises a flange (26) facing outwardly of the anode and an annular cavity (27), also facing outwardly of the anode . The connecting conductor (3, 4, 4 ', 5) comprises a skirt (45) on which a clamping ring (340) can be fixed, typically by means of fasteners (37) such as bolts. Prior to the brazing operation, the clamping ring (340) is attached to the skirt (45) so as to trap the flange (26) while leaving a gap (32, 32 ') for accumulating soldering material and forming a seal (31) during soldering. The connection between the conductor (4) and the anode (2) remains loose until brazing.

Dans les modes de réalisation des figures 1, 3 et 5, les moyens de raccordement peuvent comprendre un anneau (figures 1 et 5) ou une bague (figure 3) (33) pour limiter l'écoulement du matériau de brasage.In the embodiments of figures 1 , 3 and 5 , the connecting means may comprise a ring ( figures 1 and 5 ) or a ring ( figure 3 ) (33) to limit the flow of the brazing material.

Dans le mode de réalisation de la figure 6, le conducteur de raccordement (4) possède un épaulement annulaire (46) apte à coopérer avec un épaulement annulaire (29) correspondant sur l'anode (2). Ces épaulements ont des dimensions telles que l'assemblage peut être fait par une dilatation à chaud de l'une des deux pièces : (A) à chaud, l'espace G entre les pièces est suffisant pour permettre l'insertion de l'anode dans le conducteur ; (B) à froid, les épaulements s'insèrent l'un dans l'autre et permettent un maintien mécanique temporaire jusqu'à la consolidation du joint brasé (31). La température de chauffage, en vue de l'assemblage, est de préférence plus faible que la température de fusion du matériau de brasage afin d'éviter son écoulement pendant l'assemblage.In the embodiment of the figure 6 , the connecting conductor (4) has an annular shoulder (46) adapted to cooperate with a corresponding annular shoulder (29) on the anode (2). These shoulders have dimensions such that the assembly can be made by a hot expansion of one of the two parts: (A) hot, space G between the parts is sufficient to allow the insertion of the anode in the driver; (B) cold, the shoulders fit into one another and allow a temporary mechanical support until the consolidation of the brazed joint (31). The heating temperature, for assembly, is preferably lower than the melting temperature of the brazing material in order to prevent its flow during assembly.

Comme dans le cas de la configuration de la figure 6, l'espace (32') entre certaines surfaces en regard (20', 40') destinées à être brasées peut être sensiblement vertical ou conique.As in the case of the configuration of the figure 6 , the space (32 ') between some facing surfaces (20', 40 ') to be brazed may be substantially vertical or conical.

Le matériau de brasage peut changer de position et de forme en cours de brasage. Ainsi, tel qu'illustré à la figure 7, le matériau de brasage, qui a initialement une forme et une position déterminée initiales (31') (figure 7A), peut se déformer lors du traitement thermique, typiquement par écoulement, pour occuper un volume final (31) en contact intime avec les surfaces de raccordement (20, 20', 20", 40, 40', 40") (figure 7B). La position initiale peut être en tout ou partie dans un réservoir (35).The brazing material can change position and shape during soldering. Thus, as illustrated in figure 7 , the brazing material, which initially has an initial shape and determined position (31 ') ( Figure 7A ), can deform during heat treatment, typically by flow, to occupy a final volume (31) in intimate contact with the connecting surfaces (20, 20 ', 20 ", 40, 40', 40") ( Figure 7B ). The initial position may be wholly or partly in a tank (35).

L'assemblage anodique peut comporter un isolant thermique (10) dans la cavité centrale (21) de l'anode, afin d'éviter, notamment, le surchauffer le conducteur de raccordement extérieur (5) par le rayonnement intérieur de l'anode.The anode assembly may comprise a thermal insulator (10) in the central cavity (21) of the anode, in order to avoid, in particular, the superheating of the external connection conductor (5) by the internal radiation of the anode.

L'anode (2) est typiquement choisie parmi les anodes comportant un matériau céramique, les anodes comportant un materiau metallique et les anodes comportant un matériau cermet.The anode (2) is typically chosen from anodes comprising a ceramic material, the anodes comprising a metal material and the anodes comprising a cermet material.

Le procédé de fabrication d'un assemblage anodique (1) selon l'invention comprend - la fourniture d'au moins une anode inerte (2) en forme de poche, de longueur L, comportant une cavité (21), une extrémité ouverte (22) comportant une ouverture (200), une paroi (23) entourant la cavité (21), une extrémité fermée (24), et au moins un moyen de raccordement mécanique (26, 27, 28, 29);

  • la fourniture d'au moins un conducteur de raccordement (3, 4, 4', 5) comportant une extrémité de raccordement (42), et au moins un moyen de raccordement mécanique (44, 45, 46) apte à coopérer avec le ou les moyens de raccordement mécaniques (26, 27, 28, 29) de l'anode (2) de manière à établir une liaison mécanique lâche entre le conducteur et l'anode;
  • la fourniture d'au moins un matériau de brasage apte à former un joint métallique
  • la mise en place du ou des matériaux de brasage à un endroit déterminé a proximité d'au moins, une des surfaces (20, 20', 20") de l'extrémité ouverte (22) de l'anode (2) ou des surfaces (40, 40', 40") de l'extrémité de raccordement (42) du conducteur (3, 4, 4', 5) destinées à être raccordées par brasage;
  • l'assemblage du conducteur (3, 4, 4', 5) et de l'anode (2) de manière à rapprocher lesdites surfaces (20, 20', 20", 40, 40', 40") et à produire un assemblage lâche;
  • un traitement thermique apte à entraîner la formation d'un joint brasé (31) entre le conducteur et l'anode à partir du ou des matériaux de brasage.
The method of manufacturing an anode assembly (1) according to the invention comprises the provision of at least one pocket-shaped inert anode (2) of length L comprising a cavity (21), an open end ( 22) having an opening (200), a wall (23) surrounding the cavity (21), a closed end (24), and at least one mechanical connecting means (26, 27, 28, 29);
  • supplying at least one connecting conductor (3, 4, 4 ', 5) having a connecting end (42), and at least one mechanical connecting means (44, 45, 46) adapted to cooperate with the or the mechanical connection means (26, 27, 28, 29) of the anode (2) so as to establish a loose mechanical connection between the conductor and the anode;
  • providing at least one brazing material capable of forming a metal seal
  • placing the brazing material or materials at a predetermined location in the vicinity of at least one of the surfaces (20, 20 ', 20 ") of the open end (22) of the anode (2) or surfaces (40, 40 ', 40 ") of the connecting end (42) of the conductor (3, 4, 4', 5) for solder connection;
  • assembling the conductor (3, 4, 4 ', 5) and the anode (2) to bring said surfaces (20, 20', 20 ", 40, 40 ', 40") closer together and to produce a loose assembly;
  • a heat treatment capable of causing the formation of a brazed joint (31) between the conductor and the anode from the soldering material or materials.

Le joint brasé (31) se forme entre lesdites surfaces (20, 20', 20", 40, 40', 40") et constitue ainsi un raccordement mécanique et électrique entre le conducteur et l'anode.The brazed joint (31) is formed between said surfaces (20, 20 ', 20 ", 40, 40', 40") and thus constitutes a mechanical and electrical connection between the conductor and the anode.

L'opération d'assemblage du conducteur (3, 4, 4', 5) et de l'anode (2) produit un assemblage lâche, qui ne se rigidifie que lors du traitement thermique. Ceci permet d'éviter les contraintes mécaniques.The assembly operation of the conductor (3, 4, 4 ', 5) and the anode (2) produces a loose assembly, which is stiffened only during the heat treatment. This avoids mechanical stress.

Selon un mode de réalisation avantageux de l'invention, la composition du matériau de brasage, ou de l'un des matériaux de brasage, est susceptible d'être modifiée lors du traitement thermique de manière à en augmenter la température de fusion jusqu'à une valeur supérieure à la température maximale subie par ledit joint brasé (31) en cours d'utilisation. Cette modification consolide le joint. Elle peut être obtenue par l'un au moins des mécanismes suivants :

  • par évaporation d'au moins une partie de l'un de ses éléments constitutifs, ledit élément étant par exemple du zinc ou du magnésium ;
  • par réaction chimique d'au moins une partie de l'un de ses éléments constitutifs avec un des constituants de l'atmosphère ambiante, notamment l'oxygène. Ledit élément constitutif peut être, par exemple, de l'aluminium, du zinc, du magnésium ou du phosphore ;
  • par échange par diffusion, avec ou sans réaction d'oxydoréduction, d'au moins un élément avec l'une desdites surfaces (20, 20', 20", 40, 40', 40"). L'échange peut avoir lieu du matériau de brasage vers la surface attenante et/ou de la surface attenante vers le matériau de brasage. Dans le dernier cas, il est possible de revêtir tout ou partie desdites surfaces (20, 20', 20", 40, 40', 40") d'un matériau comprenant un élément, tel que du nickel, susceptible de diffuser dans le matériau de brasage. L'échange peut éventuellement avoir lieu par l'intermédiaire de réactions d'oxydoréduction. Plus précisément, ladite composition peut contenir au moins un élément susceptible de s'échanger par au moins une réaction d'oxydoréduction avec ladite anode inerte (2), ledit élément étant typiquement choisi parmi le magnésium, l'aluminium, le phosphore, le titane, le zirconium, l'hafnium et le zinc.
According to an advantageous embodiment of the invention, the composition of the brazing material, or of one of the brazing materials, is capable of being modified during the heat treatment so as to increase the melting temperature to a value greater than the maximum temperature experienced by said brazed joint (31) in use. This change consolidates the seal. It can be obtained by at least one of the following mechanisms:
  • by evaporation of at least a part of one of its constituent elements, said element being for example zinc or magnesium;
  • by chemical reaction of at least a part of one of its constituent elements with one of the constituents of the ambient atmosphere, in particular oxygen. Said constituent element may be, for example, aluminum, zinc, magnesium or phosphorus;
  • by diffusion exchange, with or without a redox reaction, of at least one element with one of said surfaces (20, 20 ', 20 ", 40, 40', 40"). The exchange may take place from the brazing material to the adjoining surface and / or from the adjoining surface to the brazing material. In the latter case, it is possible to coat all or part of said surfaces (20, 20 ', 20 ", 40, 40', 40") with a material comprising an element, such as nickel, capable of diffusing into the brazing material. The exchange may possibly take place via oxidation-reduction reactions. More specifically, said composition may contain at least one element capable of being exchanged by at least one oxidation-reduction reaction with said inert anode (2), said element being typically chosen from magnesium, aluminum, phosphorus and titanium. , zirconium, hafnium and zinc.

Ces mécanismes peuvent être obtenus avec des matériaux de brasage choisis parmi les alliages ou mélanges comprenant du cuivre, de l'argent, du manganèse et/ou du zinc.These mechanisms can be obtained with brazing materials chosen from alloys or mixtures comprising copper, silver, manganese and / or zinc.

Lesdites surfaces (20, 20', 20", 40, 40', 40") peuvent être revêtues, en tout ou partie, d'un matériau mouillable par le ou les matériaux de brasage.Said surfaces (20, 20 ', 20 ", 40, 40', 40") may be coated wholly or partly with a wettable material by the solder material (s).

Selon une variante avantageuse de l'invention, le ou les matériaux de brasage sont introduits, en tout ou partie, dans l'espace qui sépare les surfaces (20, 20', 20") et (40, 40', 40") destinées à être brasées. En d'autres termes, ladite mise en place comporte l'introduction d'au moins une partie du ou des matériaux de brasage entre tout ou partie d'au moins une surface (20, 20', 20") de l'extrémité ouverte (22) de l'anode (2) et tout ou partie d'au moins une surface (40, 40', 40") de l'extrémité de raccordement (42) du conducteur (3, 4, 4', 5).According to an advantageous variant of the invention, the brazing material or materials are introduced wholly or partly into the space separating the surfaces (20, 20 ', 20 ") and (40, 40', 40"). intended to be brazed. In other words, said placing comprises the introduction of at least a part of the brazing material or materials between all or part of at least one surface (20, 20 ', 20 ") of the open end. (22) of the anode (2) and all or part of at least one surface (40, 40 ', 40 ") of the connecting end (42) of the conductor (3, 4, 4', 5) .

Selon une autre variante avantageuse de l'invention, le conducteur (3, 4, 4', 5) comporte au moins un réservoir (35), ladite mise en place comporte l'introduction d'au moins un matériau de brasage dans au moins un réservoir (35) avant le traitement thermique, et l'assemblage du conducteur (3, 4, 4', 5) et de l'anode (2) est effectué de manière à laisser un espace libre (32, 32') entre le conducteur et l'anode. Le ou les matériaux de brasage sont introduits entre tout ou partie d'au moins une surface (20, 20', 20") de l'extrémité ouverte (22) de l'anode (2) et tout ou partie d'au moins une surface (40, 40', 40") de l'extrémité de raccordement (42) du conducteur (3, 4, 4', 5) par écoulement dudit matériau lors-du traitement thermique.According to another advantageous variant of the invention, the conductor (3, 4, 4 ', 5) comprises at least one reservoir (35), said placing comprises the introduction of at least one brazing material into at least one a reservoir (35) before the heat treatment, and the assembly of the conductor (3, 4, 4 ', 5) and the anode (2) is performed so as to leave a free space (32, 32') between the driver and the anode. The brazing material or materials are introduced between all or part of at least one surface (20, 20 ', 20 ") of the open end (22) of the anode (2) and all or part of at least a surface (40, 40 ', 40 ") of the connecting end (42) of the conductor (3, 4, 4', 5) by flow of said material during the heat treatment.

Le traitement thermique est avantageusement effectué lors de l'utilisation de l'assemblage anodique (1) dans une cellule d'électrolyse.The heat treatment is advantageously carried out during the use of the anode assembly (1) in an electrolysis cell.

Les modes de raccordement connus sont à la température de la partie immergée de l'anode, et donc proche de la température du bain d'électrolyse, alors que le raccordement selon l'invention donne une température très homogène, tout en maintenant la température de connexion à une valeur nettement inférieure à la température d'électrolyse, ce qui diminue les contraintes électriques, mécaniques et chimiques sur le raccordement.The known connection methods are at the temperature of the immersed portion of the anode, and therefore close to the temperature of the electrolysis bath, while the connection according to the invention gives a very homogeneous temperature, while maintaining the temperature of the connection to a value significantly lower than the electrolysis temperature, which reduces the electrical, mechanical and chemical constraints on the connection.

Essaistesting Essai 1Trial 1

Un essai de raccordement a été effectué avec un dispositif similaire à celui de la figure 5.A connection test was carried out with a device similar to that of the figure 5 .

Dans cet essai, l'anode était en cermet dont la phase céramique comportait un ferrite de nickel et la phase métallique était à base de cuivre.In this test, the anode was in cermet whose ceramic phase included a nickel ferrite and the metal phase was copper-based.

Le matériau de brasage était un alliage CuZn, avec 6,0 % en poids de Cu et 40 % en poids de Zn. L'intervalle de fusion de cet alliage était de 870 à 900 °C. Le raccordement a été préchauffé à 900°C avant l'utilisation de l'anode dans une cellule électrolytique dont le bain était à base de cryolithe fondue. La fusion partielle du matériau de brasage au moment du préchauffage a suffi à conférer au raccordement une connexion électrique satisfaisante. Au démontage, il a été observé que le zinc s'était en partie évaporé et oxydé et que l'utilisation avait provoqué un traitement complémentaire qui avait entraîné l'augmentation de la température de fusion du joint bien au-dessus de 900°C.The brazing material was a CuZn alloy with 6.0 wt% Cu and 40 wt% Zn. The melting range of this alloy was 870 to 900 ° C. The connection was preheated to 900 ° C before use of the anode in an electrolytic cell whose bath was based on molten cryolite. The partial melting of the brazing material at the time of preheating was sufficient to give the connection a satisfactory electrical connection. Upon disassembly, it was observed that the zinc had partially evaporated and oxidized and that the use had caused a further treatment which had resulted in the increase of the seal melting temperature well above 900 ° C.

Essai 2Trial 2

Un essai de raccordement a été effectué avec un dispositif similaire à celui de la figure 6.A connection test was carried out with a device similar to that of the figure 6 .

Dans cet essai, l'anode était en cermet ayant la même composition que l'essai 1.In this test, the anode was made of cermet having the same composition as the test 1.

Le matériau de brasage était un alliage CuZn, avec 30 % en poids de Cu et 70 % en poids de Zn. L'intervalle de fusion de cet alliage était de 700 à 820 °C. Le traitement thermique de brasage a été réalisé entièrement in situ. Il a donné un joint brasé offrant une connexion électrique stable dans le temps et de faible résistivité électrique.The brazing material was a CuZn alloy, with 30% by weight of Cu and 70% by weight of Zn. The melting range of this alloy was 700 to 820 ° C. The brazing heat treatment was carried out entirely in situ. It gave a soldered joint providing a stable electrical connection over time and low electrical resistivity.

Dans les essais 1 et 2, le diamètre extérieur Do de l'anode était typiquement de l'ordre de 70 à 75 % de la longueur L de l'anode. Le diamètre intérieur D de l'anode était égal à environ 60 à 65 % du diamètre extérieur. L'épaisseur E de la paroi latérale était uniforme.In tests 1 and 2, the outer diameter C anode was typically in the order of 70 to 75% of the length L of the anode. The inside diameter D of the anode was equal to about 60 to 65% of the outer diameter. The thickness E of the side wall was uniform.

Listes des repères numériquesLists of numerical benchmarks

11
Assemblage anodiqueAnodic assembly
22
AnodeAnode
33
Conducteur de raccordementConnection conductor
44
Conducteur de raccordement intermédiaireIntermediate connection conductor
4'4 '
Conducteur de raccordement intermédiaire (rallonge)Intermediate connection conductor (extension)
55
Conducteur de raccordement extérieurExternal connection conductor
66
Moyen de raccordement extérieurExternal connection
77
Raccordement intermédiaireIntermediate connection
88
Cavité centrale du conducteur de raccordementCentral cavity of the connection conductor
99
Résistance chauffanteHeat resistence
1010
Isolant thermiqueThermal insulator
20, 20', 20"20, 20 ', 20 "
Surface de raccordement de l'anodeConnection surface of the anode
2121
Cavité de l'anodeCavity of the anode
2222
Extrémité ouverteOpen end
2323
Paroi de l'anodeWall of the anode
23'23 '
Partie latérale de la paroi de l'anodeSide part of the wall of the anode
2424
Extrémité fermée de l'anodeClosed end of the anode
2525
Zone de raccordement de l'anodeConnection area of the anode
2626
ColleretteCollar
2727
Cavité annulaireRing cavity
2828
Rainure annulaireRing groove
2929
Epaulement annulaireRing shoulder
3030
Raccordement conducteur/anodeConductor / anode connection
3131
Joint métallique braséBrazed metal seal
31'31 '
Matériau de brasageBrazing material
32, 32'32, 32 '
Espace entre les surfaces de raccordement de l'anode et du conducteurSpace between the connecting surfaces of the anode and the driver
3333
Joint complémentaireSupplementary seal
3434
Anneau de serrage filetéThreaded clamping ring
3535
RéservoirTank
3636
BagueRing
3737
Moyen de fixationMeans of fixation
40, 40', 40"40, 40 ', 40 "
Surface de raccordement du conducteur de raccordementConnecting surface of the connecting conductor
4141
Cavité centrale du conducteur de raccordement intermédiaireCentral cavity of the intermediate connection conductor
4242
Extrémité de raccordementEnd of connection
4343
Paroi du conducteur de raccordement intermédiaireIntermediate connection conductor wall
4444
Rainure annulaireRing groove
4545
JupeSkirt
4646
Epaulement annulaireRing shoulder
200200
OuvertureOpening
210210
Surface intérieure de l'anodeInner surface of the anode
230230
Surface extérieure de l'anodeOutside surface of the anode
240240
Surface active de l'anodeActive surface of the anode
340340
Anneau de serrageClamping ring

Claims (35)

  1. Anode assembly (1) to be used in a fused bath electrolysis aluminium production cell, comprising:
    - at least one inert anode (2) in the shape of a ladle, with length L, comprising a cavity (21), an open end (22) comprising an opening (200), a wall (23) surrounding the cavity (21), a closed end (24) and at least one mechanical connection means (26, 27, 28, 29);
    - at least one connection conductor (3, 4, 4', 5) comprising a connection end (42) and at least one mechanical connection (44, 45, 46) capable of cooperating with the mechanical connection means (26, 27, 28, 29) of the anode (2) so as to set up a loose mechanical link between the conductor and the anode;
    - at least one brazed metallic joint (31) or at least one brazing material that could form a brazed metallic joint (31) by brazing wholly or partly during use, the said joint (31) being located between all or part of at least one surface (20, 20', 20") of the open end (22) of the anode (2) and all or part of at least one surface (40, 40', 40") of the connection end (42) of the conductor (3, 4, 4', 5).
  2. Anode assembly (1) according to claim 1, characterised in that the mechanical connection means (26, 27, 28, 29) of the anode (2) cover part of the said open end (22) representing less than 10% of the total length L of the anode.
  3. Anode assembly (1) according to claim 1 or 2, characterised in that the total area of the connection surface(s) (20, 20', 20") is such that the current density per unit area at the nominal intensity during use is between 1 and 50 A/cm2.
  4. Anode assembly (1) according to any one of claims 1 to 3, characterised in that the mechanical connection means (44, 45, 46) of the conductor (3, 4, 4', 5) are close to the connection end (42).
  5. Anode assembly (1) according to any one of claims 1 to 4, characterised in that the mechanical connection means (26, 27, 28, 29) of the anode (2) comprise at least one element chosen from among the collars (26), annular cavities (27), annular grooves (28) and annular shoulders (29).
  6. Anode assembly (1) according to any one of claims 1 to 5, characterised in that the mechanical connection means (44, 45, 46) of the conductor (3, 4, 4', 5) comprise at least one element chosen from among the annular grooves (44), skirts (45) and annular shoulders (46).
  7. Anode assembly (1) according to any one of claims 1 to 6, characterised in that the mechanical connection means (26, 27, 28, 29, 44, 45, 46) of the conductor and the anode cooperate through at least one of the means chosen among screwing, click fitting, friction, insertion or force fitting.
  8. Anode assembly (1) according to any one of claims 1 to 7, characterised in that it comprises at least one complementary assembly means (34, 340, 36).
  9. Anode assembly (1) according to claim 8, characterised in that the complementary assembly means is chosen from among the clamping rings (34, 340) and open or closed rings (36).
  10. Anode assembly (1) according to any one of claims 1 to 9, characterised in that it comprises at least one complementary seal (33) designed to confine the brazed joint (31).
  11. Anode assembly (1) according to claim 10, characterised in that the complementary seal (33) is chosen from among open or closed rings.
  12. Anode assembly (1) according to any one of claims 1 to 11, characterised in that the strength of the said brazed joint (31) can increase during use of the said assembly in an electrolytic aluminium production cell.
  13. Anode assembly (1) according to any one of claims 1 to 12, characterised in that the said brazed joint (31) includes at least one element chosen from among aluminium, silver, copper, magnesium, manganese, titanium and zinc.
  14. Anode assembly (1) according to any one of claims 1 to 13, characterised in that the connection conductor (3, 4, 4', 5) comprises at least one member (4) made of a nickel based alloy and in that the connection end (42) is located on this member (4).
  15. Anode assembly (1) according to claim 14, characterised in that the nickel based alloy is an UNS N06625 alloy or an UNS N06025 alloy.
  16. Anode assembly (1) according to any one of claims 1 to 15, characterised in that the said anode (2) is chosen from among anodes comprising a ceramic material, anodes comprising a metallic material and anodes comprising a cermet material.
  17. Anode assembly (1) according to any one of claims 1 to 16, characterised in that it comprises at least one heating resistance (9) in the cavity (21) of the anode (2).
  18. Manufacturing method for an anode assembly (1) according to any one of claims 1 to 17, characterised in that it comprises:
    - the supply of at least one inert anode (2) in the form of a ladle, with length L, comprising a cavity (21), an open end (22) comprising an opening (200), a wall (23) surrounding the cavity (21), a closed end (24) and at least one mechanical connection means (26, 27, 28, 29):
    - the supply of at least one connection conductor (3, 4, 4', 5) comprising a connection end (42), and at least one mechanical connection means (44, 45, 46) capable of cooperating with the mechanical connection means (26, 27, 28, 29) of the anode (2) so as to set up a mechanical connection between the conductor and the anode;
    - the supply of at least one brazing material capable of forming a metallic joint;
    - placement of the brazing material(s) at a determined location close to at least one of the surfaces (20, 20', 20") of the open end (22) of the anode (2) or the surfaces (40, 40', 40") of the connection end (42) of the conductor (3, 4, 4', 5) that will be connected by brazing;
    - assembly of the conductor (3, 4, 4', 5) and the anode (2) so as to bring the said surfaces (20, 20', 20", 40, 40', 40") close to each other and produce a loose assembly;
    - a heat treatment capable of causing the formation of a brazed joint (31) between the conductor and the anode starting from the brazing material(s).
  19. Manufacturing method according to claim 18, characterised in that the composition of the brazing material, or one of the brazing materials, may be modified during the heat treatment so as to increase the melting temperature up to a value greater than the maximum temperature applied to the said brazed joint (31) during use.
  20. Manufacturing method according to claim 19, characterised in that the composition of the brazing material, or one of the brazing materials, may be modified by evaporation of at least part of one of its constituent elements.
  21. Manufacturing method according to claim 20, characterised in that the said constituent element is zinc or magnesium.
  22. Manufacturing method according to any one of claims 19 to 21, characterised in that the composition of the brazing material, or one of the brazing materials, may be modified by chemical reaction of at least part of one of its said constituent elements with one of the constituents of the ambient atmosphere.
  23. Manufacturing method according to claim 22, characterised in that the said constituent element is aluminium, zinc, magnesium or phosphorus.
  24. Manufacturing method according to any one of claims 19 to 23, characterised in that the composition of the brazing material, or one of the brazing materials, may be modified by exchange by diffusion, with or without oxidation - reduction reaction, of at least one element with one of the said surfaces (20, 20', 20", 40, 40', 40").
  25. Manufacturing method according to claim 24, characterised in that all or part of the said surfaces (20, 20', 20", 40, 40', 40") is coated with a material comprising an element such as nickel, that can diffuse in the brazing material.
  26. Manufacturing method according to claim 24 or 25, characterised in that the said composition contains at least one element that could be exchanged by at least one oxidation - reduction reaction with the said inert anode (2).
  27. Manufacturing method according to claim 26, characterised in that the said element is chosen from among magnesium, aluminium, phosphorus, titanium, zirconium, hafnium or zinc.
  28. Manufacturing method according to any one of claims 19 to 27, characterised in that the brazing material is a mixture or an alloy containing at least an element chosen from among copper, silver, manganese and / or zinc.
  29. Manufacturing method according to any one of claims 18 to 28, characterised in that the said placement includes the introduction of at least part of the brazing material(s) between all or part of at least one surface (20, 20', 20") of the open end (22) of the anode (2) and all or part of at least one surface (40, 40', 40") of the connection end (42) of the conductor (3, 4, 4', 5).
  30. Manufacturing method according to any one of claims 18 to 29, characterised in that the conductor (3, 4, 4', 5) includes at least one reservoir (35), in that the said placement includes the introduction of at least one brazing material into at least one reservoir (35) before the heat treatment, in that the conductor (3, 4, 4', 5) and the anode (2) are assembled so as to leave a free space (32, 32') between the conductor and the anode, and in that the brazing material(s) is (are) introduced between all or part of at least one surface (20, 20', 20") of the open end (22) of the anode (2) and all or part of at least one surface (40, 40', 40") of the connection end (42) of the conductor (3, 4, 4', 5) by flow of the said material during the heat treatment.
  31. Manufacturing method according to any one of claims 18 to 30, characterised in that the said surfaces (20, 20', 20", 40, 40', 40") may be fully or partly coated with a material that can be wetted by the brazing material(s).
  32. Manufacturing method according to any one of claims 18 to 31, characterised in that the heat treatment is partly or wholly performed while the anode assembly (1) is being used in an electrolytic cell.
  33. Manufacturing method according to any one of claims 18 to 32, characterised in that the surfaces (20) close to the opening (200) of the anode (2) are inclined so as to prevent flow of the brazing material in the cavity (21) during brazing and / or use of the anode assembly.
  34. Use of at least one anode assembly (1) according to any one of claims 1 to 17 or obtained using the manufacturing method according to any one of claims 18 to 33 for aluminium production by fused bath electrolysis.
  35. Cell for aluminium production by fused bath electrolysis, comprising at least one anode assembly (1) according to any one of claims 1 to 17 or obtained using the manufacturing method according to any one of claims 18 to 33.
EP04817090A 2003-09-30 2004-09-28 Device and method for connecting inert anodes for the production of aluminium by fused-salt electrolysis Active EP1678349B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200431992T SI1678349T1 (en) 2003-09-30 2004-09-28 Device and method for connecting inert anodes for the production of aluminium by fused-salt electrolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0311444A FR2860247B1 (en) 2003-09-30 2003-09-30 DEVICE AND METHOD FOR CONNECTING INDEED ANODES FOR THE PRODUCTION OF ALUMINUM BY IGNEE ELECTROLYSIS
PCT/FR2004/002451 WO2005033368A2 (en) 2003-09-30 2004-09-28 Device and method for connecting inert anodes for the production of aluminium by fused-salt electrolysis

Publications (2)

Publication Number Publication Date
EP1678349A2 EP1678349A2 (en) 2006-07-12
EP1678349B1 true EP1678349B1 (en) 2012-11-07

Family

ID=34307278

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04817090A Active EP1678349B1 (en) 2003-09-30 2004-09-28 Device and method for connecting inert anodes for the production of aluminium by fused-salt electrolysis

Country Status (15)

Country Link
US (1) US7544275B2 (en)
EP (1) EP1678349B1 (en)
CN (1) CN100540749C (en)
AR (1) AR045641A1 (en)
AU (1) AU2004278527B2 (en)
CA (1) CA2539697C (en)
ES (1) ES2399115T3 (en)
FR (1) FR2860247B1 (en)
IS (1) IS8427A (en)
NO (1) NO340749B1 (en)
NZ (1) NZ545608A (en)
RU (1) RU2353710C2 (en)
SI (1) SI1678349T1 (en)
WO (1) WO2005033368A2 (en)
ZA (1) ZA200603395B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105896B2 (en) 2012-12-28 2015-08-11 General Electric Company Metal rings for active brazing in sodium-based thermal batteries
US9028997B2 (en) 2012-12-28 2015-05-12 General Electric Company Ceramic collars for active brazing in sodium-based thermal batteries
US9806380B2 (en) 2013-05-31 2017-10-31 General Electric Company High temperature electrochemical cell structures, and methods for making
CN103769758B (en) * 2013-12-31 2015-12-30 宁波锦海模具塑膠有限公司 The fusion welds technique of a kind of cylinder block or piston rod
FR3016897B1 (en) * 2014-01-27 2017-08-04 Rio Tinto Alcan Int Ltd ANODIC ASSEMBLY AND METHOD OF MANUFACTURING THE SAME.
CN113953759A (en) * 2021-10-20 2022-01-21 河南机电职业学院 Method for repairing burning anode steel claw by induction brazing/arc surfacing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010037946A1 (en) * 2000-02-24 2001-11-08 D'astolfo Leroy E. Method of converting Hall-Haroult cells to inert anode cells for aluminum production

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357226A (en) 1979-12-18 1982-11-02 Swiss Aluminium Ltd. Anode of dimensionally stable oxide-ceramic individual elements
SU1062313A1 (en) 1982-12-07 1983-12-23 Белорусское республиканское научно-производственное объединение порошковой металлургии Electrode for electrolytic baths
US4456517A (en) * 1982-12-20 1984-06-26 Aluminum Company Of America Metal spring stub and ceramic body electrode assembly
US4450061A (en) 1982-12-20 1984-05-22 Aluminum Company Of America Metal stub and ceramic body electrode assembly
US4495049A (en) * 1983-05-03 1985-01-22 Great Lakes Carbon Corporation Anode for molten salt electrolysis
CA1246493A (en) 1985-01-24 1988-12-13 Tormod Naterstad Anode assembly comprising carbon anode glued to inert carbon top
US4609249A (en) 1985-04-25 1986-09-02 Aluminum Company Of America Electrically conductive connection for an electrode
DE3537575A1 (en) 1985-10-22 1987-04-23 Conradty Nuernberg INERT COMPOSITE ELECTRODE, ESPECIALLY ANODE FOR MELTFLOW ELECTROLYSIS
SU1735438A1 (en) 1990-01-16 1992-05-23 Усть-Каменогорский Свинцово-Цинковый Комбинат Им.В.И.Ленина Process of manufacture of anode bus
US5172850A (en) * 1991-08-29 1992-12-22 Rsr Corporation Electrowinning anode and method of manufacture
US6113746A (en) * 1996-11-27 2000-09-05 University Of Florida Methods for altering the magnetic properties of materials and the materials produced by these methods
US6264810B1 (en) * 1999-12-14 2001-07-24 Alcoa Inc. Electromechanical attachment of inert electrode to a current conductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010037946A1 (en) * 2000-02-24 2001-11-08 D'astolfo Leroy E. Method of converting Hall-Haroult cells to inert anode cells for aluminum production

Also Published As

Publication number Publication date
NZ545608A (en) 2010-05-28
RU2006114429A (en) 2007-11-20
ES2399115T3 (en) 2013-03-26
NO340749B1 (en) 2017-06-12
US7544275B2 (en) 2009-06-09
NO20061851L (en) 2006-06-29
AR045641A1 (en) 2005-11-02
WO2005033368A3 (en) 2005-12-22
FR2860247A1 (en) 2005-04-01
EP1678349A2 (en) 2006-07-12
CN100540749C (en) 2009-09-16
AU2004278527B2 (en) 2009-09-03
ZA200603395B (en) 2007-09-26
SI1678349T1 (en) 2013-03-29
CN1863941A (en) 2006-11-15
CA2539697C (en) 2012-04-24
IS8427A (en) 2006-04-24
FR2860247B1 (en) 2005-11-11
RU2353710C2 (en) 2009-04-27
WO2005033368A2 (en) 2005-04-14
AU2004278527A1 (en) 2005-04-14
US20060163057A1 (en) 2006-07-27
CA2539697A1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
AU2004232697B2 (en) Sinter-bonded direct pin connections for inert anodes
WO2005098093A2 (en) Cathode element for an electrolysis cell for the production of aluminium
FR2936966A1 (en) METHOD FOR OBTAINING A SELECTIVE WELDING BARRIER
EP1678349B1 (en) Device and method for connecting inert anodes for the production of aluminium by fused-salt electrolysis
EP0167461B1 (en) Carbonaceous anode with partially restricted studs for electrolytic aluminium production pots
BE1005928A5 (en) Structural material for electrode insoluble.
CA2980248A1 (en) Cermet electrode material
EP0169152B1 (en) Modular cathodic block and cathode with a low-voltage drop for hall-heroult electrolysis vats
EP0005674B1 (en) Process of manufacturing a dimensionally stable anode
FR2925531A1 (en) SUPPORT DEVICE FOR ELECTRODES IN AN ELECTROLYSIS INSTALLATION
WO2005033370A2 (en) Method for connecting a ceramic or ceramic-based inert anode and a connecting conductor
FR3135650A1 (en) Flexible electrical conductor comprising elements connected together by TIG welding
CA3201967A1 (en) Method for manufacturing an electrical conductor, such as a current rod, for a high-temperature electrochemical device
BE649028A (en)
WO2020124209A1 (en) Anode assembly and associated manufacturing method
FR3135649A1 (en) Rigid electrical conductor comprising elements connected together by TIG welding
NO834688L (en) NON-CONSUMABLE ELECTRODE COMPOSITION AND USE OF IT
FR2709498A1 (en) Aluminum refining process and installation.
NO338410B1 (en) An electrode for making aluminum and a method for forming the same
BE436023A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060322

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110404

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 583054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004039987

Country of ref document: DE

Effective date: 20130103

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 583054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2399115

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130326

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20130400179

Country of ref document: GR

Effective date: 20130225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 13420

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130307

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130926

Year of fee payment: 10

Ref country code: SK

Payment date: 20130903

Year of fee payment: 10

Ref country code: SI

Payment date: 20130906

Year of fee payment: 10

Ref country code: NL

Payment date: 20130926

Year of fee payment: 10

Ref country code: GR

Payment date: 20130926

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004039987

Country of ref document: DE

Effective date: 20130808

BERE Be: lapsed

Owner name: ALUMINIUM PECHINEY

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130928

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130928

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130928

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20130400179

Country of ref document: GR

Effective date: 20150403

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 13420

Country of ref document: SK

Effective date: 20140928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20150504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140929

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140928

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040928

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140929

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180927

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004039987

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230925

Year of fee payment: 20