WO2014076939A1 - Electroluminescent element and method for producing same - Google Patents

Electroluminescent element and method for producing same Download PDF

Info

Publication number
WO2014076939A1
WO2014076939A1 PCT/JP2013/006648 JP2013006648W WO2014076939A1 WO 2014076939 A1 WO2014076939 A1 WO 2014076939A1 JP 2013006648 W JP2013006648 W JP 2013006648W WO 2014076939 A1 WO2014076939 A1 WO 2014076939A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
needle
acicular
conductor
insulator
Prior art date
Application number
PCT/JP2013/006648
Other languages
French (fr)
Japanese (ja)
Inventor
能久 乾
祥平 小林
聖也 木町
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012249295A external-priority patent/JP2014099273A/en
Priority claimed from JP2012249294A external-priority patent/JP2014099272A/en
Priority claimed from JP2013107797A external-priority patent/JP2014116284A/en
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2014076939A1 publication Critical patent/WO2014076939A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape

Definitions

  • the present invention relates to an electroluminescent element and a method for manufacturing the same.
  • An inorganic electroluminescent (hereinafter, abbreviated as “EL”) element is a self-luminous element having features such as a large area and a long lifetime.
  • EL element a thin film type inorganic EL element and a dispersion type inorganic EL element are known.
  • a thin-film inorganic EL element is an element in which a light-transmitting lower electrode layer, a light-emitting body layer, and an upper electrode layer are sequentially stacked on a light-transmitting insulating substrate (FIG. 4 of Patent Document 1). reference).
  • An insulator layer may be provided between the lower electrode layer and the light emitter layer and / or between the light emitter layer and the upper electrode layer.
  • the luminescent layer material a material obtained by adding at least one luminescent center element to the base compound is preferably used.
  • Known parent compounds include II-VI binary compounds such as ZnS, SrS, and CaS, and II-III-VI group ternary compounds such as CaGa 2 S 4 , SrGaS 4 , and BaAl 2 S 4. ing.
  • examples of the luminescent center element include metal elements such as Mn, Cu, Au, and rare earth.
  • Examples of the phosphor layer material include ZnS: Mn that exhibits an orange emission color, ZnS: Tb that exhibits a green emission color, and BaAl 2 S 4 : Eu that exhibits a blue emission color (paragraph of Patent Document 1). 0004).
  • a dispersion-type inorganic EL element has a phosphor layer in which phosphor particles are dispersed in a binder made of a high dielectric resin such as a fluorine-based resin or a cyano group-containing resin, and a pair of electrodes that sandwich the phosphor layer. It is an element provided with a board (refer claim 7 of patent document 2).
  • the dispersion-type inorganic EL device further includes a dielectric layer in which a dielectric material such as barium titanate is dispersed in a high dielectric resin in order to prevent dielectric breakdown.
  • Patent Document 2 discloses an EL phosphor powder in which zinc sulfide (ZnS) is used as a base compound and an activator such as Cu and a coactivator such as Cl are added, and an EL element using the same. (Claim 1).
  • ZnS zinc sulfide
  • Cl coactivator
  • Non-Patent Document 1 As the acicular conductor is perpendicular to the electrode surface, the electric field is more likely to be concentrated, so that high emission luminance is easily obtained.
  • the acicular conductor oriented perpendicular to the electrode surface increases, electric field concentration is likely to occur, and the light emission luminance is improved (Patent Document 2). Paragraph 0005).
  • JP 2008-251336 A Patent No. 4928329
  • acicular conductors such as Cu in the phosphor particles are deposited in multiple directions (random directions) in the crystal plane, the proportion of acicular conductors oriented perpendicular to the electrode surface is small, The electric field is difficult to concentrate.
  • the organic EL element can sufficiently improve the light emission luminance and the light emission efficiency.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an EL element capable of improving both light emission luminance and light emission efficiency without applying a high electric field, and a method for manufacturing the same. It is.
  • the electroluminescence (EL) element of the present invention is An electroluminescent device comprising a first electrode layer, a light emitter layer, and a second electrode layer having translucency in order, further, Between the first electrode layer and the phosphor layer, An insulator composed of a pore structure having a plurality of needle-like pores that are open in the surface on the light emitter layer side and extend in a crossing direction with respect to the surface on the light emitter layer side; A needle-like conductor layer including a plurality of needle-like conductors formed inside the hole, It is an electroluminescent element whose arithmetic mean roughness Ra of the surface at the side of the said light-emitting body layer is 100 nm or less.
  • the manufacturing method of the electroluminescence (EL) element of the present invention is as follows: A first electrode layer, a light emitter layer, and a second electrode layer having translucency are sequentially provided, further, Between the first electrode layer and the phosphor layer, An insulator composed of a pore structure having a plurality of needle-like pores that are open in the surface on the light emitter layer side and extend in a crossing direction with respect to the surface on the light emitter layer side; A method of manufacturing an electroluminescent element comprising a needle-shaped conductor layer including a plurality of needle-shaped conductors formed inside a hole, Preparing the insulator comprising a pore structure having the plurality of acicular pores (A); Forming the plurality of needle-shaped conductors inside the plurality of needle-shaped pores of the insulator to obtain the needle-shaped conductor layer (B); And (C) reducing the arithmetic average roughness Ra of the surface of the acicular conductor layer.
  • the manufacturing method of the electroluminescence (EL) element of the present invention is as follows: After step (C) A step (D) of forming an insulator layer serving as a barrier layer for preventing the acicular conductor component from diffusing into the light emitter layer; A step (E) of performing a heat treatment at a temperature equal to or higher than a maximum temperature of the manufacturing process of the electroluminescent element after the step (D); It is preferable to have a step (F) of reducing the arithmetic average roughness Ra of the surface of the insulator layer after the step (E).
  • needle refers to a shape having a length / diameter of 2 or more.
  • the arithmetic average roughness Ra of the surface is measured by a method based on JIS B 0601 (2001).
  • an EL element capable of improving both light emission luminance and light emission efficiency without applying a high electric field, and a method for manufacturing the same.
  • FIG. 1 is an overall schematic cross-sectional view of an EL element according to an embodiment of the present invention. It is a perspective view which shows the manufacturing process of a pore structure. It is a perspective view which shows the manufacturing process of a pore structure. The left figure shows the EL element when the surface polishing of the acicular conductor layer is not performed, and the right figure is a schematic cross-sectional view showing the state of the EL element when the surface polishing of the acicular conductor layer is performed. It is.
  • FIG. 6 is an explanatory diagram (schematic cross-sectional view) for explaining the effect of performing steps (D) to (F).
  • FIG. 6 is an explanatory diagram (schematic cross-sectional view) for explaining the effect of performing steps (D) to (F).
  • FIG. 2 is an optical microscope image of a needle-shaped conductor layer in Test Example 1 and Comparative Example 1.
  • 2 is an optical microscope image showing a state of light emission of inorganic EL elements obtained in Test Example 1 and Comparative Example 1.
  • FIG. 2 is a cross-sectional TEM image of an inorganic EL element obtained in Test Example 1.
  • 3 is a surface SEM image (left figure) of the inorganic EL element obtained in Test Example 1 and a graph (right figure) showing the surface level difference measurement results. It is the graph (right figure) which shows the surface SEM image (left figure) and surface level
  • It is an example of the optical microscope image of a commercially available Al plate. It is a graph which shows the example of a measurement of Ra of the vertical direction and Ra of a horizontal direction of a to-be-anodized metal body.
  • FIG. 1 is an overall schematic cross-sectional view of the EL element of the present embodiment.
  • FIG. 5 is a diagram illustrating a design change example. 1 and 5, the same constituent elements are denoted by the same reference numerals.
  • the EL element 1 of the present embodiment includes a lower electrode layer (first electrode layer) 10, a light emitter layer 30, and a translucent upper electrode layer (second electrode layer) 40. are sequentially provided.
  • the EL element 1 further includes a plurality of needle-like conductors 22 extending between the lower electrode layer 10 and the light emitter layer 30 in a direction intersecting the surface 30S of the light emitter layer 30 on the lower electrode layer 10 side.
  • the needle-shaped conductor layer 20 including an insulator that insulates between the plurality of needle-shaped conductors 22 is provided.
  • the insulator forming the acicular conductor layer 20 is open on the surface on the light emitter layer 30 side, and has a plurality of acicular pores 21P extending in the intersecting direction with respect to the surface on the light emitter layer 30 side. It is the pore structure 21 which has. A plurality of needle-like conductors 22 are formed inside the plurality of needle-like pores 21P.
  • the pore structure 21 is a metal oxide body obtained by anodizing a part of the anodized metal body, and the lower electrode layer 10 is the remaining portion of the anodized metal body remaining after anodization. .
  • the needle-like conductor 22 when a voltage is applied to the needle-like conductor layer 20, the needle-like conductor 22 has a high dielectric constant, so that the tip of the needle-like conductor 22 on the light emitter layer 30 side.
  • the charge density becomes higher.
  • the tip of the needle-like conductor 22 means “tip of the needle-like conductor 22 on the light emitter layer 30 side”.
  • the closer to the electric charge, the higher the electric lines of force, and the density of the electric lines of force is proportional to the electric field strength. Therefore, the vicinity of the tip of the acicular conductor 22 has a high electric field strength. That is, electric field concentration occurs near the tip of the needle-like conductor 22.
  • the cross-sectional areas of the acicular pores 21P and the acicular conductor 22 are approximately proportional to the square of the pore diameter. Further, since the luminance is proportional to the square of the concentrated electric field strength, it is proportional to the fourth power of the pore length and inversely proportional to the fourth power of the pore diameter. That is, as the pore length is longer and the pore diameter is smaller, the concentrated electric field strength tends to increase and the emission intensity tends to increase. In addition, when the cross-sectional shape of the acicular pore 21P and the acicular conductor 22 deviates from a perfect circle, the diameter shall be defined by the diameter of a perfect circle which has an equivalent cross-sectional area.
  • the composition of the acicular conductor 22 is not particularly limited, and the higher the conductivity, the higher the concentrated electric field strength, which is preferable.
  • the acicular conductor 22 preferably contains at least one metal selected from the group consisting of Ag, Au, Cd, Co, Cu, Fe, Ni, Sn, and Zn.
  • the acicular conductor 22 preferably contains Cu and / or Ni.
  • the acicular conductor 22 preferably contains Au.
  • needle refers to a shape having a length / diameter of 2 or more.
  • the length of the acicular conductor in the phosphor particles used in the conventional dispersion-type inorganic EL element is usually in the range of 1 to 20 ⁇ m, although it depends on the particle diameter, and the diameter of the acicular conductor is usually 0.00. 01 to 0.5 ⁇ m.
  • the same length and diameter are preferable for the needle-like conductor 22 in the present embodiment. Since the electric field concentration effect is enhanced, the length of the needle-like conductor 22 is preferably 1 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • the diameter of the needle-like conductor 22 is preferably 0.5 ⁇ m or less, more preferably 0.1 ⁇ m or less, and particularly preferably 0.05 ⁇ m or less. Considering the ease of formation, the diameter of the needle-like conductor 22 is preferably 0.02 ⁇ m or more.
  • the length / diameter of the acicular conductor 22 is preferably 100 or more because the electric field concentration effect is enhanced.
  • the plurality of acicular conductors 22 are formed inside the plurality of acicular pores 21P.
  • the length of the acicular pore 21P is preferably 1 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • the diameter of the acicular pores 21P is preferably 0.5 ⁇ m or less, more preferably 0.1 ⁇ m or less, and particularly preferably 0.05 ⁇ m or less.
  • the diameter of the acicular pores 21P is preferably 0.02 ⁇ m or more.
  • the length / diameter of the acicular pores 21P is preferably 100 or more.
  • the needle-shaped conductor 22 is completely filled in all the needle-shaped pores 21P, and the tip of the needle-shaped conductor 22 and the light emitting layer 30 are shown in close contact with each other.
  • the filling rate of the acicular conductors 22 in the individual acicular pores 21P may not be 100%. That is, the tip of the needle-like conductor 22 and the light emitting layer 30 do not need to be in close contact with each other.
  • the tip of the needle-like conductor 22 and the light emitting layer 30 are closer. Considering this point, it is preferable that the filling rate of the acicular conductors 22 in each acicular pore 21P is higher.
  • the filling rate of the acicular conductor 22 in each acicular pore 21P is defined by the length of the acicular conductor 22 / the length of the acicular pore 21P ⁇ 100 (%). Shall.
  • the filling rate of the acicular conductor 22 inside each acicular pore 21P is preferably 70 to 100%.
  • the filling rate of the acicular conductors 22 inside each acicular pore 21P may be some variation in the filling rate of the acicular conductors 22 inside each acicular pore 21P, but in this case, the separation distance between the acicular pores 21P and the phosphor layer 30 varies, There will be variations in the electric field concentration effect. Considering the in-plane uniformity of light emission, it is preferable that the variation in the filling rate is small.
  • the length of the needle-shaped pore 21P is determined in consideration of a preferable length of the needle-shaped conductor 22 and a filling rate of the needle-shaped conductor 22 inside the needle-shaped pore 21P.
  • the distance between the adjacent needle-shaped conductors 22 becomes too short, the lines of electric force concentrated on the respective needle-shaped conductors 22 become low in density, which may reduce the electric field strength.
  • the distance between the needle-like conductors 22 adjacent to each other is 0.02 ⁇ m or more.
  • the number density of the acicular conductors 22 corresponds to the number density of the acicular pores 21P.
  • the number density of the acicular pores 21P and the acicular conductors 22 is preferably 1 piece / ⁇ m 2 or more.
  • the number density of the acicular pores 21P and the acicular conductors 22 is preferably 400 pieces / ⁇ m 2 or less.
  • the number density of the acicular pores 21P and the acicular conductors 22 is more preferably 10 to 300 / ⁇ m 2 .
  • the phosphor layer 30 is a layer that emits light when excited in an electric field.
  • the thickness of the luminescent layer 30 is preferably thinner from the viewpoint of concentrating the electric field near the tip of the acicular conductor 22, and specifically, it is preferably in the range of 0.05 to 2 ⁇ m.
  • the material of the light emitter layer 30 is not particularly limited, and a known light emitter material for an EL element can be used.
  • the EL element 1 may be an array in which a plurality of types of light emitter layers 30 that emit light of different wavelengths in a plan view.
  • ZnS Mn, ZnS: Tb, F, ZnS: Pr, F, ZnS: Ag, Cl, ZnS: Cu, Cl, Y 2 O 3 : Eu, ZnSiO 4 : Eu, SrS : Ce, BaAl 2 S 4 : Eu, BaMgAl 10 O 17 : Inorganic compounds such as Eu, MgWO 4 , CaWO 4 , RbVO 3 , and CsVO 3 , or organic compounds such as tris (8-quinolinolato) aluminum (Alq3) Can be mentioned. These can use 1 type or multiple types.
  • an insulator layer (lower insulator layer) 50 between the needle-like conductor layer 20 and the light emitter layer 30.
  • the insulator layer 50 may have a single layer structure or a laminated structure.
  • the insulator layer 50 functions as a barrier layer, and it is possible to prevent the components of the needle-like conductor 22 formed inside the needle-like pores 21P from diffusing into the light-emitting body layer 30 and inactivating light emission.
  • Examples of the material for the insulator layer 50 include oxides such as SiO 2 , Ta 2 O 5 , TiO 2 , BaTiO 3 , and Al 2 O 3 , nitrides such as Si 3 N 4 , AlN, and TiN, SiON, and AlON. Examples thereof include oxynitrides and combinations thereof.
  • the distance between the acicular conductor 22 and the light emitter layer 30 is preferably 1 ⁇ m or less.
  • the thickness of the insulator layer 50 is preferably thinner from the viewpoint of concentrating the electric field on the acicular conductor 22, and specifically, it is preferably 0.2 ⁇ m or less. If the thickness of the insulator layer 50 is too small, the function as a barrier layer cannot be obtained effectively.
  • the film thickness of the insulator layer 50 is preferably 0.05 ⁇ m or more.
  • the conductor layer 50 is provided between the needle-like conductor layer 20 and the light emitter layer 30, but the conductor layer is provided between the needle-like conductor layer 20 and the light emitter layer 30. Not provided.
  • the conductor layer substantially functions as a lower electrode layer, and an electric field concentration effect by the plurality of acicular conductors 22 is obtained. Disappear.
  • an insulator layer (upper insulator layer) 60 between the light emitter layer 30 and the upper electrode layer 40.
  • the insulator layer 60 may have a single layer structure or a laminated structure.
  • the insulator layer 60 functions as a cap layer, suppresses desorption of materials on the surface of the light emitter layer 30, makes the composition of the light emitter layer 30 uniform, and improves the light emission characteristics.
  • Examples of the material of the insulator layer 60 include oxides such as SiO 2 , Ta 2 O 5 , TiO 2 , BaTiO 3 , and Al 2 O 3 , nitrides such as Si 3 N 4 , AlN, and TiN, SiON, and Examples thereof include oxynitrides such as AlON and combinations thereof.
  • the thickness of the insulator layer 60 is preferably thinner from the viewpoint of concentrating the electric field on the acicular conductor 22, and specifically, it is preferably 0.2 ⁇ m or less. If the thickness of the insulator layer 60 is too small, the function as a cap layer cannot be obtained effectively.
  • the thickness of the insulator layer 60 is preferably 0.05 ⁇ m or more.
  • both the insulator layer 50 functioning as a barrier layer and the insulator layer 60 functioning as a cap layer are provided. However, only one of these insulator layers may be provided.
  • the material of the upper electrode layer 40 may be any conductive material having translucency, such as ITO (indium tin oxide), FTO (fluorine-added tin oxide), SnO 2 , PEDOT (polyethylenedioxythiophene), and CNT ( Carbon nanotubes) are preferably used.
  • ITO indium tin oxide
  • FTO fluorine-added tin oxide
  • SnO 2 SnO 2
  • PEDOT polyethylenedioxythiophene
  • CNT Carbon nanotubes
  • the film formation method of the light emitting layer 30, the upper electrode layer 40, and the insulator layers 50 and 60 is not particularly limited, and a known method can be adopted.
  • a film forming method a sputtering method or a physical vapor deposition method under vacuum such as an electron beam evaporation method, and a solution or dispersion containing a component or precursor of a layer to be formed into a film, a spin coating method, Examples thereof include a liquid phase method such as a coating method applied by a dip coating method, a bar coating method, a spray coating method, or the like.
  • the light emitter layer 30 and the insulator layers 50 and 60 may include a non-conductive polymer as a binder.
  • the EL element 1 of the present embodiment includes a plurality of needle-like conductors extending in a direction intersecting the surface 30S of the light emitter layer 30 on the lower electrode layer 10 side between the lower electrode layer 10 and the light emitter layer 30. 22 and an acicular conductor layer 20 including an insulator (in this embodiment, a pore structure 21) that insulates the acicular conductors 22 from each other.
  • the conventional thin-film inorganic EL elements described in Patent Document 1 and the like have attempted to improve the light emission characteristics such as light emission luminance and light emission efficiency.
  • a high electric field is required, and the light emission efficiency tends to decrease.
  • a concentrated electric field is generated in the vicinity of the tip of the needle-like conductor 22, so that high emission luminance can be obtained even with a relatively low electric field.
  • the conventional dispersion-type inorganic EL element described in Patent Document 2 and the like generates a high electric field in the vicinity of the tip of the acicular conductor, High luminance can be obtained with a relatively low electric field.
  • the electric power consumed by the binder contained in the light emitting layer is large, and the light emission efficiency tends to decrease.
  • the acicular conductors in the phosphor particles are deposited in multiple directions (random directions) in the crystal plane, the proportion of acicular conductors oriented perpendicular to the electrode surface is small and the electric field is concentrated. Hard to do.
  • the needle-like conductor 22 can be easily oriented in the voltage application direction or a direction close thereto, and electric field concentration can be effectively caused.
  • the surface roughness of the element When the surface roughness of the element is large, the in-plane electric field stimulation is not uniform, and the light emission characteristics such as in-plane uniformity of light emission, light emission luminance, and light emission efficiency tend to decrease. It is preferable that the surface roughness of the element is smaller because light emission characteristics such as in-plane uniformity of light emission, light emission luminance, and light emission efficiency are improved.
  • the “surface roughness of the device” is defined by the arithmetic average roughness Ra of the device surface on the upper electrode layer 40 side. By devising the manufacturing method, the arithmetic average roughness Ra of the element surface can be reduced.
  • the EL element 1 of the present embodiment is manufactured by a manufacturing method described later, and the arithmetic average roughness Ra of the element surface on the upper electrode layer 40 side is 100 nm or less, 70 nm or less, or 10 nm or less.
  • the manufacturing method described later it is possible to reduce variation in the filling rate of the plurality of needle-shaped conductors 22 inside the plurality of needle-shaped pores 21P. With these functions and effects, light emission characteristics such as in-plane uniformity of light emission, light emission luminance, and light emission efficiency can be enhanced.
  • the EL element 1 that can improve both the light emission luminance and the light emission efficiency without applying a high electric field due to the combined effects of the above.
  • FIG. 3 shows the EL element (comparative example) when the surface roughness of the acicular conductor layer is not reduced, and the right figure of FIG. 3 reduces the surface roughness of the acicular conductor layer.
  • FIG. 3 shows the mode of the EL element (EL element of this embodiment) at the time of doing.
  • 4A and 4B are explanatory views (schematic cross-sectional views) for explaining the effect of performing the steps (D) to (F).
  • an insulator composed of a pore structure 21 having a plurality of needle-like pores 21P is prepared.
  • FIGS. 2A to 2B the manufacturing method and structure of the pore structure 21 will be described.
  • 2A and 2B are schematic perspective views.
  • an anodized metal body M having an anodized metal such as Al as a main component is prepared.
  • the pore structure 21 is a metal oxide body obtained by anodizing a part of the anodized metal body, and the lower electrode layer 10 is the remainder of the anodized metal body remaining after anodization. .
  • the main component of the metal to be anodized is not particularly limited, and examples thereof include Al, Ti, Ta, Hf, Zr, Si, In, and Zn.
  • the anodized metal body may contain one or more of these.
  • As the main component of the anodized metal body Al or the like is particularly preferable.
  • the “main component of the metal to be anodized” is defined as a component of 99% by mass or more.
  • the shape of the anodized metal body M is not limited, and examples thereof include a plate shape. Further, it may be used in a form with a support such as a layer in which the metal anodized M is formed on the support.
  • a pore structure 21 made of a metal oxide is generated.
  • a pore structure 21 having Al 2 O 3 as a main component is generated.
  • the pore structure 21 is a metal oxide layer, and the generated pore structure 21 is thin with respect to the remainder of the anodized metal body M.
  • the structure 21 is greatly illustrated.
  • Anodizing is, for example, using an anodized metal body M as an anode, carbon or aluminum as a cathode (counter electrode), immersing them in an anodizing electrolyte, and applying a voltage between the anode and the cathode.
  • the electrolytic solution is not limited, and an acidic electrolytic solution containing one or more acids such as sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, and amidosulfonic acid is preferably used.
  • an oxidation reaction proceeds from the surface (upper surface in the figure) in a direction substantially perpendicular to this surface, and a metal oxide body is generated.
  • the metal oxide body generated by anodization has a structure in which a plurality of substantially regular hexagonal columnar bodies 21C are arranged adjacent to each other without a gap. Needle-like pores 21P extending in the depth direction from the surface are opened at substantially the center of each columnar body 21C. Between the bottom surface of the acicular pore 21P and the bottom surface of the metal oxide body, a barrier layer 21B without the acicular pore 21P is generated.
  • the needle-like pores 21P are opened in a direction substantially perpendicular to the surface of the anodized metal body M, but may be opened in a slightly oblique direction.
  • the remaining portion of the anodized metal body M remaining after the anodic oxidation becomes the lower electrode layer 10.
  • the electric field concentration becomes more effective as the extending direction of the needle-like conductor 22 is closer to the voltage application direction.
  • the pore structure 21 in which a plurality of needle-like pores 21P extending in a direction parallel to or close to the voltage application direction is regularly arrayed can be formed by a simple process.
  • the anodizing method it is easy to control the size (length and diameter) and number density of the needle-shaped pores 21P, and it is easy to increase the area.
  • the anodizing method is a low cost method. *
  • the remainder of the anodized metal body M remaining after the anodic oxidation can be made the lower electrode layer 10. Therefore, the lower electrode layer 10 and the acicular conductor layer 20 can be integrally formed by the same process. In this method, since the lower electrode layer 10 and the acicular conductor layer 20 are generated from one anodized metal body M, their adhesion is high and preferable.
  • the composition of the lower electrode layer 10 is the same as that of the used anodized metal body M.
  • the remaining portion of the metal body M to be anodized remaining after the anodic oxidation is the lower electrode layer 10, but all of the metal body M to be anodized may be anodized. Further, as shown in the EL element 2 in FIG. 5, at least part of the anodized metal body M is anodized, and if there is, the remaining part of the anodized metal body M and the barrier layer 21B of the metal oxide body are removed. A plurality of needle-like pores 21P may be used as through holes. In this case, since the barrier layer 21B is removed, a higher electric field concentration effect is obtained, which is preferable.
  • the remainder of the anodized metal body M and the barrier layer 21B can be physically removed by cutting or the like. Further, the remainder of the anodized metal body M and the barrier layer 21B can be removed by immersing in an acidic liquid such as phosphoric acid.
  • the lower electrode layer 10 may be a conductive substrate or a conductor film.
  • a conductor film such as an Au film can be formed on the pore structure from which the barrier layer has been removed.
  • an insulating base material such as an alumina base material and a pore structure with a conductor film are bonded to each other through an adhesive component such as a silver paste and heat-treated to adhere them. Can do.
  • the step (A) it is preferable to prepare a metal oxide body obtained by anodizing at least a part of an anodized metal body having an arithmetic average roughness Ra of 200 nm or less as the insulator. .
  • the emission center is activated by heat treatment, and the higher the temperature, the more the emission center is activated and the emission performance tends to be improved. Due to the difference in thermal expansion coefficient between the lower electrode layer 10 and the acicular conductor layer 20 during the heat treatment for activating the luminescent center of the luminescent layer 30, stress is generated between them.
  • anodized metal body M such as Al is a rolled body, and has a large number of stripes (rolling stripes) extending in the rolling direction (see FIG. 10).
  • stress tends to concentrate in the crossing direction with respect to the rolling direction, so that there is a possibility that cracks may occur in the needle-like conductor layer 20.
  • the inventor suppresses stress applied in a specific direction in a metal oxide body obtained by anodization by using an anodized metal body M having an arithmetic average roughness Ra of 200 nm or less on the surface before anodization. And found that the generation of cracks can be suppressed.
  • the device withstand voltage can be improved in the acicular conductor layer 20 during the heat treatment when activating the luminescent center of the luminescent layer 30.
  • Ra in the direction parallel to the rolling direction (longitudinal direction) and the direction perpendicular to the rolling direction (transverse direction) is 200 nm or less.
  • the Ra in the horizontal direction may be set to 200 nm or less.
  • the Ra in both the direction parallel to the rolling direction (longitudinal direction) and the direction perpendicular to the rolling direction (lateral direction) is usually more than 200 nm. Therefore, it is preferable to perform anodic oxidation after polishing the surface of the commercially available anodized metal body M and setting the Ra in either the vertical direction or the horizontal direction to 200 nm or less.
  • Surface polishing can be performed by a known method. For example, chemical polishing in which the anodized metal body M such as Al is immersed in an acid solution containing phosphoric acid, nitric acid, or a combination thereof is preferable.
  • FIG. 10 An example of an optical micrograph of a commercially available Al plate is shown in FIG. This figure shows a number of rolling rebars and stress directions.
  • the direction of stress in FIG. 10 is schematic, and the actual direction of stress is a crossing direction such as a direction perpendicular to the direction of rolling bars.
  • FIG. 11 shows an example of measurement of Ra in the vertical direction and Ra in the horizontal direction for a commercially available Al plate and its surface polished product.
  • the data on the upper right with the largest Ra is data without surface polishing, and the other two data are data with surface polishing.
  • the present inventor has also found that the light emission luminance of the EL element 1 is improved by using the anodized metal body M having an arithmetic average roughness Ra of 200 nm or less before anodic oxidation. This is considered to be because the surface roughness of the acicular conductor layer 20 is reduced, and the in-plane electric field stimulation becomes uniform.
  • step (A) as the insulator, a metal oxide body obtained by anodizing at least a part of an anodized metal body having a purity of the main component metal element of 99.9% by mass (3N) or more Is preferably prepared.
  • the purity of the main component metal element of the metal to be anodized is particularly preferably 99.99% by mass (4N) or more.
  • void refers to an unnecessary void different from the acicular pores.
  • the metal oxide body obtained by anodization has voids and the like.
  • the occurrence of defects is suppressed, and the acicular pores 21P can be grown in a direction substantially perpendicular to the surface of the original anodized metal body M. As a result, light emission luminance and light emission efficiency can be increased.
  • a plurality of needle-like conductors 22 are formed inside the plurality of needle-like pores 21 ⁇ / b> P of the pore structure 21 to obtain the needle-like conductor layer 20.
  • the method for forming the plurality of needle-shaped conductors 22 inside the plurality of needle-shaped pores 21P is not particularly limited, and for example, electrolytic deposition such as electrolytic plating using the lower electrode layer 10 as an electrode is preferable.
  • the arithmetic average roughness Ra of the surface of the acicular conductor layer 20 is reduced.
  • the method for reducing the surface roughness of the acicular conductor layer 20 is not particularly limited, and surface polishing or the like is preferable.
  • the arithmetic average roughness Ra of the surface of the acicular conductor layer 20 obtained after the formation of the plural acicular conductors 22 is usually more than 10 nm. It is preferable that the arithmetic average roughness Ra of the surface of the acicular conductor layer 20 is 10 nm or less by surface polishing or the like.
  • the surface roughness of the acicular conductor layer 20 is reduced by surface polishing or the like, when there is variation in the filling rate of the plural acicular conductors 22 inside the plural acicular pores 21P, a plurality of acicular shapes
  • the filling rate of the plurality of needle-like conductors 22 inside the pores 21P can be increased as a whole, and the variation in the filling rate of the plurality of needle-like conductors 22 inside the plurality of needle-like pores 21P can be reduced.
  • the filling rate of the plurality of needle-like conductors 22 inside the plurality of needle-like pores 21P is set to 100. % Or close to it.
  • the surface roughness is reduced, and preferably the surface roughness of the element finally obtained can be reduced by setting the arithmetic average roughness Ra of the surface to 10 nm or less.
  • the arithmetic average roughness Ra of the surface of the finally obtained device can be 100 nm or less, or 70 nm or less.
  • the left figure of FIG. 3 shows the EL element when the surface roughness of the acicular conductor layer 20 is not reduced, and the right figure of FIG. 3 shows the case where the surface roughness of the acicular conductor layer 20 is reduced. It is a schematic cross section which shows the mode of this EL element.
  • an insulator layer 50 serving as a barrier layer for preventing the components of the acicular conductor 22 from diffusing into the light emitter layer 30 is formed (step (D)).
  • heat treatment is performed at a temperature equal to or higher than the maximum temperature of the EL element manufacturing process after step (D) (step (E)).
  • the arithmetic average roughness Ra of the surface of the insulator layer 50 after the step (E) is reduced (step (F)).
  • each upper layer of the acicular conductor layer 20 has a circular arc-shaped convex portion in cross-sectional view derived from the convex portion of the acicular conductor layer 20 described above,
  • the surface of the convex portion of each upper layer has an arc shape that spreads at the same angle in a sectional view, And as it goes to the upper layer, the radius of the circular arc in cross section of the surface of the convex portion increases, so that the width and height of the convex portion increase and the surface unevenness increases as it goes to the upper layer (test example described later) 1, see FIG. 8A).
  • the needle (30) is formed by performing a heat treatment (E) at a temperature equal to or higher than the maximum temperature of the subsequent EL element manufacturing process. Protrusion of the needle-like conductor 22 from a part of the needle-like pores 21P of the needle-like conductor layer 20 can be forced. Thereafter, when the step (F) of reducing the arithmetic average roughness Ra of the surface of the insulator layer 50 after the step (E) is performed, as shown in FIG. 4B, in the subsequent high-temperature process, the acicular conductor layer is again formed.
  • the protrusion of the needle-like conductor 22 from some of the needle-like pores 21P of 20 does not occur, and the flatness of the surface can be maintained.
  • the method for reducing the surface roughness of the insulator layer 50 is not particularly limited, and an etching process such as a reverse sputtering process is preferable.
  • “reverse sputtering treatment” means that plasma is generated on the substrate side by reversing the bias voltage applied to the substrate and the evaporation source during sputtering, and the material on the substrate surface is evaporated by ion collision in the plasma. It is a process to make. In this process, since ion collision is likely to occur in a relatively convex portion, it preferentially evaporates and the substrate becomes flat.
  • the arithmetic average roughness Ra of the surface of the insulating layer 50 after the step (E) is more than 10 nm
  • the arithmetic average roughness Ra of the surface of the insulating layer 50 may be 10 nm or less in the step (F). preferable.
  • the arithmetic average roughness Ra of the surface of the finally obtained device can be made 100 nm or less, 70 nm or less, or 10 nm or less.
  • the surface roughness of the finally obtained device can be reduced, improving the light emission characteristics such as in-plane uniformity of light emission, light emission luminance, and light emission efficiency.
  • the EL element 1 can be provided.
  • the insulator layer 50 serving as a barrier layer prevents an electric field from being applied to the light emitter layer 30, the components of the needle-like conductor 22 formed inside the needle-like pores 21P are added to the light emitter layer 30.
  • the thinner one is preferable as long as it is possible to prevent diffusion and inactivation of light emission.
  • the insulator layer 50 can be made thinner than that at the time of film formation, which is preferable.
  • the EL element 1 is manufactured by forming the upper electrode layer 40 after forming the insulator layer 60 which is preferably a cap layer by a known method.
  • the pore structure 21 is made of an anodized metal body.
  • the present invention is not limited to such an embodiment, and the pore structure 21 opens on the surface of the light emitter layer 30 side. What is necessary is just to have the some acicular pore 21P extended in the crossing direction with respect to the surface at the side of the light-emitting body layer 30.
  • FIG. As the pore structure 21 other than the anodized metal body, a pore structure such as mesoporous silica described in Non-Patent Document 2, etc., a pore structure obtained by utilizing the self-organization of a polymer, And a pore structure obtained by utilizing etching using a lithography technique.
  • the plurality of needle-shaped conductors 22 are After the provision, an insulator may be provided so as to embed the plurality of needle-like conductors 22.
  • the acicular conductor 22 include those obtained by growing acicular crystals of metal such as Ag and Cu or carbon nanotubes from the surface of the lower electrode layer 10.
  • the insulator that embeds the needle-like conductor 22 include a ceramic body and a polymer.
  • the insulator embedding the acicular conductor 22 can be formed by a known method such as a wet coating method or a vacuum deposition method.
  • the surface roughness is reduced by surface polishing or the like, so that a plurality of needles inside the plurality of needle-like pores 21P.
  • the variation in the filling rate of the conductors 22 can be reduced, and the surface roughness of the element finally obtained can be reduced.
  • the EL element 1 with improved light emission characteristics such as in-plane uniformity of light emission, light emission luminance, and light emission efficiency.
  • the needle-like conductor layer 20 is formed, the insulator layer 50 is formed as a barrier layer, and the temperature is equal to or higher than the maximum temperature of the EL element manufacturing process after this step.
  • the surface roughness of the finally obtained element can be reduced by reducing the surface roughness of the insulator layer 50 by etching or the like.
  • This method also provides an effect that the insulator layer 50 serving as a barrier layer can be made thinner than that during film formation.
  • the present invention can be applied to both inorganic EL elements and organic EL elements, and can be preferably applied to inorganic EL elements.
  • Example 1 A 100 ⁇ 100 mm aluminum plate with a purity of 99.99% (4N) and a thickness of 3 mm manufactured by Nippon Light Metal Co., Ltd. electropolished with a perchloric acid and ethanol mixed solution was subjected to anodization treatment under the following conditions, An alumina layer having acicular pores was formed. The arithmetic average roughness Ra of the aluminum plate was 113 nm as a result of measurement with a contact-type step gauge (Veeco, DEKTAK150).
  • the surface and the cross section of the obtained alumina layer were observed using a scanning electron microscope (SEM, “S-4800” manufactured by Hitachi, Ltd.).
  • SEM scanning electron microscope
  • the average pore diameter was determined from the pore area of 100 pores.
  • the pore density was determined from the number of pores in the same surface SEM image.
  • the average pore length was determined from the pore length of 100 pores.
  • the obtained alumina layer had a plurality of needle-like pores opened almost regularly, and had an average pore diameter of 0.02 ⁇ m, an average pore length of 8 ⁇ m, and an average pore density of 300 / ⁇ m 2 .
  • Ni was electrolytically deposited inside the plurality of needle-shaped pores of the alumina layer under the following conditions to form a plurality of needle-shaped conductors.
  • Electrolytic bath 0.3M nickel sulfate hexahydrate, 0.1M ammonium sulfate, and 0.5M boric acid mixed solution
  • Bath temperature 22-25 ° C ⁇ PH: 4.0 to 4.5 ⁇
  • the filling rate of the acicular conductor inside the acicular pores was 70 to 100%.
  • surface polishing is performed with a buffing device (Malto, Dialap, ML-150P), and the non-sealed portion remaining on the upper portion of the acicular pores during the electrolytic deposition of Ni Was removed.
  • Surface polishing was performed in two steps. Using a water-resistant abrasive paper with a large particle size (Sankyo Rikagaku Co., Ltd., average particle size 7.9 ⁇ m, No. 2000) and a liquid abrasive (Malto Co., Ltd., diamond slurry, average particle size 0.5 ⁇ m) Conducted for 30 minutes.
  • a second polishing was carried out for 30 minutes using a polishing cloth having a small particle size (manufactured by Marto, hard polishing cloth MM414) and a liquid abrasive (manufactured by Fujimi, colloidal silica, average particle diameter: 70 nm).
  • a polishing cloth having a small particle size manufactured by Marto, hard polishing cloth MM4114
  • a liquid abrasive manufactured by Fujimi, colloidal silica, average particle diameter: 70 nm.
  • a silicon oxynitride SiON film was formed by oxygen-added sputtering using a silicon nitride Si 3 N 4 pellet as a target.
  • the degree of vacuum during vapor deposition was set to 5 ⁇ 10 ⁇ 4 Pa or less, the substrate temperature was set to 200 ° C., and the vapor deposition rate was set to 2 nm / min to obtain a SiON barrier layer having a thickness of 100 nm.
  • a phosphor layer was formed by sputtering using a sintered body obtained by sintering ZnS powder added with 0.5 mass% Mn by hot pressing at 900 ° C. and 50 MPa for 1 hour.
  • the degree of vacuum during vapor deposition was set to 5 ⁇ 10 ⁇ 4 Pa or less
  • the substrate temperature was set to 200 ° C.
  • the vapor deposition rate was set to 20 nm / min to obtain a ZnS: Mn phosphor layer having a thickness of 800 nm.
  • the obtained phosphor layer was heat-treated at 500 ° C. for 1 hour in a nitrogen atmosphere to activate Mn at the emission center.
  • silicon oxynitride SiON was formed by sputtering under the same conditions as the SiON barrier layer to obtain a 100 nm thick SiON cap layer.
  • the surface of the acicular conductor layer after surface polishing was observed with an optical microscope (manufactured by Nakaden Co., Ltd., digital microscope MX-1200II). A photomicrograph is shown in the right figure of FIG.
  • the arithmetic average roughness Ra of the needle-like conductor layer after surface polishing was measured with a contact-type step gauge (Veeco, DEKTAK150), and it was 1.5 nm.
  • the state of light emission was observed using an optical microscope (manufactured by Nakaden Co., Ltd., digital microscope MX-1200II) when 200 V AC voltage with a frequency of 1 kHz was applied.
  • a photomicrograph is shown in the right figure of FIG. The black shadow in the photograph is an electrode probe for applying voltage.
  • Test Example 1 in which the surface of the needle-shaped conductor layer was polished, the obtained inorganic EL element had no light emission unevenness and high in-plane light emission uniformity.
  • the alternating voltage of frequency 1kHz was applied with alternating current power supply, and the luminance and luminous efficiency in voltage 200V were evaluated.
  • the emission luminance was measured with a color luminance meter (BM7 manufactured by Topcon Corporation).
  • the light emission luminance was 1516 [cd / m 2 ], and the light emission efficiency was 1.0 [lm / W].
  • cross-sectional TEM transmission electron microscope
  • surface SEM scanning electron microscope
  • each of the barrier layer, the light emitter layer, the cap layer, and the upper electrode layer which are upper layers of the acicular conductor layer, has an arcuate cross-sectional view derived from the convex portion of the acicular conductor layer. Convex parts were seen.
  • the surface of the convex portion of each layer had an arc shape spreading at the same angle in cross-sectional view. Since the radius of the circular arc in a sectional view of the surface of the convex portion increases toward the upper layer, the width and height of the convex portion increase and the surface unevenness increases as it moves toward the upper layer.
  • Using a contact-type step meter (DEKTAK150, manufactured by Veeco) the surface step measurement in one direction of the obtained element was performed. The measurement results are shown in the right figure of FIG. 8B.
  • the resulting device had a surface step of 50 to 70 nm and an arithmetic average roughness Ra of 62 nm.
  • Test Example 1 As compared with Comparative Example 1 described later, the surface roughness of the obtained element was reduced, and the light emission characteristics were good. However, the needle-like conductor protrudes from a part of the needle-like pores of the needle-like conductor layer to form a convex portion on the surface of the needle-like conductor layer, and the surface of the obtained element is observed to be uneven although it is minute. It was.
  • Table 1 shows the main manufacturing conditions and evaluation results of Test Example 1.
  • An inorganic EL element was produced under the same conditions as in Test Example 1 except that. Also in this example, the filling rate of the acicular conductors in all the acicular pores was 100%.
  • ⁇ Test Example 3> For the acicular conductor layer, a polishing cloth having a large particle size (manufactured by Sankyo Rikagaku Co., Ltd., average particle size of 16 ⁇ m, No. 1000) and a liquid abrasive (manufactured by Marto, Inc., diamond slurry, average particle size of 3.0 ⁇ m) were used. An inorganic EL element was produced under the same conditions as in Test Example 1 except that only polishing was performed for 30 minutes. Also in this example, the filling rate of the acicular conductors in all the acicular pores was 100%.
  • ⁇ Test Example 4> In the same manner as in Test Example 1, formation of an alumina layer having a plurality of needle-shaped pores, formation of a plurality of needle-shaped conductors inside the plurality of needle-shaped pores of the alumina layer, and the obtained needle-shaped conductor Surface polishing of the layer and formation of the barrier layer were performed. Next, heat treatment was performed at 500 ° C. for 1 hour in a nitrogen atmosphere. Next, the barrier layer was planarized by reverse sputtering treatment. In this step, in the sputtering apparatus, the bias voltage applied to the substrate and the evaporation source was reversed to the normal state to generate plasma on the substrate side, and the material on the substrate surface was evaporated by ion collision in the plasma.
  • the degree of vacuum was set to 5 ⁇ 10 ⁇ 4 Pa or less and the sputtering rate was 4 nm / min, and the surface layer (50 nm thickness) of the SiO 2 barrier layer was removed to flatten the surface.
  • a light emitting layer, a cap layer, and an upper electrode were formed in the same manner as in Example 1 to obtain an inorganic EL element.
  • Test Example 4 the same evaluation as in Test Example 1 was performed.
  • the surface SEM image of the obtained element and the result of the surface step measurement in one direction of the element surface are shown in the left and right diagrams of FIG.
  • minute protrusions were found on the element surface, but in Test Example 4, no protrusions were found on the element surface, and an element with high surface flatness was obtained.
  • the main production conditions of Test Example 4 the arithmetic average roughness Ra of the needle-shaped conductor layer after surface polishing, the arithmetic average roughness Ra of the element, the presence or absence of light emission unevenness using an optical microscope, and the light emission luminance of the element
  • the evaluation results of luminous efficiency are shown in Table 1.
  • Comparative Example 1 the same evaluation as in Test Example 1 was performed.
  • An optical micrograph of the acicular conductor layer of Comparative Example 1 is shown in FIG.
  • the element obtained in the comparative example 1 the mode of light emission when 200V of alternating voltage of frequency 1kHz was applied was observed using the optical microscope.
  • a photomicrograph is shown in FIG. The black shadow in the photograph is an electrode probe for applying voltage.
  • Comparative Example 1 where the surface polishing of the needle-shaped conductor layer was not performed, the surface roughness of the needle-shaped conductor layer was large, and light emission unevenness was observed in the obtained inorganic EL element.
  • Comparative Example 1 The main production conditions of Comparative Example 1, the arithmetic average roughness Ra of the acicular conductor layer, the arithmetic average roughness Ra of the element, the presence or absence of light emission unevenness using an optical microscope, and the evaluation of the light emission luminance and light emission efficiency of the element The results are shown in Table 1.
  • Lower electrode layer (first electrode layer) 20 Needle-like conductor layer 21 Porous structure 21B Barrier layer 21C Columnar body 21P Needle-like pore 22 Needle-like conductor 30 Light emitter layer 30S Surface 40 of the light emitter layer on the lower electrode layer side Upper electrode layer (second Electrode layer) 50, 60 Insulator layer M Metal object to be anodized

Abstract

Provided is an EL element by which it is possible for both emission luminance and emission efficiency to be improved, without the need to apply a high electrical field. The EL element (1) is provided in succession with a first electrode layer (10), a light emission layer (30), and a second electrode layer (40) having translucence. Between the first electrode layer (10) and the light emission layer (30), the EL element (1) is provided with an acicular conductor layer (20) including a plurality of acicular conductors (22) extending in directions that intersect the surface (30S) at the first electrode layer (10) side of the light emission layer (30), and an insulator for insulating the plurality of acicular conductors (22) from one another. The EL element (1), at the element surface on the second electrode layer (40) side thereof, has average roughness Ra of 100 nm or less.

Description

エレクトロルミネセンス素子とその製造方法Electroluminescent device and method for manufacturing the same
 本発明は、エレクトロルミネセンス素子とその製造方法に関するものである。 The present invention relates to an electroluminescent element and a method for manufacturing the same.
 無機エレクトロルミネセンス(以降、「EL」と略記する場合がある。)素子は、大面積化が可能である、長寿命であるなどの特徴を持つ自発光素子である。
 従来、無機EL素子として、薄膜型無機EL素子と分散型無機EL素子とが知られている。
An inorganic electroluminescent (hereinafter, abbreviated as “EL”) element is a self-luminous element having features such as a large area and a long lifetime.
Conventionally, as an inorganic EL element, a thin film type inorganic EL element and a dispersion type inorganic EL element are known.
 薄膜型無機EL素子は、透光性を有する絶縁性基板上に、透光性を有する下部電極層、発光体層、及び上部電極層が順次積層された素子である(特許文献1の図4参照)。
 下部電極層と発光体層との間、及び/又は、発光体層と上部電極層との間に、絶縁体層が設けられる場合がある。
A thin-film inorganic EL element is an element in which a light-transmitting lower electrode layer, a light-emitting body layer, and an upper electrode layer are sequentially stacked on a light-transmitting insulating substrate (FIG. 4 of Patent Document 1). reference).
An insulator layer may be provided between the lower electrode layer and the light emitter layer and / or between the light emitter layer and the upper electrode layer.
 薄膜型無機EL素子において、発光体層材料としては、母体化合物に少なくとも1種の発光中心元素が添加されたものが好ましく用いられる。
 母体化合物としては、ZnS、SrS、及びCaS等のII-VI族二元化合物、並びにCaGa、SrGaS、及びBaAl等のII-III-VI族三元化合物等が知られている。また、発光中心元素としては、Mn、Cu、Au、及び希土類等の金属元素が挙げられる。
 発光体層材料としては例えば、橙色の発光色を示すZnS:Mn、緑色の発光色を示すZnS:Tb、及び青色の発光色を示すBaAl:Eu等がある(特許文献1の段落0004参照)。
In the thin-film inorganic EL element, as the luminescent layer material, a material obtained by adding at least one luminescent center element to the base compound is preferably used.
Known parent compounds include II-VI binary compounds such as ZnS, SrS, and CaS, and II-III-VI group ternary compounds such as CaGa 2 S 4 , SrGaS 4 , and BaAl 2 S 4. ing. Further, examples of the luminescent center element include metal elements such as Mn, Cu, Au, and rare earth.
Examples of the phosphor layer material include ZnS: Mn that exhibits an orange emission color, ZnS: Tb that exhibits a green emission color, and BaAl 2 S 4 : Eu that exhibits a blue emission color (paragraph of Patent Document 1). 0004).
 電界中で、発光体層内を流れる電子が発光中心元素に衝突すると、発光中心元素が励起されて発光を示す。電子の衝突エネルギーが高い程、発光中心元素の励起が起こりやすいため、高電界になることで高い発光輝度が得られる。例えば、ZnS:Mnでは1×10V/cm以上の電界で励起が起き、急激に発光輝度が上昇する。 When electrons flowing in the luminescent layer collide with the luminescent center element in an electric field, the luminescent center element is excited to emit light. The higher the electron collision energy, the easier the excitation of the luminescent center element. Therefore, a high luminance can be obtained by applying a high electric field. For example, in ZnS: Mn, excitation occurs in an electric field of 1 × 10 6 V / cm or more, and the emission luminance rapidly increases.
 一方、分散型無機EL素子は、フッ素系樹脂あるいはシアノ基含有樹脂等の高誘電性樹脂からなるバインダ中に蛍光体粒子を分散させた発光体層と、この発光体層を挟持する一対の電極板とを備える素子である(特許文献2の請求項7参照)。通常、分散型無機EL素子は、絶縁破壊を防ぐために高誘電性樹脂中にチタン酸バリウムのような誘電体物質を分散させた誘電体層をさらに備える。 On the other hand, a dispersion-type inorganic EL element has a phosphor layer in which phosphor particles are dispersed in a binder made of a high dielectric resin such as a fluorine-based resin or a cyano group-containing resin, and a pair of electrodes that sandwich the phosphor layer. It is an element provided with a board (refer claim 7 of patent document 2). Usually, the dispersion-type inorganic EL device further includes a dielectric layer in which a dielectric material such as barium titanate is dispersed in a high dielectric resin in order to prevent dielectric breakdown.
 特許文献2には、硫化亜鉛(ZnS)を母体化合物とし、Cu等の付活剤及びCl等の共付活剤が添加されたEL蛍光体粉末、及びこれを用いたEL素子が開示されている(請求項1)。
 付活剤としてCuを用いる場合、ZnS結晶内に固溶されなかった余剰のCuが、積層欠陥の隙間に析出し、針状導電体を形成する。この針状導電体を含む蛍光体粒子に交流電圧が印加されると、針状導電体の先端部に電界が集中し、発光に寄与する電流が集中的に流れることにより、1×10V/cm程度の比較的低電界でもEL発光が得られる(非特許文献1参照)。針状導電体が電極面に対して垂直であるほど、電界が集中しやすいため、高発光輝度が得られやすい。針状導電体が析出する(111)結晶面を配向させることで、電極面に対して垂直配向した針状導電体が増加し、電界集中が起こりやすくなり、発光輝度が向上する(特許文献2の段落0005参照)。
Patent Document 2 discloses an EL phosphor powder in which zinc sulfide (ZnS) is used as a base compound and an activator such as Cu and a coactivator such as Cl are added, and an EL element using the same. (Claim 1).
When Cu is used as the activator, excess Cu that is not dissolved in the ZnS crystal is deposited in the gap between the stacking faults to form a needle-like conductor. When an AC voltage is applied to the phosphor particles containing the needle-like conductor, an electric field concentrates on the tip of the needle-like conductor, and a current contributing to light emission flows intensively, thereby 1 × 10 4 V. EL emission can be obtained even at a relatively low electric field of about / cm (see Non-Patent Document 1). As the acicular conductor is perpendicular to the electrode surface, the electric field is more likely to be concentrated, so that high emission luminance is easily obtained. By orienting the (111) crystal plane on which the acicular conductor is deposited, the acicular conductor oriented perpendicular to the electrode surface increases, electric field concentration is likely to occur, and the light emission luminance is improved (Patent Document 2). Paragraph 0005).
特開2008-251336号公報(特許4928329号公報)JP 2008-251336 A (Patent No. 4928329) 特開2004-131583号公報Japanese Patent Application Laid-Open No. 2004-131583
 特許文献1等に記載の従来の薄膜型無機EL素子においては、発光輝度及び発光効率等の発光特性の改良が試みられている。しかしながら、高発光輝度を得るためには高電界が必要であり、発光に寄与せず熱となる電力が多く、発光効率が低下する傾向がある。 In the conventional thin-film inorganic EL element described in Patent Document 1 and the like, attempts have been made to improve light emission characteristics such as light emission luminance and light emission efficiency. However, a high electric field is required in order to obtain a high light emission luminance, and there is a tendency for the light emission efficiency to decrease due to the large amount of power that does not contribute to light emission and becomes heat.
 一方、特許文献2等に記載の従来の分散型無機EL素子においては、Cu等の針状導電体の先端部付近で集中電界が発生することで、比較的低電界で高発光輝度が得られる。しかしながら、発光体層が蛍光体粒子とバインダとを含むため、発光体層に印加された電界は蛍光体粒子とバインダとの両方に分配される。その結果、バインダにより消費される電力が大きく、発光効率が低下する傾向がある。また、蛍光体粒子内のCu等の針状導電体は結晶面内で多方向(ランダム方向)に析出することから、電極面に対して垂直配向している針状導電体の割合が少なく、電界が集中しにくい。 On the other hand, in the conventional dispersion-type inorganic EL element described in Patent Document 2 and the like, a concentrated electric field is generated in the vicinity of the tip of a needle-like conductor such as Cu, so that high emission luminance can be obtained with a relatively low electric field. . However, since the phosphor layer includes phosphor particles and a binder, the electric field applied to the phosphor layer is distributed to both the phosphor particles and the binder. As a result, the power consumed by the binder is large, and the light emission efficiency tends to decrease. In addition, since acicular conductors such as Cu in the phosphor particles are deposited in multiple directions (random directions) in the crystal plane, the proportion of acicular conductors oriented perpendicular to the electrode surface is small, The electric field is difficult to concentrate.
 以上の理由から、従来の薄膜型無機EL素子と分散型無機EL素子は共に、発光輝度及び発光効率を充分に向上することは困難である。
 上記は特に無機EL素子における課題であるが、有機EL素子でも発光輝度及び発光効率を充分に向上できることが好ましい。
For the above reasons, it is difficult for both the conventional thin film type inorganic EL element and the dispersion type inorganic EL element to sufficiently improve the light emission luminance and the light emission efficiency.
The above is a problem particularly in the inorganic EL element, but it is preferable that the organic EL element can sufficiently improve the light emission luminance and the light emission efficiency.
 本発明は上記事情に鑑みてなされたものであり、高電界を印加せずとも、発光輝度と発光効率を共に向上させることが可能なEL素子とその製造方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an EL element capable of improving both light emission luminance and light emission efficiency without applying a high electric field, and a method for manufacturing the same. It is.
 本発明のエレクトロルミネセンス(EL)素子は、
 第1の電極層と発光体層と透光性を有する第2の電極層とを順次備えたエレクトロルミネセンス素子であって、
 さらに、
 前記第1の電極層と前記発光体層との間に、
 前記発光体層側の面において開口し、当該発光体層側の面に対して交差方向に延びた複数の針状細孔を有する細孔構造体からなる絶縁体と、前記複数の針状細孔の内部に形成された複数の針状導電体とを含む針状導電体層を備え、
 前記発光体層側の表面の算術平均粗さRaが100nm以下であるエレクトロルミネセンス素子である。
The electroluminescence (EL) element of the present invention is
An electroluminescent device comprising a first electrode layer, a light emitter layer, and a second electrode layer having translucency in order,
further,
Between the first electrode layer and the phosphor layer,
An insulator composed of a pore structure having a plurality of needle-like pores that are open in the surface on the light emitter layer side and extend in a crossing direction with respect to the surface on the light emitter layer side; A needle-like conductor layer including a plurality of needle-like conductors formed inside the hole,
It is an electroluminescent element whose arithmetic mean roughness Ra of the surface at the side of the said light-emitting body layer is 100 nm or less.
 本発明のエレクトロルミネセンス(EL)素子の製造方法は、
 第1の電極層と発光体層と透光性を有する第2の電極層とを順次備え、
 さらに、
 前記第1の電極層と前記発光体層との間に、
 前記発光体層側の面において開口し、当該発光体層側の面に対して交差方向に延びた複数の針状細孔を有する細孔構造体からなる絶縁体と、前記複数の針状細孔の内部に形成された複数の針状導電体とを含む針状導電体層を備えたエレクトロルミネセンス素子の製造方法であって、
 前記複数の針状細孔を有する細孔構造体からなる前記絶縁体を用意する工程(A)と、
 前記絶縁体の前記複数の針状細孔の内部に前記複数の針状導電体を形成して、前記針状導電体層を得る工程(B)と、
 前記針状導電体層の表面の算術平均粗さRaを低減する工程(C)とを有するものである。
The manufacturing method of the electroluminescence (EL) element of the present invention is as follows:
A first electrode layer, a light emitter layer, and a second electrode layer having translucency are sequentially provided,
further,
Between the first electrode layer and the phosphor layer,
An insulator composed of a pore structure having a plurality of needle-like pores that are open in the surface on the light emitter layer side and extend in a crossing direction with respect to the surface on the light emitter layer side; A method of manufacturing an electroluminescent element comprising a needle-shaped conductor layer including a plurality of needle-shaped conductors formed inside a hole,
Preparing the insulator comprising a pore structure having the plurality of acicular pores (A);
Forming the plurality of needle-shaped conductors inside the plurality of needle-shaped pores of the insulator to obtain the needle-shaped conductor layer (B);
And (C) reducing the arithmetic average roughness Ra of the surface of the acicular conductor layer.
 本発明のエレクトロルミネセンス(EL)素子の製造方法は、
 工程(C)後に、
 前記針状導電体の成分が前記発光体層に拡散することを防止するバリア層となる絶縁体層を形成する工程(D)と、
 工程(D)以降の前記エレクトロルミネセンス素子の製造プロセスの最高温度以上の温度で熱処理する工程(E)と、
 工程(E)後の前記絶縁体層の表面の算術平均粗さRaを低減する工程(F)とを有することが好ましい。
The manufacturing method of the electroluminescence (EL) element of the present invention is as follows:
After step (C)
A step (D) of forming an insulator layer serving as a barrier layer for preventing the acicular conductor component from diffusing into the light emitter layer;
A step (E) of performing a heat treatment at a temperature equal to or higher than a maximum temperature of the manufacturing process of the electroluminescent element after the step (D);
It is preferable to have a step (F) of reducing the arithmetic average roughness Ra of the surface of the insulator layer after the step (E).
 本明細書において、「針状」とは長さ/直径が2以上の形状を指す。
 本明細書において、「表面の算術平均粗さRa」は、JIS B 0601(2001)に準拠の方法にて測定するものとする。
In this specification, “needle” refers to a shape having a length / diameter of 2 or more.
In this specification, “the arithmetic average roughness Ra of the surface” is measured by a method based on JIS B 0601 (2001).
 本発明によれば、高電界を印加せずとも、発光輝度と発光効率を共に向上させることが可能なEL素子とその製造方法を提供することができる。 According to the present invention, it is possible to provide an EL element capable of improving both light emission luminance and light emission efficiency without applying a high electric field, and a method for manufacturing the same.
本発明に係る一実施形態のEL素子の全体模式断面図である。1 is an overall schematic cross-sectional view of an EL element according to an embodiment of the present invention. 細孔構造体の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of a pore structure. 細孔構造体の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of a pore structure. 左図は、針状導電体層の表面研磨を実施しなかった場合のEL素子を示し、右図は、針状導電体層の表面研磨を実施した場合のEL素子の様子を示す模式断面図である。The left figure shows the EL element when the surface polishing of the acicular conductor layer is not performed, and the right figure is a schematic cross-sectional view showing the state of the EL element when the surface polishing of the acicular conductor layer is performed. It is. 工程(D)~(F)を実施する効果を説明するための説明図(模式断面図)である。FIG. 6 is an explanatory diagram (schematic cross-sectional view) for explaining the effect of performing steps (D) to (F). 工程(D)~(F)を実施する効果を説明するための説明図(模式断面図)である。FIG. 6 is an explanatory diagram (schematic cross-sectional view) for explaining the effect of performing steps (D) to (F). 図1のEL素子の設計変更例を示す図である。It is a figure which shows the example of a design change of the EL element of FIG. 試験例1と比較例1における針状導電体層の光学顕微鏡像である。2 is an optical microscope image of a needle-shaped conductor layer in Test Example 1 and Comparative Example 1. 試験例1と比較例1において得られた無機EL素子の発光の様子を示す光学顕微鏡像である。2 is an optical microscope image showing a state of light emission of inorganic EL elements obtained in Test Example 1 and Comparative Example 1. FIG. 試験例1において得られた無機EL素子の断面TEM像である。2 is a cross-sectional TEM image of an inorganic EL element obtained in Test Example 1. 試験例1において得られた無機EL素子の表面SEM像(左図)と表面段差測定結果を示すグラフ(右図)である。3 is a surface SEM image (left figure) of the inorganic EL element obtained in Test Example 1 and a graph (right figure) showing the surface level difference measurement results. 試験例4において得られた無機EL素子の表面SEM像(左図)と表面段差測定結果を示すグラフ(右図)である。It is the graph (right figure) which shows the surface SEM image (left figure) and surface level | step difference measurement result of the inorganic EL element obtained in Test Example 4. 市販のAl板の光学顕微鏡像の例である。It is an example of the optical microscope image of a commercially available Al plate. 被陽極酸化金属体の縦方向のRaと横方向のRaの測定例を示すグラフである。It is a graph which shows the example of a measurement of Ra of the vertical direction and Ra of a horizontal direction of a to-be-anodized metal body.
「EL素子」
 図面を参照して、本発明に係る一実施形態のEL素子の構造について説明する。
 図1は、本実施形態のEL素子の全体模式断面図である。
 図5は、設計変更例を示す図である。
 図1及び図5において、同じ構成要素には同じ参照符号を付してある。
"EL element"
With reference to the drawings, the structure of an EL device according to an embodiment of the present invention will be described.
FIG. 1 is an overall schematic cross-sectional view of the EL element of the present embodiment.
FIG. 5 is a diagram illustrating a design change example.
1 and 5, the same constituent elements are denoted by the same reference numerals.
 図1に示すように、本実施形態のEL素子1は、下部電極層(第1の電極層)10と発光体層30と透光性を有する上部電極層(第2の電極層)40とを順次備えている。
 EL素子1は、さらに、下部電極層10と発光体層30との間に、発光体層30の下部電極層10側の面30Sに対して交差方向に延びた複数の針状導電体22と、複数の針状導電体22の間を絶縁する絶縁体とを含む針状導電体層20を備えている。
As shown in FIG. 1, the EL element 1 of the present embodiment includes a lower electrode layer (first electrode layer) 10, a light emitter layer 30, and a translucent upper electrode layer (second electrode layer) 40. Are sequentially provided.
The EL element 1 further includes a plurality of needle-like conductors 22 extending between the lower electrode layer 10 and the light emitter layer 30 in a direction intersecting the surface 30S of the light emitter layer 30 on the lower electrode layer 10 side. The needle-shaped conductor layer 20 including an insulator that insulates between the plurality of needle-shaped conductors 22 is provided.
 本実施形態において、針状導電体層20をなす絶縁体は、発光体層30側の面において開口し、発光体層30側の面に対して交差方向に延びた複数の針状細孔21Pを有する細孔構造体21である。そして、複数の針状細孔21Pの内部に複数の針状導電体22が形成されている。 In the present embodiment, the insulator forming the acicular conductor layer 20 is open on the surface on the light emitter layer 30 side, and has a plurality of acicular pores 21P extending in the intersecting direction with respect to the surface on the light emitter layer 30 side. It is the pore structure 21 which has. A plurality of needle-like conductors 22 are formed inside the plurality of needle-like pores 21P.
 本実施形態において、細孔構造体21は被陽極酸化金属体の一部を陽極酸化して得られる金属酸化物体であり、下部電極層10は陽極酸化後に残る被陽極酸化金属体の残部である。 In the present embodiment, the pore structure 21 is a metal oxide body obtained by anodizing a part of the anodized metal body, and the lower electrode layer 10 is the remaining portion of the anodized metal body remaining after anodization. .
 本実施形態のEL素子1において、針状導電体層20に電圧が印加されると、針状導電体22が高誘電率であるため、針状導電体22の発光体層30側の先端部の電荷密度が高くなる。
 以降、特に明記しない限り、針状導電体22の先端部は、「針状導電体22の発光体層30側の先端部」を意味するものとする。
 電荷に近いほど電気力線は高密度になり、電気力線の密度は電界強度に比例するため、針状導電体22の先端部付近は高電界強度となる。つまり、針状導電体22の先端部付近で電界集中が起こる。
 針状導電体22が電圧印加方向に対して長いほど、先端部の電荷密度が高くなり、先端部付近の電界強度が増大する傾向がある。また、針状導電体22の直径が小さいほど、先端部の電荷密度が高くなり、先端部付近の電界強度が増大する傾向がある。
 「背景技術」の項に挙げた非特許文献1より、集中電界強度は以下の式で表されると考えられる。
(集中電界強度)=(係数)×(針状導電体の長さ/針状導電体の断面積)×(平均印加電界)
In the EL element 1 of the present embodiment, when a voltage is applied to the needle-like conductor layer 20, the needle-like conductor 22 has a high dielectric constant, so that the tip of the needle-like conductor 22 on the light emitter layer 30 side. The charge density becomes higher.
Hereinafter, unless otherwise specified, the tip of the needle-like conductor 22 means “tip of the needle-like conductor 22 on the light emitter layer 30 side”.
The closer to the electric charge, the higher the electric lines of force, and the density of the electric lines of force is proportional to the electric field strength. Therefore, the vicinity of the tip of the acicular conductor 22 has a high electric field strength. That is, electric field concentration occurs near the tip of the needle-like conductor 22.
The longer the needle-like conductor 22 is in the voltage application direction, the higher the charge density at the tip, and the electric field strength near the tip tends to increase. Further, the smaller the diameter of the needle-like conductor 22, the higher the charge density at the tip, and the electric field strength near the tip tends to increase.
From Non-Patent Document 1 listed in the section “Background Art”, it is considered that the concentrated electric field strength is expressed by the following equation.
(Concentrated electric field strength) = (coefficient) × (needle conductor length / needle conductor cross-sectional area) 2 × (average applied electric field)
 本実施形態において、針状細孔21P及び針状導電体22の断面積は、およそ細孔径の2乗に比例する。また、発光輝度は集中電界強度の2乗に比例するため、細孔長の4乗に比例し、細孔径の4乗に反比例する。すなわち、細孔長が長く、細孔径が小さいほど、集中電界強度が増加し、発光強度が増加する傾向がある。
 なお、針状細孔21P及び針状導電体22の断面形状が真円からずれる場合、その直径は、同等の断面積を有する真円の直径により定義するものとする。
In the present embodiment, the cross-sectional areas of the acicular pores 21P and the acicular conductor 22 are approximately proportional to the square of the pore diameter. Further, since the luminance is proportional to the square of the concentrated electric field strength, it is proportional to the fourth power of the pore length and inversely proportional to the fourth power of the pore diameter. That is, as the pore length is longer and the pore diameter is smaller, the concentrated electric field strength tends to increase and the emission intensity tends to increase.
In addition, when the cross-sectional shape of the acicular pore 21P and the acicular conductor 22 deviates from a perfect circle, the diameter shall be defined by the diameter of a perfect circle which has an equivalent cross-sectional area.
 針状導電体22の組成は特に制限されず、導電性が高い程、集中電界強度が高くなり、好ましい。
 針状導電体22は、Ag、Au、Cd、Co、Cu、Fe、Ni、Sn、及びZnからなる群より選択された少なくとも1種の金属を含むことが好ましい。
 導電性及び封孔のしやすさを考慮すれば、針状導電体22はCu及び/又はNiを含むことが好ましい。
 発光体層30への拡散抑止を考慮すれば、針状導電体22はAuを含むことが好ましい。
The composition of the acicular conductor 22 is not particularly limited, and the higher the conductivity, the higher the concentrated electric field strength, which is preferable.
The acicular conductor 22 preferably contains at least one metal selected from the group consisting of Ag, Au, Cd, Co, Cu, Fe, Ni, Sn, and Zn.
In consideration of conductivity and ease of sealing, the acicular conductor 22 preferably contains Cu and / or Ni.
In consideration of suppression of diffusion to the light emitting layer 30, the acicular conductor 22 preferably contains Au.
 「課題を解決するための手段」の項で定義したように、本明細書において、「針状」とは長さ/直径が2以上の形状を指す。
 従来の分散型無機EL素子で用いられる蛍光体粒子内の針状導電体の長さは、粒子径にもよるが通常1~20μmの範囲内であり、針状導電体の直径は通常0.01~0.5μmである。本実施形態における針状導電体22についても、同様の長さと直径が好ましい。
 電界集中効果が高くなることから、針状導電体22の長さは1μm以上であることが好ましく、5μm以上であることが特に好ましい。
 電界集中効果が高くなることから、針状導電体22の直径は0.5μm以下であることが好ましく、0.1μm以下であることがより好ましく、0.05μm以下であることが特に好ましい。
 形成容易性を考慮すれば、針状導電体22の直径は0.02μm以上であることが好ましい。
 電界集中効果が高くなることから、針状導電体22の長さ/直径は100以上であることが好ましい。
As defined in the section “Means for Solving the Problems”, in this specification, “needle” refers to a shape having a length / diameter of 2 or more.
The length of the acicular conductor in the phosphor particles used in the conventional dispersion-type inorganic EL element is usually in the range of 1 to 20 μm, although it depends on the particle diameter, and the diameter of the acicular conductor is usually 0.00. 01 to 0.5 μm. The same length and diameter are preferable for the needle-like conductor 22 in the present embodiment.
Since the electric field concentration effect is enhanced, the length of the needle-like conductor 22 is preferably 1 μm or more, and particularly preferably 5 μm or more.
Since the electric field concentration effect is enhanced, the diameter of the needle-like conductor 22 is preferably 0.5 μm or less, more preferably 0.1 μm or less, and particularly preferably 0.05 μm or less.
Considering the ease of formation, the diameter of the needle-like conductor 22 is preferably 0.02 μm or more.
The length / diameter of the acicular conductor 22 is preferably 100 or more because the electric field concentration effect is enhanced.
 本実施形態において、複数の針状導電体22は、複数の針状細孔21Pの内部に形成されている。
 針状導電体22の好ましいサイズを考慮すれば、針状細孔21Pの長さは1μm以上であることが好ましく、5μm以上であることが特に好ましい。
 針状細孔21Pの直径は0.5μm以下であることが好ましく、0.1μm以下であることがより好ましく、0.05μm以下であることが特に好ましい。針状細孔21Pの直径は0.02μm以上であることが好ましい。
 針状細孔21Pの長さ/直径は100以上であることが好ましい。
In the present embodiment, the plurality of acicular conductors 22 are formed inside the plurality of acicular pores 21P.
Considering the preferable size of the acicular conductor 22, the length of the acicular pore 21P is preferably 1 μm or more, and particularly preferably 5 μm or more.
The diameter of the acicular pores 21P is preferably 0.5 μm or less, more preferably 0.1 μm or less, and particularly preferably 0.05 μm or less. The diameter of the acicular pores 21P is preferably 0.02 μm or more.
The length / diameter of the acicular pores 21P is preferably 100 or more.
 図面上はすべての針状細孔21Pの内部に、針状導電体22が完全に充填され、針状導電体22の先端部と発光体層30とは互いに密着している場合について図示してあるが、個々の針状細孔21Pの内部における針状導電体22の充填率は100%でなくてもよい。
 つまり、針状導電体22の先端部と発光体層30とは互いに密着している必要は無い。ただし、集中電界強度が高くなることから、針状導電体22の先端部と発光体層30とは近いほど好ましい。この点を考慮すれば、個々の針状細孔21Pの内部における針状導電体22の充填率は高いほど好ましい。
 本明細書において、個々の針状細孔21Pの内部における針状導電体22の充填率は、針状導電体22の長さ/針状細孔21Pの長さ×100(%)により定義するものとする。
 個々の針状細孔21Pの内部における針状導電体22の充填率は、70~100%が好ましい。
In the drawing, the needle-shaped conductor 22 is completely filled in all the needle-shaped pores 21P, and the tip of the needle-shaped conductor 22 and the light emitting layer 30 are shown in close contact with each other. However, the filling rate of the acicular conductors 22 in the individual acicular pores 21P may not be 100%.
That is, the tip of the needle-like conductor 22 and the light emitting layer 30 do not need to be in close contact with each other. However, since the concentrated electric field strength is high, it is preferable that the tip of the needle-like conductor 22 and the light emitting layer 30 are closer. Considering this point, it is preferable that the filling rate of the acicular conductors 22 in each acicular pore 21P is higher.
In this specification, the filling rate of the acicular conductor 22 in each acicular pore 21P is defined by the length of the acicular conductor 22 / the length of the acicular pore 21P × 100 (%). Shall.
The filling rate of the acicular conductor 22 inside each acicular pore 21P is preferably 70 to 100%.
 個々の針状細孔21Pの内部における針状導電体22の充填率に多少ばらつきがあってもよいが、この場合、針状細孔21Pと発光体層30との離間距離にばらつきが生じ、電界集中効果にばらつきが生じることになる。発光の面内均一性を考慮すれば、充填率のばらつきは小さい方が好ましい。 There may be some variation in the filling rate of the acicular conductors 22 inside each acicular pore 21P, but in this case, the separation distance between the acicular pores 21P and the phosphor layer 30 varies, There will be variations in the electric field concentration effect. Considering the in-plane uniformity of light emission, it is preferable that the variation in the filling rate is small.
 針状細孔21Pの長さは、好ましい針状導電体22の長さと、針状細孔21Pの内部における針状導電体22の充填率とを考慮して、決定される。 The length of the needle-shaped pore 21P is determined in consideration of a preferable length of the needle-shaped conductor 22 and a filling rate of the needle-shaped conductor 22 inside the needle-shaped pore 21P.
 針状導電体22の数密度は高いほど集中電界による発光部分が増加するため、高い発光輝度が得られるし、発光輝度の面内均一性も高くなり、好ましい。しかしながら、互いに隣接する針状導電体22間の距離が近くなりすぎると、それぞれの針状導電体22に集中する電気力線が低密度になり、電界強度が低下する恐れがある。このような電界強度の低下を抑制するには、互いに隣接する針状導電体22の離間距離を0.02μm以上とすることが好ましい。
 本実施形態において、針状導電体22の数密度は針状細孔21Pの数密度に相当する。
 針状細孔21P及び針状導電体22の数密度は、1個/μm以上であることが好ましい。
 針状細孔21P及び針状導電体22の数密度は、400個/μm以下であることが好ましい。
 針状細孔21P及び針状導電体22の数密度は、10~300個/μmであることがより好ましい。
The higher the number density of the needle-like conductors 22, the more light emitting portions due to the concentrated electric field increase, so that high light emission luminance can be obtained and the in-plane uniformity of the light emission luminance is also preferable. However, if the distance between the adjacent needle-shaped conductors 22 becomes too short, the lines of electric force concentrated on the respective needle-shaped conductors 22 become low in density, which may reduce the electric field strength. In order to suppress such a decrease in electric field strength, it is preferable that the distance between the needle-like conductors 22 adjacent to each other is 0.02 μm or more.
In the present embodiment, the number density of the acicular conductors 22 corresponds to the number density of the acicular pores 21P.
The number density of the acicular pores 21P and the acicular conductors 22 is preferably 1 piece / μm 2 or more.
The number density of the acicular pores 21P and the acicular conductors 22 is preferably 400 pieces / μm 2 or less.
The number density of the acicular pores 21P and the acicular conductors 22 is more preferably 10 to 300 / μm 2 .
 発光体層30は電界中で励起されて発光する層である。発光体層30の厚さは、針状導電体22の先端部付近に電界を集中させる点から薄い方が好ましく、具体的には0.05~2μmの範囲が好ましい。
 発光体層30の材料としては特に制限されず、EL素子用の公知の発光体材料を用いることができる。
 EL素子1は、平面視にて、異なる波長の光を発光する複数種の発光体層30がアレイ配列されたものであってもよい。
 発光体層30の材料としては、ZnS:Mn、ZnS:Tb,F、ZnS:Pr,F、ZnS:Ag,Cl、ZnS:Cu,Cl、Y:Eu、ZnSiO:Eu、SrS:Ce、BaAl:Eu、BaMgAl1017:Eu、MgWO、CaWO、RbVO、及びCsVOなどの無機化合物、あるいはトリス(8-キノリノラト)アルミニウム(Alq3)などの有機化合物が挙げられる。これらは、1種又は複数種を用いることができる。
The phosphor layer 30 is a layer that emits light when excited in an electric field. The thickness of the luminescent layer 30 is preferably thinner from the viewpoint of concentrating the electric field near the tip of the acicular conductor 22, and specifically, it is preferably in the range of 0.05 to 2 μm.
The material of the light emitter layer 30 is not particularly limited, and a known light emitter material for an EL element can be used.
The EL element 1 may be an array in which a plurality of types of light emitter layers 30 that emit light of different wavelengths in a plan view.
As a material of the light emitting layer 30, ZnS: Mn, ZnS: Tb, F, ZnS: Pr, F, ZnS: Ag, Cl, ZnS: Cu, Cl, Y 2 O 3 : Eu, ZnSiO 4 : Eu, SrS : Ce, BaAl 2 S 4 : Eu, BaMgAl 10 O 17 : Inorganic compounds such as Eu, MgWO 4 , CaWO 4 , RbVO 3 , and CsVO 3 , or organic compounds such as tris (8-quinolinolato) aluminum (Alq3) Can be mentioned. These can use 1 type or multiple types.
 必ずしも必須ではないが、針状導電体層20と発光体層30との間に、絶縁体層(下部絶縁体層)50を設けることが好ましい。絶縁体層50は、単層構造でも積層構造でもよい。
 絶縁体層50はバリア層として機能し、針状細孔21Pの内部に形成された針状導電体22の成分が発光体層30に拡散し、発光を不活性にすることを抑止できる。
 絶縁体層50の材料としては、SiO、Ta、TiO、BaTiO、Alなどの酸化物、Si、AlN、TiNなどの窒化物、SiON、AlONなどの酸窒化物、及びこれらの組合わせ等が挙げられる。
Although not necessarily essential, it is preferable to provide an insulator layer (lower insulator layer) 50 between the needle-like conductor layer 20 and the light emitter layer 30. The insulator layer 50 may have a single layer structure or a laminated structure.
The insulator layer 50 functions as a barrier layer, and it is possible to prevent the components of the needle-like conductor 22 formed inside the needle-like pores 21P from diffusing into the light-emitting body layer 30 and inactivating light emission.
Examples of the material for the insulator layer 50 include oxides such as SiO 2 , Ta 2 O 5 , TiO 2 , BaTiO 3 , and Al 2 O 3 , nitrides such as Si 3 N 4 , AlN, and TiN, SiON, and AlON. Examples thereof include oxynitrides and combinations thereof.
 電界集中効果が高くなることから、針状導電体22の先端部と発光体層30とは近いほど好ましいことを述べた。
 絶縁体層50の有無に拘わらず、針状導電体22と発光体層30との離間距離は1μm以下であることが好ましい。
 絶縁体層50の厚さは、針状導電体22に電界を集中させる点から薄い方が好ましく、具体的には0.2μm以下であることが好ましい。
 絶縁体層50の厚みが過小では、バリア層として機能が効果的に得られない。
 絶縁体層50の膜厚は、0.05μm以上であることが好ましい。
It has been described that the closer the tip of the acicular conductor 22 and the light emitting layer 30 are, the higher the electric field concentration effect becomes.
Regardless of the presence or absence of the insulator layer 50, the distance between the acicular conductor 22 and the light emitter layer 30 is preferably 1 μm or less.
The thickness of the insulator layer 50 is preferably thinner from the viewpoint of concentrating the electric field on the acicular conductor 22, and specifically, it is preferably 0.2 μm or less.
If the thickness of the insulator layer 50 is too small, the function as a barrier layer cannot be obtained effectively.
The film thickness of the insulator layer 50 is preferably 0.05 μm or more.
 上記のように、針状導電体層20と発光体層30との間に絶縁体層50を設けることが好ましいが、針状導電体層20と発光体層30との間に導電体層は設けない。針状導電体層20と発光体層30との間に導電体層は設けると、導電体層が実質的に下部電極層として機能し、複数の針状導電体22による電界集中効果が得られなくなる。 As described above, it is preferable to provide the insulator layer 50 between the needle-like conductor layer 20 and the light emitter layer 30, but the conductor layer is provided between the needle-like conductor layer 20 and the light emitter layer 30. Not provided. When a conductor layer is provided between the acicular conductor layer 20 and the light emitting layer 30, the conductor layer substantially functions as a lower electrode layer, and an electric field concentration effect by the plurality of acicular conductors 22 is obtained. Disappear.
 必ずしも必須ではないが、発光体層30と上部電極層40との間に、絶縁体層(上部絶縁体層)60を設けることが好ましい。絶縁体層60は、単層構造でも積層構造でもよい。
 絶縁体層60はキャップ層として機能し、発光体層30の表面における材料の脱着を抑止し、発光体層30の組成を均一にすることができ、発光特性を向上できる。
 絶縁体層60の材料としては、SiO、Ta、TiO、BaTiO、及びAlなどの酸化物、Si、AlN、及びTiNなどの窒化物、SiON、及びAlONなどの酸窒化物、及びこれらの組合わせ等が挙げられる。
 絶縁体層60の厚さは、針状導電体22に電界を集中させる点から薄い方が好ましく、具体的には0.2μm以下であることが好ましい。
 絶縁体層60の厚みが過小では、キャップ層として機能が効果的に得られない。
 絶縁体層60の膜厚は、0.05μm以上であることが好ましい。
Although not necessarily essential, it is preferable to provide an insulator layer (upper insulator layer) 60 between the light emitter layer 30 and the upper electrode layer 40. The insulator layer 60 may have a single layer structure or a laminated structure.
The insulator layer 60 functions as a cap layer, suppresses desorption of materials on the surface of the light emitter layer 30, makes the composition of the light emitter layer 30 uniform, and improves the light emission characteristics.
Examples of the material of the insulator layer 60 include oxides such as SiO 2 , Ta 2 O 5 , TiO 2 , BaTiO 3 , and Al 2 O 3 , nitrides such as Si 3 N 4 , AlN, and TiN, SiON, and Examples thereof include oxynitrides such as AlON and combinations thereof.
The thickness of the insulator layer 60 is preferably thinner from the viewpoint of concentrating the electric field on the acicular conductor 22, and specifically, it is preferably 0.2 μm or less.
If the thickness of the insulator layer 60 is too small, the function as a cap layer cannot be obtained effectively.
The thickness of the insulator layer 60 is preferably 0.05 μm or more.
 図示例では、バリア層として機能する絶縁体層50とキャップ層として機能する絶縁体層60の双方を設ける態様を示してあるが、これら絶縁体層のうち一方のみを設ける構成としてもよい。 In the illustrated example, both the insulator layer 50 functioning as a barrier layer and the insulator layer 60 functioning as a cap layer are provided. However, only one of these insulator layers may be provided.
 上部電極層40の材料は、透光性を有する導電材料であればよく、ITO(インジウム錫酸化物)、FTO(フッ素添加酸化スズ)、SnO、PEDOT(ポリエチレンジオキシチオフェン)、及びCNT(カーボンナノチューブ)等が好ましく用いられる。 The material of the upper electrode layer 40 may be any conductive material having translucency, such as ITO (indium tin oxide), FTO (fluorine-added tin oxide), SnO 2 , PEDOT (polyethylenedioxythiophene), and CNT ( Carbon nanotubes) are preferably used.
 発光体層30、上部電極層40、及び絶縁体層50、60の成膜方法は特に制限されず、公知の方法を採用することができる。
 成膜法としては、スパッタリング法、あるいは電子線蒸着法等の真空下での物理的蒸着法、並びに、成膜しようとする層の成分又は前駆体を含む溶液又は分散液を、スピンコート法、ディップコート法、バーコート法、又はスプレー塗工法等により塗布する塗布法等の液相法等が挙げられる。
 発光体層30と絶縁体層50、60は、バインダとして非導電性ポリマーを含むものであってもよい。
The film formation method of the light emitting layer 30, the upper electrode layer 40, and the insulator layers 50 and 60 is not particularly limited, and a known method can be adopted.
As a film forming method, a sputtering method or a physical vapor deposition method under vacuum such as an electron beam evaporation method, and a solution or dispersion containing a component or precursor of a layer to be formed into a film, a spin coating method, Examples thereof include a liquid phase method such as a coating method applied by a dip coating method, a bar coating method, a spray coating method, or the like.
The light emitter layer 30 and the insulator layers 50 and 60 may include a non-conductive polymer as a binder.
 本実施形態のEL素子1は、下部電極層10と発光体層30との間に、発光体層30の下部電極層10側の面30Sに対して交差方向に延びた複数の針状導電体22と、複数の針状導電体22の間を絶縁する絶縁体(本実施形態では細孔構造体21)とを含む針状導電体層20を備えている。 The EL element 1 of the present embodiment includes a plurality of needle-like conductors extending in a direction intersecting the surface 30S of the light emitter layer 30 on the lower electrode layer 10 side between the lower electrode layer 10 and the light emitter layer 30. 22 and an acicular conductor layer 20 including an insulator (in this embodiment, a pore structure 21) that insulates the acicular conductors 22 from each other.
 「発明が解決しようとする課題」の項で述べたように、特許文献1等に記載の従来の薄膜型無機EL素子では、発光輝度及び発光効率等の発光特性改良が試みられている。しかしながら、充分な発光輝度を得るためには高電界が必要であり、発光効率が低下する傾向がある。
 本実施形態の構成では、針状導電体22の先端部付近で集中電界が発生することで、比較的低電界でも高い発光輝度が得られる。
As described in the section “Problems to be Solved by the Invention”, the conventional thin-film inorganic EL elements described in Patent Document 1 and the like have attempted to improve the light emission characteristics such as light emission luminance and light emission efficiency. However, in order to obtain sufficient light emission luminance, a high electric field is required, and the light emission efficiency tends to decrease.
In the configuration of the present embodiment, a concentrated electric field is generated in the vicinity of the tip of the needle-like conductor 22, so that high emission luminance can be obtained even with a relatively low electric field.
 「発明が解決しようとする課題」の項で述べたように、特許文献2等に記載の従来の分散型無機EL素子は、針状導電体の先端部付近で高電界が発生することで、比較的低電界で高発光輝度が得られる。しかしながら、発光体層に含まれるバインダにより消費される電力が大きく、発光効率が低下する傾向がある。また、蛍光体粒子内の針状導電体は結晶面内で多方向(ランダム方向)に析出することから、電極面に対して垂直配向している針状導電体の割合が少なく、電界が集中しにくい。
 本実施形態では、針状導電体層20にバインダが不要であるため、バインダにより消費される電力による発光効率の低下が生じない。本実施形態ではまた、針状導電体22を電圧印加方向又はそれに近い方向に容易に配向させることができ、電界集中を効果的に起こすことができる。
As described in the section “Problems to be Solved by the Invention”, the conventional dispersion-type inorganic EL element described in Patent Document 2 and the like generates a high electric field in the vicinity of the tip of the acicular conductor, High luminance can be obtained with a relatively low electric field. However, the electric power consumed by the binder contained in the light emitting layer is large, and the light emission efficiency tends to decrease. In addition, since the acicular conductors in the phosphor particles are deposited in multiple directions (random directions) in the crystal plane, the proportion of acicular conductors oriented perpendicular to the electrode surface is small and the electric field is concentrated. Hard to do.
In the present embodiment, since no binder is required for the needle-like conductor layer 20, the light emission efficiency is not reduced by the power consumed by the binder. In the present embodiment, the needle-like conductor 22 can be easily oriented in the voltage application direction or a direction close thereto, and electric field concentration can be effectively caused.
 素子の表面粗さが大きいと、面内の電界刺激が一様でなくなり、発光の面内均一性、発光輝度、及び発光効率等の発光特性が低下する傾向がある。発光の面内均一性、発光輝度、及び発光効率等の発光特性が向上することから、素子の表面粗さはより小さいことが好ましい。
 本明細書において、「素子の表面粗さ」は、上部電極層40側の素子表面の算術平均粗さRaにより定義するものとする。
 製造方法を工夫することで、素子表面の算術平均粗さRaを小さくすることができる。
 本実施形態のEL素子1は後記製造方法により製造されたものであり、上部電極層40側の素子表面の算術平均粗さRaが100nm以下、70nm以下、または10nm以下である。
 また、後記製造方法によれば、複数の針状細孔21Pの内部における複数の針状導電体22の充填率のばらつきを小さくすることができる。
 これら作用効果により、発光の面内均一性、発光輝度、及び発光効率等の発光特性を高めることができる。
When the surface roughness of the element is large, the in-plane electric field stimulation is not uniform, and the light emission characteristics such as in-plane uniformity of light emission, light emission luminance, and light emission efficiency tend to decrease. It is preferable that the surface roughness of the element is smaller because light emission characteristics such as in-plane uniformity of light emission, light emission luminance, and light emission efficiency are improved.
In this specification, the “surface roughness of the device” is defined by the arithmetic average roughness Ra of the device surface on the upper electrode layer 40 side.
By devising the manufacturing method, the arithmetic average roughness Ra of the element surface can be reduced.
The EL element 1 of the present embodiment is manufactured by a manufacturing method described later, and the arithmetic average roughness Ra of the element surface on the upper electrode layer 40 side is 100 nm or less, 70 nm or less, or 10 nm or less.
In addition, according to the manufacturing method described later, it is possible to reduce variation in the filling rate of the plurality of needle-shaped conductors 22 inside the plurality of needle-shaped pores 21P.
With these functions and effects, light emission characteristics such as in-plane uniformity of light emission, light emission luminance, and light emission efficiency can be enhanced.
 本実施形態によれば、上記の作用効果が相俟って、高電界を印加せずとも、発光輝度と発光効率を共に向上させることが可能なEL素子1を提供することができる。 According to the present embodiment, it is possible to provide the EL element 1 that can improve both the light emission luminance and the light emission efficiency without applying a high electric field due to the combined effects of the above.
「EL素子の製造方法」
 図面を参照して、本発明に係る一実施形態のEL素子1の製造方法について説明する。
 図2A~図2Bは、細孔構造体の製造工程を示す模式斜視図である。
 図3の左図は、針状導電体層の表面粗さを低減しなかった場合のEL素子(比較例)を示し、図3の右図は、針状導電体層の表面粗さを低減した場合のEL素子(本実施形態のEL素子)の様子を示す模式断面図である。
 図4A及び図4Bは、工程(D)~(F)を実施する効果を説明するための説明図(模式断面図)である。
"Manufacturing method of EL element"
With reference to drawings, the manufacturing method of EL element 1 of one embodiment concerning the present invention is explained.
2A to 2B are schematic perspective views showing the manufacturing process of the pore structure.
The left figure of FIG. 3 shows the EL element (comparative example) when the surface roughness of the acicular conductor layer is not reduced, and the right figure of FIG. 3 reduces the surface roughness of the acicular conductor layer. It is a schematic cross section which shows the mode of the EL element (EL element of this embodiment) at the time of doing.
4A and 4B are explanatory views (schematic cross-sectional views) for explaining the effect of performing the steps (D) to (F).
 以下、本実施形態のEL素子の製造方法について説明する。 Hereinafter, a method for manufacturing the EL element of this embodiment will be described.
(工程(A))
 はじめに、複数の針状細孔21Pを有する細孔構造体21からなる絶縁体を用意する。
 図2A~図2Bを参照して、細孔構造体21の製造方法と構造について説明する。
 図2A及び図2Bは模式斜視図である。
(Process (A))
First, an insulator composed of a pore structure 21 having a plurality of needle-like pores 21P is prepared.
With reference to FIGS. 2A to 2B, the manufacturing method and structure of the pore structure 21 will be described.
2A and 2B are schematic perspective views.
 はじめに図2Aに示すように、Al等の被陽極酸化金属を主成分とする被陽極酸化金属体Mを用意する。
 上記したように、細孔構造体21は被陽極酸化金属体の一部を陽極酸化して得られる金属酸化物体であり、下部電極層10は陽極酸化後に残る被陽極酸化金属体の残部である。
First, as shown in FIG. 2A, an anodized metal body M having an anodized metal such as Al as a main component is prepared.
As described above, the pore structure 21 is a metal oxide body obtained by anodizing a part of the anodized metal body, and the lower electrode layer 10 is the remainder of the anodized metal body remaining after anodization. .
 被陽極酸化金属体の主成分としては特に制限なく、Al、Ti、Ta、Hf、Zr、Si、In、及びZn等が挙げられる。被陽極酸化金属体はこれらを1種又は複数種含むことができる。
 被陽極酸化金属体の主成分としては、Al等が特に好ましい。
 本明細書において、「被陽極酸化金属体の主成分」は99質量%以上の成分と定義する。
 被陽極酸化金属体Mの形状は制限されず、板状等が挙げられる。また、支持体の上に被陽極酸化金属体Mが層状に成膜されたものなど、支持体付きの形態で用いることも差し支えない。
The main component of the metal to be anodized is not particularly limited, and examples thereof include Al, Ti, Ta, Hf, Zr, Si, In, and Zn. The anodized metal body may contain one or more of these.
As the main component of the anodized metal body, Al or the like is particularly preferable.
In this specification, the “main component of the metal to be anodized” is defined as a component of 99% by mass or more.
The shape of the anodized metal body M is not limited, and examples thereof include a plate shape. Further, it may be used in a form with a support such as a layer in which the metal anodized M is formed on the support.
 図2Bに示すように、被陽極酸化金属体Mの一部を陽極酸化すると、金属酸化物からなる細孔構造体21が生成される。例えば、被陽極酸化金属体MがAlを主成分とする場合、Alを主成分とする細孔構造体21が生成される。
 通常、細孔構造体21は金属酸化物層であり、被陽極酸化金属体Mの残部に対して、生成される細孔構造体21は薄いが、図面では、視認しやすくするため、細孔構造体21を大きく図示してある。
As shown in FIG. 2B, when a part of the anodized metal body M is anodized, a pore structure 21 made of a metal oxide is generated. For example, when the anodized metal body M has Al as a main component, a pore structure 21 having Al 2 O 3 as a main component is generated.
Usually, the pore structure 21 is a metal oxide layer, and the generated pore structure 21 is thin with respect to the remainder of the anodized metal body M. The structure 21 is greatly illustrated.
 陽極酸化は例えば、被陽極酸化金属体Mを陽極とし、カーボンあるいはアルミニウム等を陰極(対向電極)とし、これらを陽極酸化用電解液に浸漬させ、陽極と陰極との間に電圧を印加することで実施できる。
 電解液としては制限されず、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、及びアミドスルホン酸等の酸を、1種又は2種以上含む酸性電解液が好ましく用いられる。
Anodizing is, for example, using an anodized metal body M as an anode, carbon or aluminum as a cathode (counter electrode), immersing them in an anodizing electrolyte, and applying a voltage between the anode and the cathode. Can be implemented.
The electrolytic solution is not limited, and an acidic electrolytic solution containing one or more acids such as sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, and amidosulfonic acid is preferably used.
  被陽極酸化金属体Mを陽極酸化すると、図2Bに示すように、表面(図示上面)からこの面に対して略垂直方向に酸化反応が進行し、金属酸化物体が生成される。
  陽極酸化により生成される金属酸化物体は、略正六角柱状の複数の柱状体21Cが互いに隙間なく隣接して配列した構造を有するものとなる。各柱状体21Cの略中心部には、表面から深さ方向に延びた針状細孔21Pが開孔される。針状細孔21Pの底面と金属酸化物体の底面との間には、針状細孔21Pのないバリア層21Bが生成される。
 図示するように、針状細孔21Pは被陽極酸化金属体Mの表面に対して概ね垂直方向に開孔されるが、多少斜め方向に開孔される場合もある。
本実施形態では、陽極酸化後に残る被陽極酸化金属体Mの残部が下部電極層10となる。
When the anodized metal body M is anodized, as shown in FIG. 2B, an oxidation reaction proceeds from the surface (upper surface in the figure) in a direction substantially perpendicular to this surface, and a metal oxide body is generated.
The metal oxide body generated by anodization has a structure in which a plurality of substantially regular hexagonal columnar bodies 21C are arranged adjacent to each other without a gap. Needle-like pores 21P extending in the depth direction from the surface are opened at substantially the center of each columnar body 21C. Between the bottom surface of the acicular pore 21P and the bottom surface of the metal oxide body, a barrier layer 21B without the acicular pore 21P is generated.
As shown in the figure, the needle-like pores 21P are opened in a direction substantially perpendicular to the surface of the anodized metal body M, but may be opened in a slightly oblique direction.
In the present embodiment, the remaining portion of the anodized metal body M remaining after the anodic oxidation becomes the lower electrode layer 10.
 電界集中は、針状導電体22の延びる方向が電圧印加方向に近い程、効果的に発現する。陽極酸化法によれば、電圧印加方向に対して平行又はそれに近い方向に延びる複数の針状細孔21Pが規則正しくアレイ配列した細孔構造体21を、簡易なプロセスで形成できる。陽極酸化法によれば、針状細孔21Pのサイズ(長さと直径)及び数密度の制御がしやすく、大面積化も容易である。陽極酸化法は、低コストな方法である。  The electric field concentration becomes more effective as the extending direction of the needle-like conductor 22 is closer to the voltage application direction. According to the anodic oxidation method, the pore structure 21 in which a plurality of needle-like pores 21P extending in a direction parallel to or close to the voltage application direction is regularly arrayed can be formed by a simple process. According to the anodizing method, it is easy to control the size (length and diameter) and number density of the needle-shaped pores 21P, and it is easy to increase the area. The anodizing method is a low cost method. *
 陽極酸化法によれば、陽極酸化後に残る被陽極酸化金属体Mの残部を下部電極層10とすることができる。
 したがって、下部電極層10と針状導電体層20とを同一プロセスで一体形成することができる。この方法では、下部電極層10と針状導電体層20とを1つの被陽極酸化金属体Mから生成するので、これらの密着性が高く、好ましい。
 なお、下部電極層10の組成は、用いた被陽極酸化金属体Mと同一である。
According to the anodic oxidation method, the remainder of the anodized metal body M remaining after the anodic oxidation can be made the lower electrode layer 10.
Therefore, the lower electrode layer 10 and the acicular conductor layer 20 can be integrally formed by the same process. In this method, since the lower electrode layer 10 and the acicular conductor layer 20 are generated from one anodized metal body M, their adhesion is high and preferable.
The composition of the lower electrode layer 10 is the same as that of the used anodized metal body M.
 プロセスが簡易になることから、陽極酸化後に残る被陽極酸化金属体Mの残部を下部電極層10とすることが好ましいが、被陽極酸化金属体Mのすべてを陽極酸化してもよい。
 また、図5のEL素子2に示すように、被陽極酸化金属体Mの少なくとも一部を陽極酸化し、あれば被陽極酸化金属体Mの残部と金属酸化物体のバリア層21Bを除去し、複数の針状細孔21Pを貫通孔としてもよい。この場合、バリア層21Bが除去されるので、より高い電界集中効果が得られ、好ましい。
 例えば、被陽極酸化金属体Mの残部及びバリア層21Bは、切削等により物理的に除去することができる。
 また、被陽極酸化金属体Mの残部及びバリア層21Bは、リン酸等の酸性液に浸漬することでも除去できる。
Since the process becomes simple, it is preferable that the remaining portion of the metal body M to be anodized remaining after the anodic oxidation is the lower electrode layer 10, but all of the metal body M to be anodized may be anodized.
Further, as shown in the EL element 2 in FIG. 5, at least part of the anodized metal body M is anodized, and if there is, the remaining part of the anodized metal body M and the barrier layer 21B of the metal oxide body are removed. A plurality of needle-like pores 21P may be used as through holes. In this case, since the barrier layer 21B is removed, a higher electric field concentration effect is obtained, which is preferable.
For example, the remainder of the anodized metal body M and the barrier layer 21B can be physically removed by cutting or the like.
Further, the remainder of the anodized metal body M and the barrier layer 21B can be removed by immersing in an acidic liquid such as phosphoric acid.
 被陽極酸化金属体Mの残部を残さない場合、別途下部電極層10を設ける必要がある。
 下部電極層10は、導電性基材でもよいし、導電体膜でもよい。
 例えば、バリア層を除去した細孔構造体にAu膜等の導電体膜を形成することができる。この場合、必要に応じて、アルミナ基材等の絶縁性基材と導電体膜付き細孔構造体とを銀ペースト等の接着成分を介して貼り合わせ、熱処理することで、これらを接着することができる。
When the remainder of the metal to be anodized M is not left, it is necessary to provide the lower electrode layer 10 separately.
The lower electrode layer 10 may be a conductive substrate or a conductor film.
For example, a conductor film such as an Au film can be formed on the pore structure from which the barrier layer has been removed. In this case, if necessary, an insulating base material such as an alumina base material and a pore structure with a conductor film are bonded to each other through an adhesive component such as a silver paste and heat-treated to adhere them. Can do.
 工程(A)においては、上記絶縁体として、表面の算術平均粗さRaが200nm以下である被陽極酸化金属体の少なくとも一部を陽極酸化して得られた金属酸化物体を用意することが好ましい。
 蒸着法等により成膜される発光体層30は、熱処理により発光中心の活性化が行われるが、その温度が高い程、発光中心が活性化し、発光性能が向上する傾向がある。発光体層30の発光中心を活性化する際の熱処理時に、下部電極層10と針状導電体層20との間の熱膨張係数の差に起因して、これらの間に応力が発生する。
 一般に、Al等の市販の被陽極酸化金属体Mは圧延体であり、圧延方向に延びた多数の筋(圧延筋)を有している(図10を参照)。被陽極酸化金属体Mでは圧延方向に対して交差方向に応力が集中しやすいため、針状導電体層20にクラックが発生する恐れがある。
 本発明者は、陽極酸化前の表面の算術平均粗さRaが200nm以下である被陽極酸化金属体Mを用いることで、陽極酸化により得られる金属酸化物体において特定方向に応力がかかることが抑制され、クラックの発生を抑制できることを見出した。その結果、発光体層30の発光中心を活性化する際の熱処理時に、針状導電体層20に素子耐電圧を向上できることを見出した。
In the step (A), it is preferable to prepare a metal oxide body obtained by anodizing at least a part of an anodized metal body having an arithmetic average roughness Ra of 200 nm or less as the insulator. .
In the phosphor layer 30 formed by vapor deposition or the like, the emission center is activated by heat treatment, and the higher the temperature, the more the emission center is activated and the emission performance tends to be improved. Due to the difference in thermal expansion coefficient between the lower electrode layer 10 and the acicular conductor layer 20 during the heat treatment for activating the luminescent center of the luminescent layer 30, stress is generated between them.
In general, a commercially available anodized metal body M such as Al is a rolled body, and has a large number of stripes (rolling stripes) extending in the rolling direction (see FIG. 10). In the anodized metal body M, stress tends to concentrate in the crossing direction with respect to the rolling direction, so that there is a possibility that cracks may occur in the needle-like conductor layer 20.
The inventor suppresses stress applied in a specific direction in a metal oxide body obtained by anodization by using an anodized metal body M having an arithmetic average roughness Ra of 200 nm or less on the surface before anodization. And found that the generation of cracks can be suppressed. As a result, it has been found that the device withstand voltage can be improved in the acicular conductor layer 20 during the heat treatment when activating the luminescent center of the luminescent layer 30.
 なお、被陽極酸化金属体Mが圧延体である場合、圧延方向に対して平行方向(縦方向)と、圧延方向に対して垂直方向(横方向)のいずれの方向のRaも200nm以下とする。
 通常、横方向のRa>縦方向のRaであるので、横方向のRaを200nm以下にすればよい。
When the anodized metal body M is a rolled body, Ra in the direction parallel to the rolling direction (longitudinal direction) and the direction perpendicular to the rolling direction (transverse direction) is 200 nm or less. .
Usually, since Ra in the horizontal direction> Ra in the vertical direction, the Ra in the horizontal direction may be set to 200 nm or less.
 市販のAl等の被陽極酸化金属体Mでは、通常、圧延方向に対して平行方向(縦方向)と、圧延方向に対して垂直方向(横方向)のいずれの方向のRaも200nm超であるので、市販の被陽極酸化金属体Mの表面を研磨して、縦方向と横方向のいずれの方向のRaも200nm以下としてから、陽極酸化を実施することが好ましい。
 表面研磨は、公知方法により実施できる。
 例えば、Al等の被陽極酸化金属体Mをリン酸、硝酸あるいはこれらの組み合わせを含む酸性液に浸漬する化学研磨が好ましい。
In a commercially available anodized metal body M such as Al, the Ra in both the direction parallel to the rolling direction (longitudinal direction) and the direction perpendicular to the rolling direction (lateral direction) is usually more than 200 nm. Therefore, it is preferable to perform anodic oxidation after polishing the surface of the commercially available anodized metal body M and setting the Ra in either the vertical direction or the horizontal direction to 200 nm or less.
Surface polishing can be performed by a known method.
For example, chemical polishing in which the anodized metal body M such as Al is immersed in an acid solution containing phosphoric acid, nitric acid, or a combination thereof is preferable.
 市販のAl板の光学顕微鏡写真の例を図10に示す。この図には、多数の圧延筋と応力の方向が図示されている。
 図10中の応力の方向は模式的なものであり、実際の応力の方向は圧延筋の方向に対して垂直方向等の交差方向である。
An example of an optical micrograph of a commercially available Al plate is shown in FIG. This figure shows a number of rolling rebars and stress directions.
The direction of stress in FIG. 10 is schematic, and the actual direction of stress is a crossing direction such as a direction perpendicular to the direction of rolling bars.
 市販のAl板とその表面研磨物について、縦方向のRaと横方向のRaの測定例を図11に示す。
 図中、Raの最も大きい右上のデータが表面研磨なしのデータであり、他の2点のデータが表面研磨ありのデータである。
FIG. 11 shows an example of measurement of Ra in the vertical direction and Ra in the horizontal direction for a commercially available Al plate and its surface polished product.
In the figure, the data on the upper right with the largest Ra is data without surface polishing, and the other two data are data with surface polishing.
 本発明者は、陽極酸化前の表面の算術平均粗さRaが200nm以下である被陽極酸化金属体Mを用いることで、EL素子1の発光輝度が向上することも見出している。
 これは、針状導電体層20の表面粗さの低減につながり、面内の電界刺激が一様になるためと考えられる。
The present inventor has also found that the light emission luminance of the EL element 1 is improved by using the anodized metal body M having an arithmetic average roughness Ra of 200 nm or less before anodic oxidation.
This is considered to be because the surface roughness of the acicular conductor layer 20 is reduced, and the in-plane electric field stimulation becomes uniform.
 工程(A)においては、上記絶縁体として、主成分金属元素の純度が99.9質量%(3N)以上である被陽極酸化金属体の少なくとも一部を陽極酸化して得られた金属酸化物体を用意することが好ましい。被陽極酸化金属体の主成分金属元素の純度は、99.99質量%(4N)以上であることが特に好ましい。 In step (A), as the insulator, a metal oxide body obtained by anodizing at least a part of an anodized metal body having a purity of the main component metal element of 99.9% by mass (3N) or more Is preferably prepared. The purity of the main component metal element of the metal to be anodized is particularly preferably 99.99% by mass (4N) or more.
 以降、本明細書において、特に明記しない限り、「%」は「質量%」を示すものとする。 Hereinafter, unless otherwise specified, in this specification, “%” indicates “mass%”.
 被陽極酸化金属体Mの純度が低いと、不純物に起因して、陽極酸化により得られる金属酸化物体に針状細孔とは異なる不要な空隙等の不良が生じる恐れがある。また、不純物により針状細孔が元の被陽極酸化金属体Mの表面に対して垂直方向からずれた斜め方向に成長してしまう場合もある。これらの不良は電界集中の妨げになり、発光輝度及び発光効率の低下を招いてしまう。
 以降、本明細書において、特に明記しない限り、「空隙」は針状細孔とは異なる不要な空隙を示すものとする。
 被陽極酸化金属体Mの主成分金属元素の純度を99.9%(3N)以上、好ましくは99.99%(4N)以上とすることで、陽極酸化により得られる金属酸化物体に空隙等の不良が生じることが抑制され、針状細孔21Pを元の被陽極酸化金属体Mの表面に対して略垂直方向に成長させることができる。その結果、発光輝度及び発光効率を高めることができる。
When the purity of the metal to be anodized M is low, there is a possibility that defects such as unnecessary voids different from the needle-shaped pores may occur in the metal oxide obtained by anodization due to impurities. Further, the acicular pores may grow in an oblique direction shifted from the vertical direction with respect to the surface of the original anodized metal body M due to impurities. These defects hinder electric field concentration, leading to a decrease in light emission luminance and light emission efficiency.
Hereinafter, unless otherwise specified, in this specification, “void” refers to an unnecessary void different from the acicular pores.
By setting the purity of the main component metal element of the anodized metal body M to 99.9% (3N) or more, preferably 99.99% (4N) or more, the metal oxide body obtained by anodization has voids and the like. The occurrence of defects is suppressed, and the acicular pores 21P can be grown in a direction substantially perpendicular to the surface of the original anodized metal body M. As a result, light emission luminance and light emission efficiency can be increased.
(工程(B))
 次に、細孔構造体21の複数の針状細孔21Pの内部に複数の針状導電体22を形成して、針状導電体層20を得る。
 複数の針状細孔21Pの内部への複数の針状導電体22の形成方法は特に制限されず、例えば、下部電極層10を電極とした電解メッキ等の電解析出が好ましい。
(Process (B))
Next, a plurality of needle-like conductors 22 are formed inside the plurality of needle-like pores 21 </ b> P of the pore structure 21 to obtain the needle-like conductor layer 20.
The method for forming the plurality of needle-shaped conductors 22 inside the plurality of needle-shaped pores 21P is not particularly limited, and for example, electrolytic deposition such as electrolytic plating using the lower electrode layer 10 as an electrode is preferable.
(工程(C))
 次に、針状導電体層20の表面の算術平均粗さRaを低減する。
 針状導電体層20の表面粗さを低減する方法としては特に制限されず、表面研磨等が好ましい。
 複数の針状導電体22の形成後に得られた針状導電体層20の表面の算術平均粗さRaは、通常10nm超である。表面研磨等により、針状導電体層20の表面の算術平均粗さRaを10nm以下とすることが好ましい。
 表面研磨等により針状導電体層20の表面粗さを低減することで、複数の針状細孔21Pの内部における複数の針状導電体22の充填率のばらつきがある場合、複数の針状細孔21Pの内部における複数の針状導電体22の充填率を全体的に高め、複数の針状細孔21Pの内部における複数の針状導電体22の充填率のばらつきを小さくすることができる。複数の針状細孔21Pの内部における複数の針状導電体22の充填率のばらつきがある場合にも、複数の針状細孔21Pの内部における複数の針状導電体22の充填率を100%またはそれに近い値とすることができる。
 この時点で表面粗さを低減し、好ましくは表面の算術平均粗さRaを10nm以下としておくことで、最終的に得られる素子の表面粗さを小さくすることができる。例えば、最終的に得られる素子の表面の算術平均粗さRaを100nm以下、または70nm以下とすることができる。
 以上の作用効果が相まって、発光の面内均一性、発光輝度、及び発光効率等の発光特性が向上されたEL素子1を提供することができる。
(Process (C))
Next, the arithmetic average roughness Ra of the surface of the acicular conductor layer 20 is reduced.
The method for reducing the surface roughness of the acicular conductor layer 20 is not particularly limited, and surface polishing or the like is preferable.
The arithmetic average roughness Ra of the surface of the acicular conductor layer 20 obtained after the formation of the plural acicular conductors 22 is usually more than 10 nm. It is preferable that the arithmetic average roughness Ra of the surface of the acicular conductor layer 20 is 10 nm or less by surface polishing or the like.
When the surface roughness of the acicular conductor layer 20 is reduced by surface polishing or the like, when there is variation in the filling rate of the plural acicular conductors 22 inside the plural acicular pores 21P, a plurality of acicular shapes The filling rate of the plurality of needle-like conductors 22 inside the pores 21P can be increased as a whole, and the variation in the filling rate of the plurality of needle-like conductors 22 inside the plurality of needle-like pores 21P can be reduced. . Even when there is a variation in the filling rate of the plurality of needle-like conductors 22 inside the plurality of needle-like pores 21P, the filling rate of the plurality of needle-like conductors 22 inside the plurality of needle-like pores 21P is set to 100. % Or close to it.
At this time, the surface roughness is reduced, and preferably the surface roughness of the element finally obtained can be reduced by setting the arithmetic average roughness Ra of the surface to 10 nm or less. For example, the arithmetic average roughness Ra of the surface of the finally obtained device can be 100 nm or less, or 70 nm or less.
Combined with the above effects, the EL element 1 with improved light emission characteristics such as in-plane uniformity of light emission, light emission luminance, and light emission efficiency can be provided.
 図3の左図は、針状導電体層20の表面粗さを低減しなかった場合のEL素子を示し、図3の右図は、針状導電体層20の表面粗さを低減した場合のEL素子の様子を示す模式断面図である。 The left figure of FIG. 3 shows the EL element when the surface roughness of the acicular conductor layer 20 is not reduced, and the right figure of FIG. 3 shows the case where the surface roughness of the acicular conductor layer 20 is reduced. It is a schematic cross section which shows the mode of this EL element.
(工程(D)~(F))
 次に、好ましくは、針状導電体22の成分が発光体層30に拡散することを防止するバリア層となる絶縁体層50を形成する(工程(D))。
 次に、好ましくは、工程(D)以降のEL素子の製造プロセスの最高温度以上の温度で熱処理する(工程(E))。
 次に、好ましくは、工程(E)後の絶縁体層50の表面の算術平均粗さRaを低減する(工程(F))。
(Process (D) to (F))
Next, preferably, an insulator layer 50 serving as a barrier layer for preventing the components of the acicular conductor 22 from diffusing into the light emitter layer 30 is formed (step (D)).
Next, preferably, heat treatment is performed at a temperature equal to or higher than the maximum temperature of the EL element manufacturing process after step (D) (step (E)).
Next, preferably, the arithmetic average roughness Ra of the surface of the insulator layer 50 after the step (E) is reduced (step (F)).
 本発明者が検討したところ、工程(C)において針状導電体層20の表面粗さを小さくしても、その後の高温プロセスにおいて、針状導電体層20の一部の針状細孔21Pから針状導電体22が突出して針状導電体層20の表面に凸部が形成される場合があることが分かった。例えば、発光体層30の発光中心元素を活性化する熱処理等の高温プロセスにおいて、上記現象が起こることが分かった。
 本発明者は、
 針状導電体層20の表面に凸部が形成された場合、
 図4Aに示すように、
 針状導電体層20の各上層の表面にはいずれも、上記の針状導電体層20の凸部に由来する断面視円弧状凸部が見られること、
 各上層の凸部の表面は断面視で同じ角度で広がった円弧状であること、
 そして、上層に向かうほど、凸部表面の断面視円弧の半径が増大するため、上層に向かうほど、凸部の幅と高さが増大し、表面凹凸が増大することが分かった(後記試験例1、図8Aを参照)。
As a result of investigation by the present inventor, even if the surface roughness of the acicular conductor layer 20 is reduced in the step (C), some acicular pores 21P of the acicular conductor layer 20 in the subsequent high temperature process. It has been found that the needle-like conductor 22 may protrude from the needle and a convex portion may be formed on the surface of the needle-like conductor layer 20. For example, it has been found that the above phenomenon occurs in a high-temperature process such as heat treatment for activating the luminescent center element of the phosphor layer 30.
The inventor
When a convex portion is formed on the surface of the acicular conductor layer 20,
As shown in FIG. 4A,
The surface of each upper layer of the acicular conductor layer 20 has a circular arc-shaped convex portion in cross-sectional view derived from the convex portion of the acicular conductor layer 20 described above,
The surface of the convex portion of each upper layer has an arc shape that spreads at the same angle in a sectional view,
And as it goes to the upper layer, the radius of the circular arc in cross section of the surface of the convex portion increases, so that the width and height of the convex portion increase and the surface unevenness increases as it goes to the upper layer (test example described later) 1, see FIG. 8A).
 バリア層となる絶縁体層50を形成した後、以降のEL素子の製造プロセスの最高温度以上の温度で熱処理する工程(E)を実施することにより、発光体層30を形成する前に、針状導電体層20の一部の針状細孔21Pからの針状導電体22の突出を強制的に引き起こすことができる。
 その後、工程(E)後の絶縁体層50の表面の算術平均粗さRaを低減する工程(F)を実施すると、図4Bに示すように、その後の高温プロセスでは、再度針状導電体層20の一部の針状細孔21Pからの針状導電体22の突出は生じず、表面の平坦性を維持できる。
 絶縁体層50の表面粗さを低減する方法としては特に制限されず、逆スパッタリング処理等のエッチング処理等が好ましい。
 ここで、「逆スパッタリング処理」とは、スパッタリングにおいて基板と蒸着源に印加するバイアス電圧を通常と逆にすることで基板側にプラズマを発生させ、プラズマ中のイオン衝突により基板表面の物質を蒸発させる処理である。この処理では、相対的に凸な部分においてイオン衝突が起こりやすいため優先的に蒸発し、基板が平坦になる。
After forming the insulator layer 50 to be a barrier layer, before the light emitting layer 30 is formed, the needle (30) is formed by performing a heat treatment (E) at a temperature equal to or higher than the maximum temperature of the subsequent EL element manufacturing process. Protrusion of the needle-like conductor 22 from a part of the needle-like pores 21P of the needle-like conductor layer 20 can be forced.
Thereafter, when the step (F) of reducing the arithmetic average roughness Ra of the surface of the insulator layer 50 after the step (E) is performed, as shown in FIG. 4B, in the subsequent high-temperature process, the acicular conductor layer is again formed. The protrusion of the needle-like conductor 22 from some of the needle-like pores 21P of 20 does not occur, and the flatness of the surface can be maintained.
The method for reducing the surface roughness of the insulator layer 50 is not particularly limited, and an etching process such as a reverse sputtering process is preferable.
Here, “reverse sputtering treatment” means that plasma is generated on the substrate side by reversing the bias voltage applied to the substrate and the evaporation source during sputtering, and the material on the substrate surface is evaporated by ion collision in the plasma. It is a process to make. In this process, since ion collision is likely to occur in a relatively convex portion, it preferentially evaporates and the substrate becomes flat.
 工程(E)後の絶縁体層50の表面の算術平均粗さRaが10nm超である場合、工程(F)において、絶縁体層50の表面の算術平均粗さRaを10nm以下とすることが好ましい。 When the arithmetic average roughness Ra of the surface of the insulating layer 50 after the step (E) is more than 10 nm, the arithmetic average roughness Ra of the surface of the insulating layer 50 may be 10 nm or less in the step (F). preferable.
 工程(A)~(F)を実施することで、最終的に得られる素子の表面の算術平均粗さRaを100nm以下、70nm以下、または10nm以下とすることができる。
 工程(A)~(F)を実施することで最終的に得られる素子の表面粗さを小さくすることができるので、発光の面内均一性、発光輝度、及び発光効率等の発光特性が向上されたEL素子1を提供することができる。
 また、バリア層となる絶縁体層50は、発光体層30への電界印加の妨げとなるので、針状細孔21Pの内部に形成された針状導電体22の成分が発光体層30に拡散し、発光を不活性にすることを抑止できる範囲で、薄い方が好ましい。エッチング処理等によりバリア層となる絶縁体層50の表面粗さを低減することで、絶縁体層50を成膜時より薄くすることができ、好ましい。
By performing the steps (A) to (F), the arithmetic average roughness Ra of the surface of the finally obtained device can be made 100 nm or less, 70 nm or less, or 10 nm or less.
By carrying out steps (A) to (F), the surface roughness of the finally obtained device can be reduced, improving the light emission characteristics such as in-plane uniformity of light emission, light emission luminance, and light emission efficiency. The EL element 1 can be provided.
In addition, since the insulator layer 50 serving as a barrier layer prevents an electric field from being applied to the light emitter layer 30, the components of the needle-like conductor 22 formed inside the needle-like pores 21P are added to the light emitter layer 30. The thinner one is preferable as long as it is possible to prevent diffusion and inactivation of light emission. By reducing the surface roughness of the insulator layer 50 that becomes a barrier layer by etching or the like, the insulator layer 50 can be made thinner than that at the time of film formation, which is preferable.
(以降の工程)
 工程(F)以降は、公知方法により、好ましくはキャップ層となる絶縁体層60を形成した後、上部電極層40を形成して、EL素子1が製造される。
(Subsequent processes)
After the step (F), the EL element 1 is manufactured by forming the upper electrode layer 40 after forming the insulator layer 60 which is preferably a cap layer by a known method.
 本実施形態では、細孔構造体21が陽極酸化金属体からなる場合について説明したが、本発明はかかる態様に限らず、細孔構造体21は、発光体層30側の面において開口し、発光体層30側の面に対して交差方向に延びた複数の針状細孔21Pを有するものであればよい。
 陽極酸化金属体以外の細孔構造体21としては、非特許文献2等に記載のメソポーラスシリカなどの細孔構造体、高分子重合体の自己組織化を利用して得られる細孔構造体、及びリソグラフィー技術を用いたエッチングを利用して得られる細孔構造体等が挙げられる。
In the present embodiment, the case where the pore structure 21 is made of an anodized metal body has been described. However, the present invention is not limited to such an embodiment, and the pore structure 21 opens on the surface of the light emitter layer 30 side. What is necessary is just to have the some acicular pore 21P extended in the crossing direction with respect to the surface at the side of the light-emitting body layer 30. FIG.
As the pore structure 21 other than the anodized metal body, a pore structure such as mesoporous silica described in Non-Patent Document 2, etc., a pore structure obtained by utilizing the self-organization of a polymer, And a pore structure obtained by utilizing etching using a lithography technique.
 複数の針状細孔21Pを有する細孔構造体21を得た後、複数の針状細孔21Pの内部に複数の針状導電体22を形成する代わりに、複数の針状導電体22を設けた後、これら複数の針状導電体22を包埋するように絶縁体を設けてもよい。
 この場合、針状導電体22としては、下部電極層10の表面から、Ag及びCuなどの金属の針状結晶、あるいは、カーボンナノチューブなどを成長させたものが挙げられる。針状導電体22を包埋する絶縁体としては、セラミックス体、及び高分子重合体等が挙げられる。針状導電体22を包埋する絶縁体は、湿式塗布法あるいは真空蒸着法などの公知の方法によって形成することができる。
After obtaining the pore structure 21 having the plurality of needle-shaped pores 21P, instead of forming the plurality of needle-shaped conductors 22 inside the plurality of needle-shaped pores 21P, the plurality of needle-shaped conductors 22 are After the provision, an insulator may be provided so as to embed the plurality of needle-like conductors 22.
In this case, examples of the acicular conductor 22 include those obtained by growing acicular crystals of metal such as Ag and Cu or carbon nanotubes from the surface of the lower electrode layer 10. Examples of the insulator that embeds the needle-like conductor 22 include a ceramic body and a polymer. The insulator embedding the acicular conductor 22 can be formed by a known method such as a wet coating method or a vacuum deposition method.
 いずれの構造及び方法を採用するにしても、針状導電体層20を形成した後、表面研磨等によりその表面粗さを低減することで、複数の針状細孔21Pの内部における複数の針状導電体22の充填率のばらつきを小さくすることができると共に、最終的に得られる素子の表面粗さを低減することができる。その結果、発光の面内均一性、発光輝度、及び発光効率等の発光特性が向上されたEL素子1を提供することができる。 Regardless of which structure and method is adopted, after the needle-like conductor layer 20 is formed, the surface roughness is reduced by surface polishing or the like, so that a plurality of needles inside the plurality of needle-like pores 21P. The variation in the filling rate of the conductors 22 can be reduced, and the surface roughness of the element finally obtained can be reduced. As a result, it is possible to provide the EL element 1 with improved light emission characteristics such as in-plane uniformity of light emission, light emission luminance, and light emission efficiency.
 いずれの構造及び方法を採用するにしても、針状導電体層20を形成し、バリア層となる絶縁体層50を形成し、この工程以降のEL素子の製造プロセスの最高温度以上の温度で熱処理した後、エッチング処理等により絶縁体層50の表面粗さを低減することで、最終的に得られる素子の表面粗さを低減することができる。その結果、発光の面内均一性、発光輝度、及び発光効率等の発光特性が向上されたEL素子1を提供することができる。この方法では、バリア層となる絶縁体層50を成膜時より薄くできる効果も得られる。 Whichever structure and method is employed, the needle-like conductor layer 20 is formed, the insulator layer 50 is formed as a barrier layer, and the temperature is equal to or higher than the maximum temperature of the EL element manufacturing process after this step. After the heat treatment, the surface roughness of the finally obtained element can be reduced by reducing the surface roughness of the insulator layer 50 by etching or the like. As a result, it is possible to provide the EL element 1 with improved light emission characteristics such as in-plane uniformity of light emission, light emission luminance, and light emission efficiency. This method also provides an effect that the insulator layer 50 serving as a barrier layer can be made thinner than that during film formation.
 本発明は、無機EL素子及び有機EL素子のいずれにも適用可能であり、無機EL素子に好ましく適用できる。 The present invention can be applied to both inorganic EL elements and organic EL elements, and can be preferably applied to inorganic EL elements.
 以下に試験例及び比較例を挙げて本発明をさらに説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be further described with reference to test examples and comparative examples, but the present invention is not limited thereto.
<試験例1>
 過塩素酸及びエタノール混合溶液で電解研磨された日本軽金属社製純度99.99%(4N)、厚み3mmの100×100mmのアルミニウム板に対して、以下の条件で陽極酸化処理を行い、複数の針状細孔を有するアルミナ層を形成した。
 アルミニウム板の算術平均粗さRaは接触式段差計(Veeco社製、DEKTAK150)にて測定した結果、113nmであった。
・対向電極(陰極):アルミニウム
・電解液:0.3M硫酸
・浴温:15~19℃
・電圧:直流40V
・時間:100分
<Test Example 1>
A 100 × 100 mm aluminum plate with a purity of 99.99% (4N) and a thickness of 3 mm manufactured by Nippon Light Metal Co., Ltd. electropolished with a perchloric acid and ethanol mixed solution was subjected to anodization treatment under the following conditions, An alumina layer having acicular pores was formed.
The arithmetic average roughness Ra of the aluminum plate was 113 nm as a result of measurement with a contact-type step gauge (Veeco, DEKTAK150).
-Counter electrode (cathode): Aluminum-Electrolyte: 0.3 M sulfuric acid-Bath temperature: 15-19 ° C
・ Voltage: DC 40V
・ Time: 100 minutes
 得られたアルミナ層について、走査型電子顕微鏡(SEM、日立製作所社製「S-4800」)を用いて表面及び断面を観察した。表面SEM像(80,000倍)において、細孔100個の細孔面積から平均細孔径を求めた。また、同表面SEM像中の細孔個数から細孔密度を求めた。断面SEM像 (10,000倍)において、細孔100個の細孔長から平均細孔長を求めた。
 得られたアルミナ層は、複数の針状細孔がほぼ規則正しく開孔しており、平均細孔径0.02μm、平均細孔長8μm、平均細孔密度300個/μmであった。
The surface and the cross section of the obtained alumina layer were observed using a scanning electron microscope (SEM, “S-4800” manufactured by Hitachi, Ltd.). In the surface SEM image (80,000 times), the average pore diameter was determined from the pore area of 100 pores. Further, the pore density was determined from the number of pores in the same surface SEM image. In the cross-sectional SEM image (10,000 times), the average pore length was determined from the pore length of 100 pores.
The obtained alumina layer had a plurality of needle-like pores opened almost regularly, and had an average pore diameter of 0.02 μm, an average pore length of 8 μm, and an average pore density of 300 / μm 2 .
 次に、上記アルミナ層の複数の針状細孔の内部に、次の条件下でNiを電解メッキ析出させて、複数の針状導電体を形成した。
・電解浴:0.3M硫酸ニッケル・6水和物、0.1M硫酸アンモニウム、及び0.5M硼酸の混合液
・浴温:22~25℃
・pH:4.0~4.5
・電圧:交流10V(50Hz)
・処理時間:30分
Next, Ni was electrolytically deposited inside the plurality of needle-shaped pores of the alumina layer under the following conditions to form a plurality of needle-shaped conductors.
Electrolytic bath: 0.3M nickel sulfate hexahydrate, 0.1M ammonium sulfate, and 0.5M boric acid mixed solution Bath temperature: 22-25 ° C
・ PH: 4.0 to 4.5
・ Voltage: AC 10V (50Hz)
・ Processing time: 30 minutes
 得られた針状導電体層のSEM断面観察を実施したところ、針状細孔の内部における針状導電体の充填率は70~100%であった。 When SEM cross-section observation of the obtained acicular conductor layer was performed, the filling rate of the acicular conductor inside the acicular pores was 70 to 100%.
 針状導電体層の形成後に、バフ研磨装置(マルトー社製、ダイヤラップ、ML-150P)にて表面研磨を行い、Niの電解析出時に針状細孔の上部に残った非封孔部分を除去した。
 表面研磨は、2回に分けて実施した。粒度が大きい耐水研磨紙(三共理化学社製、平均粒径7.9μm、2000番)と液体研磨剤(マルトー社製、ダイヤモンドスラリー、平均粒径0.5μm)を用いて、1回目の研磨を30分間実施した。その後、粒度が小さい研磨布(マルトー社製、硬質ポリシングクロスMM414)と液体研磨剤(フジミ社製、コロイダルシリカ、平均粒径70nm)を用いて、2回目の研磨を30分間実施した。これら2回の表面研磨後、表面に残留した砥粒を除去するため、0.6質量%リン酸と0.18質量%クロム酸の混酸で洗浄した。
 以上の表面研磨により、すべての針状細孔の内部における針状導電体の充填率を100%とした。
After formation of the acicular conductor layer, surface polishing is performed with a buffing device (Malto, Dialap, ML-150P), and the non-sealed portion remaining on the upper portion of the acicular pores during the electrolytic deposition of Ni Was removed.
Surface polishing was performed in two steps. Using a water-resistant abrasive paper with a large particle size (Sankyo Rikagaku Co., Ltd., average particle size 7.9 μm, No. 2000) and a liquid abrasive (Malto Co., Ltd., diamond slurry, average particle size 0.5 μm) Conducted for 30 minutes. Thereafter, a second polishing was carried out for 30 minutes using a polishing cloth having a small particle size (manufactured by Marto, hard polishing cloth MM414) and a liquid abrasive (manufactured by Fujimi, colloidal silica, average particle diameter: 70 nm). After these two times of surface polishing, in order to remove the abrasive grains remaining on the surface, the surface was washed with a mixed acid of 0.6% by mass phosphoric acid and 0.18% by mass chromic acid.
By the above surface polishing, the filling rate of the acicular conductors in all the acicular pores was set to 100%.
 次に、窒化ケイ素Siのペレットをターゲットとして、酸素添加スパッタリングにより酸窒化ケイ素SiONを成膜した。蒸着時の真空度は5×10-4Pa以下、基板温度200℃、蒸着速度2nm/minに設定し、膜厚100nmのSiONバリア層を得た。 Next, a silicon oxynitride SiON film was formed by oxygen-added sputtering using a silicon nitride Si 3 N 4 pellet as a target. The degree of vacuum during vapor deposition was set to 5 × 10 −4 Pa or less, the substrate temperature was set to 200 ° C., and the vapor deposition rate was set to 2 nm / min to obtain a SiON barrier layer having a thickness of 100 nm.
 次に、0.5質量%のMnを添加したZnS粉末を900℃、50MPaで1時間ホットプレスにより焼結した焼結体をターゲットとし、スパッタリング法により発光体層を成膜した。蒸着時の真空度は5×10-4Pa以下、基板温度200℃、蒸着速度20nm/minに設定し、膜厚800nmのZnS:Mn発光体層を得た。得られた発光体層に対して、窒素雰囲気下500℃で1時間の熱処理を行い、発光中心のMnを活性化した。 Next, a phosphor layer was formed by sputtering using a sintered body obtained by sintering ZnS powder added with 0.5 mass% Mn by hot pressing at 900 ° C. and 50 MPa for 1 hour. The degree of vacuum during vapor deposition was set to 5 × 10 −4 Pa or less, the substrate temperature was set to 200 ° C., and the vapor deposition rate was set to 20 nm / min to obtain a ZnS: Mn phosphor layer having a thickness of 800 nm. The obtained phosphor layer was heat-treated at 500 ° C. for 1 hour in a nitrogen atmosphere to activate Mn at the emission center.
 次に、SiONバリア層と同条件で、スパッタリングにより酸窒化ケイ素SiONを成膜し、膜厚100nmのSiONキャップ層を得た。 Next, silicon oxynitride SiON was formed by sputtering under the same conditions as the SiON barrier layer to obtain a 100 nm thick SiON cap layer.
 次に、窒素雰囲気下500℃で1時間の熱処理を行い、発光中心のMnを活性化した。
 次に、上記発光体層上にITOをスパッタリング法により100nm厚で成膜し、上部電極層を形成した。
 以上のようにして、無機EL素子を得た。
Next, heat treatment was performed at 500 ° C. for 1 hour in a nitrogen atmosphere to activate Mn at the emission center.
Next, ITO was deposited to a thickness of 100 nm on the phosphor layer by sputtering to form an upper electrode layer.
As described above, an inorganic EL element was obtained.
 表面研磨後の針状導電体層について、光学顕微鏡(株式会社ナカデン社製、デジタルマイクロスコープMX-1200II)による表面観察を実施した。顕微鏡写真を図6の右図に示す。
 表面研磨後の針状導電体層の算術平均粗さRaを接触式段差計(Veeco社製、DEKTAK150)にて測定したところ、1.5nmであった。
The surface of the acicular conductor layer after surface polishing was observed with an optical microscope (manufactured by Nakaden Co., Ltd., digital microscope MX-1200II). A photomicrograph is shown in the right figure of FIG.
The arithmetic average roughness Ra of the needle-like conductor layer after surface polishing was measured with a contact-type step gauge (Veeco, DEKTAK150), and it was 1.5 nm.
 得られた無機EL素子について、光学顕微鏡(株式会社ナカデン社製、デジタルマイクロスコープMX-1200II)を用い、周波数1kHzの交流電圧を200V印加したときの発光の様子を観察した。顕微鏡写真を図7の右図に示す。写真中の黒い影は、電圧印加用の電極プローブである。
 針状導電体層の表面研磨を実施した試験例1では、得られた無機EL素子の発光ムラがなく、面内の発光均一性が高かった。
With respect to the obtained inorganic EL element, the state of light emission was observed using an optical microscope (manufactured by Nakaden Co., Ltd., digital microscope MX-1200II) when 200 V AC voltage with a frequency of 1 kHz was applied. A photomicrograph is shown in the right figure of FIG. The black shadow in the photograph is an electrode probe for applying voltage.
In Test Example 1 in which the surface of the needle-shaped conductor layer was polished, the obtained inorganic EL element had no light emission unevenness and high in-plane light emission uniformity.
 得られた無機EL素子について、交流電源により周波数1kHzの交流電圧を印加し、電圧200Vにおける発光輝度と発光効率を評価した。発光輝度は、色彩輝度計(トプコン社製 BM7)にて測定した。
 発光輝度は1516[cd/m]であり、発光効率は1.0[lm/W]であった。
About the obtained inorganic EL element, the alternating voltage of frequency 1kHz was applied with alternating current power supply, and the luminance and luminous efficiency in voltage 200V were evaluated. The emission luminance was measured with a color luminance meter (BM7 manufactured by Topcon Corporation).
The light emission luminance was 1516 [cd / m 2 ], and the light emission efficiency was 1.0 [lm / W].
 得られた素子について、断面TEM(透過型電子顕微鏡)観察、及び表面SEM(走査型電子顕微鏡)観察を実施した。
 断面TEM像を図8Aに示し、表面SEM像を図8Bの左図に示す。断面TEM像には、図1と同じ構成要素に同じ参照符号を付してある。
 針状導電体層の一部の針状細孔から針状導電体が突出して針状導電体層の表面に凸部が形成されている様子が見られた。針状導電体層の上層であるバリア層、発光体層、キャップ層、及び上部電極層の各層の表面にはいずれも、上記の針状導電体層の凸部に由来する断面視円弧状の凸部が見られた。各層の凸部の表面は断面視で同じ角度で広がった円弧状であった。上層に向かうほど、凸部表面の断面視円弧の半径が増大するため、上層に向かうほど、凸部の幅と高さが増大し、表面凹凸が増大する様子が見られた。
 接触式段差計(Veeco社製、DEKTAK150)を用いて、得られた素子の一方向の表面段差測定を実施した。測定結果を図8Bの右図に示す。得られた素子の表面段差は50~70nmであり、算術平均粗さRaは62nmであった。
About the obtained element, cross-sectional TEM (transmission electron microscope) observation and surface SEM (scanning electron microscope) observation were implemented.
A cross-sectional TEM image is shown in FIG. 8A, and a surface SEM image is shown in the left figure of FIG. 8B. In the cross-sectional TEM image, the same components as those in FIG.
It was observed that the needle-like conductor protruded from a part of the needle-like pores of the needle-like conductor layer and a convex portion was formed on the surface of the needle-like conductor layer. The surface of each of the barrier layer, the light emitter layer, the cap layer, and the upper electrode layer, which are upper layers of the acicular conductor layer, has an arcuate cross-sectional view derived from the convex portion of the acicular conductor layer. Convex parts were seen. The surface of the convex portion of each layer had an arc shape spreading at the same angle in cross-sectional view. Since the radius of the circular arc in a sectional view of the surface of the convex portion increases toward the upper layer, the width and height of the convex portion increase and the surface unevenness increases as it moves toward the upper layer.
Using a contact-type step meter (DEKTAK150, manufactured by Veeco), the surface step measurement in one direction of the obtained element was performed. The measurement results are shown in the right figure of FIG. 8B. The resulting device had a surface step of 50 to 70 nm and an arithmetic average roughness Ra of 62 nm.
 試験例1では、後記比較例1に比べると、得られた素子の表面粗さは低減され、発光特性は良好であった。ただし、針状導電体層の一部の針状細孔から針状導電体が突出して針状導電体層の表面に凸部が形成され、得られた素子の表面に微小ながらも凹凸が見られた。 In Test Example 1, as compared with Comparative Example 1 described later, the surface roughness of the obtained element was reduced, and the light emission characteristics were good. However, the needle-like conductor protrudes from a part of the needle-like pores of the needle-like conductor layer to form a convex portion on the surface of the needle-like conductor layer, and the surface of the obtained element is observed to be uneven although it is minute. It was.
 試験例1の主な製造条件と評価結果を表1に示す。 Table 1 shows the main manufacturing conditions and evaluation results of Test Example 1.
<試験例2>
 針状導電体層に対して、粒度が小さい研磨布(マルトー社製、硬質ポリシングクロスMM414)と液体研磨剤(フジミ社製、コロイダルシリカ、平均粒径70nm)を用いた研磨のみを30分間実施したこと以外は試験例1と同様の条件で、無機EL素子を作製した。
 この例においても、すべての針状細孔の内部における針状導電体の充填率を100%とした。
 試験例1と同様に、表面研磨後の針状導電体層の算術平均粗さRa、素子の算術平均粗さRa、光学顕微鏡を用いた発光ムラの有無、及び、素子の発光輝度と発光効率を評価した。試験例2の主な製造条件と評価結果を表1に示す。
<Test Example 2>
For the needle-shaped conductor layer, only polishing using a polishing cloth having a small particle size (manufactured by Maruto, hard polishing cloth MM414) and a liquid abrasive (manufactured by Fujimi, colloidal silica, average particle size of 70 nm) is performed for 30 minutes. An inorganic EL element was produced under the same conditions as in Test Example 1 except that.
Also in this example, the filling rate of the acicular conductors in all the acicular pores was 100%.
Similar to Test Example 1, the arithmetic average roughness Ra of the needle-shaped conductor layer after surface polishing, the arithmetic average roughness Ra of the element, the presence or absence of light emission unevenness using an optical microscope, and the light emission luminance and light emission efficiency of the element Evaluated. Table 1 shows main production conditions and evaluation results of Test Example 2.
<試験例3>
 針状導電体層に対して、粒度が大きい研磨布(三共理化学社製、平均粒径16μm、1000番)と液体研磨剤(マルトー社製、ダイヤモンドスラリー、平均粒径3.0μm)を用いた研磨のみを30分間実施したこと以外は試験例1と同様の条件で、無機EL素子を作製した。
 この例においても、すべての針状細孔の内部における針状導電体の充填率を100%とした。
 試験例1と同様に、表面研磨後の針状導電体層の算術平均粗さRa、素子の算術平均粗さRa、光学顕微鏡を用いた発光ムラの有無、及び、素子の発光輝度と発光効率を評価した。試験例3の主な製造条件と評価結果を表1に示す。
<Test Example 3>
For the acicular conductor layer, a polishing cloth having a large particle size (manufactured by Sankyo Rikagaku Co., Ltd., average particle size of 16 μm, No. 1000) and a liquid abrasive (manufactured by Marto, Inc., diamond slurry, average particle size of 3.0 μm) were used. An inorganic EL element was produced under the same conditions as in Test Example 1 except that only polishing was performed for 30 minutes.
Also in this example, the filling rate of the acicular conductors in all the acicular pores was 100%.
Similar to Test Example 1, the arithmetic average roughness Ra of the needle-shaped conductor layer after surface polishing, the arithmetic average roughness Ra of the element, the presence or absence of light emission unevenness using an optical microscope, and the light emission luminance and light emission efficiency of the element Evaluated. Table 1 shows main production conditions and evaluation results of Test Example 3.
<試験例4>
 試験例1と同様にして、複数の針状細孔を有するアルミナ層の形成、アルミナ層の複数の針状細孔の内部への複数の針状導電体の形成、得られた針状導電体層の表面研磨、及びバリア層の形成を実施した。
 次に、窒素雰囲気下500℃で1時間の熱処理を行った。
 次に、逆スパッタリング処理によりバリア層を平坦化した。この工程では、スパッタリング装置において、基板と蒸着源に印加するバイアス電圧を通常と逆にして基板側にプラズマを発生させ、プラズマ中のイオン衝突により基板表面の物質を蒸発させた。真空度は5×10-4Pa以下、スパッタリング速度4nm/minに設定し、SiOバリア層の表層(50nm厚)を除去して表面を平坦化した。
 バリア層平坦化後、実施例1と同様に、発光体層、キャップ層、及び上部電極を形成して、無機EL素子を得た。
<Test Example 4>
In the same manner as in Test Example 1, formation of an alumina layer having a plurality of needle-shaped pores, formation of a plurality of needle-shaped conductors inside the plurality of needle-shaped pores of the alumina layer, and the obtained needle-shaped conductor Surface polishing of the layer and formation of the barrier layer were performed.
Next, heat treatment was performed at 500 ° C. for 1 hour in a nitrogen atmosphere.
Next, the barrier layer was planarized by reverse sputtering treatment. In this step, in the sputtering apparatus, the bias voltage applied to the substrate and the evaporation source was reversed to the normal state to generate plasma on the substrate side, and the material on the substrate surface was evaporated by ion collision in the plasma. The degree of vacuum was set to 5 × 10 −4 Pa or less and the sputtering rate was 4 nm / min, and the surface layer (50 nm thickness) of the SiO 2 barrier layer was removed to flatten the surface.
After planarization of the barrier layer, a light emitting layer, a cap layer, and an upper electrode were formed in the same manner as in Example 1 to obtain an inorganic EL element.
 試験例4では、試験例1と同様の評価を実施した。
 得られた素子の表面SEM像と素子表面の一方向の表面段差測定の結果を図9の左図と右図に示す。試験例1では素子表面に微小な凸部が見られたが、試験例4では素子表面に凸部が見られず、表面平坦性の高い素子が得られた。
 試験例4の主な製造条件、表面研磨後の針状導電体層の算術平均粗さRa、素子の算術平均粗さRa、光学顕微鏡を用いた発光ムラの有無、及び、素子の発光輝度と発光効率の評価結果を表1に示す。
In Test Example 4, the same evaluation as in Test Example 1 was performed.
The surface SEM image of the obtained element and the result of the surface step measurement in one direction of the element surface are shown in the left and right diagrams of FIG. In Test Example 1, minute protrusions were found on the element surface, but in Test Example 4, no protrusions were found on the element surface, and an element with high surface flatness was obtained.
The main production conditions of Test Example 4, the arithmetic average roughness Ra of the needle-shaped conductor layer after surface polishing, the arithmetic average roughness Ra of the element, the presence or absence of light emission unevenness using an optical microscope, and the light emission luminance of the element The evaluation results of luminous efficiency are shown in Table 1.
<比較例1>
 針状導電体層の表面研磨を実施しなかったこと以外は試験例1と同様の条件で、無機EL素子を作製した。この例においては、針状細孔の内部における針状導電体の充填率は70~100%であった。
<Comparative Example 1>
An inorganic EL element was produced under the same conditions as in Test Example 1 except that the surface polishing of the acicular conductor layer was not performed. In this example, the filling rate of the acicular conductor inside the acicular pores was 70 to 100%.
 比較例1では、試験例1と同様の評価を実施した。
 比較例1の針状導電体層の光学顕微鏡写真を図6に示す。
 比較例1において得られた素子について、光学顕微鏡を用い、周波数1kHzの交流電圧を200V印加したときの発光の様子を観察した。顕微鏡写真を図7に示す。写真中の黒い影は、電圧印加用の電極プローブである。
 針状導電体層の表面研磨を実施しなかった比較例1では、針状導電体層の表面粗さが大きく、得られた無機EL素子には発光ムラが見られた。
 比較例1の主な製造条件、針状導電体層の算術平均粗さRa、素子の算術平均粗さRa、光学顕微鏡を用いた発光ムラの有無、及び、素子の発光輝度と発光効率の評価結果を表1に示す。
In Comparative Example 1, the same evaluation as in Test Example 1 was performed.
An optical micrograph of the acicular conductor layer of Comparative Example 1 is shown in FIG.
About the element obtained in the comparative example 1, the mode of light emission when 200V of alternating voltage of frequency 1kHz was applied was observed using the optical microscope. A photomicrograph is shown in FIG. The black shadow in the photograph is an electrode probe for applying voltage.
In Comparative Example 1 where the surface polishing of the needle-shaped conductor layer was not performed, the surface roughness of the needle-shaped conductor layer was large, and light emission unevenness was observed in the obtained inorganic EL element.
The main production conditions of Comparative Example 1, the arithmetic average roughness Ra of the acicular conductor layer, the arithmetic average roughness Ra of the element, the presence or absence of light emission unevenness using an optical microscope, and the evaluation of the light emission luminance and light emission efficiency of the element The results are shown in Table 1.
<結果のまとめ>
 表1に示すように、針状導電体層を形成した後、その発光体層側の表面を研磨して、その算術平均粗さRaを10nm以下とした試験例1、2では、針状導電体層の発光体層側の表面の算術平均粗さRaが10nm超である試験例3及び比較例1よりも、発光輝度及び発光効率が高い無機EL素子が得られた。
 針状導電体層を形成した後、その発光体層側の表面を研磨して、その算術平均粗さRaを10nm以下とし、さらに、バリア層の成膜後、熱処理と表面平坦化の処理を実施した試験例4では、表面粗さが小さく、発光輝度及び発光効率が高い無機EL素子が得られた。
<Summary of results>
As shown in Table 1, in the test examples 1 and 2 in which the needle-like conductor layer was formed and the surface on the light-emitting body layer side was polished so that the arithmetic average roughness Ra was 10 nm or less, the needle-like conductor was used. An inorganic EL element having higher light emission luminance and light emission efficiency than Test Example 3 and Comparative Example 1 in which the arithmetic average roughness Ra of the surface of the body layer on the light emitter layer side was more than 10 nm was obtained.
After forming the acicular conductor layer, the surface on the light emitter layer side is polished so that the arithmetic average roughness Ra is 10 nm or less. Further, after forming the barrier layer, heat treatment and surface flattening treatment are performed. In Test Example 4 that was performed, an inorganic EL element having a small surface roughness and high light emission luminance and light emission efficiency was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この出願は、2012年11月13日に出願された日本出願特願2012-249293号、2012年11月13日に出願された日本出願特願2012-249294号、2012年11月13日に出願された日本出願特願2012-249295号、及び2013年5月22日に出願された日本出願特願2013-107797号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application is Japanese Patent Application No. 2012-249293 filed on November 13, 2012, Japanese Patent Application No. 2012-249294 filed on November 13, 2012, and filed on November 13, 2012 Claiming priority based on Japanese Patent Application No. 2012-249295 filed in Japan and Japanese Patent Application No. 2013-107797 filed on May 22, 2013, the entire disclosure of which is incorporated herein.
1、2 EL素子
10 下部電極層(第1の電極層)
20 針状導電体層
21 細孔構造体
21B バリア層
21C 柱状体
21P 針状細孔
22 針状導電体
30 発光体層
30S 発光体層の下部電極層側の面
40 上部電極層(第2の電極層)
50、60 絶縁体層
M 被陽極酸化金属体
1, 2 EL element 10 Lower electrode layer (first electrode layer)
20 Needle-like conductor layer 21 Porous structure 21B Barrier layer 21C Columnar body 21P Needle-like pore 22 Needle-like conductor 30 Light emitter layer 30S Surface 40 of the light emitter layer on the lower electrode layer side Upper electrode layer (second Electrode layer)
50, 60 Insulator layer M Metal object to be anodized

Claims (21)

  1.  第1の電極層と発光体層と透光性を有する第2の電極層とを順次備えたエレクトロルミネセンス素子であって、
     さらに、
     前記第1の電極層と前記発光体層との間に、
     前記発光体層側の面において開口し、当該発光体層側の面に対して交差方向に延びた複数の針状細孔を有する細孔構造体からなる絶縁体と、前記複数の針状細孔の内部に形成された複数の針状導電体とを含む針状導電体層を備え、
     前記第2の電極層側の素子表面の算術平均粗さRaが100nm以下であるエレクトロルミネセンス素子。
    An electroluminescent device comprising a first electrode layer, a light emitter layer, and a second electrode layer having translucency in order,
    further,
    Between the first electrode layer and the phosphor layer,
    An insulator composed of a pore structure having a plurality of needle-like pores that are open in the surface on the light emitter layer side and extend in a crossing direction with respect to the surface on the light emitter layer side; A needle-like conductor layer including a plurality of needle-like conductors formed inside the hole,
    The electroluminescent element whose arithmetic mean roughness Ra of the element surface by the side of said 2nd electrode layer is 100 nm or less.
  2.  前記素子表面の算術平均粗さRaが70nm以下である請求項1に記載のエレクトロルミネセンス素子。 The electroluminescent device according to claim 1, wherein the arithmetic mean roughness Ra of the device surface is 70 nm or less.
  3.  前記素子表面の算術平均粗さRaが10nm以下である請求項1に記載のエレクトロルミネセンス素子。 The electroluminescent device according to claim 1, wherein the arithmetic mean roughness Ra of the device surface is 10 nm or less.
  4.  前記針状導電体層と前記発光体層との間に導電体層を備えていない請求項1~3のいずれかに記載のエレクトロルミネセンス素子。 The electroluminescent device according to any one of claims 1 to 3, wherein a conductor layer is not provided between the acicular conductor layer and the light emitting layer.
  5.  前記細孔構造体は、前記被陽極酸化金属体の少なくとも一部を陽極酸化して得られる金属酸化物体である請求項1~4のいずれかに記載のエレクトロルミネセンス素子。 The electroluminescent device according to any one of claims 1 to 4, wherein the pore structure is a metal oxide obtained by anodizing at least a part of the metal to be anodized.
  6.  前記細孔構造体は、前記被陽極酸化金属体の一部を陽極酸化して得られる金属酸化物体であり、
     前記第1の電極層は、陽極酸化後に残る前記被陽極酸化金属体の残部である請求項5に記載のエレクトロルミネセンス素子。
    The pore structure is a metal oxide body obtained by anodizing a part of the anodized metal body,
    The electroluminescent element according to claim 5, wherein the first electrode layer is a remaining part of the metal to be anodized remaining after anodization.
  7.  前記細孔構造体は、前記被陽極酸化金属体の少なくとも一部を陽極酸化して得られる金属酸化物体のバリア層を除去し、前記複数の針状細孔を貫通孔としたものである請求項5に記載のエレクトロルミネセンス素子。 The pore structure is obtained by removing a barrier layer of a metal oxide body obtained by anodizing at least a part of the anodized metal body, and forming the plurality of needle-like pores as through holes. Item 6. The electroluminescent device according to Item 5.
  8.  前記針状導電体は、Ag、Au、Cd、Co、Cu、Fe、Ni、Sn、及びZnからなる群より選択された少なくとも1種の金属を含む請求項1~7のいずれかに記載のエレクトロルミネセンス素子。 The acicular conductor includes at least one metal selected from the group consisting of Ag, Au, Cd, Co, Cu, Fe, Ni, Sn, and Zn. Electroluminescence element.
  9.  前記針状導電体の長さが1μm以上である請求項1~8のいずれかに記載のエレクトロルミネセンス素子。 The electroluminescent device according to any one of claims 1 to 8, wherein the needle-like conductor has a length of 1 µm or more.
  10.  前記針状導電体の直径が0.5μm以下である請求項1~9のいずれかに記載のエレクトロルミネセンス素子。 10. The electroluminescent device according to claim 1, wherein the needle-like conductor has a diameter of 0.5 μm or less.
  11.  前記針状導電体の長さ/直径が100以上である請求項1~10のいずれかに記載のエレクトロルミネセンス素子。 The electroluminescent device according to any one of claims 1 to 10, wherein the length / diameter of the acicular conductor is 100 or more.
  12.  前記針状導電体層における前記針状導電体の数密度が1個/μm以上である請求項1~11のいずれかに記載のエレクトロルミネセンス素子。 12. The electroluminescent device according to claim 1, wherein the number density of the needle-like conductors in the needle-like conductor layer is 1 piece / μm 2 or more.
  13.  さらに、前記針状導電体層と前記発光体層との間に絶縁体層を備えた請求項1~12のいずれかに記載のエレクトロルミネセンス素子。 The electroluminescent device according to any one of claims 1 to 12, further comprising an insulator layer between the acicular conductor layer and the light emitting layer.
  14.  前記針状導電体と前記発光体層との離間距離が1μm以下である請求項1~13のいずれかに記載のエレクトロルミネセンス素子。 The electroluminescent device according to any one of claims 1 to 13, wherein a distance between the acicular conductor and the light emitting layer is 1 µm or less.
  15.  さらに、前記発光体層と前記第2の電極層との間に絶縁体層を備えた請求項1~14のいずれかに記載のエレクトロルミネセンス素子。 The electroluminescent device according to any one of claims 1 to 14, further comprising an insulator layer between the phosphor layer and the second electrode layer.
  16.  第1の電極層と発光体層と透光性を有する第2の電極層とを順次備え、
     さらに、
     前記第1の電極層と前記発光体層との間に、
     前記発光体層側の面において開口し、当該発光体層側の面に対して交差方向に延びた複数の針状細孔を有する細孔構造体からなる絶縁体と、前記複数の針状細孔の内部に形成された複数の針状導電体とを含む針状導電体層を備えたエレクトロルミネセンス素子の製造方法であって、
     前記複数の針状細孔を有する細孔構造体からなる前記絶縁体を用意する工程(A)と、
     前記絶縁体の前記複数の針状細孔の内部に前記複数の針状導電体を形成して、前記針状導電体層を得る工程(B)と、
     前記針状導電体層の表面の算術平均粗さRaを低減する工程(C)とを有するエレクトロルミネセンス素子の製造方法。
    A first electrode layer, a light emitter layer, and a second electrode layer having translucency are sequentially provided,
    further,
    Between the first electrode layer and the phosphor layer,
    An insulator composed of a pore structure having a plurality of needle-like pores that are open in the surface on the light emitter layer side and extend in a crossing direction with respect to the surface on the light emitter layer side; A method of manufacturing an electroluminescent element comprising a needle-shaped conductor layer including a plurality of needle-shaped conductors formed inside a hole,
    Preparing the insulator comprising a pore structure having the plurality of acicular pores (A);
    Forming the plurality of needle-shaped conductors inside the plurality of needle-shaped pores of the insulator to obtain the needle-shaped conductor layer (B);
    And a step (C) of reducing the arithmetic average roughness Ra of the surface of the acicular conductor layer.
  17.  工程(B)後で得られる前記針状導電体層の表面の算術平均粗さRaが10nm超であり、
     工程(C)において、前記針状導電体層の表面の算術平均粗さRaを10nm以下とする請求項16に記載のエレクトロルミネセンス素子の製造方法。
    The arithmetic average roughness Ra of the surface of the acicular conductor layer obtained after the step (B) is more than 10 nm,
    The method of manufacturing an electroluminescent element according to claim 16, wherein in the step (C), the arithmetic average roughness Ra of the surface of the acicular conductor layer is 10 nm or less.
  18.  工程(C)後に、
     前記針状導電体の成分が前記発光体層に拡散することを防止するバリア層となる絶縁体層を形成する工程(D)と、
     工程(D)以降の前記エレクトロルミネセンス素子の製造プロセスの最高温度以上の温度で熱処理する工程(E)と、
     工程(E)後の前記絶縁体層の表面の算術平均粗さRaを低減する工程(F)とを有する請求項16又は17に記載のエレクトロルミネセンス素子の製造方法。
    After step (C)
    A step (D) of forming an insulator layer serving as a barrier layer for preventing the acicular conductor component from diffusing into the light emitter layer;
    A step (E) of performing a heat treatment at a temperature equal to or higher than a maximum temperature of the manufacturing process of the electroluminescent element after the step (D);
    The method for producing an electroluminescent element according to claim 16, further comprising a step (F) of reducing the arithmetic average roughness Ra of the surface of the insulator layer after the step (E).
  19.  工程(E)後の前記絶縁体層の表面の算術平均粗さRaが10nm超であり、
     工程(F)において、前記絶縁体層の表面の算術平均粗さRaを10nm以下とする請求項18に記載のエレクトロルミネセンス素子の製造方法。
    The arithmetic average roughness Ra of the surface of the insulator layer after the step (E) is more than 10 nm,
    The method of manufacturing an electroluminescent element according to claim 18, wherein in the step (F), the arithmetic average roughness Ra of the surface of the insulator layer is 10 nm or less.
  20.  工程(A)においては、前記絶縁体として、表面の算術平均粗さRaが200nm以下である被陽極酸化金属体の少なくとも一部を陽極酸化して得られた金属酸化物体を用意する請求項16~19のいずれかに記載のエレクトロルミネセンス素子の製造方法。 In the step (A), a metal oxide body obtained by anodizing at least a part of a metal body to be anodized having a surface arithmetic average roughness Ra of 200 nm or less is prepared as the insulator. 20. The method for producing an electroluminescent device according to any one of items 19 to 19.
  21.  工程(A)においては、前記絶縁体として、主成分金属元素の純度が99.9質量%以上である被陽極酸化金属体の少なくとも一部を陽極酸化して得られた金属酸化物体を用意する請求項16~20のいずれかに記載のエレクトロルミネセンス素子の製造方法。 In the step (A), as the insulator, a metal oxide body obtained by anodizing at least a part of an anodized metal body having a purity of a main component metal element of 99.9% by mass or more is prepared. The method for producing an electroluminescent element according to any one of claims 16 to 20.
PCT/JP2013/006648 2012-11-13 2013-11-12 Electroluminescent element and method for producing same WO2014076939A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-249294 2012-11-13
JP2012249295A JP2014099273A (en) 2012-11-13 2012-11-13 Electroluminescence element and method for manufacturing the same
JP2012-249295 2012-11-13
JP2012-249293 2012-11-13
JP2012249294A JP2014099272A (en) 2012-11-13 2012-11-13 Electroluminescence element and method for manufacturing the same
JP2012249293 2012-11-13
JP2013-107797 2013-05-22
JP2013107797A JP2014116284A (en) 2012-11-13 2013-05-22 Electroluminescent element

Publications (1)

Publication Number Publication Date
WO2014076939A1 true WO2014076939A1 (en) 2014-05-22

Family

ID=50730873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006648 WO2014076939A1 (en) 2012-11-13 2013-11-12 Electroluminescent element and method for producing same

Country Status (1)

Country Link
WO (1) WO2014076939A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099274A (en) * 2012-11-13 2014-05-29 Kuraray Co Ltd Electroluminescence element and method for manufacturing the same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205989A (en) * 1984-03-28 1985-10-17 日本メクトロン株式会社 Solid fluorescent element and method of producing same
JPH05211029A (en) * 1992-01-31 1993-08-20 Ricoh Co Ltd Electron emission element and its manufacture
JPH05290977A (en) * 1992-04-14 1993-11-05 Stanley Electric Co Ltd Element and manufacturing thereof
JPH11200090A (en) * 1997-11-12 1999-07-27 Canon Inc Nanostructural body and its production
JP2000188058A (en) * 1997-11-14 2000-07-04 Canon Inc Electron emission element and its manufacture
JP2003025298A (en) * 2001-05-11 2003-01-29 Canon Inc Structure having pore and its manufacturing method
JP2003268592A (en) * 2002-01-08 2003-09-25 Fuji Photo Film Co Ltd Structure, method for manufacturing structure, and sensor using the same
JP2005026275A (en) * 2003-06-30 2005-01-27 Sumitomo Electric Ind Ltd Porous semiconductor device and its manufacturing method
JP2005044619A (en) * 2003-07-22 2005-02-17 Univ Nihon Electroluminescent device and its manufacturing method
JP2005120421A (en) * 2003-10-16 2005-05-12 Sony Corp Pore structure, its production method, memory device, its production method, adsorption amount analyzer, and magnetic recording medium
JP2005530317A (en) * 2002-06-18 2005-10-06 アルカン テヒノロギー ウント メーニッジメント リミテッド Lighting element with light emitting surface
JP2006127780A (en) * 2004-10-26 2006-05-18 Canon Inc Electroluminescent element
JP2006518471A (en) * 2003-10-14 2006-08-10 エルジー・ケム・リミテッド Electrode system manufacturing method, electrode system manufactured therefrom, and electric element including the same
JP2006260982A (en) * 2005-03-17 2006-09-28 Canon Inc Light emitting element and its manufacturing method
WO2013190797A1 (en) * 2012-06-22 2013-12-27 株式会社クラレ Electroluminescent element

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205989A (en) * 1984-03-28 1985-10-17 日本メクトロン株式会社 Solid fluorescent element and method of producing same
JPH05211029A (en) * 1992-01-31 1993-08-20 Ricoh Co Ltd Electron emission element and its manufacture
JPH05290977A (en) * 1992-04-14 1993-11-05 Stanley Electric Co Ltd Element and manufacturing thereof
JPH11200090A (en) * 1997-11-12 1999-07-27 Canon Inc Nanostructural body and its production
JP2000188058A (en) * 1997-11-14 2000-07-04 Canon Inc Electron emission element and its manufacture
JP2003025298A (en) * 2001-05-11 2003-01-29 Canon Inc Structure having pore and its manufacturing method
JP2003268592A (en) * 2002-01-08 2003-09-25 Fuji Photo Film Co Ltd Structure, method for manufacturing structure, and sensor using the same
JP2005530317A (en) * 2002-06-18 2005-10-06 アルカン テヒノロギー ウント メーニッジメント リミテッド Lighting element with light emitting surface
JP2005026275A (en) * 2003-06-30 2005-01-27 Sumitomo Electric Ind Ltd Porous semiconductor device and its manufacturing method
JP2005044619A (en) * 2003-07-22 2005-02-17 Univ Nihon Electroluminescent device and its manufacturing method
JP2006518471A (en) * 2003-10-14 2006-08-10 エルジー・ケム・リミテッド Electrode system manufacturing method, electrode system manufactured therefrom, and electric element including the same
JP2005120421A (en) * 2003-10-16 2005-05-12 Sony Corp Pore structure, its production method, memory device, its production method, adsorption amount analyzer, and magnetic recording medium
JP2006127780A (en) * 2004-10-26 2006-05-18 Canon Inc Electroluminescent element
JP2006260982A (en) * 2005-03-17 2006-09-28 Canon Inc Light emitting element and its manufacturing method
WO2013190797A1 (en) * 2012-06-22 2013-12-27 株式会社クラレ Electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099274A (en) * 2012-11-13 2014-05-29 Kuraray Co Ltd Electroluminescence element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7700968B2 (en) Method of forming a light-emitting device with a triple junction
JP4221389B2 (en) Method of manufacturing field emission emitter electrode using self-assembly of carbon nanotube and field emission emitter electrode manufactured thereby
JP4776955B2 (en) Light emitting device and manufacturing method thereof
KR20060114387A (en) Field-emission phosphor, its manufacturing method, and field-emission device
WO2013190797A1 (en) Electroluminescent element
JP2007250315A (en) Organic electroluminescent element
WO2014076939A1 (en) Electroluminescent element and method for producing same
US7541733B2 (en) Light-emitting element, method for producing the same and display device
JP4164150B2 (en) Method for producing optical functional thin film
JP4748940B2 (en) AC operation electroluminescence element
JP2014116284A (en) Electroluminescent element
JP2014099272A (en) Electroluminescence element and method for manufacturing the same
JP2014099273A (en) Electroluminescence element and method for manufacturing the same
TW201427081A (en) Electroluminescence device and manufacturing method thereof
JP2014099274A (en) Electroluminescence element and method for manufacturing the same
JP2005203336A (en) Electroluminescent element and electroluminescent particle
JP2003229045A (en) Electron source device and manufacturing method therefor
JP2010215787A (en) Inorganic phosphor particle and distributed electroluminescence element using the same
JP2015032501A (en) Electroluminescent element
KR20110042066A (en) Inorganic phosphor particle
JP2007180036A (en) Light emitting element, its manufacturing method, and display device
JPH05290977A (en) Element and manufacturing thereof
JPH0568078B2 (en)
JP2004200143A (en) Light emitting element, its manufacturing method, and display device
JP4330475B2 (en) Method for producing electroluminescent phosphor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856023

Country of ref document: EP

Kind code of ref document: A1