JPH11200090A - Nanostructural body and its production - Google Patents

Nanostructural body and its production

Info

Publication number
JPH11200090A
JPH11200090A JP27642798A JP27642798A JPH11200090A JP H11200090 A JPH11200090 A JP H11200090A JP 27642798 A JP27642798 A JP 27642798A JP 27642798 A JP27642798 A JP 27642798A JP H11200090 A JPH11200090 A JP H11200090A
Authority
JP
Japan
Prior art keywords
pores
conductive surface
film
nanostructure
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27642798A
Other languages
Japanese (ja)
Other versions
JP3886082B2 (en
Inventor
Tatsuya Iwasaki
達哉 岩崎
Toru Den
透 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27642798A priority Critical patent/JP3886082B2/en
Publication of JPH11200090A publication Critical patent/JPH11200090A/en
Application granted granted Critical
Publication of JP3886082B2 publication Critical patent/JP3886082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an anodically oxidized film having uniform fine pores and to produce a nanostructural body applicable to a high function device by anodically oxidizing a film contg. Al formed on the electrically conductive surface contg. Ti, Nb or the like of a substrate till it reaches the electrically conductive film. SOLUTION: On the surface of a substrate 10 such as quartz glass, an electrically conductive film 11 essentially consisting of any of Ti, Zr, Nb, Ta, Mo, Cu, Zn, Au, Pt, Pd, Ni, Fe, Co and W and excellent in heat resistance is formed to a thickness of about 10 nm to 100 μm by vapor deposition. On the surface, a film 12 essentially consisting of Al is formed by plating or the like. This sample 41 is arranged in an electrolyte, and voltage is applied to the space between an Al film 12 and the cathode as the counter electrode to anodically oxidize the Al film 12. At this time, after the change of the anodic oxidation current showing the arrival of the anodic-oxidation at the electrically conductive surface is detected, the anodic-oxidation is stopped. In this way, An Al anodically oxidized film 13 having parallel, many fine pores 14 of nanoholes at almost equal intervals is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はAl陽極酸化の手法
を用いて作成した細孔(ナノホール)を有するナノ構造
体に関し、該構造体は電子デバイスやマイクロデバイス
などの機能性デバイスや、構造材料などとして、広い範
囲で利用可能である。さらには、陽極酸化皮膜として耐
摩耗材料、絶縁材料としても利用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nanostructure having pores (nanoholes) formed by using an anodizing method of Al, and the structure includes a functional device such as an electronic device or a microdevice, or a structural material. As such, it can be used in a wide range. Furthermore, it can also be used as a wear-resistant material and an insulating material as an anodized film.

【0002】[0002]

【従来の技術】金属及び半導体の薄膜、細線、ドットな
どでは、ある特徴的な長さより小さいサイズにおいて、
電子の動きが閉じ込められることにより、特異な電気
的、光学的、化学的性質を示すことがある。このような
観点から、機能材料として、100ナノメータ(nm)
より微細な構造を有する材料(ナノ構造体)への関心が
高まっている。
2. Description of the Related Art Metal and semiconductor thin films, fine lines, dots, and the like are required to have a size smaller than a certain characteristic length.
When the movement of electrons is confined, it may exhibit unique electrical, optical, and chemical properties. From such a viewpoint, as a functional material, 100 nanometers (nm)
Interest in materials having finer structures (nanostructures) is increasing.

【0003】ナノ構造体の製造方法としては、たとえ
ば、フォトリソグラフィーをはじめ、電子線露光、X線
露光などの微細パターン描画技術をはじめとする半導体
加工技術による作成があげられる。
As a method for manufacturing a nanostructure, for example, there is a method using a semiconductor processing technique such as a fine pattern drawing technique such as photolithography, electron beam exposure, or X-ray exposure.

【0004】また、このような作成法のほかに、自然に
形成される規則的な構造、すなわち、自己組織的に形成
される構造をベースに、新規なナノ構造体を実現しよう
とする試みがある。これらの手法は、ベースとして用い
る微細構造によっては、従来の方法を上まわる微細で特
殊な構造を作成できる可能性があるため、多くの研究が
行われ始めている。
[0004] In addition to such a production method, attempts have been made to realize a novel nanostructure based on a regular structure formed naturally, that is, a structure formed self-organizingly. is there. Many studies have begun on these techniques because, depending on the microstructure used as a base, there is a possibility that a finer and special structure can be created that exceeds conventional methods.

【0005】自己組織的に形成される特異な構造の例と
しては、Al陽極酸化皮膜が挙げられる(たとえばR.
C.Furneaux,W.R.Rigby & A.
P.Davidson “NATURE” Vol.3
37 P147(1989)等参照)。Al板を酸性電
解質中で陽極酸化すると、多孔質酸化皮膜が形成され
る。
An example of a unique structure formed in a self-organizing manner is an Al anodic oxide film (for example, R.A.
C. Furneaux, W.C. R. Rigby & A.
P. Davidson "NATURE" Vol. 3
37 P147 (1989) and the like). When the Al plate is anodized in an acidic electrolyte, a porous oxide film is formed.

【0006】この多孔質酸化皮膜の特徴は、図3(c)
に示すように、直径が数nm〜数百nmの極めて微細な
円柱状細孔(ナノホール)14が、数nm〜数百nmの
間隔で平行に配列するという特異的な幾何学的構造を有
することにある。この円柱状の細孔14は、高いアスペ
クト比を有し、断面の径の一様性にも優れている。また
この細孔14の径および間隔は、陽極酸化の際の電流、
電圧を調整することによりある程度の制御が可能であ
る。
The feature of this porous oxide film is shown in FIG.
As shown in the figure, there is a specific geometric structure in which extremely fine cylindrical pores (nano holes) 14 having a diameter of several nm to several hundred nm are arranged in parallel at intervals of several nm to several hundred nm. It is in. The columnar pores 14 have a high aspect ratio and are excellent in uniformity of cross-sectional diameter. The diameter and interval of the pores 14 are determined by the current during anodization,
Some control is possible by adjusting the voltage.

【0007】このAl陽極酸化膜の特異的な幾何学構造
に着目した、さまざまな応用が試みられている。益田に
よる解説が詳しいが、以下、応用列を列記しておく。た
とえば、陽極酸化膜の耐摩耗性、耐絶縁性を利用した皮
膜としての応用や、皮膜を剥離してフィルターへの応用
がある。さらには、ナノホール内に金属や半導体等を充
填する技術や、ナノホールのレプリカ技術を用いること
により、着色、磁気記録媒体、EL発光素子、エレクト
ロクロミック素子、光学素子、太陽電池、ガスセンサ、
をはじめとするさまざまな応用が試みられている。さら
には、量子細線、MIM素子などの量子効果デバイス、
ナノホールを化学反応場として用いる分子センサー、な
ど多方面への応用が期待されている(益田 固体物理
31,493(1996))。
Various applications have been attempted, focusing on the specific geometric structure of the Al anodic oxide film. The explanation by Masuda is detailed, but the application column is listed below. For example, there is an application as a film utilizing the wear resistance and insulation resistance of the anodic oxide film, and an application to a filter by peeling the film. Furthermore, by using a technique of filling a nanohole with a metal or a semiconductor or a replica technique of the nanohole, coloring, a magnetic recording medium, an EL light emitting element, an electrochromic element, an optical element, a solar cell, a gas sensor,
And various other applications have been attempted. Furthermore, quantum effect devices such as quantum wires and MIM elements,
It is expected to be applied to various fields such as molecular sensors using nanoholes as a chemical reaction field (Masuda Solid State Physics
31, 493 (1996)).

【0008】先に述べた半導体加工技術によるナノ構造
体の作成は、歩留まりの悪さや装置のコストが高いなど
の問題があり、簡易な手法で再現性よく作成できる手法
が望まれている。
[0008] The above-described production of nanostructures by the semiconductor processing technique has problems such as poor yield and high equipment cost, and a technique that can be produced with a simple technique and high reproducibility is desired.

【0009】このような観点から、自己組織的手法、特
にAl陽極酸化の手法は、ナノ構造体を容易に、制御よ
く作成することができるという利点がある。また、この
手法では、一般に、大面積のナノ構造体を作成すること
が可能である。
From such a viewpoint, the self-assembly method, particularly the Al anodic oxidation method has an advantage that a nanostructure can be easily and controlledly formed. In addition, this technique can generally produce a large-area nanostructure.

【0010】例えば特開昭63−187415号公報に
は基体上に導電性を有すると共に電気化学的に安定な下
地層と、該下地層上にアルミニウムまたはアルミニウム
合金の陽極酸化膜が積層され、該陽極酸化膜に形成され
ている微細孔に磁性体を充填した磁気記録媒体が開示さ
れている。ここで下地層としてRh、Nb、Ta、A
u、Ir、Pt、Ti、Cr、Pd、Ru、Os、G
a、Zr、Ag、Sn、Cu、HfやBe等の材料を用
いることでアルミニウムやアルミニウム合金の陽極酸化
時に該陽極酸化膜に形成される微細孔の深さが均一にな
るという効果があることが記載されている。
For example, Japanese Patent Application Laid-Open No. 63-187415 discloses that a base layer having conductivity and electrochemical stability is provided on a substrate, and an anodic oxide film of aluminum or an aluminum alloy is laminated on the base layer. There is disclosed a magnetic recording medium in which a magnetic material is filled in micropores formed in an anodized film. Here, Rh, Nb, Ta, A
u, Ir, Pt, Ti, Cr, Pd, Ru, Os, G
The use of materials such as a, Zr, Ag, Sn, Cu, Hf and Be has the effect that the depth of the micropores formed in the anodic oxide film at the time of anodic oxidation of aluminum or aluminum alloy becomes uniform. Is described.

【0011】また特公平1−237927号公報には非
磁性基体とアルミニウムまたはアルミニウム合金陽極酸
化被膜との間にアルミニウム若しくはアルミニウム合金
以外の金属の陽極酸化被膜を設け、陽極酸化被膜に形成
されている微細孔の底部に存在するバリア層を無くし、
微細孔へのメッキ効率を向上させた磁気記録媒体が開示
されている。
In Japanese Patent Publication No. 1-237927, an anodic oxide film of a metal other than aluminum or an aluminum alloy is provided between a nonmagnetic substrate and an aluminum or aluminum alloy anodic oxide film to form an anodic oxide film. Eliminate the barrier layer at the bottom of the micropore,
There is disclosed a magnetic recording medium in which the plating efficiency for fine holes is improved.

【0012】[0012]

【発明が解決しようとする課題】ところでアルミの陽極
酸化膜に形成される微細孔を利用して高機能デバイスを
形成する為には、陽極酸化膜に多数存在する微細孔の状
態(例えば微細孔の深さや微細孔底部の導電性等)を極
力均一にすることが好ましい。これまで陽極酸化は主に
陽極酸化の時間によって制御されていたが、本発明者ら
の検討によれば、陽極酸化膜の微細孔の状態は、陽極酸
化膜の下地層の材料によつて大きく変化し、単に陽極酸
化の時間によってのみ陽極酸化を制御した場合には微細
孔の状態を高度に均一化することが困難であるとの知見
を得た。
By the way, in order to form a high-performance device by utilizing fine holes formed in an anodic oxide film of aluminum, the state of a large number of fine holes existing in the anodic oxide film (for example, fine holes) It is preferable to make the depth of the holes and the conductivity at the bottom of the micropores as uniform as possible. Until now, anodic oxidation was mainly controlled by the anodic oxidation time. However, according to the study of the present inventors, the state of the fine pores of the anodic oxide film is largely dependent on the material of the underlying layer of the anodic oxide film. It was found that it was difficult to make the state of the micropores highly uniform when the anodic oxidation was controlled only by the anodic oxidation time.

【0013】そこで本発明の目的は、陽極酸化膜の微細
孔の状態が極めて均一であり、より一層の高機能性デバ
イスに応用可能なナノ構造体及びその製造方法を提供す
ることを目的とする。
Accordingly, an object of the present invention is to provide a nanostructure in which the state of micropores in the anodic oxide film is extremely uniform and which can be applied to a further highly functional device, and a method for producing the same. .

【0014】[0014]

【課題を解決するための手段】上記の課題は本発明の以
下の構成および製法により解決できる。本発明の一実施
態様にかかるナノ構造体の製造方法は、導電性表面を備
えた基体の該導電性表面に、細孔を有する陽極酸化膜を
具備し、該細孔の底部と該導電性表面との間に酸化物層
を有し、該酸化物層に該細孔の底部と該導電性表面とを
繋ぎ、該導電性表面に含まれる材料を含む経路を有して
いるナノ構造体の製造方法であって、 1)Ti、Zr、Nb、Ta及びMoから選ばれる少な
くとも1つの元素を含む導電性表面を備えた基体の該導
電性表面にアルミニウムを含有する膜を形成する工程、
及び 2)該アルミニウムを含む膜と対向電極の間に電圧を印
加して該アルミニウムを含む膜を陽極酸化し.細孔を有
する陽極酸化膜を形成する工程を有し、 上記工程2)が、陽極酸化電流を検知しつつ陽極酸化を
行ない、該陽極酸化が該導電性表面に到達したことを示
す該陽極酸化電流の変化を検出した後に陽極酸化を停止
する工程を含むことを特徴とする。
The above object can be attained by the following constitution and manufacturing method of the present invention. The method for producing a nanostructure according to one embodiment of the present invention includes an anodized film having pores on the conductive surface of a substrate having a conductive surface, and the bottom of the pores and the conductive material. A nanostructure having an oxide layer between the surface and the oxide layer, connecting the bottom of the pores to the conductive surface, and having a path including a material contained in the conductive surface; 1) a step of forming a film containing aluminum on the conductive surface of a substrate having a conductive surface containing at least one element selected from Ti, Zr, Nb, Ta and Mo;
And 2) applying a voltage between the film containing aluminum and the counter electrode to anodize the film containing aluminum. Forming an anodic oxide film having pores, wherein the step 2) performs anodic oxidation while detecting an anodic oxidation current, and indicates that the anodic oxidation has reached the conductive surface. The method includes a step of stopping anodization after detecting a change in current.

【0015】この態様によれば、陽極酸化膜の細孔底部
と導電性表面とが、導電性表面を構成する元素を含む経
路で結ばれ、その結果として底部の導電性に優れた細孔
を均一に有するナノ構造体を得ることができる。
According to this aspect, the bottom of the pores of the anodic oxide film and the conductive surface are connected by a path containing an element constituting the conductive surface, and as a result, the pores having excellent conductivity at the bottom are formed. A nanostructure having uniformity can be obtained.

【0016】また陽極酸化を停止した後、このナノ構造
体を加熱処理もしくは還元雰囲気中で加熱処理すること
によって細孔底部の導電性をより一層向上させることが
できる。
After the anodic oxidation is stopped, the nanostructure is subjected to heat treatment or heat treatment in a reducing atmosphere, whereby the conductivity at the bottom of the pores can be further improved.

【0017】本発明の他の実施態様にかかるナノ構造体
の製造方法は、Cu、Zn、Au、Pt、Pd、Ni、
Fe、Co及びWから選ばれる少なくとも1つの元素を
含む導電性表面を備えた基体の導電性表面に細孔を有す
る陽極酸化膜を備え、該細孔が該導電性表面に到達して
いるナノ構造体の製造方法であって、 1)Cu、Zn、Au、Pt、Pd、Ni、Fe、Co
及びWから選ばれる少なくとも1つの元素を含む導電性
表面を備えた基体の導電性表面にアルミニウムを含む膜
を形成する工程、及び 2)該アルミニウムを含む膜と対向電極との間に電圧を
印加して陽極酸化し、細孔を有する陽極酸化膜を形成す
る工程を有し、 上記2)の工程において、該陽極酸化電圧出力に電流制
限を施すことを特徴とする。
According to another embodiment of the present invention, there is provided a method of manufacturing a nanostructure, comprising: Cu, Zn, Au, Pt, Pd, Ni,
A substrate provided with a conductive surface containing at least one element selected from Fe, Co and W, comprising an anodized film having pores on a conductive surface thereof, wherein the pores reach the conductive surface; 1) Cu, Zn, Au, Pt, Pd, Ni, Fe, Co
Forming a film containing aluminum on a conductive surface of a substrate having a conductive surface containing at least one element selected from W and W; and 2) applying a voltage between the film containing aluminum and the counter electrode. Forming an anodic oxide film having fine pores, and in the step 2), current limiting is performed on the anodic oxidation voltage output.

【0018】この態様によれば導電性表面に到達した細
孔を有するナノ構造体を安定して形成することができ
る。
According to this aspect, a nanostructure having pores reaching the conductive surface can be formed stably.

【0019】本発明の一実施態様にかかるナノ構造体
は、導電性表面を備えた基体の該導電性表面に、細孔を
有する陽極酸化膜を具備し、該細孔の底部と該導電性表
面との間に酸化物層を有し、該酸化物層は該細孔の底部
と該導電性表面とを繋ぎ、該導電性表面に含まれる材料
を含む経路を有していることを特徴とする。この態様に
よれば、細孔底部の導電性が均一なナノ構造体とするこ
とができる。
A nanostructure according to one embodiment of the present invention comprises a substrate having a conductive surface, an anodized film having pores on the conductive surface, and a bottom portion of the pores and the conductive film. An oxide layer between the conductive surface and the bottom surface of the pores, the oxide layer having a path including a material contained in the conductive surface. And According to this aspect, a nanostructure having uniform conductivity at the bottom of the pores can be obtained.

【0020】また本発明の他の実施態様にかかるナノ構
造体は、 1)Ti、Zr、Nb、Ta及びMoから選ばれる少な
くとも1つの元素を含む導電性表面を備えた基体の該導
電性表面にアルミニウムを含有する膜を形成する工程、
及び 2)該アルミニウムを含む膜と対向電極の間に電圧を印
加して該アルミニウムを含む膜を陽極酸化し、細孔を有
する陽極酸化膜を形成する工程を有し、 上記工程2)が、陽極酸化電流を検知しつつ陽極酸化を
行ない、該陽極酸化が該導電性表面に到達したことを示
す該陽極酸化電流の変化を検出した後に陽極酸化を停止
する工程を含むナノ構造体の製造方法によって製造され
たことを特徴とする。
The nanostructure according to another embodiment of the present invention includes: 1) a conductive surface of a substrate having a conductive surface containing at least one element selected from Ti, Zr, Nb, Ta and Mo. Forming a film containing aluminum in the
And 2) a step of applying a voltage between the film containing aluminum and the counter electrode to anodize the film containing aluminum to form an anodic oxide film having pores, wherein the step 2) comprises: A method for producing a nanostructure, comprising the steps of performing anodization while detecting an anodization current, and stopping the anodization after detecting a change in the anodization current indicating that the anodization has reached the conductive surface. It is characterized by being manufactured by.

【0021】また本発明の他の実施態様にかかるナノ構
造体は、 1)Cu、Zn、Au、Pt、Pd、Ni、Fe、Co
及びWから選ばれる少なくとも1つの元素を含む導電性
表面を備えた基体の導電性表面にアルミニウムを含む膜
を形成する工程、及び 2)該アルミニウムを含む膜と対向電極との間に電圧を
印加して陽極酸化し、細孔を有する陽極酸化膜を形成す
る工程を有し、 上記2)の工程において、該陽極酸化電圧出力に電流制
限を施すナノ構造体の製造方法によって製造されたこと
を特徴とする。
The nanostructure according to another embodiment of the present invention includes: 1) Cu, Zn, Au, Pt, Pd, Ni, Fe, Co
Forming a film containing aluminum on a conductive surface of a substrate having a conductive surface containing at least one element selected from W and W; and 2) applying a voltage between the film containing aluminum and the counter electrode. And forming an anodized film having pores by performing anodizing, wherein in the step 2), it is manufactured by the method for manufacturing a nanostructure for limiting current to the anodized voltage output. Features.

【0022】そしてこれらの態様によれば、細孔の状態
がより一層均一で、高機能デバイスの応用に適したナノ
構造体となる。上記本発明に於いて、導電性膜としての
材料を選択することで、任意の基体上にAl陽極酸化膜
を形成できるという作用がある。
According to these embodiments, the nanostructure is more uniform in the state of the pores and is suitable for application to high-performance devices. In the present invention, by selecting a material for the conductive film, there is an effect that an Al anodic oxide film can be formed on an arbitrary substrate.

【0023】本発明は、Al陽極酸化膜を、量子細線、
MIM素子、分子センサー、着色、磁気記録媒体、EL
発光素子、エレクトロクロミック素子、光学素子、太陽
電池、ガスセンサ、耐摩耗性、耐絶縁性皮膜、フィルタ
ー、をはじめとするさまざまな形態で応用することを可
能とするものであり、その応用範囲を著しく広げる作用
を有する。
According to the present invention, an Al anodic oxide film is formed by using a quantum wire,
MIM element, molecular sensor, coloring, magnetic recording medium, EL
It can be applied in various forms including light-emitting elements, electrochromic elements, optical elements, solar cells, gas sensors, abrasion-resistant, insulating-resistant films, filters, etc. Has the effect of spreading.

【0024】上記本発明の製法においては、導電性膜上
にAl陽極酸化膜を形成したナノ構造体を実現すること
ができる。さらには、本発明のナノ構造体は耐熱性に優
れることや、細孔内充填物と導電性膜の間の良好な電気
的接続をとることができるなどの作用がある。
In the manufacturing method of the present invention, a nanostructure having an Al anodic oxide film formed on a conductive film can be realized. Further, the nanostructure of the present invention has excellent heat resistance, and has effects such as good electrical connection between the filling material in the pores and the conductive film.

【0025】[0025]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて説明する。本発明のナノ構造体の概念図を図1に
模式的に示す。図1(a)は平面図及び図1(b)はそ
のAA線に於ける断面図示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. FIG. 1 schematically shows a conceptual diagram of the nanostructure of the present invention. FIG. 1A is a plan view, and FIG. 1B is a sectional view taken along the line AA.

【0026】図1において、10は基体、11は導電性
膜、13はAl陽極酸化膜、14は細孔(ナノホール)
である。また、細孔には、電気化学的な手法等により任
意の金属、半導体などの材料を充填することが可能であ
る。
In FIG. 1, reference numeral 10 denotes a substrate, 11 denotes a conductive film, 13 denotes an Al anodic oxide film, and 14 denotes pores (nano holes).
It is. Further, the pores can be filled with any material such as a metal and a semiconductor by an electrochemical method or the like.

【0027】基体10の材料は、任意の材料が適用可能
であり、石英ガラスをはじめとする絶縁性材料、Siを
はじめとする半導体材料、さらには各種金属材料などが
挙げられる。
As the material of the base 10, any material can be used, and examples thereof include insulating materials such as quartz glass, semiconductor materials such as Si, and various metal materials.

【0028】本発明の導電性膜11の材料は、使用目的
によるが、後述の実施例に示すように、Ti、Zr、N
b、Ta、Mo、Cu、Zn、Au、Pt、Pd、N
i、Fe、Co、Wなど主成分とする導電性膜とするこ
とができる。
The material of the conductive film 11 of the present invention depends on the purpose of use, but as shown in the examples described later, Ti, Zr, N
b, Ta, Mo, Cu, Zn, Au, Pt, Pd, N
It can be a conductive film containing i, Fe, Co, W, or the like as a main component.

【0029】また、導電性膜を選択することで耐熱性に
優れるナノ構造体とすることができる。従来のA1板を
陽極酸化した構成(図3(a))や、Al膜を途中まで
陽極酸化した構成(図3(b))においては、耐熱性の
面でAlの融点が限界であり、融点以下の温度において
も300℃以上では、Al陽極酸化膜に膜割れなどの損
傷が生じることがある。一方、本発明のように、導電性
膜上にAl陽極酸化膜を配することで耐熱性の向上をす
ることができる。たとえば、導電性膜としてNbが好ま
しく、Nb下引きナノホール構成では、少なくとも11
00℃までの温度における熱処理にも耐えることができ
る。これにより、高温プロセスが可能となり、ナノホー
ル内への材料充填等の応用においても、その選択幅が広
がる。また、熱処理することによりナノホールの化学的
安定性の改善も可能である。
By selecting a conductive film, a nanostructure having excellent heat resistance can be obtained. In the conventional configuration in which the A1 plate is anodized (FIG. 3A) or the configuration in which the Al film is partially anodized (FIG. 3B), the melting point of Al is limited in terms of heat resistance. If the temperature is equal to or lower than the melting point and the temperature is equal to or higher than 300 ° C., the Al anodic oxide film may be damaged such as a film crack. On the other hand, heat resistance can be improved by disposing an Al anodic oxide film on a conductive film as in the present invention. For example, Nb is preferable as the conductive film, and at least 11
It can withstand heat treatment at temperatures up to 00 ° C. This enables a high-temperature process and widens the range of choices in applications such as material filling into nanoholes. Further, the chemical stability of the nanoholes can be improved by heat treatment.

【0030】さらには、下引きの導電性膜として、T
i、Zr、Nb、Ta、Moなどを用いた場合には、細
孔底部において導電性膜を構成する材料の酸化物が形成
される場合があるが、このような場合には水素などの還
元性雰囲気中で熱処理することにより還元し、細孔底部
の導電性を改善することができる。
Further, as the underlying conductive film, T
When i, Zr, Nb, Ta, Mo, or the like is used, an oxide of the material forming the conductive film may be formed at the bottom of the pores. In such a case, reduction of hydrogen or the like is performed. By performing heat treatment in a neutral atmosphere, reduction is performed, and the conductivity at the bottom of the pores can be improved.

【0031】また、本発明は、基体として、Ti、Z
r、Nb、Ta、Mo、Cu、Zn、Au、Pt、P
d、Ni、Fe、Co、Wのいずれかを主成分とする材
料を用いる際には必ずしも導電性膜を必要としない。ま
た、本発明は、導電性膜を積層することもでき、Ti/
Ni等の積層膜などが挙げられる。
Further, the present invention provides a method for manufacturing a substrate comprising Ti, Z
r, Nb, Ta, Mo, Cu, Zn, Au, Pt, P
When a material containing any of d, Ni, Fe, Co, and W as a main component is used, a conductive film is not necessarily required. In the present invention, a conductive film can be laminated, and Ti /
A laminated film of Ni or the like may be used.

【0032】本発明に於いて、導電性膜の膜厚は、使用
目的にもよるが、以下を考慮して設定する。基体が導電
性を有する場合は、基体上に配する導電性膜の膜厚は基
体を十分に被覆することができればよく、好ましくは1
0nmから100μmの範囲で設定できる。
In the present invention, the thickness of the conductive film depends on the purpose of use, but is set in consideration of the following. When the substrate has conductivity, the thickness of the conductive film disposed on the substrate may be sufficient if it can sufficiently cover the substrate.
It can be set in the range of 0 nm to 100 μm.

【0033】基体の導電性が不十分の場合には、導電性
膜は、陽極酸化工程において電極の役割を果たす。すな
わち、Alを主成分とする膜を全膜厚にわたり陽極酸化
する際には、陽極酸化の進行に伴いAlを主成分とする
膜が酸化、高抵抗化することから、導電性膜の抵抗が寄
与し、電圧降下が生ずることがある。この観点から、導
電性膜は十分な導電性を有する事、すなわち平坦で良好
な膜質が選られる範囲で厚いことが望ましい。好ましい
膜厚の範囲は導電性膜材料の導電率ρ、面積等から設定
されるので一概には言えないが、おおむね10nmから
100μmの範囲であり、さらに好ましくは50nm〜
1μmの範囲である。
When the conductivity of the substrate is insufficient, the conductive film plays the role of an electrode in the anodic oxidation step. That is, when anodizing a film containing Al as a main component over the entire thickness, the film containing Al as a main component oxidizes and increases in resistance as the anodic oxidation progresses. And may cause a voltage drop. From this viewpoint, it is desirable that the conductive film has sufficient conductivity, that is, the conductive film is thick as long as a good and flat film quality is selected. The preferred range of the film thickness cannot be specified unconditionally because it is set based on the conductivity ρ of the conductive film material, the area, and the like, but is generally in the range of 10 nm to 100 μm, and more preferably 50 nm to
The range is 1 μm.

【0034】Al陽極酸化膜13は、Alを主成分とす
る膜を陽極酸化することにより、形成される。このAl
陽極酸化膜13は、AlとO(酸素)を主成分とし、図
1に示すように、多数の円柱状の細孔(ナノホール)を
有する。
The Al anodic oxide film 13 is formed by anodizing a film containing Al as a main component. This Al
The anodic oxide film 13 contains Al and O (oxygen) as main components, and has a large number of columnar pores (nanoholes) as shown in FIG.

【0035】このAl陽極酸化膜13は、多数の円柱状
のナノホール14が、膜(板)面にほぼ垂直に配置し、
それぞれのナノホールは互いに平行かつほぼ等間隔に配
置していることである。また、各ナノホールは、図1
a)に示すように三角格子状に配列する傾向がある。
In the Al anodic oxide film 13, a large number of cylindrical nanoholes 14 are arranged almost perpendicular to the film (plate) surface.
The nanoholes are arranged in parallel with each other and at substantially equal intervals. Each nanohole is shown in Fig. 1.
As shown in a), they tend to be arranged in a triangular lattice.

【0036】ナノホールの直径2rは数nm〜数百n
m、間隔2Rは数nm〜数百nm程度、深さは10nm
〜100μmである。
The diameter 2r of the nanohole is several nm to several hundred n.
m, the interval 2R is about several nm to several hundred nm, and the depth is 10 nm.
100100 μm.

【0037】ナノホールの間隔、直径は、陽極酸化に用
いる電解液の濃度と温度、及び、陽極酸化電圧印加方
法、電圧値、時間、さらには、その後のポアワイド処理
条件などのプロセス諸条件である程度制御することがで
きる。
The interval and diameter of the nanoholes are controlled to some extent by various process conditions such as the concentration and temperature of the electrolytic solution used for anodic oxidation, the method of applying the anodic oxidation voltage, the voltage value, the time, and the subsequent pore-wide processing conditions. can do.

【0038】また、本発明の構成においては、Alを主
成分とする膜は陽極酸化工程により、表面から導電性膜
までに全膜厚にわたり酸化されている。すなわち、ナノ
ホール底部が導電性膜に面しているという特徴を有す
る。以下このような構成を、導電性膜上ナノホールと呼
ぶことにする。たとえば、導電性膜としてTiを用いる
場合はTi上ナノホールと呼ぶ。
In the structure of the present invention, the film containing Al as a main component is oxidized over the entire thickness from the surface to the conductive film by the anodic oxidation step. That is, it has a feature that the bottom of the nanohole faces the conductive film. Hereinafter, such a configuration is referred to as a nanohole on a conductive film. For example, when Ti is used as the conductive film, it is called a nanohole on Ti.

【0039】特に、下引きの導電性膜として、Ti、Z
r、Nb、Ta、Moなどを用いた場合には、図6a)
に示すように、細孔底部は、導電性膜を構成する材料及
びAl、Oの混合物からなる酸化物層17を有し、この
酸化物層17には、細孔底部と導電性膜を結び、導電性
膜11を構成する元素量の多い経路(以下パス)16を
有する。このパスは細孔底部のバリアー層が下地の導電
性膜まで到達した後も、陽極酸化を続けると、導電性膜
を構成する材料が細孔底部に向かって拡散することによ
って形成されると思われる。この経路が存在すると、引
き続き細孔内に電着で金属や半導体を電着する際に、従
来の細孔底部にバリアー層を有する陽極酸化アルミナに
比し、低い電圧で制御よく電着を可能とする。また、こ
の経路は導電性を有するため、細孔内充填物と導電性膜
の間で良好な電気的接続を実現することができる。
In particular, Ti, Z
When r, Nb, Ta, Mo, etc. are used, FIG.
As shown in the figure, the bottom of the pore has an oxide layer 17 made of a mixture of a material constituting the conductive film and Al and O, and the oxide layer 17 connects the bottom of the pore and the conductive film. And a path (hereinafter referred to as a path) 16 having a large amount of elements constituting the conductive film 11. This path is thought to be formed by the diffusion of the material constituting the conductive film toward the bottom of the pores when the anodic oxidation is continued even after the barrier layer at the bottom of the pores reaches the underlying conductive film. It is. With this route, when metal or semiconductor is continuously electrodeposited in the pores, the electrodeposition can be controlled with a lower voltage and better than the conventional anodized alumina with a barrier layer at the bottom of the pores. And Also, since this path has conductivity, good electrical connection can be realized between the filling in the pores and the conductive film.

【0040】さらにこのようなパスが形成されたナノ構
造体を水素ガスや不活性ガス雰囲気中で熱処理を施すこ
とで、パスの導電性をさらに改良することができ、電着
時にはそれぞれの細孔で電着量のばらつきの小さい均一
な堆積を実現できる。この導電性改善の理由は、パスが
還元されるためと考えられる。
Further, by subjecting the nanostructure having such paths formed thereon to a heat treatment in a hydrogen gas or inert gas atmosphere, the conductivity of the paths can be further improved. Thus, uniform deposition with a small variation in the amount of electrodeposition can be realized. It is considered that the reason for the improvement in conductivity is that the paths are reduced.

【0041】一方、下引きの導電性膜として、Cu、Z
n、Au、Pt、Pd、Ni、Fe、Co、Wなど用い
た場合には、図6b)に示すように、細孔底部は、酸化
アルミ(バリアー層)が存在せずに貫通したものとな
る。
On the other hand, Cu, Z
In the case of using n, Au, Pt, Pd, Ni, Fe, Co, W, etc., as shown in FIG. 6B), the bottom of the pores penetrates without aluminum oxide (barrier layer). Become.

【0042】なお、上記本発明のナノ構造体の陽極酸化
ナノホールに、金属、半導体等を埋め込むことや、その
レプリカを作成することで、新たなナノ構造体を作成す
ることもできる。
It is to be noted that a new nanostructure can be prepared by embedding a metal, a semiconductor, or the like in the anodized nanoholes of the nanostructure of the present invention or by forming a replica thereof.

【0043】以下、図2を用いて、本発明のナノ構造体
の製造方法について更に詳細に説明する。図2a)〜
e)を順に追って説明するが、以下の工程a)〜e)
は、図2のa)〜e)に対応する。
Hereinafter, the method for producing a nanostructure of the present invention will be described in more detail with reference to FIG. Figure 2a)-
e) will be described in order, but the following steps a) to e) will be described.
Corresponds to a) to e) in FIG.

【0044】a)基体10上に導電性膜11を形成 導電性膜11の形成方法は、抵抗加熱蒸着、EB蒸着、
スパッタ、CVD、メッキをはじめとする任意の製膜方
法が適用可能である。
A) Forming the conductive film 11 on the substrate 10 The conductive film 11 can be formed by resistance heating evaporation, EB evaporation,
Any film forming method including sputtering, CVD, and plating can be applied.

【0045】b)導電性膜11上にAlを主成分とする
膜12を形成することで試料41とする。Alを主成分
とする膜の形成方法は、抵抗加熱蒸着、EB蒸着、スパ
ッタ、CVD、メッキをはじめとする任意の製膜方法が
適用可能である。
B) A sample 41 is formed by forming a film 12 containing Al as a main component on the conductive film 11. As a method for forming a film containing Al as a main component, any film forming method including resistance heating evaporation, EB evaporation, sputtering, CVD, and plating can be applied.

【0046】c)陽極酸化工程 上記試料41に陽極酸化を行うことで、本発明のナノ構
造体を構成する。本発明の陽極酸化工程は、具体的には
Alを主成分とする膜を形成した材料を電解液中に配
し、該材料とカソードとの間に陽極酸化電圧を印加する
工程である。また、この工程に於いてAlを主成分とす
る膜を、その全膜厚にわたり、すなわち形成されるナノ
ホールの底部が導電性膜に到達するまで、酸化する。本
工程に用いる陽極酸化装置の概略を図4に示す。
C) Anodizing Step Anodizing the sample 41 to form the nanostructure of the present invention. Specifically, the anodizing step of the present invention is a step in which a material having a film mainly composed of Al is disposed in an electrolytic solution, and an anodizing voltage is applied between the material and the cathode. Further, in this step, the film mainly containing Al is oxidized over its entire thickness, that is, until the bottom of the formed nanohole reaches the conductive film. FIG. 4 schematically shows an anodizing apparatus used in this step.

【0047】図4中40は恒温槽であり、41は試料、
43は電解液、44は反応容器、42はPt板のカソー
ド、45は陽極酸化電圧を印加する電源、46は陽極酸
化電流を測定する電流計である。図では省略してある
が、このほか電圧、電流を自動制御、測定するコンピュ
ータ、などが組み込まれている。試料41およびカソー
ド42は、恒温水槽により温度を一定に保たれた電解液
中に配置され、電源より試料、カソード間に電圧を印加
することで陽極酸化が行われる。
In FIG. 4, 40 is a thermostat, 41 is a sample,
43 is an electrolytic solution, 44 is a reaction vessel, 42 is a cathode of a Pt plate, 45 is a power supply for applying an anodizing voltage, and 46 is an ammeter for measuring an anodizing current. Although not shown in the figure, a computer for automatically controlling and measuring the voltage and current is incorporated. The sample 41 and the cathode 42 are arranged in an electrolytic solution maintained at a constant temperature by a constant temperature water bath, and anodization is performed by applying a voltage between the sample and the cathode from a power supply.

【0048】陽極酸化に用いる電解液は、たとえば、シ
ュウ酸、りん酸、硫酸、クロム酸溶液などが挙げられ
る。陽極酸化電圧、温度などの諸条件は、作成するナノ
構造体に応じて、適宜設定することができる。
The electrolytic solution used for the anodic oxidation includes, for example, oxalic acid, phosphoric acid, sulfuric acid, chromic acid solution and the like. Various conditions such as anodizing voltage and temperature can be appropriately set according to the nanostructure to be formed.

【0049】陽極酸化工程は.陽極酸化電流を連続的に
検知しながら行なうことが好ましい。例えばTi、Z
r、Nb、Ta及びMoから選ばれる少なくとも1つの
元素を含む導電性表面に形成したアルミニウムを含む層
を陽極酸化した場合の陽極酸化電流は図5のAに示す様
に変化する。即ちアルミニウムを含む層の陽極酸化がそ
の全厚さに及んだ時点で陽極酸化電流は低下し始め、そ
の後ほぼ一定の値に収束する。そしてこの電流が低下
し、ほぼ一定値になった時点で陽極酸化を停止した場
合、陽極酸化膜に形成された細孔底部は図6(a)に示
した様に細孔底部と導電性表面との間に陽極酸化膜が介
在しているものの、殆どの細孔には、その底部と導電性
表面とを繋ぐ、該導電性表面を構成する元素を含む経路
が形成されており、この細孔底部に直流電源を用いて電
着を行なった結果、殆どの細孔底部に安定して電着膜が
析出した。このことから細孔の状態が高度に均一である
ことが分かる。
The anodic oxidation step is as follows. It is preferable to perform the process while continuously detecting the anodic oxidation current. For example, Ti, Z
The anodizing current when the layer containing aluminum formed on the conductive surface containing at least one element selected from r, Nb, Ta and Mo is anodized changes as shown in FIG. That is, when the anodic oxidation of the aluminum-containing layer reaches its entire thickness, the anodic oxidation current starts to decrease and thereafter converges to a substantially constant value. When the current decreases and the anodic oxidation is stopped when the current reaches a substantially constant value, the bottom of the pore formed in the anodic oxide film and the bottom of the pore as shown in FIG. Although an anodic oxide film is interposed between the fine pores and most of the pores, a path including an element constituting the conductive surface is formed between the bottom and the conductive surface. As a result of performing electrodeposition on the bottom of the pore using a DC power supply, an electrodeposited film was stably deposited on the bottom of most pores. This indicates that the state of the pores is highly uniform.

【0050】一方導電性表面にZnやCuを含ませた場
合の陽極酸化電流は、図5のBに示したように一度増加
したのち減少した。そして陽極酸化電流が一度増加した
とき、及び一度増加しその後低下したときに隠極酸化を
停止して得られたナノ構造体をFE−SEMで観察する
と陽極酸化膜に部分的にクレータ状の損傷が認められ、
細孔が消失している部分があった。
On the other hand, when the conductive surface contains Zn or Cu, the anodic oxidation current once increased and then decreased as shown in FIG. 5B. When the anodic oxidation current increases once, and once increases and then decreases, the anodic oxidation is stopped. Observing the nanostructure obtained by FE-SEM, the anodic oxide film is partially damaged like a crater. Is recognized,
There were portions where pores had disappeared.

【0051】また導電性表面にAu、Pt、Pd、N
i、Fe、Co及びWから選ばれる少なくとも1つの元
素を含ませた場合の陽極酸化電流は、図5のCに示した
様に急増した。そして陽極酸化電流が急増した後に陽極
酸化を停止して得たナノ構造体を同様にして観察した結
果、細孔の殆どが消失していた。そしてCu、Zn、A
u、Pt、Pd、Ni、Fe、Co及びWから選ばれる
少なくとも1つの元素を含む導電性表面を備えた基体の
導電性表面に形成したアルミニウムを含む膜の陽極酸化
を、陽極酸化電流が変化した直後に停止した場合には細
孔には損傷が殆ど認められず、また細孔の状態は均一で
あった。
Au, Pt, Pd, N
The anodic oxidation current when at least one element selected from i, Fe, Co and W was included increased sharply as shown in FIG. The anodic oxidation was stopped after the anodic oxidation current was rapidly increased, and the resulting nanostructure was observed in the same manner. As a result, most of the pores had disappeared. And Cu, Zn, A
The anodizing current of the film containing aluminum formed on the conductive surface of the substrate having the conductive surface containing at least one element selected from u, Pt, Pd, Ni, Fe, Co, and W changes. When the operation was stopped immediately after the operation, the pores were hardly damaged, and the state of the pores was uniform.

【0052】このような結果が得られる理由は明らかで
ないが以下に推察を述べる。陽極酸化はアルミニウムを
含む膜の表面より徐々に進行し導電性表面にまで到達す
る。このときに導電性表面が例えばTi、Zr、Nb、
Ta及びMoから選ばれる少なくとも1つの元素を含む
導電性表面であった場合には細孔底部の陽極酸化膜は除
去されず、導電性表面を構成する材料が陽極酸化膜中を
通って細孔底部に向つて拡散し、導電性表面を構成する
元素を含む経路が形成されるものと考えられる。
The reason why such a result is obtained is not clear, but the following is a presumption. Anodization proceeds gradually from the surface of the film containing aluminum to reach the conductive surface. At this time, the conductive surface is, for example, Ti, Zr, Nb,
In the case of a conductive surface containing at least one element selected from Ta and Mo, the anodic oxide film at the bottom of the pore is not removed, and the material constituting the conductive surface passes through the anodic oxide film to form the pore. It is conceivable that a path containing the elements that diffuse toward the bottom and constitute the conductive surface is formed.

【0053】そしてこのようなナノ構造体を加熱、もし
くは還元雰囲気中で加熱処理すると細孔底部の導電性が
より向上する理由は、該経路を構成する材料が還元され
る為であると考えられる。そして図5のAに示した陽極
酸化電流プロファイルにおいて電流値が一定値に収束し
た後に陽極酸化を停止することが好ましいのは、殆ど全
ての細孔底部に該経路が形成される為と考えられる。
The reason why the conductivity of the bottom of the pores is further improved when such a nanostructure is heated or heat-treated in a reducing atmosphere is considered to be because the material constituting the pathway is reduced. . It is considered that the reason why it is preferable to stop the anodization after the current value converges to a constant value in the anodization current profile shown in FIG. 5A is that the path is formed at almost all the bottoms of the pores. .

【0054】この態様においては陽極酸化電流がlmA
/cm2 以下になった時点で陽極酸化を停止することが
好ましい。
In this embodiment, the anodic oxidation current is 1 mA
It is preferable to stop the anodic oxidation at the time when the pressure falls to / cm 2 or less.

【0055】一方導電性表面がAu、Pt、Pd、N
i、Fe、Co及びWから選ばれる少なくとも1つの元
素を含む導電性表面である場合には、陽極酸化がアルミ
ニウムを含む膜の表面より徐々に進行して導電性表面に
まで到達し、電解液が導電性表面と接触した時点で導電
性表面の電解液の電気分解や導電性表面の溶解が生じ、
その結果大きな電流が流れるものと考えられ、これが細
孔の消失の原因であると推測される。また導電性表面が
CuやZnを含む導電性表面である場合にも電解液が接
触したときには多少の電気分解や溶解が生じ、比較的大
きな電流が流れ、それによって細孔の消失が生じるもの
と考えられる。そしてこの態様においては陽極酸化電流
が変化した直後に陽極酸化を停止することによって細孔
の消失を極めて有効に防止することができる。他の方法
の一つとして例えば陽極酸化電圧出力に電流制限を施す
ことや、直列抵抗を配して陽極酸化することが挙げられ
る。特に電流制限を施す場合の電流制限値は50mA/
cm2以下とすることが好ましい。
On the other hand, Au, Pt, Pd, N
In the case of a conductive surface containing at least one element selected from i, Fe, Co, and W, the anodic oxidation gradually proceeds from the surface of the film containing aluminum to reach the conductive surface, and the electrolytic solution At the time of contact with the conductive surface, the electrolysis of the electrolyte on the conductive surface and the dissolution of the conductive surface occur,
As a result, it is considered that a large current flows, which is presumed to be the cause of the disappearance of the pores. Also, even when the conductive surface is a conductive surface containing Cu or Zn, when the electrolytic solution comes into contact, some electrolysis or dissolution occurs, a relatively large current flows, thereby causing pores to disappear. Conceivable. In this embodiment, the anodic oxidation is stopped immediately after the anodizing current has changed, so that the disappearance of the pores can be prevented very effectively. Other methods include, for example, current limiting the anodic oxidation voltage output and anodic oxidation with a series resistor. In particular, when the current is limited, the current limit value is 50 mA /
cm 2 or less.

【0056】ナノ構造体の用途に応じて、下記d)及び
e)の処理を行ってもよい。 d)ポアワイドニング処理 上記の工程を経たナノ構造体c)を酸溶液(たとえばリ
ン酸溶液)中に浸す本処理により、適宜、ナノホールの
径を広げることができる。濃度、処理時間、温度、によ
りナノホール径制御をすることができる。
Depending on the use of the nanostructure, the following processes d) and e) may be performed. d) Pore widening treatment By this treatment of immersing the nanostructure c) that has undergone the above steps in an acid solution (for example, a phosphoric acid solution), the diameter of the nanoholes can be appropriately increased. The nanohole diameter can be controlled by the concentration, the processing time, and the temperature.

【0057】e)ナノホール内に金属、半導体を充填 上記各の構造体c)及びd)のナノホール14に金属、
半導体を充填することができる。この際電気化学的な手
法によるNi、Fe、Co、Cdなどの充填(D.Al
−Mawlawi et.al. J..Mater.
Res.,9,1014(1994)、益田 他 表面
技術 Vol43,798(1992))、溶融金属の
導入(C.A.Huber et.al.SCIENC
E 263,800(1994))、などによる各種材
料の充填技術を用いることができる。たとえば、電気化
学的なFe,Ni,Co充填の手法の例をあげると、そ
れぞれFeSO4,NiSO4,CoSO4水溶液を用
いた電解析出などが挙げられる。 図2e)において
は、充填材15はAl陽極酸化膜13を完全に覆ってい
るが、ナノホール14の内部途中まで充填し、利用する
ことも可能である。
E) Filling the nanoholes with metal and semiconductor Metals and semiconductors are filled in the nanoholes 14 of each of the structures c) and d).
Semiconductors can be filled. At this time, filling of Ni, Fe, Co, Cd, etc. by an electrochemical method (D. Al
-Malawwi et. al. J. . Mater.
Res. , 9, 1014 (1994), Masuda et al. Surface Technology Vol 43, 798 (1992)), introduction of molten metal (CA Huber et. Al. SCIENC).
E 263,800 (1994)) and the like, and various material filling techniques can be used. For example, as an example of the method of electrochemically filling Fe, Ni, and Co, electrolytic deposition using an aqueous solution of FeSO4, NiSO4, and CoSO4, respectively, may be mentioned. In FIG. 2E), the filler 15 completely covers the Al anodic oxide film 13, but it is also possible to fill the nanohole 14 partway and use it.

【0058】前述したとおり、本発明は、基体として、
Ti,Zr,Nb,Ta,Mo,Cu,Znのいずれか
を主成分とする材料を用いる際には必ずしも導電性膜を
必要とせず、その場合は、上記製造工程に於いて、工程
a)を省略し、b’)基体10上にAlを主成分とする
膜12を形成することで試料41とし、以下c)〜e)
の工程を実施すればよい。
As described above, the present invention provides a
When using a material containing any one of Ti, Zr, Nb, Ta, Mo, Cu, and Zn as a main component, a conductive film is not necessarily required. In that case, in the above manufacturing process, step a) Is omitted, and b ′) a film 12 containing Al as a main component is formed on the substrate 10 to obtain a sample 41, and the following c) to e)
Step may be performed.

【0059】[0059]

【実施例】以下、実施例により本発明を具休的に示す
が、本発明はこれに限定されるものではなく、適宜本発
明の範囲内で変更できるものである。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples and can be appropriately modified within the scope of the present invention.

【0060】実施例1 幅40mm、長さ15mmの石英基板を5枚用意し、有
機溶剤及び純水で十分に洗浄した後、各々の石英基板の
表面に真空蒸着法若しくはスパッタ法によってTi、Z
r、Nb、Ta及びMoを厚さl00nmに成膜した。
なおTi以外はガラスヘの密着性向上の為、予めTiを
厚さ20nmに成膜した上に成膜して、導電性表面を有
する石英基板を得た。次に各々の導電性表面上にスパッ
タ法によりアルミニウム膜を厚さ1μmに形成した。
Example 1 Five quartz substrates having a width of 40 mm and a length of 15 mm were prepared, sufficiently washed with an organic solvent and pure water, and then the surface of each quartz substrate was coated with Ti, Z by vacuum evaporation or sputtering.
r, Nb, Ta and Mo were formed to a thickness of 100 nm.
Except for Ti, in order to improve the adhesion to glass, a film of Ti was previously formed to a thickness of 20 nm and then formed to obtain a quartz substrate having a conductive surface. Next, an aluminum film was formed to a thickness of 1 μm on each conductive surface by a sputtering method.

【0061】図4に示した陽極酸化装置を用いてアルミ
ニウム膜を陽極酸化処理した。電解液には0.3Mシュ
ウ酸水溶液を用い、恒温水槽により電解液を17℃に保
持し、陽極酸化電圧をDC40Vとして陽極酸化電流を
検知しつつ陽極酸化を行なった。その結果図5のAに示
した様に陽極酸化開始から8分後に陽極酸化電流が低下
し始め、10分後にはlmA/cm2 以下となった為陽
極酸化を停止した。次いで、ポアワイド処理としてリン
酸5wt%溶液に30分間浸漬した後、純水及びイソプ
ロピルアルコールで洗浄してナノ構造体を得た。
The aluminum film was anodized by using the anodizing apparatus shown in FIG. A 0.3 M oxalic acid aqueous solution was used as the electrolytic solution, the electrolytic solution was kept at 17 ° C. in a thermostatic water bath, and anodizing was performed while anodizing current was detected at an anodizing voltage of 40 V DC. The results as shown in A of Figure 5 from the start anodized after 8 minutes began to drop anodic oxidation current, after 10 minutes to stop the anodic oxidation because became LMA / cm 2 or less. Next, as a pore-wide treatment, the substrate was immersed in a 5 wt% phosphoric acid solution for 30 minutes, and then washed with pure water and isopropyl alcohol to obtain a nanostructure.

【0062】このナノ構造体の表面を電界放出走査型電
子顕微鏡(FE−SEM)で観察し、また断面を透過型
電子顕微鏡(TEM)で観察した。その結果、殆どの細
孔底部の構造は、図6(a)に示した様にパス(経路)
16を有していた。また細孔14は直径が約50nmの
極めて微細で均一な円柱状細孔であり、多数の細孔が約
100nmの間隔で互いに平行に、且つほぼ等間隔で配
列していた。またアルミニウム膜は全膜厚に亘って酸化
されていた。
The surface of the nanostructure was observed with a field emission scanning electron microscope (FE-SEM), and the cross section was observed with a transmission electron microscope (TEM). As a result, the structure at the bottom of most of the pores is a path as shown in FIG.
Had 16. The pores 14 were extremely fine and uniform cylindrical pores having a diameter of about 50 nm, and a large number of pores were arranged at intervals of about 100 nm in parallel with each other and at substantially equal intervals. The aluminum film was oxidized over the entire thickness.

【0063】またパス(経路)には元素分析によって導
電性表面を構成する各々の金属が含まれていることが確
認された。これは陽極酸化がアルミニウム膜表面から徐
々に進行し、最終的に導電性表面に到達したのちも陽極
酸化を続けることによって導電性表面を構成する材料が
細孔底部の陽極酸化膜中を通って細孔底部に向って拡散
したことによるものと考えられる。特に導電性表面がT
iもしくはNbの場合は、陽極酸化電流プロファイルの
減少が急峻であり、より均一な細孔が形成されていると
思われる。
The path (path) was confirmed by elemental analysis to contain each metal constituting the conductive surface. This is because the anodic oxidation gradually progresses from the aluminum film surface, and the anodic oxidation continues after reaching the conductive surface, so that the material constituting the conductive surface passes through the anodic oxide film at the bottom of the pores. This is probably due to diffusion toward the bottom of the pores. Especially when the conductive surface is T
In the case of i or Nb, the decrease in the anodic oxidation current profile is sharp, and it seems that more uniform pores are formed.

【0064】比較例1 実施例1において導電性表面を構成する金属層をW、F
e、Ni、Pd、Pt及びAuに換えた以外は実施例1
と同様にして導電性表面にアルミニウム膜を有する基体
を作製した。次に実施例1と同様の条件にてアルミニウ
ム膜を陽極酸化を行ない、図5のCに示す様に陽極酸化
電流が急増した10分後に陽極酸化を停止した。
Comparative Example 1 In Example 1, the metal layer constituting the conductive surface was replaced with W, F
Example 1 except that e, Ni, Pd, Pt and Au were replaced
In the same manner as in the above, a substrate having an aluminum film on the conductive surface was produced. Next, anodization was performed on the aluminum film under the same conditions as in Example 1, and anodization was stopped 10 minutes after the anodization current rapidly increased as shown in FIG. 5C.

【0065】以降実施例1と同様にポアワイドの処理、
及び洗浄を行なった後、FE−SEM及びTEMで細孔
の状態を観察した。その結果、陽極酸化膜中の細孔には
中度〜重度の損傷が認められた。ここで中度の損傷とは
細孔の一部の消失、重度の損傷とは殆どの細孔の消失を
意味する。
Thereafter, as in the case of the first embodiment, the processing of the pore width is performed.
After washing, the state of the pores was observed by FE-SEM and TEM. As a result, moderate to severe damage was observed in the pores in the anodic oxide film. Here, moderate damage means loss of a part of the pores, and severe damage means loss of most of the pores.

【0066】比較例2 実施例1において導電性金属層をZn及びCuに換えた
以外は実施例1と同様にして導電性表面にアルミニウム
膜を有する基体を作製した。次に実施例1と同様の条件
にてアルミニウム膜を陽極酸化を行ない、図5のBに示
す様に陽極酸化電流が一度上昇した後低下した10分後
に陽極酸化を停止した。
Comparative Example 2 A substrate having an aluminum film on the conductive surface was prepared in the same manner as in Example 1 except that the conductive metal layer was changed to Zn and Cu. Next, anodization was performed on the aluminum film under the same conditions as in Example 1, and the anodization was stopped 10 minutes after the anodization current once increased and then decreased as shown in FIG. 5B.

【0067】以降実施例1と同様にポアワイドの処理、
及び洗浄を行なった後、FE−SEM及びTEMで細孔
の状態を観察した。その結果、陽極酸化膜中の細孔には
軽度の損傷が認められた。ここで軽度の損傷とは直径数
μmのクレータ状の孔が部分的に観察される場合であ
る。
Thereafter, in the same manner as in the first embodiment,
After washing, the state of the pores was observed by FE-SEM and TEM. As a result, slight damage was observed in the pores in the anodic oxide film. Here, the slight damage refers to a case where a crater-shaped hole having a diameter of several μm is partially observed.

【0068】実施例2 陽極酸化工程において、陽極酸化電源に電流リミッタを
かけた以外は比較例1及び2と同様にしてナノ構造体を
形成した。
Example 2 In the anodizing step, a nanostructure was formed in the same manner as in Comparative Examples 1 and 2, except that a current limiter was applied to an anodizing power supply.

【0069】すなわち、陽極酸化から5min後、Al
膜の電流プロファイルが回復したところで(図5の矢印
X)、DC電源の電流リミッタを作動させた。電流リミ
ットの値は5min後の陽極酸化電流値の1.2倍の値
として設定した。その他の条件は、比較例1及び2に準
じた。
That is, after 5 minutes from the anodic oxidation, Al
When the current profile of the membrane was restored (arrow X in FIG. 5), the DC power supply current limiter was activated. The value of the current limit was set as 1.2 times the anodic oxidation current value after 5 minutes. Other conditions were in accordance with Comparative Examples 1 and 2.

【0070】FE−SEM観察の結果、比較例1及び2
のナノ構造体に比ベて、ナノホールの損傷の大幅な低減
がはかられていることがわかった。断面を観察すると、
図6b)に示したように殆どの細孔が導電性表面にまで
到達していることが分かった。又Cuにおいては細孔底
部においてその一部が酸化物を形成していた。
As a result of FE-SEM observation, Comparative Examples 1 and 2
It was found that the damage of the nanoholes was significantly reduced as compared with the nanostructure of the above. Looking at the cross section,
It was found that most of the pores reached the conductive surface as shown in FIG. 6b). Further, in the case of Cu, a part thereof formed an oxide at the bottom of the pore.

【0071】次に各々のナノ構造体に対して0.14M
のNiSO4 及び0.5MのH3 BO3 からなる電解液
中に浸漬し、カーボンの対向電極を用いて細孔底部にN
iを電着したところ、カロメル標準電極に対して−lV
〜−1.5Vという低い電圧で殆どの細孔の底部にNi
を充填することができた。また細孔に充填したNiと導
電性表面との間の電気伝導度を調べたところ、導電性表
面と細孔に充填したNiとの間の電気的接続は良好であ
った。
Next, for each nanostructure, 0.14M
Immersed in an electrolytic solution consisting of NiSO 4 and 0.5M H 3 BO 3, and N was applied to the bottom of the pores using a carbon counter electrode.
When i was electrodeposited, -1V with respect to the calomel standard electrode
At a voltage as low as -1.5V, Ni
Could be filled. Further, when the electric conductivity between Ni filled in the pores and the conductive surface was examined, the electrical connection between the conductive surface and Ni filled in the pores was good.

【0072】実施例3 本実施例には、金属基体を用いた場合のナノ構造体の製
造における陽極酸化電流モニターについて記載する。
Example 3 This example describes an anodic oxidation current monitor in the production of a nanostructure using a metal substrate.

【0073】本実施例には、試料として以下のものを用
いた。 実施例3−1:0.5mm厚のNi板基体に導電性膜と
してMoをEB蒸着によりlμm製膜した。 実施例3−2:0.5mm厚のMo板を基体として用
い、導電性膜は形成しなかった。
In this example, the following samples were used. Example 3-1: Mo was formed as a conductive film to a thickness of 1 μm on a Ni plate substrate having a thickness of 0.5 mm by EB vapor deposition. Example 3-2: A Mo plate having a thickness of 0.5 mm was used as a base, and no conductive film was formed.

【0074】それぞれの試料のMo薄膜上、又はMo基
体上にAl膜をEB蒸着により1.5μm形成した。さ
らに、Al膜が形成されていない面において、電解液に
触れる部分をエポキシで被覆した。陽極酸化工程は、実
施例1に準じた。但し、陽極酸化の終了は、処理中、常
に陽極酸化の電流プロファイルをモニターし、陽極酸化
が導電性膜面まで到達していることを示す電流減少後、
さらに電流が安定したこと(図5の矢印Y)を判断して
電圧印加を停止、この工程を終了した。
An Al film was formed to a thickness of 1.5 μm on the Mo thin film of each sample or on the Mo substrate by EB evaporation. Further, on the surface on which the Al film was not formed, a portion that was in contact with the electrolytic solution was covered with epoxy. The anodic oxidation step was in accordance with Example 1. However, the end of the anodic oxidation, during the treatment, always monitor the current profile of the anodic oxidation, after the current decrease indicating that the anodic oxidation has reached the conductive film surface,
Further, it was determined that the current was stabilized (arrow Y in FIG. 5), and the application of the voltage was stopped, and this step was completed.

【0075】FE−SEM観察により、本実施例のサン
プルを観察したところ、図6(a)にしめすようなAl
陽極酸化ナノホールが、それぞれの金属基体上に作成さ
れており、また、本実施例のナノホールの深さは均一で
あった。
When the sample of this example was observed by FE-SEM observation, the Al sample shown in FIG.
Anodized nanoholes were formed on each of the metal substrates, and the depth of the nanoholes in this example was uniform.

【0076】比較例3 Al板を実施例3と同様の条件で10分間陽極酸化して
図3(a)に示した構造を有するナノ構造体を得た。こ
の構造体を実施例3と同様にしてFE−SEMで観察し
た結果、細孔の深さにバラツキが認められた。
Comparative Example 3 An aluminum plate was anodized under the same conditions as in Example 3 for 10 minutes to obtain a nanostructure having the structure shown in FIG. As a result of observing this structure by FE-SEM in the same manner as in Example 3, variation was observed in the depth of the pores.

【0077】上記実施例3及び比較例3より、下引きと
して実施例1で示した材料の導電性膜を配置することに
より、任意の基体上にAl陽極酸化ナノホールを形成で
きることがわかった。また、本実施例においては、Al
陽極酸化ナノホールの厚さ、ナノホールの深さが、Al
膜の膜厚で規定されるため、それらを広い面積にわたり
均一とすることができた。
From Example 3 and Comparative Example 3, it was found that by arranging the conductive film of the material shown in Example 1 as an undercoat, Al anodized nanoholes could be formed on any substrate. Further, in the present embodiment, Al
The thickness of the anodized nanoholes and the depth of the nanoholes are Al
Since they are defined by the film thickness, they can be made uniform over a wide area.

【0078】また、本実施例のように、陽極酸化電流を
モニターし、電流プロファイルにより陽極酸化終了を判
断することにより、再現良くパスを形成することや、不
必要な陽極酸化の回避をすることができた。
Further, as in this embodiment, by monitoring the anodizing current and judging the end of the anodizing based on the current profile, it is possible to form a path with good reproducibility and to avoid unnecessary anodizing. Was completed.

【0079】実施例4 本実施例においては、基体として2インチ径のn−Si
基板を用い、導電性膜としては、厚さ200nmのTi
(実施例4−1)、及びNb膜(実施例4−2、3)を
用いた。Al膜の膜厚は、500nmとした。また、比
較例4として、導電性膜なしでAl膜を膜途中まで陽極
酸化した図3b)の構成の試料を用いした。
Embodiment 4 In this embodiment, a 2-inch diameter n-Si
Using a substrate, a 200 nm-thick Ti
(Example 4-1) and an Nb film (Examples 4-2 and 3) were used. The thickness of the Al film was 500 nm. In addition, as Comparative Example 4, a sample having the configuration shown in FIG. 3B) in which an Al film was anodized halfway without a conductive film was used.

【0080】c)陽極酸化およびd)ポアワイド処理の
手法は、実施例1に準じた。実施例4−3においては、
陽極酸化後更に、2%H2 、98%Heの還元雰囲気中
で500℃、lhrの熱処理を施した。
The procedures of c) anodization and d) pore-wide treatment were the same as in Example 1. In Example 4-3,
After the anodic oxidation, a heat treatment was performed at 500 ° C. for 1 hr in a reducing atmosphere of 2% H 2 and 98% He.

【0081】e)細孔充填 前記ポアワイド処理まで終了したサンプルを、0.14
M NiSO4 、0.5M H3 BO3 からなる電解液
中で、カーボンの対向電極と共に浸して電着することで
ナノホール底にNiを析出させた。
E) Filling of pores The sample completed up to the pore widening treatment was
M NiSO 4, in 0.5M H 3 BO 3 electrolytic solution consisting, to precipitate Ni in nanoholes bottom by electrodeposition is immersed together with the counter electrode of carbon.

【0082】比較例4においては電着に−15V以上の
電圧を要し、その堆積も再現性が悪かったが、本実施例
4−l、4−2、3においては、比較例4に比べて、カ
ロメル電極に対して、−1〜−1.5Vという低い電圧
で試料全面にわたり均一にNiを充填することができ
た。FE−SEM観察結果は、図7(a)に示す形態を
有した。直径が約50nmの円柱状細孔にNiが充填さ
れており、このNi充填細孔が多数、約百nmの間隔で
互いに平行かつほば等間隔に配列形成していた。特に電
着量を制御し、図7(b)に示すようにナノホールの中
途までNiを堆積した実施例4−3においては、細孔間
の充填物の量のばらつきが小さかった。
In Comparative Example 4, a voltage of -15 V or more was required for electrodeposition, and the deposition was poor in reproducibility. However, in Examples 4-1 and 4-2, compared to Comparative Example 4, As a result, the calomel electrode was uniformly filled with Ni over the entire surface of the sample at a voltage as low as -1 to -1.5 V. The FE-SEM observation result had the form shown in FIG. The columnar pores having a diameter of about 50 nm were filled with Ni, and a large number of these Ni-filled pores were arranged at intervals of about 100 nm and arranged at substantially regular intervals. In particular, in Example 4-3 in which the amount of electrodeposition was controlled and Ni was deposited halfway through the nanoholes as shown in FIG. 7B, the variation in the amount of filler between the pores was small.

【0083】この理由について考察するに、ナノホール
内への電着においては、析出反応がナノホール底で速や
かに進行することが重要となるが、比較例においては図
3b)に示すナノホール底のバリヤー層32が反応を妨
げる一方、本実施例においては、図6a)に示すよう
に、細孔底部にパス16を有することで、パスが導電経
路となり、ホール底でのNi析出反応がスムーズに進行
したことに起因すると思われる。
Considering the reason, in electrodeposition into the nanohole, it is important that the deposition reaction proceeds rapidly at the bottom of the nanohole. In the comparative example, the barrier layer at the bottom of the nanohole shown in FIG. On the other hand, in the present example, as shown in FIG. 6 a), by having the path 16 at the bottom of the pore, the path became a conductive path, and the Ni precipitation reaction at the bottom of the hole proceeded smoothly. It seems to be due to.

【0084】また、4−3においては還元雰囲気(水
素)中の熱処理により、細孔底部のパスを還元すること
で、さらに細孔底部の導電性が改善されたと考えられ
る。またNi充填材と導電性膜の間の電気伝導度を調べ
たところ、実施例4−1、4−2、4−3において、導
電性膜と充填材の間に電気的接続が良好であった。
In 4-3, it is considered that the conductivity at the bottom of the pores was further improved by reducing the path at the bottom of the pores by heat treatment in a reducing atmosphere (hydrogen). Further, when the electric conductivity between the Ni filler and the conductive film was examined, in Examples 4-1, 4-2, and 4-3, the electrical connection between the conductive film and the filler was good. Was.

【0085】実施例5 本実施例においては、石英ガラスの基体を用い、導電性
膜としては厚さlμmのNb膜(実施例5−1)、Ti
膜(実施例5−2)、Cu膜(実施例5−3)、Pt膜
(実施例5−4)、Co膜(実施例5−5)を用いた。
Al膜の膜厚はlμmとした。陽極酸化手法は、Nb及
びTiは実施例1、Cu、Pt、Coは実施例2に準じ
た。
Example 5 In this example, a quartz glass substrate was used, and a 1 μm thick Nb film (Example 5-1) and a Ti film were used as conductive films.
A film (Example 5-2), a Cu film (Example 5-3), a Pt film (Example 5-4), and a Co film (Example 5-5) were used.
The thickness of the Al film was 1 μm. The anodic oxidation method was based on Example 1 for Nb and Ti, and Example 2 for Cu, Pt and Co.

【0086】比較例5として、Al板を5min間陽極
酸化した図3(a)の構成のサンプルを用意した。比較
例6として、導電性膜なしで石英ガラス上のAl膜を膜
途中まで陽極酸化した図3(b)の構成のサンプルを用
意した。Alの膜厚はlμm、陽極酸化時間は5min
である。
As Comparative Example 5, a sample having the structure shown in FIG. 3A in which an Al plate was anodized for 5 minutes was prepared. As Comparative Example 6, a sample having the configuration shown in FIG. 3B in which an Al film on quartz glass was anodized partway without a conductive film was prepared. The thickness of Al is 1 μm and the anodic oxidation time is 5 min.
It is.

【0087】引き続き、前記本実施例のNb下引さナノ
ホールを、He雰囲気中で200℃から1100℃の範
囲でlhの熱処理を行い、FE−SEMにより形態変化
を観察した。昇温、降温レートは5℃/minとした。
Subsequently, the Nb-subtracted nanoholes of this example were subjected to a heat treatment at 200 ° C. to 1100 ° C. for 1 hour in a He atmosphere, and the morphological changes were observed by FE-SEM. The rate of temperature rise and fall was 5 ° C./min.

【0088】比較例5、6で作成した図3(a),
(b)のAl上ナノホールは、Alの融点(630℃)
を鑑み、200〜500℃の範囲とした。比較例5及び
6は熱処理前は、それぞれ図3a)、b)の形態を有し
ていたが、300℃程度以上の熱処理を経た試料は、陽
極酸化皮膜(Al陽極酸化ナノホール)に膜われを生じ
ていた。
FIG. 3A and FIG.
The nanoholes on Al in (b) show the melting point of Al (630 ° C).
In view of the above, the range was set to 200 to 500 ° C. Comparative Examples 5 and 6 had the forms of FIGS. 3a) and b) before the heat treatment, respectively. However, the samples that had been subjected to the heat treatment at about 300 ° C. or more suffered from anodic oxide film (Al anodized nanoholes). Had occurred.

【0089】一方で、本実施例の導電性膜を下引きした
構成においては、以下に示す高い温度まで、図1に示さ
れる構造を有しており、熱処理による形状、変化は見ら
れなかった。たとえば、細孔は、直径が約50nmの均
一な円柱状細孔であり、多数の細礼が、約百nmの間隔
で互いに平行かつほば等間隔に配列形成していた。
On the other hand, in the structure of this embodiment in which the conductive film is undercoated, the structure shown in FIG. 1 is obtained up to the high temperature shown below, and the shape and change by the heat treatment are not observed. . For example, the pores were uniform columnar pores having a diameter of about 50 nm, and a large number of fine lines were arranged at intervals of about 100 nm in parallel and at substantially equal intervals.

【0090】以下の表1に熱処理により、損傷の生じな
かった温度範囲を記す。
Table 1 below shows the temperature range in which no damage was caused by the heat treatment.

【0091】[0091]

【表1】 [Table 1]

【0092】これにより、本発明の導電性膜上ナノホー
ル構成を有するナノ構造体、その中でもNb上ナノホー
ルは、熱耐性に優れることがわかった。これにより、高
温プロセスに耐えうるナノホールを構成できた。
As a result, it was found that the nanostructure having the nanohole structure on the conductive film of the present invention, among which the nanohole on Nb, had excellent heat resistance. As a result, nanoholes capable of withstanding a high-temperature process could be formed.

【0093】また、TEM観察により、熱処理後のAl
陽極酸化ナノホールを構成する酸化アルミは結晶性にす
ぐれた。さらに処理前後でAl陽極酸化ナノホールの酸
耐性を比較したところ、熱処理により化学的安定性の改
善が為されていることがわかった。
Further, the TEM observation shows that the Al
Aluminum oxide constituting the anodized nanoholes was excellent in crystallinity. Furthermore, when the acid resistance of Al anodized nanoholes before and after the treatment was compared, it was found that the chemical stability was improved by the heat treatment.

【0094】実施例6 実施例5と同様な手法で導電性表面がNb及びPtのナ
ノ構造体を用意した。これらの構造体の細孔内にC.
A.Huberらの手法と同様な手法で金属や半導体材
料を導入した。すなわち、導入する材料を各々のナノ構
造体とともに薄い金属製アンプルに配し、アンプル内を
不活性雰囲気で満たした後、導入材料の融点以上の温度
に上げ、さらに圧力を徐々に4K bar程度まで加
え、最終的にアンプルを圧し砕くことで行った。ここ
で、Huberらは800℃までの熱処理を行っている
が、本発明のナノ構造体を用いることで1100℃まで
の熱処理が可能であった。
Example 6 A nanostructure having a conductive surface of Nb and Pt was prepared in the same manner as in Example 5. C. in the pores of these structures.
A. Metals and semiconductor materials were introduced in a manner similar to Huber et al. That is, the material to be introduced is arranged in a thin metal ampoule together with each nanostructure, and the inside of the ampoule is filled with an inert atmosphere. In addition, the ampoules were finally crushed and crushed. Here, Huber et al. Performed heat treatment up to 800 ° C., but heat treatment up to 1100 ° C. was possible by using the nanostructure of the present invention.

【0095】これにより、低融点の金属In、Sn、A
lや半導体(Se、Te、GaSb、Bi2 Te3 )な
どに加え、より高融点のAg、Au、Cuなどの金属、
Geなどの半導体を導入することができた。また、本発
明においてはナノホールが導電性材料の上に配置されて
いるため、ナノホールと導電性膜(Nb又はPt)との
電気的接続が可能であった。
Thus, low melting point metal In, Sn, A
l, semiconductors (Se, Te, GaSb, Bi 2 Te 3 ), etc., as well as higher melting point metals such as Ag, Au, Cu, etc.
A semiconductor such as Ge could be introduced. Further, in the present invention, since the nanoholes are arranged on the conductive material, the nanoholes can be electrically connected to the conductive film (Nb or Pt).

【0096】[0096]

【発明の効果】以上説明したように、本発明により、以
下の効果がある。 1)任意の基体上に極めて均一な状態の細孔を有するA
l陽極酸化膜を形成できる。 2)導電材上に極めて均一な状態の細孔を有するAl陽
極酸化膜を形成できる。さらに、ナノホール内に金属も
しくは半導体を充填した構成においては、導電材と上記
金属もしくは半導体の電気的接続を可能とする。 3)大面積にわたりナノホールの深さが均一なAl陽極
酸化膜を形成できる。 4)高温耐性に優れたナノ構造体を形成できる。また、
熱処理により、結晶性に優れたAl陽極酸化膜を形成で
きる。
As described above, the present invention has the following effects. 1) A having very uniform pores on any substrate
1 An anodic oxide film can be formed. 2) An Al anodic oxide film having pores in a very uniform state can be formed on the conductive material. Further, in the configuration in which the metal or the semiconductor is filled in the nanohole, the conductive material and the metal or the semiconductor can be electrically connected. 3) An Al anodic oxide film having a uniform nanohole depth over a large area can be formed. 4) A nanostructure excellent in high temperature resistance can be formed. Also,
By the heat treatment, an Al anodic oxide film having excellent crystallinity can be formed.

【0097】これらは、Al陽極酸化膜をさまざまな形
態で応用することを可能とするものであり、その応用範
囲を著しく広げるものである。本発明のナノ構造体は、
それ自体機能材料として使用可能であるが、さらなる新
規なナノ構造体の母材、鋳型、などとして用いることも
できる。
These allow the Al anodic oxide film to be applied in various forms and greatly expand the range of application. The nanostructure of the present invention,
Although it can be used as a functional material by itself, it can also be used as a base material, a template, and the like for further novel nanostructures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のナノ構造体の構造を示す概念図であっ
て、(a)平面図、(b)は(a)のAA線断面図であ
る。
FIG. 1 is a conceptual diagram showing the structure of a nanostructure according to the present invention, wherein FIG. 1 (a) is a plan view and FIG. 1 (b) is a sectional view taken along line AA of FIG.

【図2】本発明のナノ構造体の製造工程を示す模式断面
図であって、a)は基体上に導電性膜を形成したとこ
ろ、b)は導電性膜上にA1を主成分とする膜を形成し
たところ、c)はA1膜を陽極酸化し、ナノホールを形
成したところ、d)はポアワイドニング処理によりナノ
ホール径を広げたところ、e)はナノホールに金属もし
くは半導体を充填したところを示す。
FIG. 2 is a schematic cross-sectional view illustrating a manufacturing process of a nanostructure of the present invention, in which a) shows a case where a conductive film is formed on a substrate, and b) shows a case where A1 is a main component on the conductive film. When the film was formed, c) when the A1 film was anodized to form nanoholes, d) when the nanohole diameter was increased by pore widening treatment, and e) when the metal or semiconductor was filled in the nanoholes. Show.

【図3】従来のA1板(膜)上のA1陽極酸化膜の構造
を示す概略図で、a)A1板を陽極酸化した場合の断面
図、b)は基体上のA1膜を途中まで陽極酸化した場合
の断面図、c)A1板(膜)に形成したナノホールの斜
視図である。
FIG. 3 is a schematic view showing the structure of a conventional A1 anodic oxide film on an A1 plate (film). FIG. 3A is a cross-sectional view when the A1 plate is anodized. It is a sectional view at the time of oxidation, c) It is a perspective view of nanohole formed in A1 board (film).

【図4】陽極酸化装置を説明するための概略図である。FIG. 4 is a schematic diagram for explaining an anodizing apparatus.

【図5】陽極酸化時の電流プロファイルの分類を示すグ
ラフである。
FIG. 5 is a graph showing the classification of current profiles during anodization.

【図6】本発明の実施例1および実施例3のナノ構造体
の細孔底部の形態を示す概略図である。
FIG. 6 is a schematic view showing the form of the bottom of the pores of the nanostructures of Example 1 and Example 3 of the present invention.

【図7】本発明の実施例4のナノ構造体の細孔底部の形
態を示す概略図で、(a)は細孔を完全に充填した形
態、(b)は細孔の中途まで充填した形態を示す。
FIGS. 7A and 7B are schematic diagrams showing the form of the bottom of the pores of the nanostructure of Example 4 of the present invention. FIG. 7A shows a form in which pores are completely filled, and FIG. The form is shown.

【符号の説明】[Explanation of symbols]

10 基体 11 導電成膜 12 A1を主成分とする膜 13 A1陽極酸化膜 14 細孔 15 充填材 16 パス 17 酸化物層 31 A1板 32 バリアー層 40 恒温層 41 試料 42 カソード 43 電解液 44 反応容器 45 電源 46 電流計 DESCRIPTION OF SYMBOLS 10 Substrate 11 Conductive film formation 12 Film mainly composed of A1 13 A1 anodic oxide film 14 Pores 15 Filler 16 Path 17 Oxide layer 31 A1 plate 32 Barrier layer 40 Thermostatic layer 41 Sample 42 Cathode 43 Electrolyte 44 Reaction vessel 45 Power supply 46 Ammeter

【手続補正書】[Procedure amendment]

【提出日】平成10年11月13日[Submission date] November 13, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

【図4】 FIG. 4

【図5】 FIG. 5

【図3】 FIG. 3

【図6】 FIG. 6

【図7】 FIG. 7

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】 導電性表面を備えた基体の該導電性表面
に、細孔を有する陽極酸化膜を具備し、該細孔の底部と
該導電性表面との間に酸化物層を有し、該酸化物層に該
細孔の底部と該導電性表面とを繋ぎ、該導電性表面に含
まれる材料を含む経路を有しているナノ構造体の製造方
法であって、 1)Ti、Zr、Nb、Ta及びMoから選ばれる少な
くとも1つの元素を含む導電性表面を備えた基体の該導
電性表面にアルミニウムを含有する膜を形成する工程、
及び 2)該アルミニウムを含む膜と対向電極の間に電圧を印
加して該アルミニウムを含む膜を陽極酸化し、細孔を有
する陽極酸化膜を形成する工程を有し、 上記工程2)が、陽極酸化電流を検知しつつ陽極酸化を
行ない、該陽極酸化が該導電性表面に到達したことを示
す該陽極酸化電流の変化を検出した後に陽極酸化を停止
する工程を含むことを特徴とするナノ構造体の製造方
法。
1. A substrate having a conductive surface, comprising: an anodic oxide film having pores on the conductive surface; and an oxide layer between the bottom of the pores and the conductive surface. A method for producing a nanostructure, comprising: connecting the bottom of the pores to the conductive surface with the oxide layer; and having a path including a material contained in the conductive surface, wherein 1) Ti, Forming a film containing aluminum on the conductive surface of a substrate having a conductive surface containing at least one element selected from Zr, Nb, Ta and Mo;
And 2) a step of applying a voltage between the film containing aluminum and the counter electrode to anodize the film containing aluminum to form an anodic oxide film having pores, wherein the step 2) comprises: Anodizing while detecting the anodizing current, and stopping the anodizing after detecting a change in the anodizing current indicating that the anodizing has reached the conductive surface. The method of manufacturing the structure.
【請求項2】 該陽極酸化電流がlmA/cm2 以下に
低下した後に陽極酸化を停止する請求項1記載の製造方
法。
2. The method according to claim 1, wherein the anodic oxidation is stopped after the anodic oxidation current has dropped to 1 mA / cm 2 or less.
【請求項3】 上記工程2)の後に加熱処理する工程を
更に含む請求項1記載の製造方法。
3. The method according to claim 1, further comprising a step of performing a heat treatment after the step 2).
【請求項4】 該加熱処理を還元雰囲気中で行なう請求
項3記載の製造方法。
4. The method according to claim 3, wherein said heat treatment is performed in a reducing atmosphere.
【請求項5】 該加熱処理が、300℃以上に加熱する
工程を含む請求項3または4記載の製造方法。
5. The method according to claim 3, wherein said heat treatment includes a step of heating to 300 ° C. or higher.
【請求項6】 該導電性表面が含む元素がNbまたはT
iである請求項1記載の製造方法。
6. The method according to claim 1, wherein the element contained in the conductive surface is Nb or T.
The method according to claim 1, wherein i is i.
【請求項7】 上記工程2)の後に細孔内に金属及び半
導体の少なくとも一方を充填する工程を更に含む請求項
1記載の製造方法。
7. The method according to claim 1, further comprising a step of filling at least one of a metal and a semiconductor into the pores after the step 2).
【請求項8】 前記ナノ構造体を加熱処理する工程の後
に、細孔内に金属及び半導体の少なくとも一方を充填す
る工程を含む請求項4記載の製造方法。
8. The manufacturing method according to claim 4, further comprising, after the step of heat-treating the nanostructure, a step of filling at least one of a metal and a semiconductor in the pores.
【請求項9】 前記細孔内に金属及び半導体の少なくと
も一方を充填する工程が、充填されるべき該金属、該半
導体若しくは該金属及び該半導体の熔融体と該ナノ構造
体とを接触させる工程を含む請求項7または8記載の製
造方法。
9. The step of filling at least one of a metal and a semiconductor in the pores comprises contacting the nanostructure with the metal, the semiconductor or a melt of the metal and the semiconductor to be filled. 9. The production method according to claim 7, comprising:
【請求項10】 該接触させる工程を加圧下で行なう請
求項9記載の製造方法。
10. The method according to claim 9, wherein the contacting step is performed under pressure.
【請求項11】 該金属及び該半導体がIn、Sn、A
l、Se、Te、GaSb及びBiTeから選ばれ
た少なくとも1種である請求項7乃至10のいずれかの
項に記載の製造方法。
11. The method according to claim 11, wherein the metal and the semiconductor are In, Sn, A
l, Se, Te, The process according to any one of claims 7 to 10 is at least one member selected from the GaSb and Bi 2 Te 3.
【請求項12】 該金属及び半導体がAg、Au、Cu
及びGeから選ばれた少なくとも1種である請求項7〜
10のいずれかの項に記載の製造方法。
12. The metal and the semiconductor are made of Ag, Au, Cu.
And at least one selected from Ge and Ge.
10. The production method according to any one of the above items 10.
【請求項13】 Cu、Zn、Au、Pt、Pd、N
i、Fe、Co及びWから選ばれる少なくとも1つの元
素を含む導電性表面を備えた基体の導電性表面に細孔を
有する陽極酸化膜を備え、該細孔が該導電性表面に到達
しているナノ構造体の製造方法であって、 1)Cu、Zn、Au、Pt、Pd、Ni、Fe、Co
及びWから選ばれる少なくとも1つの元素を含む導電性
表面を備えた基体の導電性表面にアルミニウムを含む膜
を形成する工程、及び 2)該アルミニウムを含む膜と対向電極との間に電圧を
印加して陽極酸化し、細孔を有する陽極酸化膜を形成す
る工程を有し、 上記2)の工程において、該陽極酸化電圧出力に電流制
限を施すことを特徴とするナノ構造体の製造方法。
13. Cu, Zn, Au, Pt, Pd, N
an anodic oxide film having pores on a conductive surface of a substrate having a conductive surface containing at least one element selected from i, Fe, Co and W, wherein the pores reach the conductive surface; 1) Cu, Zn, Au, Pt, Pd, Ni, Fe, Co
Forming a film containing aluminum on a conductive surface of a substrate having a conductive surface containing at least one element selected from W and W; and 2) applying a voltage between the film containing aluminum and the counter electrode. A process of forming an anodic oxide film having pores by performing anodic oxidation to form an anodic oxide film having pores, wherein in the step (2), a current is applied to the anodic oxidation voltage output.
【請求項14】 該電流制限値が50mA/cm2より
小さい請求項13記載の製造方法。
14. The method according to claim 13, wherein the current limit value is smaller than 50 mA / cm 2 .
【請求項15】 前記工程2)の後に、細孔内に金属及
び半導体の少なくとも一方を充填する工程を含む請求項
13記載の製造方法。
15. The method according to claim 13, further comprising a step of filling at least one of a metal and a semiconductor into the pores after the step 2).
【請求項16】 前記細孔内に金属及び半導体の少なく
とも一方を充填する工程が、充填されるべき該金属、該
半導体若しくは該金属及び該半導体の熔融体と該細孔を
接触させる工程を含む請求項15記載の製造方法。
16. The step of filling at least one of a metal and a semiconductor in the pores includes a step of bringing the pores into contact with the metal, the semiconductor, or a melt of the metal and the semiconductor to be filled. The method according to claim 15.
【請求項17】 該接触させる工程を加圧下で行なう請
求項16記載の製造方法。
17. The method according to claim 16, wherein the contacting step is performed under pressure.
【請求項18】 該金属及び該半導体がIn、Sn、A
l、Se、Te、GaSb及びBiTeから選ばれ
た少なくとも1種である請求項15乃至17のいずれか
の項に記載の製造方法。
18. The method according to claim 18, wherein the metal and the semiconductor are In, Sn, A
l, Se, Te, The process according to any one of claims 15 to 17 is at least one member selected from the GaSb and Bi 2 Te 3.
【請求項19】 該金属及び半導体がAg、Au、Cu
及びGeから選ばれた少なくとも1種である請求項15
乃至17のいずれかの項に記載の製造方法。
19. The method according to claim 19, wherein the metal and the semiconductor are Ag, Au, Cu
And at least one selected from Ge and Ge.
18. The manufacturing method according to any one of Items 17 to 17.
【請求項20】 導電性表面を備えた基体の該導電性表
面に、細孔を有する陽極酸化膜を具備し、該細孔の底部
と該導電性表面との間に酸化物層を有し、該酸化物層は
該細孔の底部と該導電性表面とを繋ぎ、該導電性表面に
含まれる材料を含む経路を有していることを特徴とする
ナノ構造体。
20. A substrate having a conductive surface, comprising: an anodic oxide film having pores on the conductive surface; and an oxide layer between the bottom of the pores and the conductive surface. A nanostructure, wherein the oxide layer connects a bottom of the pore and the conductive surface and has a path including a material contained in the conductive surface.
【請求項21】 該導電性表面がTi、Zr、Nb、T
a及びMoから選ばれる少なくとも1つの元素を含む請
求項20記載のナノ構造体。
21. The conductive surface is made of Ti, Zr, Nb, T
The nanostructure according to claim 20, comprising at least one element selected from a and Mo.
【請求項22】 該導電性表面が含む元素がTiまたは
Nbである請求項21記載のナノ構造体。
22. The nanostructure according to claim 21, wherein the element contained in the conductive surface is Ti or Nb.
【請求項23】 請求項1に記載の方法によって製造さ
れたことを特徴とするナノ構造体。
23. A nanostructure manufactured by the method according to claim 1.
【請求項24】 請求項13に記載の方法によって製造
されたことを特徴とするナノ構造体。
24. A nanostructure manufactured by the method according to claim 13.
JP27642798A 1997-11-12 1998-09-14 Nanostructure and manufacturing method thereof Expired - Fee Related JP3886082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27642798A JP3886082B2 (en) 1997-11-12 1998-09-14 Nanostructure and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-310682 1997-11-12
JP31068297 1997-11-12
JP27642798A JP3886082B2 (en) 1997-11-12 1998-09-14 Nanostructure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11200090A true JPH11200090A (en) 1999-07-27
JP3886082B2 JP3886082B2 (en) 2007-02-28

Family

ID=26551897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27642798A Expired - Fee Related JP3886082B2 (en) 1997-11-12 1998-09-14 Nanostructure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3886082B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009800A (en) * 1999-04-27 2001-01-16 Canon Inc Nano structure and manufacture thereof
JP2002332578A (en) * 2001-05-10 2002-11-22 Canon Inc Method of manufacturing nano-structure
US6610463B1 (en) 1999-08-30 2003-08-26 Canon Kabushiki Kaisha Method of manufacturing structure having pores
US6650061B1 (en) 1999-07-29 2003-11-18 Sharp Kabushiki Kaisha Electron-source array and manufacturing method thereof as well as driving method for electron-source array
US6737668B2 (en) 2000-07-03 2004-05-18 Canon Kabushiki Kaisha Method of manufacturing structure with pores and structure with pores
US6878634B2 (en) 2002-04-10 2005-04-12 Canon Kabushiki Kaisha Structure having recesses and projections, method of manufacturing structure, and functional device
WO2005040460A1 (en) * 2003-10-24 2005-05-06 Kyoto University Apparatus for producing metal nanotube and method for producing metal nanotube
US6943488B2 (en) 2000-09-20 2005-09-13 Canon Kabushiki Kaisha Structures, electron-emitting devices, image-forming apparatus, and methods of producing them
KR100531466B1 (en) * 1999-12-17 2005-11-28 주식회사 하이닉스반도체 Method for manufacturing multi-interdielectric layer in semiconductor device
US6972146B2 (en) 2002-03-15 2005-12-06 Canon Kabushiki Kaisha Structure having holes and method for producing the same
WO2005115609A1 (en) * 2004-05-31 2005-12-08 Japan Science And Technology Agency Process for producing nanoparticle or nanostructure with use of nanoporous material
EP1643546A2 (en) 2004-10-01 2006-04-05 Canon Kabushiki Kaisha Method for manufacturing a nanostructure
US7126975B2 (en) 2000-03-03 2006-10-24 Canon Kabushiki Kaisha Electron-beam excitation laser
US7167342B2 (en) 2003-04-04 2007-01-23 Canon Kabushiki Kaisha Magnetic recording medium, magnetic recording playback device, and information processing device
US7286324B2 (en) 2003-04-04 2007-10-23 Canon Kabushiki Kaisha Cobalt-platinum or iron-plantinum magnetic material containing 1% to 40% Cu, Ni or B
US7319069B2 (en) 1999-09-22 2008-01-15 Canon Kabushiki Kaisha Structure having pores, device using the same, and manufacturing methods therefor
JP2008041138A (en) * 2006-08-02 2008-02-21 Yamagata Fujitsu Ltd Recording medium and its manufacturing method
KR100817535B1 (en) 2007-01-19 2008-03-27 한양대학교 산학협력단 Semiconductor nanowire, method for manufacturing thereof, and semiconductor device comprising the same
US7501649B2 (en) 2003-01-30 2009-03-10 Fujifilm Corporation Sensor including porous body with metal particles loaded in the pores of the body and measuring apparatus using the same
US7508043B2 (en) 2004-09-13 2009-03-24 Fujifilm Corporation Sensor for analyzing a sample by utilizing localized plasmon resonance
JP2009105098A (en) * 2007-10-19 2009-05-14 Toshiba Corp Magnetic material, antenna device and method of manufacturing magnetic material
JP2009191368A (en) * 2000-04-28 2009-08-27 Sharp Corp Stamping-tool production method, stamping tool, and reflection-preventive film
US7641783B2 (en) 2004-01-16 2010-01-05 Canon Kabushiki Kaisha Plating solution, process for producing a structure with the plating solution, and apparatus employing the plating solution
US20100071932A1 (en) * 2008-09-19 2010-03-25 Li Jong-Lih Nano-hole array in conductor element for improving the contact conductance
JP2010131985A (en) * 2008-11-07 2010-06-17 Canon Inc Optical element molding die, and method of molding optical element
WO2010084613A1 (en) 2009-01-26 2010-07-29 アイランド ジャイアント デベロップメント エルエルピー Method of producing cell culture scaffold
US7771791B2 (en) 2005-09-06 2010-08-10 Canon Kabushiki Kaisha Production process of structured material
KR101001150B1 (en) 2008-04-30 2010-12-15 주식회사 하이닉스반도체 Method for forming nano material
WO2012077675A1 (en) * 2010-12-10 2012-06-14 シャープ株式会社 Polarizing plate, method for producing same, liquid crystal panel provided with polarizing plate, and liquid crystal display device and electronic instrument comprising same
US8226863B2 (en) 2009-01-26 2012-07-24 Empire Technology Development Llc Method for producing three-dimensional product having nanoporous surface
USRE43694E1 (en) 2000-04-28 2012-10-02 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
JP2013536037A (en) * 2010-08-19 2013-09-19 ポステック アカデミー−インダストリー ファンデーション Mask and manufacturing method thereof
WO2014076939A1 (en) * 2012-11-13 2014-05-22 株式会社クラレ Electroluminescent element and method for producing same
WO2014119421A1 (en) * 2013-01-29 2014-08-07 株式会社日立製作所 Nanopillars, method for forming same, and bonded material, battery, device for carbon dioxide gas recovery/retention, and module for electric-power conversion appliance which are obtained using said nanopillars

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676060B (en) * 2019-10-09 2021-03-16 温州大学 Composite conductive carbon thin layer counter electrode and quantum dot sensitized solar cell

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009800A (en) * 1999-04-27 2001-01-16 Canon Inc Nano structure and manufacture thereof
US6650061B1 (en) 1999-07-29 2003-11-18 Sharp Kabushiki Kaisha Electron-source array and manufacturing method thereof as well as driving method for electron-source array
US6610463B1 (en) 1999-08-30 2003-08-26 Canon Kabushiki Kaisha Method of manufacturing structure having pores
US6924023B2 (en) 1999-08-30 2005-08-02 Canon Kabushiki Kaisha Method of manufacturing a structure having pores
US7319069B2 (en) 1999-09-22 2008-01-15 Canon Kabushiki Kaisha Structure having pores, device using the same, and manufacturing methods therefor
KR100531466B1 (en) * 1999-12-17 2005-11-28 주식회사 하이닉스반도체 Method for manufacturing multi-interdielectric layer in semiconductor device
US7126975B2 (en) 2000-03-03 2006-10-24 Canon Kabushiki Kaisha Electron-beam excitation laser
JP2009191368A (en) * 2000-04-28 2009-08-27 Sharp Corp Stamping-tool production method, stamping tool, and reflection-preventive film
USRE43694E1 (en) 2000-04-28 2012-10-02 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
USRE46606E1 (en) 2000-04-28 2017-11-14 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
USRE44830E1 (en) 2000-04-28 2014-04-08 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
US6737668B2 (en) 2000-07-03 2004-05-18 Canon Kabushiki Kaisha Method of manufacturing structure with pores and structure with pores
US6943488B2 (en) 2000-09-20 2005-09-13 Canon Kabushiki Kaisha Structures, electron-emitting devices, image-forming apparatus, and methods of producing them
US7422674B2 (en) 2000-09-20 2008-09-09 Canon Kabushiki Kaisha Method of producing structures by anodizing
JP4708596B2 (en) * 2001-05-10 2011-06-22 キヤノン株式会社 Method for producing nanostructure
JP2002332578A (en) * 2001-05-10 2002-11-22 Canon Inc Method of manufacturing nano-structure
US7214418B2 (en) 2002-03-15 2007-05-08 Canon Kabushiki Kaisha Structure having holes and method for producing the same
US6972146B2 (en) 2002-03-15 2005-12-06 Canon Kabushiki Kaisha Structure having holes and method for producing the same
US7538042B2 (en) 2002-04-10 2009-05-26 Canon Kabushiki Kaisha Method of manufacturing a structure having a projection
US6878634B2 (en) 2002-04-10 2005-04-12 Canon Kabushiki Kaisha Structure having recesses and projections, method of manufacturing structure, and functional device
US7501649B2 (en) 2003-01-30 2009-03-10 Fujifilm Corporation Sensor including porous body with metal particles loaded in the pores of the body and measuring apparatus using the same
US7286324B2 (en) 2003-04-04 2007-10-23 Canon Kabushiki Kaisha Cobalt-platinum or iron-plantinum magnetic material containing 1% to 40% Cu, Ni or B
US7167342B2 (en) 2003-04-04 2007-01-23 Canon Kabushiki Kaisha Magnetic recording medium, magnetic recording playback device, and information processing device
US8007650B2 (en) 2003-10-24 2011-08-30 Yasuhiro Fukunaka Apparatus for manufacturing metal nanotube and process for manufacturing metal nanotube
WO2005040460A1 (en) * 2003-10-24 2005-05-06 Kyoto University Apparatus for producing metal nanotube and method for producing metal nanotube
US7641783B2 (en) 2004-01-16 2010-01-05 Canon Kabushiki Kaisha Plating solution, process for producing a structure with the plating solution, and apparatus employing the plating solution
US7732015B2 (en) 2004-05-31 2010-06-08 Japan Science And Technology Agency Process for producing nanoparticle or nanostructure with use of nanoporous material
WO2005115609A1 (en) * 2004-05-31 2005-12-08 Japan Science And Technology Agency Process for producing nanoparticle or nanostructure with use of nanoporous material
US7508043B2 (en) 2004-09-13 2009-03-24 Fujifilm Corporation Sensor for analyzing a sample by utilizing localized plasmon resonance
EP1643546A2 (en) 2004-10-01 2006-04-05 Canon Kabushiki Kaisha Method for manufacturing a nanostructure
US7771791B2 (en) 2005-09-06 2010-08-10 Canon Kabushiki Kaisha Production process of structured material
JP2008041138A (en) * 2006-08-02 2008-02-21 Yamagata Fujitsu Ltd Recording medium and its manufacturing method
KR100817535B1 (en) 2007-01-19 2008-03-27 한양대학교 산학협력단 Semiconductor nanowire, method for manufacturing thereof, and semiconductor device comprising the same
JP2009105098A (en) * 2007-10-19 2009-05-14 Toshiba Corp Magnetic material, antenna device and method of manufacturing magnetic material
KR101001150B1 (en) 2008-04-30 2010-12-15 주식회사 하이닉스반도체 Method for forming nano material
US20100071932A1 (en) * 2008-09-19 2010-03-25 Li Jong-Lih Nano-hole array in conductor element for improving the contact conductance
US8232475B2 (en) * 2008-09-19 2012-07-31 National Taiwan University Nano-hole array in conductor element for improving the contact conductance
JP2010131985A (en) * 2008-11-07 2010-06-17 Canon Inc Optical element molding die, and method of molding optical element
US8226863B2 (en) 2009-01-26 2012-07-24 Empire Technology Development Llc Method for producing three-dimensional product having nanoporous surface
JP4526597B1 (en) * 2009-01-26 2010-08-18 エンパイア テクノロジー ディベロップメント エルエルシー Method for producing cell culture scaffold
WO2010084613A1 (en) 2009-01-26 2010-07-29 アイランド ジャイアント デベロップメント エルエルピー Method of producing cell culture scaffold
JP2013536037A (en) * 2010-08-19 2013-09-19 ポステック アカデミー−インダストリー ファンデーション Mask and manufacturing method thereof
WO2012077675A1 (en) * 2010-12-10 2012-06-14 シャープ株式会社 Polarizing plate, method for producing same, liquid crystal panel provided with polarizing plate, and liquid crystal display device and electronic instrument comprising same
WO2014076939A1 (en) * 2012-11-13 2014-05-22 株式会社クラレ Electroluminescent element and method for producing same
WO2014119421A1 (en) * 2013-01-29 2014-08-07 株式会社日立製作所 Nanopillars, method for forming same, and bonded material, battery, device for carbon dioxide gas recovery/retention, and module for electric-power conversion appliance which are obtained using said nanopillars
JP2014145105A (en) * 2013-01-29 2014-08-14 Hitachi Ltd Nanopillar and formation method thereof, and bonding material, battery, carbon dioxide recovery/storage device and module for power conversion apparatus using nanopillar

Also Published As

Publication number Publication date
JP3886082B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
JP3886082B2 (en) Nanostructure and manufacturing method thereof
JP3610293B2 (en) Structure having pores and device using the structure having pores
US7214418B2 (en) Structure having holes and method for producing the same
US6914008B2 (en) Structure having pores and its manufacturing method
JP3902883B2 (en) Nanostructure and manufacturing method thereof
US6525461B1 (en) Narrow titanium-containing wire, process for producing narrow titanium-containing wire, structure, and electron-emitting device
JP4146978B2 (en) Manufacturing method of structure having pores, and structure manufactured by the manufacturing method
US7631769B2 (en) Fluid control device and method of manufacturing the same
JP4813925B2 (en) Manufacturing method of fine structure and fine structure
JP3729449B2 (en) Structure and device having pores
JP4708596B2 (en) Method for producing nanostructure
EP0913850B1 (en) Narrow titanium-containing wire, process for producing narrow titanium-containing wire, structure, and electron-emitting device
JP2008223073A (en) Porous nano-structure and manufacturing method therefor
Belov et al. Pulsed electrodeposition of metals into porous anodic alumina
JP4768478B2 (en) Manufacturing method of fine structure and fine structure
JP3899413B2 (en) Nanomaterial fabrication method
Mozalev et al. On-substrate porous-anodic-alumina-assisted gold nanostructure arrays: Meeting the challenges of various sizes and interfaces
JP4136730B2 (en) Structure having pores and method for producing the same
JP2002004087A (en) Method for manufacturing nanostructure and nanostructure
JP2007251028A (en) Superconducting element and its manufacturing method
JP2001207288A (en) Method for electrodeposition into pore and structure
JP2001213700A (en) Nano-structure and its manufacturing method
JP4097224B2 (en) Nanostructure and electron-emitting device
CN114657624A (en) Electrochemical preparation method of metal nanowire array

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060426

A521 Written amendment

Effective date: 20060519

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061115

A61 First payment of annual fees (during grant procedure)

Effective date: 20061120

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20111201

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20121201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees