WO2013190797A1 - Electroluminescent element - Google Patents

Electroluminescent element Download PDF

Info

Publication number
WO2013190797A1
WO2013190797A1 PCT/JP2013/003614 JP2013003614W WO2013190797A1 WO 2013190797 A1 WO2013190797 A1 WO 2013190797A1 JP 2013003614 W JP2013003614 W JP 2013003614W WO 2013190797 A1 WO2013190797 A1 WO 2013190797A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
needle
conductor
acicular
electroluminescent device
Prior art date
Application number
PCT/JP2013/003614
Other languages
French (fr)
Japanese (ja)
Inventor
能久 乾
聖也 木町
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2014520918A priority Critical patent/JPWO2013190797A1/en
Publication of WO2013190797A1 publication Critical patent/WO2013190797A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • the present invention relates to an electroluminescence element.
  • An inorganic electroluminescent (hereinafter, abbreviated as “EL”) element is a self-luminous element having features such as a large area and a long lifetime.
  • EL element a thin film type inorganic EL element and a dispersion type inorganic EL element are known.
  • a thin-film inorganic EL element is an element in which a light-transmitting lower electrode layer, a light-emitting body layer, and an upper electrode layer are sequentially stacked on a light-transmitting insulating substrate (FIG. 4 of Patent Document 1). reference).
  • An insulator layer may be provided between the lower electrode layer and the light emitter layer and / or between the light emitter layer and the upper electrode layer.
  • the luminescent layer material a material obtained by adding at least one luminescent center element to the base compound is preferably used.
  • Known parent compounds include II-VI binary compounds such as ZnS, SrS, and CaS, and II-III-VI group ternary compounds such as CaGa 2 S 4 , SrGaS 4 , and BaAl 2 S 4. ing.
  • examples of the luminescent center element include metal elements such as Mn, Cu, Au, and rare earth.
  • Examples of the phosphor layer material include ZnS: Mn that exhibits an orange emission color, ZnS: Tb that exhibits a green emission color, and BaAl 2 S 4 : Eu that exhibits a blue emission color (paragraph of Patent Document 1). 0004).
  • the dispersion-type inorganic EL element includes a phosphor layer in which phosphor particles are dispersed in a binder made of a high dielectric resin such as a fluorine-based resin or a cyano group-containing resin, and a pair of electrodes sandwiching the phosphor layer. It is an element provided with a board (refer claim 7 of patent document 2).
  • the dispersion-type inorganic EL element further includes a dielectric layer in which a dielectric material such as barium titanate is dispersed in a high dielectric resin in order to prevent dielectric breakdown.
  • Patent Document 2 discloses an EL phosphor powder in which zinc sulfide (ZnS) is used as a base compound and an activator such as Cu and a coactivator such as Cl are added, and an EL element using the same. (Claim 1).
  • ZnS zinc sulfide
  • Cl coactivator
  • Non-Patent Document 1 As the acicular conductor is perpendicular to the electrode surface, the electric field is more likely to be concentrated, so that high emission luminance is easily obtained.
  • the acicular conductor oriented perpendicular to the electrode surface increases, electric field concentration is likely to occur, and the light emission luminance is improved (Patent Document 2). Paragraph 0005).
  • JP 2008-251336 A Patent No. 4928329
  • acicular conductors such as Cu in the phosphor particles precipitate in multiple directions (random directions) in the crystal plane, the proportion of acicular conductors oriented perpendicular to the electrode surface is small, The electric field is difficult to concentrate.
  • the organic EL element can sufficiently improve the light emission luminance and the light emission efficiency.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an EL element capable of improving both light emission luminance and light emission efficiency without applying a high electric field.
  • the electroluminescence (EL) element of the present invention is An electroluminescent device comprising a first electrode layer, a light emitter layer, and a second electrode layer having translucency in order, Between the first electrode layer and the phosphor layer, Needle-like conductivity including a plurality of needle-like conductors extending in a crossing direction with respect to the surface on the first electrode layer side of the phosphor layer, and an insulator that insulates between the plurality of needle-like conductors. It has a body layer.
  • needle refers to a shape having a length / diameter of 2 or more.
  • an EL element capable of improving both the light emission luminance and the light emission efficiency without applying a high electric field.
  • FIG. 1 is an overall schematic cross-sectional view of an EL element according to an embodiment of the present invention. It is a perspective view which shows the manufacturing process of a pore structure. It is a perspective view which shows the manufacturing process of a pore structure. It is a figure which shows the example of a design change of the EL element of FIG. It is a figure which shows the example of a design change of the EL element of FIG. It is an optical microscope image (2000 times) which shows the mode of light emission of the EL element obtained in Example 1. FIG. It is an optical microscope image (2000 times) which shows the mode of light emission of the EL element obtained by the comparative example 1.
  • FIG. 1 is an overall schematic cross-sectional view of the EL element of the present embodiment.
  • 2A to 2B are schematic perspective views showing the manufacturing process of the pore structure.
  • 3 and 4 are diagrams showing examples of design changes. 1, 3, and 4, the same components are denoted by the same reference numerals.
  • the EL element 1 of the present embodiment includes a lower electrode layer (first electrode layer) 10, a light emitter layer 30, and a translucent upper electrode layer (second electrode layer) 40. are sequentially provided.
  • the EL element 1 further includes a plurality of needle-like conductors 22 extending between the lower electrode layer 10 and the light emitter layer 30 in a direction intersecting the surface 30S of the light emitter layer 30 on the lower electrode layer 10 side.
  • the needle-shaped conductor layer 20 including an insulator that insulates between the plurality of needle-shaped conductors 22 is provided.
  • the insulator forming the acicular conductor layer 20 is open on the surface on the light emitter layer 30 side, and has a plurality of acicular pores 21P extending in the intersecting direction with respect to the surface on the light emitter layer 30 side. It is the pore structure 21 which has. A plurality of needle-like conductors 22 are formed inside the plurality of needle-like pores 21P.
  • the pore structure 21 is a metal oxide body obtained by anodizing a part of the anodized metal body, and the lower electrode layer 10 is the remaining portion of the anodized metal body remaining after anodization. .
  • the main component of the metal to be anodized is not particularly limited, and examples thereof include Al, Ti, Ta, Hf, Zr, Si, In, and Zn.
  • the anodized metal body may contain one or more of these.
  • As the main component of the anodized metal body Al or the like is particularly preferable.
  • the “main component of the metal to be anodized” is defined as a component of 99% by mass or more.
  • 2A and 2B are schematic perspective views.
  • an anodized metal body M having an anodized metal such as Al as a main component is prepared.
  • the shape of the anodized metal body M is not limited, and examples thereof include a plate shape. Further, it may be used in a form with a support such as a layer in which the metal anodized M is formed on the support.
  • a pore structure 21 made of a metal oxide is generated.
  • a pore structure 21 having Al 2 O 3 as a main component is generated.
  • the pore structure 21 is a metal oxide layer, and the generated pore structure 21 is thin with respect to the remainder of the anodized metal body M.
  • the structure 21 is greatly illustrated.
  • Anodizing is, for example, using an anodized metal body M as an anode, carbon or aluminum as a cathode (counter electrode), immersing them in an anodizing electrolyte, and applying a voltage between the anode and the cathode.
  • the electrolytic solution is not limited, and an acidic electrolytic solution containing one or more acids such as sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, and amidosulfonic acid is preferably used.
  • an oxidation reaction proceeds from the surface (upper surface in the figure) in a direction substantially perpendicular to this surface, and a metal oxide body is generated.
  • the metal oxide body generated by anodization has a structure in which a plurality of substantially regular hexagonal columnar bodies 21C are arranged adjacent to each other without a gap. Needle-like pores 21P extending in the depth direction from the surface are opened at substantially the center of each columnar body 21C. Between the bottom surface of the acicular pore 21P and the bottom surface of the metal oxide body, a barrier layer 21B without the acicular pore 21P is generated.
  • the needle-like pores 21P are opened in a direction substantially perpendicular to the surface of the anodized metal body M, but may be opened in a slightly oblique direction.
  • the remaining portion of the anodized metal body M remaining after the anodic oxidation becomes the lower electrode layer 10.
  • a plurality of needle-like conductors 22 are formed inside a plurality of needle-like pores 21P opened in a pore structure 21 made of a metal oxide body.
  • the needle-like conductor 22 when a voltage is applied to the needle-like conductor layer 20, the needle-like conductor 22 has a high dielectric constant, so that the tip of the needle-like conductor 22 on the light emitter layer 30 side.
  • the charge density becomes higher.
  • the tip of the needle-like conductor 22 means “tip of the needle-like conductor 22 on the light emitter layer 30 side”.
  • the closer to the electric charge, the higher the electric lines of force, and the density of the electric lines of force is proportional to the electric field strength. Therefore, the vicinity of the tip of the acicular conductor 22 has a high electric field strength. That is, electric field concentration occurs near the tip of the needle-like conductor 22.
  • the cross-sectional areas of the acicular pores 21P and the acicular conductor 22 are approximately proportional to the square of the pore diameter. Further, since the luminance is proportional to the square of the concentrated electric field strength, it is proportional to the fourth power of the pore length and inversely proportional to the fourth power of the pore diameter. That is, as the pore length is longer and the pore diameter is smaller, the concentrated electric field strength tends to increase and the emission intensity tends to increase. In addition, when the cross-sectional shape of the acicular pore 21P and the acicular conductor 22 deviates from a perfect circle, the diameter shall be defined by the diameter of a perfect circle which has an equivalent cross-sectional area.
  • the method for forming the plurality of needle-shaped conductors 22 inside the plurality of needle-shaped pores 21P is not particularly limited, and for example, electrolytic deposition such as electrolytic plating using the lower electrode layer 10 as an electrode is preferable.
  • the composition of the acicular conductor 22 is not particularly limited, and the higher the conductivity, the higher the concentrated electric field strength, which is preferable.
  • the acicular conductor 22 preferably contains at least one metal selected from the group consisting of Ag, Au, Cd, Co, Cu, Fe, Ni, Sn, and Zn.
  • the acicular conductor 22 preferably contains Cu and / or Ni.
  • the acicular conductor 22 preferably contains Au.
  • needle refers to a shape having a length / diameter of 2 or more.
  • the length of the acicular conductor in the phosphor particles used in the conventional dispersion-type inorganic EL element is usually in the range of 1 to 20 ⁇ m, although it depends on the particle diameter, and the diameter of the acicular conductor is usually 0.00. 01 to 0.5 ⁇ m.
  • the same length and diameter are preferable for the needle-like conductor 22 in the present embodiment. Since the electric field concentration effect is enhanced, the length of the needle-like conductor 22 is preferably 1 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • the diameter of the needle-like conductor 22 is preferably 0.5 ⁇ m or less, more preferably 0.1 ⁇ m or less, and particularly preferably 0.05 ⁇ m or less. Considering the ease of formation, the diameter of the needle-like conductor 22 is preferably 0.02 ⁇ m or more.
  • the length / diameter of the acicular conductor 22 is preferably 100 or more because the electric field concentration effect is enhanced.
  • the plurality of acicular conductors 22 are formed inside the plurality of acicular pores 21P.
  • the length of the acicular pore 21P is preferably 1 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • the diameter of the acicular pores 21P is preferably 0.5 ⁇ m or less, more preferably 0.1 ⁇ m or less, and particularly preferably 0.05 ⁇ m or less.
  • the diameter of the acicular pores 21P is preferably 0.02 ⁇ m or more.
  • the length / diameter of the acicular pores 21P is preferably 100 or more.
  • the needle-shaped conductor 22 is completely filled in all the needle-shaped pores 21P, and the tip of the needle-shaped conductor 22 and the light emitting layer 30 are shown in close contact with each other.
  • the filling rate of the acicular conductors 22 in the individual acicular pores 21P may not be 100%. That is, the tip of the needle-like conductor 22 and the light emitting layer 30 do not need to be in close contact with each other.
  • the tip of the needle-like conductor 22 and the light emitting layer 30 are closer. Considering this point, it is preferable that the filling rate of the acicular conductors 22 in each acicular pore 21P is higher.
  • the filling rate of the acicular conductor 22 in each acicular pore 21P is defined by the length of the acicular conductor 22 / the length of the acicular pore 21P ⁇ 100 (%).
  • the filling rate of the acicular conductor 22 in each acicular pore 21P is preferably 70 to 100%.
  • the filling rate of the needle-shaped conductors 22 inside the individual needle-shaped pores 21P may be variations. In this case, however, the separation distance between the needle-shaped pores 21P and the light emitter layer 30 varies, resulting in an electric field. The concentration effect will vary. Considering the in-plane uniformity of light emission, it is preferable that the variation in the filling rate is small.
  • the length of the needle-shaped pore 21P is determined in consideration of a preferable length of the needle-shaped conductor 22 and a filling rate of the needle-shaped conductor 22 inside the needle-shaped pore 21P.
  • the distance between the adjacent needle-shaped conductors 22 becomes too short, the lines of electric force concentrated on the respective needle-shaped conductors 22 become low in density, which may reduce the electric field strength.
  • the distance between the needle-like conductors 22 adjacent to each other is 0.02 ⁇ m or more.
  • the number density of the acicular conductors 22 corresponds to the number density of the acicular pores 21P.
  • the number density of the acicular pores 21P and the acicular conductors 22 is preferably 1 piece / ⁇ m 2 or more.
  • the number density of the acicular pores 21P and the acicular conductors 22 is preferably 400 pieces / ⁇ m 2 or less.
  • the number density of the acicular pores 21P and the acicular conductors 22 is more preferably 10 to 300 / ⁇ m 2 .
  • the pore structure 21 in which a plurality of needle-like pores 21P extending in a direction parallel to or close to the voltage application direction is regularly arrayed can be formed by a simple process.
  • the anodizing method it is easy to control the size (length and diameter) and number density of the needle-shaped pores 21P, and it is easy to increase the area.
  • the anodizing method is a low cost method.
  • the remainder of the anodized metal body M remaining after the anodic oxidation can be made the lower electrode layer 10. Therefore, the lower electrode layer 10 and the acicular conductor layer 20 can be integrally formed by the same process. In this method, since the lower electrode layer 10 and the acicular conductor layer 20 are generated from one anodized metal body M, their adhesion is high and preferable.
  • the composition of the lower electrode layer 10 is the same as that of the used anodized metal body M.
  • the remainder of the anodized metal body M remaining after the anodization is the conductor 10, but the entire anodized metal body M may be anodized. Further, as shown in the EL element 3 in FIG. 4, at least a part of the anodized metal body M is anodized, and if there is, the remaining part of the anodized metal body M and the barrier layer 21B of the metal oxide body are removed.
  • the plurality of needle-like pores 21P may be through holes.
  • the remainder of the anodized metal body M and the barrier layer 21B can be physically removed by cutting or the like. Further, the remainder of the anodized metal body M and the barrier layer 21B can be removed by immersing in an acidic liquid such as phosphoric acid.
  • the conductor 10 may be a conductive substrate or a conductor film.
  • a conductor film such as an Au film can be formed on the pore structure from which the barrier layer has been removed.
  • an insulating base material such as an alumina base material and a pore structure with a conductor film are bonded to each other through an adhesive component such as a silver paste and heat-treated to adhere them. Can do.
  • a plurality of needle-shaped conductors 22 are formed inside the plurality of needle-shaped pores 21P, preferably by electrolytic deposition such as electrolytic plating using the conductor 10 as an electrode,
  • the acicular conductor layer 20 can be manufactured.
  • the pore structure 21 is made of an anodized metal body.
  • the present invention is not limited to such an embodiment, and the pore structure 21 opens on the surface of the light emitter layer 30 side. What is necessary is just to have the some acicular pore 21P extended in the crossing direction with respect to the surface at the side of the light-emitting body layer 30.
  • FIG. As the pore structure 21 other than the anodized metal body, a pore structure such as mesoporous silica described in Non-Patent Document 2, etc., a pore structure obtained by utilizing the self-organization of a polymer, And a pore structure obtained by utilizing etching using a lithography technique.
  • the plurality of needle-shaped conductors 22 are After the provision, an insulator may be provided so as to embed the plurality of needle-like conductors 22.
  • the acicular conductor 22 include those obtained by growing acicular crystals of metal such as Ag and Cu or carbon nanotubes from the surface of the lower electrode layer 10.
  • the insulator that embeds the needle-like conductor 22 include a ceramic body and a polymer.
  • the insulator embedding the acicular conductor 22 can be formed by a known method such as a wet coating method or a vacuum deposition method.
  • the phosphor layer 30 is a layer that emits light when excited in an electric field.
  • the thickness of the luminescent layer 30 is preferably thinner from the viewpoint of concentrating the electric field near the tip of the acicular conductor 22, and specifically, it is preferably in the range of 0.05 to 2 ⁇ m.
  • the material of the light emitter layer 30 is not particularly limited, and a known light emitter material for an EL element can be used.
  • the EL element 1 may be an array in which a plurality of types of light emitter layers 30 that emit light of different wavelengths in a plan view.
  • ZnS Mn, ZnS: Tb, F, ZnS: Pr, F, ZnS: Ag, Cl, ZnS: Cu, Cl, Y 2 O 3 : Eu, ZnSiO 4 : Eu, SrS : Ce, BaAl 2 S 4 : Eu, BaMgAl 10 O 17 : Inorganic compounds such as Eu, MgWO 4 , CaWO 4 , RbVO 3 , and CsVO 3 , or organic compounds such as Alq3. These can use 1 type or multiple types.
  • an insulator layer (lower insulator layer) 50 is provided between the needle-like conductor layer 20 and the light emitter layer 30. Also good.
  • the insulator layer 50 may have a single layer structure or a laminated structure.
  • the insulator layer 50 functions as a barrier layer, and it is possible to prevent the components of the needle-like conductor 22 formed inside the needle-like pores 21P from diffusing into the light-emitting body layer 30 and inactivating light emission.
  • Examples of the material for the insulator layer 50 include oxides such as SiO 2 , Ta 2 O 5 , TiO 2 , BaTiO 3 , and Al 2 O 3 , nitrides such as Si 3 N 4 , AlN, and TiN, SiON, and AlON. Examples thereof include oxynitrides and combinations thereof.
  • the distance between the acicular conductor 22 and the light emitter layer 30 is preferably 1 ⁇ m or less.
  • the thickness of the insulator layer 50 is preferably thinner from the viewpoint of concentrating the electric field on the acicular conductor 22, and specifically, it is preferably 0.2 ⁇ m or less. If the thickness of the insulator layer 50 is too small, the function as a barrier layer cannot be obtained effectively.
  • the film thickness of the insulator layer 50 is preferably 0.05 ⁇ m or more.
  • the insulator layer 50 may be provided between the acicular conductor layer 20 and the light emitter layer 30, but the conductor layer between the acicular conductor layer 20 and the light emitter layer 30 is Not provided.
  • the conductor layer substantially functions as a lower electrode layer, and an electric field concentration effect by the plurality of acicular conductors 22 is obtained. Disappear.
  • an insulator layer (upper insulator layer) 60 may be provided between the light emitter layer 30 and the upper electrode layer 40. .
  • the insulator layer 60 may have a single layer structure or a laminated structure.
  • the insulator layer 60 functions as a cap layer, suppresses desorption of materials on the surface of the light emitter layer 30, makes the composition of the light emitter layer 30 uniform, and improves the light emission characteristics.
  • Examples of the material of the insulator layer 60 include oxides such as SiO 2 , Ta 2 O 5 , TiO 2 , BaTiO 3 , and Al 2 O 3 , nitrides such as Si 3 N 4 , AlN, and TiN, SiON, and Examples thereof include oxynitrides such as AlON and combinations thereof.
  • the thickness of the insulator layer 60 is preferably thinner from the viewpoint of concentrating the electric field on the acicular conductor 22, and specifically, it is preferably 0.2 ⁇ m or less. If the thickness of the insulator layer 60 is too small, the function as a cap layer cannot be obtained effectively.
  • the thickness of the insulator layer 60 is preferably 0.05 ⁇ m or more.
  • 3 and 4 show an embodiment in which both the insulator layer 50 functioning as a barrier layer and the insulator layer 60 functioning as a cap layer are provided, but only one of these insulator layers is shown. It is good also as a structure which provides.
  • the material of the upper electrode layer 40 may be any conductive material having translucency, such as ITO (indium tin oxide), FTO (fluorine-added tin oxide), SnO 2 , PEDOT (polyethylenedioxythiophene), and CNT ( Carbon nanotubes) are preferably used.
  • ITO indium tin oxide
  • FTO fluorine-added tin oxide
  • SnO 2 SnO 2
  • PEDOT polyethylenedioxythiophene
  • CNT Carbon nanotubes
  • the film formation method of the light emitting layer 30, the upper electrode layer 40, and the insulator layers 50 and 60 is not particularly limited, and a known method can be adopted.
  • a film forming method a sputtering method or a physical vapor deposition method under vacuum such as an electron beam evaporation method, and a solution or dispersion containing a component or precursor of a layer to be formed into a film, a spin coating method, Examples thereof include a liquid phase method such as a coating method applied by a dip coating method, a bar coating method, a spray coating method, or the like.
  • the light emitter layer 30 and the insulator layers 50 and 60 may include a non-conductive polymer as a binder.
  • the EL element 1 of the present embodiment includes a plurality of needle-like conductors extending in a direction intersecting the surface 30S of the light emitter layer 30 on the lower electrode layer 10 side between the lower electrode layer 10 and the light emitter layer 30. 22 and an acicular conductor layer 20 including an insulator (in this embodiment, a pore structure 21) that insulates the acicular conductors 22 from each other.
  • the conventional thin-film inorganic EL elements described in Patent Document 1 and the like have attempted to improve the light emission characteristics such as light emission luminance and light emission efficiency.
  • a high electric field is required, and the light emission efficiency tends to decrease.
  • a concentrated electric field is generated in the vicinity of the tip of the needle-like conductor 22, so that high emission luminance can be obtained even with a relatively low electric field.
  • the conventional dispersion-type inorganic EL element described in Patent Document 2 and the like generates a high electric field in the vicinity of the tip of the acicular conductor, High luminance can be obtained with a relatively low electric field.
  • the electric power consumed by the binder contained in the light emitting layer is large, and the light emission efficiency tends to decrease.
  • the acicular conductors in the phosphor particles are deposited in multiple directions (random directions) in the crystal plane, the proportion of acicular conductors oriented perpendicular to the electrode surface is small and the electric field is concentrated. Hard to do.
  • the needle-like conductor 22 can be easily oriented in the voltage application direction or a direction close thereto, and electric field concentration can be effectively caused.
  • the EL element 1 that can improve both the light emission luminance and the light emission efficiency without applying a high electric field by combining the above-described effects.
  • the present invention is applicable to both inorganic EL elements and organic EL elements, and is preferably applicable to inorganic EL elements.
  • Example 1 An anodizing process was performed on a 100 ⁇ 100 mm aluminum plate having a thickness of 3 mm under the following conditions to form an alumina layer having a plurality of acicular pores.
  • the surface and the cross section of the obtained alumina layer were observed using a scanning electron microscope (SEM, “S-4800” manufactured by Hitachi, Ltd.).
  • SEM scanning electron microscope
  • the average pore diameter was determined from the pore area of 100 pores.
  • the pore density was determined from the number of pores in the same surface SEM image.
  • the average pore length was determined from the pore length of 100 pores.
  • the obtained alumina layer had a plurality of needle-like pores opened almost regularly, and had an average pore diameter of 0.02 ⁇ m, an average pore length of 8 ⁇ m, and an average pore density of 300 / ⁇ m 2 .
  • Ni was electrolytically deposited inside the plurality of needle-shaped pores of the alumina layer under the following conditions to form a plurality of needle-shaped conductors.
  • Electrolytic bath 0.3M nickel sulfate hexahydrate, 0.1M ammonium sulfate, and 0.5M boric acid mixed solution
  • Bath temperature 22-25 ° C ⁇ PH: 4.0 to 4.5 ⁇
  • the filling rate of the acicular conductor inside the acicular pores was 70 to 100%.
  • a phosphor layer was formed by sputtering using a sintered body obtained by sintering ZnS powder added with 0.5 mass% Mn by hot pressing at 900 ° C. and 50 MPa for 1 hour.
  • the degree of vacuum at the time of vapor deposition was set to 5 ⁇ 10 ⁇ 4 Pa or less, the substrate temperature was set to 200 ° C., and the vapor deposition rate was set to 20 nm / min.
  • the obtained phosphor layer was heat-treated at 500 ° C. for 1 hour in a nitrogen atmosphere to activate Mn at the emission center.
  • ITO was deposited to a thickness of 100 nm on the phosphor layer by sputtering to form an upper electrode layer. As described above, an inorganic EL element was obtained.
  • Example 2 Except that a silicon oxynitride (SiON) layer functioning as a barrier layer was formed by sputtering at a thickness of 100 nm between the acicular conductor layer and the ZnS: Mn phosphor layer, the same conditions as in Example 1 were used. An inorganic EL element was produced.
  • SiON silicon oxynitride
  • a silicon oxynitride (SiON) layer functioning as a barrier layer between the acicular conductor layer and the ZnS: Mn phosphor layer is formed by sputtering at a thickness of 100 nm, and between the ZnS: Mn phosphor layer and the upper electrode layer.
  • a double-insulated inorganic EL element was produced under the same conditions as in Example 1 except that a silicon oxynitride (SiON) layer functioning as a cap layer was formed by sputtering to a thickness of 100 nm.
  • Example 4 After the formation of the acicular conductor layer, surface polishing was performed with a polishing machine (Diawrap ML-150P manufactured by Marto) to remove the non-sealed portion remaining on the upper portion of the acicular pores during the electrolytic deposition of Ni Except for this, an inorganic EL element was produced under the same conditions as in Example 3.
  • the surface polishing of the acicular conductor layer was performed in two steps. Using a water-resistant abrasive paper having a large particle size (manufactured by Sankyo Rikagaku Co., Ltd., average particle size of 7.9 ⁇ m, No.
  • Example 6> Except that the treatment time for anodization was increased to 8 hours, the conditions were the same as in Example 1, and a part of the aluminum plate was anodized to form an alumina layer having a plurality of needle-shaped pores. Next, the remaining part of the aluminum substrate and the alumina layer having a plurality of acicular pores are immersed in phosphoric acid to dissolve the remaining part of the aluminum substrate, the barrier layer of the alumina layer and the vicinity thereof, and penetrate the plurality of acicular pores. It was a hole. The obtained alumina layer was subjected to SEM observation and pore evaluation in the same manner as in Example 1. As a result, a plurality of needle-like pores were opened almost regularly, with an average pore diameter of 0.03 ⁇ m and an average pore length. It was 40 ⁇ m and the average pore density was 300 / ⁇ m 2 .
  • Au was formed by sputtering to a thickness of 100 nm.
  • a commercially available alumina substrate (A476T manufactured by Kyocera) was prepared, and a silver paste was screen-printed thereon, and the above-mentioned alumina layer with the Au film was placed thereon with the Au film side down. Then, it heat-processed in air
  • Electrolytic bath 1.4M Ni sulfamate and 0.7M boric acid mixture
  • Bath temperature 22-25 ° C ⁇ PH: 4.0 to 4.5 ⁇
  • the filling rate of the acicular conductor inside the acicular pores was 80 to 100%.
  • a barrier layer, a light emitting layer, a cap layer, and an upper electrode layer were formed.
  • an inorganic EL element was obtained.
  • Example 1 except that an ITO film was sputtered to a thickness of 300 nm as a lower electrode layer on an alkali-free glass substrate, and a phosphor layer was formed on the lower electrode layer without providing a needle-like conductor layer. Under the same conditions, a conventional thin-film inorganic EL element having no electric field concentration was produced.
  • Example 3 except that an ITO film as a lower electrode layer was formed by sputtering on an alkali-free glass substrate with a thickness of 300 nm, and a phosphor layer was formed on the lower electrode layer without providing a needle-like conductor layer. Under the same conditions, a conventional thin-film inorganic EL element having no electric field concentration was produced.
  • Example 5 is the same as Example 5 except that an ITO film as a lower electrode layer was sputtered to a thickness of 300 nm on an alkali-free glass substrate, and a phosphor layer was formed on the lower electrode layer without providing a needle-like conductor layer. Under the same conditions, a conventional thin-film inorganic EL element having no electric field concentration was produced.
  • Example 1 in which the needle-shaped conductor layer was provided, both the luminance and the luminous efficiency were improved compared to Comparative Examples 1 to 3 in which the needle-shaped conductor layer was not provided.
  • Example 4 in which the surface polishing of the needle-shaped conductor layer and Example 6 in which the barrier layer of the alumina layer was removed, high emission luminance and luminous efficiency were obtained.
  • Examples and Comparative Examples having the same laminated configuration except for the presence or absence of the acicular conductor layer are compared (specifically, Example 1 and Comparative Example 1, Example 3 and Comparative Example 2, Example 5) And Comparative Example 3), the emission start voltage was at the same level. From the above results, it was shown that by providing the acicular conductor layer, it is possible to provide an inorganic EL element capable of improving both the light emission luminance and the light emission efficiency without applying a high electric field.
  • the EL element of the present invention can be used for display devices, lighting devices, and the like.
  • Lower electrode layer (first electrode layer) 20 Needle-like conductor layer 21 Porous structure 21B Barrier layer 21C Columnar body 21P Needle-like pore 22 Needle-like conductor 30 Light emitter layer 30S Surface 40 of the light emitter layer on the lower electrode layer side Upper electrode layer (second Electrode layer) 50, 60 Insulator layer M Metal object to be anodized

Abstract

Provided is an EL element which can have both improved luminance and improved luminous efficiency without application of high electric field. An EL element (1) is sequentially provided with a first electrode layer (10), a light-emitting body layer (30), and a light-transmitting second electrode layer (40). The EL element (1) is provided with, between the first electrode layer (10) and the light-emitting body layer (30), a needle-like conductor layer (20) which comprises a plurality of needle-like conductors (22) and an insulating body (21) that insulates the plurality of needle-like conductors (22) from each other, said needle-like conductors (22) extending in a direction that intersects with a first electrode layer (10)-side surface (30S) of the light-emitting body layer (30).

Description

エレクトロルミネセンス素子Electroluminescence element
 本発明は、エレクトロルミネセンス素子に関するものである。 The present invention relates to an electroluminescence element.
 無機エレクトロルミネセンス(以降、「EL」と略記する場合がある。)素子は、大面積化が可能である、長寿命であるなどの特徴を持つ自発光素子である。
 従来、無機EL素子として、薄膜型無機EL素子と分散型無機EL素子とが知られている。
An inorganic electroluminescent (hereinafter, abbreviated as “EL”) element is a self-luminous element having features such as a large area and a long lifetime.
Conventionally, as an inorganic EL element, a thin film type inorganic EL element and a dispersion type inorganic EL element are known.
 薄膜型無機EL素子は、透光性を有する絶縁性基板上に、透光性を有する下部電極層、発光体層、及び上部電極層が順次積層された素子である(特許文献1の図4参照)。
 下部電極層と発光体層との間、及び/又は、発光体層と上部電極層との間に、絶縁体層が設けられる場合がある。
A thin-film inorganic EL element is an element in which a light-transmitting lower electrode layer, a light-emitting body layer, and an upper electrode layer are sequentially stacked on a light-transmitting insulating substrate (FIG. 4 of Patent Document 1). reference).
An insulator layer may be provided between the lower electrode layer and the light emitter layer and / or between the light emitter layer and the upper electrode layer.
 薄膜型無機EL素子において、発光体層材料としては、母体化合物に少なくとも1種の発光中心元素が添加されたものが好ましく用いられる。
 母体化合物としては、ZnS、SrS、及びCaS等のII-VI族二元化合物、並びにCaGa、SrGaS、及びBaAl等のII-III-VI族三元化合物等が知られている。また、発光中心元素としては、Mn、Cu、Au、及び希土類等の金属元素が挙げられる。
 発光体層材料としては例えば、橙色の発光色を示すZnS:Mn、緑色の発光色を示すZnS:Tb、及び青色の発光色を示すBaAl:Eu等がある(特許文献1の段落0004参照)。
In the thin-film inorganic EL element, as the luminescent layer material, a material obtained by adding at least one luminescent center element to the base compound is preferably used.
Known parent compounds include II-VI binary compounds such as ZnS, SrS, and CaS, and II-III-VI group ternary compounds such as CaGa 2 S 4 , SrGaS 4 , and BaAl 2 S 4. ing. Further, examples of the luminescent center element include metal elements such as Mn, Cu, Au, and rare earth.
Examples of the phosphor layer material include ZnS: Mn that exhibits an orange emission color, ZnS: Tb that exhibits a green emission color, and BaAl 2 S 4 : Eu that exhibits a blue emission color (paragraph of Patent Document 1). 0004).
 電界中で、発光体層内を流れる電子が発光中心元素に衝突すると、発光中心元素が励起されて発光を示す。電子の衝突エネルギーが高い程、発光中心元素の励起が起こりやすいため、高電界になることで高い発光輝度が得られる。例えば、ZnS:Mnでは1×10V/cm以上の電界で励起が起き、急激に発光輝度が上昇する。 When electrons flowing in the luminescent layer collide with the luminescent center element in an electric field, the luminescent center element is excited to emit light. The higher the electron collision energy, the easier the excitation of the luminescent center element. Therefore, a high luminance can be obtained by applying a high electric field. For example, in ZnS: Mn, excitation occurs in an electric field of 1 × 10 6 V / cm or more, and the emission luminance rapidly increases.
 一方、分散型無機EL素子は、フッ素系樹脂あるいはシアノ基含有樹脂等の高誘電性樹脂からなるバインダ中に蛍光体粒子を分散させた発光体層と、この発光体層を挟持する一対の電極板とを備える素子である(特許文献2の請求項7参照)。通常、分散型無機EL素子は、絶縁破壊を防ぐために高誘電性樹脂中にチタン酸バリウムのような誘電体物質を分散させた誘電体層をさらに備える。 On the other hand, the dispersion-type inorganic EL element includes a phosphor layer in which phosphor particles are dispersed in a binder made of a high dielectric resin such as a fluorine-based resin or a cyano group-containing resin, and a pair of electrodes sandwiching the phosphor layer. It is an element provided with a board (refer claim 7 of patent document 2). Usually, the dispersion-type inorganic EL element further includes a dielectric layer in which a dielectric material such as barium titanate is dispersed in a high dielectric resin in order to prevent dielectric breakdown.
 特許文献2には、硫化亜鉛(ZnS)を母体化合物とし、Cu等の付活剤及びCl等の共付活剤が添加されたEL蛍光体粉末、及びこれを用いたEL素子が開示されている(請求項1)。
 付活剤としてCuを用いる場合、ZnS結晶内に固溶されなかった余剰のCuが、積層欠陥の隙間に析出し、針状導電体を形成する。この針状導電体を含む蛍光体粒子に交流電圧が印加されると、針状導電体の先端部に電界が集中し、発光に寄与する電流が集中的に流れることにより、1×10V/cm程度の比較的低電界でもEL発光が得られる(非特許文献1参照)。針状導電体が電極面に対して垂直であるほど、電界が集中しやすいため、高発光輝度が得られやすい。針状導電体が析出する(111)結晶面を配向させることで、電極面に対して垂直配向した針状導電体が増加し、電界集中が起こりやすくなり、発光輝度が向上する(特許文献2の段落0005参照)。
Patent Document 2 discloses an EL phosphor powder in which zinc sulfide (ZnS) is used as a base compound and an activator such as Cu and a coactivator such as Cl are added, and an EL element using the same. (Claim 1).
When Cu is used as the activator, excess Cu that is not dissolved in the ZnS crystal is deposited in the gap between the stacking faults to form a needle-like conductor. When an AC voltage is applied to the phosphor particles containing the needle-like conductor, an electric field concentrates on the tip of the needle-like conductor, and a current contributing to light emission flows intensively, thereby 1 × 10 4 V. EL emission can be obtained even at a relatively low electric field of about / cm (see Non-Patent Document 1). As the acicular conductor is perpendicular to the electrode surface, the electric field is more likely to be concentrated, so that high emission luminance is easily obtained. By orienting the (111) crystal plane on which the acicular conductor is deposited, the acicular conductor oriented perpendicular to the electrode surface increases, electric field concentration is likely to occur, and the light emission luminance is improved (Patent Document 2). Paragraph 0005).
特開2008-251336号公報(特許4928329号公報)JP 2008-251336 A (Patent No. 4928329) 特開2004-131583号公報Japanese Patent Application Laid-Open No. 2004-131583
 特許文献1等に記載の従来の薄膜型無機EL素子においては、発光輝度及び発光効率等の発光特性の改良が試みられている。しかしながら、高発光輝度を得るためには高電界が必要であり、発光に寄与せず熱となる電力が多く、発光効率が低下する傾向がある。 In the conventional thin-film inorganic EL element described in Patent Document 1 and the like, attempts have been made to improve light emission characteristics such as light emission luminance and light emission efficiency. However, a high electric field is required to obtain a high light emission luminance, and there is a tendency for the light emission efficiency to decrease because of the large amount of electric power that does not contribute to light emission and becomes heat.
 一方、特許文献2等に記載の従来の分散型無機EL素子においては、Cu等の針状導電体の先端部付近で集中電界が発生することで、比較的低電界で高発光輝度が得られる。しかしながら、発光体層が蛍光体粒子とバインダとを含むため、発光体層に印加された電界は蛍光体粒子とバインダとの両方に分配される。その結果、バインダにより消費される電力が大きく、発光効率が低下する傾向がある。また、蛍光体粒子内のCu等の針状導電体は結晶面内で多方向(ランダム方向)に析出することから、電極面に対して垂直配向している針状導電体の割合が少なく、電界が集中しにくい。 On the other hand, in the conventional dispersion-type inorganic EL element described in Patent Document 2 and the like, a concentrated electric field is generated in the vicinity of the tip of a needle-like conductor such as Cu, so that high emission luminance can be obtained with a relatively low electric field. . However, since the phosphor layer includes phosphor particles and a binder, the electric field applied to the phosphor layer is distributed to both the phosphor particles and the binder. As a result, the power consumed by the binder is large, and the light emission efficiency tends to decrease. Moreover, since acicular conductors such as Cu in the phosphor particles precipitate in multiple directions (random directions) in the crystal plane, the proportion of acicular conductors oriented perpendicular to the electrode surface is small, The electric field is difficult to concentrate.
 以上の理由から、従来の薄膜型無機EL素子と分散型無機EL素子は共に、発光輝度及び発光効率を充分に向上することは困難である。
 上記は特に無機EL素子における課題であるが、有機EL素子でも発光輝度及び発光効率を充分に向上できることが好ましい。
For the above reasons, it is difficult for both the conventional thin film type inorganic EL element and the dispersion type inorganic EL element to sufficiently improve the light emission luminance and the light emission efficiency.
The above is a problem particularly in the inorganic EL element, but it is preferable that the organic EL element can sufficiently improve the light emission luminance and the light emission efficiency.
 本発明は上記事情に鑑みてなされたものであり、高電界を印加せずとも、発光輝度と発光効率を共に向上させることが可能なEL素子を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an EL element capable of improving both light emission luminance and light emission efficiency without applying a high electric field.
 本発明のエレクトロルミネセンス(EL)素子は、
 第1の電極層と発光体層と透光性を有する第2の電極層とを順次備えたエレクトロルミネセンス素子であって、
 前記第1の電極層と前記発光体層との間に、
 前記発光体層の前記第1の電極層側の面に対して交差方向に延びた複数の針状導電体と、当該複数の針状導電体の間を絶縁する絶縁体とを含む針状導電体層を備えたものである。
The electroluminescence (EL) element of the present invention is
An electroluminescent device comprising a first electrode layer, a light emitter layer, and a second electrode layer having translucency in order,
Between the first electrode layer and the phosphor layer,
Needle-like conductivity including a plurality of needle-like conductors extending in a crossing direction with respect to the surface on the first electrode layer side of the phosphor layer, and an insulator that insulates between the plurality of needle-like conductors. It has a body layer.
 本明細書において、「針状」とは長さ/直径が2以上の形状を指す。 In this specification, “needle” refers to a shape having a length / diameter of 2 or more.
 本発明によれば、高電界を印加せずとも、発光輝度と発光効率を共に向上させることが可能なEL素子を提供することができる。 According to the present invention, it is possible to provide an EL element capable of improving both the light emission luminance and the light emission efficiency without applying a high electric field.
本発明に係る一実施形態のEL素子の全体模式断面図である。1 is an overall schematic cross-sectional view of an EL element according to an embodiment of the present invention. 細孔構造体の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of a pore structure. 細孔構造体の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of a pore structure. 図1のEL素子の設計変更例を示す図である。It is a figure which shows the example of a design change of the EL element of FIG. 図1のEL素子の設計変更例を示す図である。It is a figure which shows the example of a design change of the EL element of FIG. 実施例1で得られたEL素子の発光の様子を示す光学顕微鏡像(2000倍)である。It is an optical microscope image (2000 times) which shows the mode of light emission of the EL element obtained in Example 1. FIG. 比較例1で得られたEL素子の発光の様子を示す光学顕微鏡像(2000倍)である。It is an optical microscope image (2000 times) which shows the mode of light emission of the EL element obtained by the comparative example 1.
「EL素子」
 図面を参照して、本発明に係る一実施形態のEL素子の構造について説明する。
 図1は、本実施形態のEL素子の全体模式断面図である。
 図2A~図2Bは、細孔構造体の製造工程を示す模式斜視図である。
 図3及び図4は、設計変更例を示す図である。
 図1、図3、及び図4において、同じ構成要素には同じ参照符号を付してある。
"EL element"
With reference to the drawings, the structure of an EL device according to an embodiment of the present invention will be described.
FIG. 1 is an overall schematic cross-sectional view of the EL element of the present embodiment.
2A to 2B are schematic perspective views showing the manufacturing process of the pore structure.
3 and 4 are diagrams showing examples of design changes.
1, 3, and 4, the same components are denoted by the same reference numerals.
 図1に示すように、本実施形態のEL素子1は、下部電極層(第1の電極層)10と発光体層30と透光性を有する上部電極層(第2の電極層)40とを順次備えている。
 EL素子1は、さらに、下部電極層10と発光体層30との間に、発光体層30の下部電極層10側の面30Sに対して交差方向に延びた複数の針状導電体22と、複数の針状導電体22の間を絶縁する絶縁体とを含む針状導電体層20を備えている。
As shown in FIG. 1, the EL element 1 of the present embodiment includes a lower electrode layer (first electrode layer) 10, a light emitter layer 30, and a translucent upper electrode layer (second electrode layer) 40. Are sequentially provided.
The EL element 1 further includes a plurality of needle-like conductors 22 extending between the lower electrode layer 10 and the light emitter layer 30 in a direction intersecting the surface 30S of the light emitter layer 30 on the lower electrode layer 10 side. The needle-shaped conductor layer 20 including an insulator that insulates between the plurality of needle-shaped conductors 22 is provided.
 本実施形態において、針状導電体層20をなす絶縁体は、発光体層30側の面において開口し、発光体層30側の面に対して交差方向に延びた複数の針状細孔21Pを有する細孔構造体21である。そして、複数の針状細孔21Pの内部に複数の針状導電体22が形成されている。 In the present embodiment, the insulator forming the acicular conductor layer 20 is open on the surface on the light emitter layer 30 side, and has a plurality of acicular pores 21P extending in the intersecting direction with respect to the surface on the light emitter layer 30 side. It is the pore structure 21 which has. A plurality of needle-like conductors 22 are formed inside the plurality of needle-like pores 21P.
 本実施形態において、細孔構造体21は被陽極酸化金属体の一部を陽極酸化して得られる金属酸化物体であり、下部電極層10は陽極酸化後に残る被陽極酸化金属体の残部である。 In the present embodiment, the pore structure 21 is a metal oxide body obtained by anodizing a part of the anodized metal body, and the lower electrode layer 10 is the remaining portion of the anodized metal body remaining after anodization. .
 被陽極酸化金属体の主成分としては特に制限なく、Al、Ti、Ta、Hf、Zr、Si、In、及びZn等が挙げられる。被陽極酸化金属体はこれらを1種又は複数種含むことができる。
 被陽極酸化金属体の主成分としては、Al等が特に好ましい。
 本明細書において、「被陽極酸化金属体の主成分」は99質量%以上の成分と定義する。
The main component of the metal to be anodized is not particularly limited, and examples thereof include Al, Ti, Ta, Hf, Zr, Si, In, and Zn. The anodized metal body may contain one or more of these.
As the main component of the anodized metal body, Al or the like is particularly preferable.
In this specification, the “main component of the metal to be anodized” is defined as a component of 99% by mass or more.
 図2A~図2Bを参照して、細孔構造体21の製造方法と構造について説明する。
 図2A及び図2Bは模式斜視図である。
With reference to FIGS. 2A to 2B, the manufacturing method and structure of the pore structure 21 will be described.
2A and 2B are schematic perspective views.
 はじめに図2Aに示すように、Al等の被陽極酸化金属を主成分とする被陽極酸化金属体Mを用意する。
 被陽極酸化金属体Mの形状は制限されず、板状等が挙げられる。また、支持体の上に被陽極酸化金属体Mが層状に成膜されたものなど、支持体付きの形態で用いることも差し支えない。
First, as shown in FIG. 2A, an anodized metal body M having an anodized metal such as Al as a main component is prepared.
The shape of the anodized metal body M is not limited, and examples thereof include a plate shape. Further, it may be used in a form with a support such as a layer in which the metal anodized M is formed on the support.
 図2Bに示すように、被陽極酸化金属体Mの一部を陽極酸化すると、金属酸化物からなる細孔構造体21が生成される。例えば、被陽極酸化金属体MがAlを主成分とする場合、Alを主成分とする細孔構造体21が生成される。
 通常、細孔構造体21は金属酸化物層であり、被陽極酸化金属体Mの残部に対して、生成される細孔構造体21は薄いが、図面では、視認しやすくするため、細孔構造体21を大きく図示してある。
As shown in FIG. 2B, when a part of the anodized metal body M is anodized, a pore structure 21 made of a metal oxide is generated. For example, when the anodized metal body M has Al as a main component, a pore structure 21 having Al 2 O 3 as a main component is generated.
Usually, the pore structure 21 is a metal oxide layer, and the generated pore structure 21 is thin with respect to the remainder of the anodized metal body M. The structure 21 is greatly illustrated.
 陽極酸化は例えば、被陽極酸化金属体Mを陽極とし、カーボンあるいはアルミニウム等を陰極(対向電極)とし、これらを陽極酸化用電解液に浸漬させ、陽極と陰極との間に電圧を印加することで実施できる。
 電解液としては制限されず、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、及びアミドスルホン酸等の酸を、1種又は2種以上含む酸性電解液が好ましく用いられる。
Anodizing is, for example, using an anodized metal body M as an anode, carbon or aluminum as a cathode (counter electrode), immersing them in an anodizing electrolyte, and applying a voltage between the anode and the cathode. Can be implemented.
The electrolytic solution is not limited, and an acidic electrolytic solution containing one or more acids such as sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, and amidosulfonic acid is preferably used.
 被陽極酸化金属体Mを陽極酸化すると、図2Bに示すように、表面(図示上面)からこの面に対して略垂直方向に酸化反応が進行し、金属酸化物体が生成される。
 陽極酸化により生成される金属酸化物体は、略正六角柱状の複数の柱状体21Cが互いに隙間なく隣接して配列した構造を有するものとなる。各柱状体21Cの略中心部には、表面から深さ方向に延びた針状細孔21Pが開孔される。針状細孔21Pの底面と金属酸化物体の底面との間には、針状細孔21Pのないバリア層21Bが生成される。
 図示するように、針状細孔21Pは被陽極酸化金属体Mの表面に対して概ね垂直方向に開孔されるが、多少斜め方向に開孔される場合もある。
 本実施形態では、陽極酸化後に残る被陽極酸化金属体Mの残部が下部電極層10となる。
When the anodized metal body M is anodized, as shown in FIG. 2B, an oxidation reaction proceeds from the surface (upper surface in the figure) in a direction substantially perpendicular to this surface, and a metal oxide body is generated.
The metal oxide body generated by anodization has a structure in which a plurality of substantially regular hexagonal columnar bodies 21C are arranged adjacent to each other without a gap. Needle-like pores 21P extending in the depth direction from the surface are opened at substantially the center of each columnar body 21C. Between the bottom surface of the acicular pore 21P and the bottom surface of the metal oxide body, a barrier layer 21B without the acicular pore 21P is generated.
As shown in the figure, the needle-like pores 21P are opened in a direction substantially perpendicular to the surface of the anodized metal body M, but may be opened in a slightly oblique direction.
In the present embodiment, the remaining portion of the anodized metal body M remaining after the anodic oxidation becomes the lower electrode layer 10.
 本実施形態においては、金属酸化物体からなる細孔構造体21に開孔された複数の針状細孔21Pの内部に、複数の針状導電体22が形成されている。 In the present embodiment, a plurality of needle-like conductors 22 are formed inside a plurality of needle-like pores 21P opened in a pore structure 21 made of a metal oxide body.
 本実施形態のEL素子1において、針状導電体層20に電圧が印加されると、針状導電体22が高誘電率であるため、針状導電体22の発光体層30側の先端部の電荷密度が高くなる。
 以降、特に明記しない限り、針状導電体22の先端部は、「針状導電体22の発光体層30側の先端部」を意味するものとする。
 電荷に近いほど電気力線は高密度になり、電気力線の密度は電界強度に比例するため、針状導電体22の先端部付近は高電界強度となる。つまり、針状導電体22の先端部付近で電界集中が起こる。
 針状導電体22が電圧印加方向に対して長いほど、先端部の電荷密度が高くなり、先端部付近の電界強度が増大する傾向がある。また、針状導電体22の直径が小さいほど、先端部の電荷密度が高くなり、先端部付近の電界強度が増大する傾向がある。
 「背景技術」の項に挙げた非特許文献1より、集中電界強度は以下の式で表されると考えられる。
(集中電界強度)=(係数)×(針状導電体の長さ/針状導電体の断面積)×(平均印加電界)
In the EL element 1 of the present embodiment, when a voltage is applied to the needle-like conductor layer 20, the needle-like conductor 22 has a high dielectric constant, so that the tip of the needle-like conductor 22 on the light emitter layer 30 side. The charge density becomes higher.
Hereinafter, unless otherwise specified, the tip of the needle-like conductor 22 means “tip of the needle-like conductor 22 on the light emitter layer 30 side”.
The closer to the electric charge, the higher the electric lines of force, and the density of the electric lines of force is proportional to the electric field strength. Therefore, the vicinity of the tip of the acicular conductor 22 has a high electric field strength. That is, electric field concentration occurs near the tip of the needle-like conductor 22.
The longer the needle-like conductor 22 is in the voltage application direction, the higher the charge density at the tip, and the electric field strength near the tip tends to increase. Further, the smaller the diameter of the needle-like conductor 22, the higher the charge density at the tip, and the electric field strength near the tip tends to increase.
From Non-Patent Document 1 listed in the section “Background Art”, it is considered that the concentrated electric field strength is expressed by the following equation.
(Concentrated electric field strength) = (coefficient) × (needle conductor length / needle conductor cross-sectional area) 2 × (average applied electric field)
 本実施形態において、針状細孔21P及び針状導電体22の断面積は、およそ細孔径の2乗に比例する。また、発光輝度は集中電界強度の2乗に比例するため、細孔長の4乗に比例し、細孔径の4乗に反比例する。すなわち、細孔長が長く、細孔径が小さいほど、集中電界強度が増加し、発光強度が増加する傾向がある。
 なお、針状細孔21P及び針状導電体22の断面形状が真円からずれる場合、その直径は、同等の断面積を有する真円の直径により定義するものとする。
In the present embodiment, the cross-sectional areas of the acicular pores 21P and the acicular conductor 22 are approximately proportional to the square of the pore diameter. Further, since the luminance is proportional to the square of the concentrated electric field strength, it is proportional to the fourth power of the pore length and inversely proportional to the fourth power of the pore diameter. That is, as the pore length is longer and the pore diameter is smaller, the concentrated electric field strength tends to increase and the emission intensity tends to increase.
In addition, when the cross-sectional shape of the acicular pore 21P and the acicular conductor 22 deviates from a perfect circle, the diameter shall be defined by the diameter of a perfect circle which has an equivalent cross-sectional area.
 複数の針状細孔21Pの内部への複数の針状導電体22の形成方法は特に制限されず、例えば、下部電極層10を電極とした電解メッキ等の電解析出が好ましい。 The method for forming the plurality of needle-shaped conductors 22 inside the plurality of needle-shaped pores 21P is not particularly limited, and for example, electrolytic deposition such as electrolytic plating using the lower electrode layer 10 as an electrode is preferable.
 針状導電体22の組成は特に制限されず、導電性が高い程、集中電界強度が高くなり、好ましい。
 針状導電体22は、Ag、Au、Cd、Co、Cu、Fe、Ni、Sn、及びZnからなる群より選択された少なくとも1種の金属を含むことが好ましい。
 導電性及び封孔のしやすさを考慮すれば、針状導電体22はCu及び/又はNiを含むことが好ましい。
 発光体層30への拡散抑止を考慮すれば、針状導電体22はAuを含むことが好ましい。
The composition of the acicular conductor 22 is not particularly limited, and the higher the conductivity, the higher the concentrated electric field strength, which is preferable.
The acicular conductor 22 preferably contains at least one metal selected from the group consisting of Ag, Au, Cd, Co, Cu, Fe, Ni, Sn, and Zn.
In consideration of conductivity and ease of sealing, the acicular conductor 22 preferably contains Cu and / or Ni.
In consideration of suppression of diffusion to the light emitting layer 30, the acicular conductor 22 preferably contains Au.
 「課題を解決するための手段」の項で定義したように、本明細書において、「針状」とは長さ/直径が2以上の形状を指す。
 従来の分散型無機EL素子で用いられる蛍光体粒子内の針状導電体の長さは、粒子径にもよるが通常1~20μmの範囲内であり、針状導電体の直径は通常0.01~0.5μmである。本実施形態における針状導電体22についても、同様の長さと直径が好ましい。
 電界集中効果が高くなることから、針状導電体22の長さは1μm以上であることが好ましく、5μm以上であることが特に好ましい。
 電界集中効果が高くなることから、針状導電体22の直径は0.5μm以下であることが好ましく、0.1μm以下であることがより好ましく、0.05μm以下であることが特に好ましい。
 形成容易性を考慮すれば、針状導電体22の直径は0.02μm以上であることが好ましい。
 電界集中効果が高くなることから、針状導電体22の長さ/直径は100以上であることが好ましい。
As defined in the section “Means for Solving the Problems”, in this specification, “needle” refers to a shape having a length / diameter of 2 or more.
The length of the acicular conductor in the phosphor particles used in the conventional dispersion-type inorganic EL element is usually in the range of 1 to 20 μm, although it depends on the particle diameter, and the diameter of the acicular conductor is usually 0.00. 01 to 0.5 μm. The same length and diameter are preferable for the needle-like conductor 22 in the present embodiment.
Since the electric field concentration effect is enhanced, the length of the needle-like conductor 22 is preferably 1 μm or more, and particularly preferably 5 μm or more.
Since the electric field concentration effect is enhanced, the diameter of the needle-like conductor 22 is preferably 0.5 μm or less, more preferably 0.1 μm or less, and particularly preferably 0.05 μm or less.
Considering the ease of formation, the diameter of the needle-like conductor 22 is preferably 0.02 μm or more.
The length / diameter of the acicular conductor 22 is preferably 100 or more because the electric field concentration effect is enhanced.
 本実施形態において、複数の針状導電体22は、複数の針状細孔21Pの内部に形成されている。
 針状導電体22の好ましいサイズを考慮すれば、針状細孔21Pの長さは1μm以上であることが好ましく、5μm以上であることが特に好ましい。
針状細孔21Pの直径は0.5μm以下であることが好ましく、0.1μm以下であることがより好ましく、0.05μm以下であることが特に好ましい。針状細孔21Pの直径は0.02μm以上であることが好ましい。
 針状細孔21Pの長さ/直径は100以上であることが好ましい。
In the present embodiment, the plurality of acicular conductors 22 are formed inside the plurality of acicular pores 21P.
Considering the preferable size of the acicular conductor 22, the length of the acicular pore 21P is preferably 1 μm or more, and particularly preferably 5 μm or more.
The diameter of the acicular pores 21P is preferably 0.5 μm or less, more preferably 0.1 μm or less, and particularly preferably 0.05 μm or less. The diameter of the acicular pores 21P is preferably 0.02 μm or more.
The length / diameter of the acicular pores 21P is preferably 100 or more.
 図面上はすべての針状細孔21Pの内部に、針状導電体22が完全に充填され、針状導電体22の先端部と発光体層30とは互いに密着している場合について図示してあるが、個々の針状細孔21Pの内部における針状導電体22の充填率は100%でなくてもよい。
 つまり、針状導電体22の先端部と発光体層30とは互いに密着している必要は無い。ただし、集中電界強度が高くなることから、針状導電体22の先端部と発光体層30とは近いほど好ましい。この点を考慮すれば、個々の針状細孔21Pの内部における針状導電体22の充填率は高いほど好ましい。
 本明細書において、個々の針状細孔21Pの内部における針状導電体22の充填率は、針状導電体22の長さ/針状細孔21Pの長さ×100(%)により定義するものとする
 個々の針状細孔21Pの内部における針状導電体22の充填率は、70~100%が好ましい。
In the drawing, the needle-shaped conductor 22 is completely filled in all the needle-shaped pores 21P, and the tip of the needle-shaped conductor 22 and the light emitting layer 30 are shown in close contact with each other. However, the filling rate of the acicular conductors 22 in the individual acicular pores 21P may not be 100%.
That is, the tip of the needle-like conductor 22 and the light emitting layer 30 do not need to be in close contact with each other. However, since the concentrated electric field strength is high, it is preferable that the tip of the needle-like conductor 22 and the light emitting layer 30 are closer. Considering this point, it is preferable that the filling rate of the acicular conductors 22 in each acicular pore 21P is higher.
In this specification, the filling rate of the acicular conductor 22 in each acicular pore 21P is defined by the length of the acicular conductor 22 / the length of the acicular pore 21P × 100 (%). The filling rate of the acicular conductor 22 in each acicular pore 21P is preferably 70 to 100%.
 個々の針状細孔21Pの内部における針状導電体22の充填率にばらつきがあってもよいが、この場合、針状細孔21Pと発光体層30との離間距離にばらつきが生じ、電界集中効果にばらつきが生じることになる。発光の面内均一性を考慮すれば、充填率のばらつきは小さい方が好ましい。 There may be variations in the filling rate of the needle-shaped conductors 22 inside the individual needle-shaped pores 21P. In this case, however, the separation distance between the needle-shaped pores 21P and the light emitter layer 30 varies, resulting in an electric field. The concentration effect will vary. Considering the in-plane uniformity of light emission, it is preferable that the variation in the filling rate is small.
 針状細孔21Pの長さは、好ましい針状導電体22の長さと、針状細孔21Pの内部における針状導電体22の充填率とを考慮して、決定される。 The length of the needle-shaped pore 21P is determined in consideration of a preferable length of the needle-shaped conductor 22 and a filling rate of the needle-shaped conductor 22 inside the needle-shaped pore 21P.
 針状導電体22の数密度は高いほど集中電界による発光部分が増加するため、高い発光輝度が得られるし、発光輝度の面内均一性も高くなり、好ましい。しかしながら、互いに隣接する針状導電体22間の距離が近くなりすぎると、それぞれの針状導電体22に集中する電気力線が低密度になり、電界強度が低下する恐れがある。このような電界強度の低下を抑制するには、互いに隣接する針状導電体22の離間距離を0.02μm以上とすることが好ましい。
 本実施形態において、針状導電体22の数密度は針状細孔21Pの数密度に相当する。
 針状細孔21P及び針状導電体22の数密度は、1個/μm以上であることが好ましい。
 針状細孔21P及び針状導電体22の数密度は、400個/μm以下であることが好ましい。
 針状細孔21P及び針状導電体22の数密度は、10~300個/μmであることがより好ましい。
The higher the number density of the needle-like conductors 22, the more light emitting portions due to the concentrated electric field increase, so that high light emission luminance can be obtained and the in-plane uniformity of the light emission luminance is also preferable. However, if the distance between the adjacent needle-shaped conductors 22 becomes too short, the lines of electric force concentrated on the respective needle-shaped conductors 22 become low in density, which may reduce the electric field strength. In order to suppress such a decrease in electric field strength, it is preferable that the distance between the needle-like conductors 22 adjacent to each other is 0.02 μm or more.
In the present embodiment, the number density of the acicular conductors 22 corresponds to the number density of the acicular pores 21P.
The number density of the acicular pores 21P and the acicular conductors 22 is preferably 1 piece / μm 2 or more.
The number density of the acicular pores 21P and the acicular conductors 22 is preferably 400 pieces / μm 2 or less.
The number density of the acicular pores 21P and the acicular conductors 22 is more preferably 10 to 300 / μm 2 .
 電界集中は、針状導電体22の延びる方向が電圧印加方向に近い程、効果的に発現する。陽極酸化法によれば、電圧印加方向に対して平行又はそれに近い方向に延びる複数の針状細孔21Pが規則正しくアレイ配列した細孔構造体21を、簡易なプロセスで形成できる。陽極酸化法によれば、針状細孔21Pのサイズ(長さと直径)及び数密度の制御がしやすく、大面積化も容易である。陽極酸化法は、低コストな方法である。 The electric field concentration becomes more effective as the direction in which the needle-like conductor 22 extends is closer to the voltage application direction. According to the anodic oxidation method, the pore structure 21 in which a plurality of needle-like pores 21P extending in a direction parallel to or close to the voltage application direction is regularly arrayed can be formed by a simple process. According to the anodizing method, it is easy to control the size (length and diameter) and number density of the needle-shaped pores 21P, and it is easy to increase the area. The anodizing method is a low cost method.
 陽極酸化法によれば、陽極酸化後に残る被陽極酸化金属体Mの残部を下部電極層10とすることができる。
 したがって、下部電極層10と針状導電体層20とを同一プロセスで一体形成することができる。この方法では、下部電極層10と針状導電体層20とを1つの被陽極酸化金属体Mから生成するので、これらの密着性が高く、好ましい。
 なお、下部電極層10の組成は、用いた被陽極酸化金属体Mと同一である。
According to the anodic oxidation method, the remainder of the anodized metal body M remaining after the anodic oxidation can be made the lower electrode layer 10.
Therefore, the lower electrode layer 10 and the acicular conductor layer 20 can be integrally formed by the same process. In this method, since the lower electrode layer 10 and the acicular conductor layer 20 are generated from one anodized metal body M, their adhesion is high and preferable.
The composition of the lower electrode layer 10 is the same as that of the used anodized metal body M.
 プロセスが簡易になることから、陽極酸化後に残る被陽極酸化金属体Mの残部を導電体10とすることが好ましいが、被陽極酸化金属体Mのすべてを陽極酸化してもよい。
 また、図4のEL素子3に示すように、被陽極酸化金属体Mの少なくとも一部を陽極酸化し、あれば被陽極酸化金属体Mの残部と金属酸化物体のバリア層21Bを除去し、複数の針状細孔21Pを貫通孔としてもよい。この場合、バリア層21Bが除去されるので、より高い電界集中効果が得られ、好ましい。
 例えば、被陽極酸化金属体Mの残部及びバリア層21Bは、切削等により物理的に除去することができる。
 また、被陽極酸化金属体Mの残部及びバリア層21Bは、リン酸等の酸性液に浸漬することでも除去できる。
Since the process becomes simple, it is preferable that the remainder of the anodized metal body M remaining after the anodization is the conductor 10, but the entire anodized metal body M may be anodized.
Further, as shown in the EL element 3 in FIG. 4, at least a part of the anodized metal body M is anodized, and if there is, the remaining part of the anodized metal body M and the barrier layer 21B of the metal oxide body are removed. The plurality of needle-like pores 21P may be through holes. In this case, since the barrier layer 21B is removed, a higher electric field concentration effect is obtained, which is preferable.
For example, the remainder of the anodized metal body M and the barrier layer 21B can be physically removed by cutting or the like.
Further, the remainder of the anodized metal body M and the barrier layer 21B can be removed by immersing in an acidic liquid such as phosphoric acid.
 被陽極酸化金属体Mの残部を残さない場合、別途導電体10を設ける必要がある。
 導電体10は、導電性基材でもよいし、導電体膜でもよい。
 例えば、バリア層を除去した細孔構造体にAu膜等の導電体膜を形成することができる。この場合、必要に応じて、アルミナ基材等の絶縁性基材と導電体膜付き細孔構造体とを銀ペースト等の接着成分を介して貼り合わせ、熱処理することで、これらを接着することができる。
 この後、本実施形態と同様に、好ましくは導電体10を電極とした電解メッキ等の電解析出により、複数の針状細孔21Pの内部に複数の針状導電体22を形成して、針状導電体層20を製造することができる。
When the remainder of the anodized metal body M is not left, it is necessary to provide the conductor 10 separately.
The conductor 10 may be a conductive substrate or a conductor film.
For example, a conductor film such as an Au film can be formed on the pore structure from which the barrier layer has been removed. In this case, if necessary, an insulating base material such as an alumina base material and a pore structure with a conductor film are bonded to each other through an adhesive component such as a silver paste and heat-treated to adhere them. Can do.
Thereafter, similarly to the present embodiment, a plurality of needle-shaped conductors 22 are formed inside the plurality of needle-shaped pores 21P, preferably by electrolytic deposition such as electrolytic plating using the conductor 10 as an electrode, The acicular conductor layer 20 can be manufactured.
 本実施形態では、細孔構造体21が陽極酸化金属体からなる場合について説明したが、本発明はかかる態様に限らず、細孔構造体21は、発光体層30側の面において開口し、発光体層30側の面に対して交差方向に延びた複数の針状細孔21Pを有するものであればよい。
 陽極酸化金属体以外の細孔構造体21としては、非特許文献2等に記載のメソポーラスシリカなどの細孔構造体、高分子重合体の自己組織化を利用して得られる細孔構造体、及びリソグラフィー技術を用いたエッチングを利用して得られる細孔構造体等が挙げられる。
In the present embodiment, the case where the pore structure 21 is made of an anodized metal body has been described. However, the present invention is not limited to such an embodiment, and the pore structure 21 opens on the surface of the light emitter layer 30 side. What is necessary is just to have the some acicular pore 21P extended in the crossing direction with respect to the surface at the side of the light-emitting body layer 30. FIG.
As the pore structure 21 other than the anodized metal body, a pore structure such as mesoporous silica described in Non-Patent Document 2, etc., a pore structure obtained by utilizing the self-organization of a polymer, And a pore structure obtained by utilizing etching using a lithography technique.
 複数の針状細孔21Pを有する細孔構造体21を得た後、複数の針状細孔21Pの内部に複数の針状導電体22を形成する代わりに、複数の針状導電体22を設けた後、これら複数の針状導電体22を包埋するように絶縁体を設けてもよい。
 この場合、針状導電体22としては、下部電極層10の表面から、Ag及びCuなどの金属の針状結晶、あるいは、カーボンナノチューブなどを成長させたものが挙げられる。針状導電体22を包埋する絶縁体としては、セラミックス体、及び高分子重合体等が挙げられる。針状導電体22を包埋する絶縁体は、湿式塗布法あるいは真空蒸着法などの公知の方法によって形成することができる。
After obtaining the pore structure 21 having the plurality of needle-shaped pores 21P, instead of forming the plurality of needle-shaped conductors 22 inside the plurality of needle-shaped pores 21P, the plurality of needle-shaped conductors 22 are After the provision, an insulator may be provided so as to embed the plurality of needle-like conductors 22.
In this case, examples of the acicular conductor 22 include those obtained by growing acicular crystals of metal such as Ag and Cu or carbon nanotubes from the surface of the lower electrode layer 10. Examples of the insulator that embeds the needle-like conductor 22 include a ceramic body and a polymer. The insulator embedding the acicular conductor 22 can be formed by a known method such as a wet coating method or a vacuum deposition method.
 発光体層30は電界中で励起されて発光する層である。発光体層30の厚さは、針状導電体22の先端部付近に電界を集中させる点から薄い方が好ましく、具体的には0.05~2μmの範囲が好ましい。
 発光体層30の材料としては特に制限されず、EL素子用の公知の発光体材料を用いることができる。
 EL素子1は、平面視にて、異なる波長の光を発光する複数種の発光体層30がアレイ配列されたものであってもよい。
 発光体層30の材料としては、ZnS:Mn、ZnS:Tb,F、ZnS:Pr,F、ZnS:Ag,Cl、ZnS:Cu,Cl、Y:Eu、ZnSiO:Eu、SrS:Ce、BaAl:Eu、BaMgAl1017:Eu、MgWO、CaWO、RbVO、及びCsVOなどの無機化合物、あるいはAlq3などの有機化合物が挙げられる。これらは、1種又は複数種を用いることができる。
The phosphor layer 30 is a layer that emits light when excited in an electric field. The thickness of the luminescent layer 30 is preferably thinner from the viewpoint of concentrating the electric field near the tip of the acicular conductor 22, and specifically, it is preferably in the range of 0.05 to 2 μm.
The material of the light emitter layer 30 is not particularly limited, and a known light emitter material for an EL element can be used.
The EL element 1 may be an array in which a plurality of types of light emitter layers 30 that emit light of different wavelengths in a plan view.
As a material of the light emitting layer 30, ZnS: Mn, ZnS: Tb, F, ZnS: Pr, F, ZnS: Ag, Cl, ZnS: Cu, Cl, Y 2 O 3 : Eu, ZnSiO 4 : Eu, SrS : Ce, BaAl 2 S 4 : Eu, BaMgAl 10 O 17 : Inorganic compounds such as Eu, MgWO 4 , CaWO 4 , RbVO 3 , and CsVO 3 , or organic compounds such as Alq3. These can use 1 type or multiple types.
 図3、図4に示す設計変更例のEL素子2、3に示すように、針状導電体層20と発光体層30との間に、絶縁体層(下部絶縁体層)50を設けてもよい。絶縁体層50は、単層構造でも積層構造でもよい。
 絶縁体層50はバリア層として機能し、針状細孔21Pの内部に形成された針状導電体22の成分が発光体層30に拡散し、発光を不活性にすることを抑止できる。
 絶縁体層50の材料としては、SiO、Ta、TiO、BaTiO、Alなどの酸化物、Si、AlN、TiNなどの窒化物、SiON、AlONなどの酸窒化物、及びこれらの組合わせ等が挙げられる。
As shown in EL elements 2 and 3 of the design modification example shown in FIGS. 3 and 4, an insulator layer (lower insulator layer) 50 is provided between the needle-like conductor layer 20 and the light emitter layer 30. Also good. The insulator layer 50 may have a single layer structure or a laminated structure.
The insulator layer 50 functions as a barrier layer, and it is possible to prevent the components of the needle-like conductor 22 formed inside the needle-like pores 21P from diffusing into the light-emitting body layer 30 and inactivating light emission.
Examples of the material for the insulator layer 50 include oxides such as SiO 2 , Ta 2 O 5 , TiO 2 , BaTiO 3 , and Al 2 O 3 , nitrides such as Si 3 N 4 , AlN, and TiN, SiON, and AlON. Examples thereof include oxynitrides and combinations thereof.
 電界集中効果が高くなることから、針状導電体22の先端部と発光体層30とは近いほど好ましいことを述べた。
 絶縁体層50の有無に拘わらず、針状導電体22と発光体層30との離間距離は1μm以下であることが好ましい。
 絶縁体層50の厚さは、針状導電体22に電界を集中させる点から薄い方が好ましく、具体的には0.2μm以下であることが好ましい。
 絶縁体層50の厚みが過小では、バリア層として機能が効果的に得られない。
 絶縁体層50の膜厚は、0.05μm以上であることが好ましい。
It has been described that the closer the tip of the acicular conductor 22 and the light emitting layer 30 are, the higher the electric field concentration effect becomes.
Regardless of the presence or absence of the insulator layer 50, the distance between the acicular conductor 22 and the light emitter layer 30 is preferably 1 μm or less.
The thickness of the insulator layer 50 is preferably thinner from the viewpoint of concentrating the electric field on the acicular conductor 22, and specifically, it is preferably 0.2 μm or less.
If the thickness of the insulator layer 50 is too small, the function as a barrier layer cannot be obtained effectively.
The film thickness of the insulator layer 50 is preferably 0.05 μm or more.
 上記のように、針状導電体層20と発光体層30との間に絶縁体層50を設けてもよいが、針状導電体層20と発光体層30との間に導電体層は設けない。針状導電体層20と発光体層30との間に導電体層は設けると、導電体層が実質的に下部電極層として機能し、複数の針状導電体22による電界集中効果が得られなくなる。 As described above, the insulator layer 50 may be provided between the acicular conductor layer 20 and the light emitter layer 30, but the conductor layer between the acicular conductor layer 20 and the light emitter layer 30 is Not provided. When a conductor layer is provided between the acicular conductor layer 20 and the light emitting layer 30, the conductor layer substantially functions as a lower electrode layer, and an electric field concentration effect by the plurality of acicular conductors 22 is obtained. Disappear.
 図3、図4に示す設計変更例のEL素子2、3に示すように、発光体層30と上部電極層40との間に、絶縁体層(上部絶縁体層)60を設けてもよい。絶縁体層60は、単層構造でも積層構造でもよい。
 絶縁体層60はキャップ層として機能し、発光体層30の表面における材料の脱着を抑止し、発光体層30の組成を均一にすることができ、発光特性を向上できる。
 絶縁体層60の材料としては、SiO、Ta、TiO、BaTiO、及びAlなどの酸化物、Si、AlN、及びTiNなどの窒化物、SiON、及びAlONなどの酸窒化物、及びこれらの組合わせ等が挙げられる。
 絶縁体層60の厚さは、針状導電体22に電界を集中させる点から薄い方が好ましく、具体的には0.2μm以下であることが好ましい。
 絶縁体層60の厚みが過小では、キャップ層として機能が効果的に得られない。
 絶縁体層60の膜厚は、0.05μm以上であることが好ましい。
As shown in the EL elements 2 and 3 in the design modification examples shown in FIGS. 3 and 4, an insulator layer (upper insulator layer) 60 may be provided between the light emitter layer 30 and the upper electrode layer 40. . The insulator layer 60 may have a single layer structure or a laminated structure.
The insulator layer 60 functions as a cap layer, suppresses desorption of materials on the surface of the light emitter layer 30, makes the composition of the light emitter layer 30 uniform, and improves the light emission characteristics.
Examples of the material of the insulator layer 60 include oxides such as SiO 2 , Ta 2 O 5 , TiO 2 , BaTiO 3 , and Al 2 O 3 , nitrides such as Si 3 N 4 , AlN, and TiN, SiON, and Examples thereof include oxynitrides such as AlON and combinations thereof.
The thickness of the insulator layer 60 is preferably thinner from the viewpoint of concentrating the electric field on the acicular conductor 22, and specifically, it is preferably 0.2 μm or less.
If the thickness of the insulator layer 60 is too small, the function as a cap layer cannot be obtained effectively.
The thickness of the insulator layer 60 is preferably 0.05 μm or more.
 図3、図4に示す設計変更例では、バリア層として機能する絶縁体層50とキャップ層として機能する絶縁体層60の双方を設ける態様を示してあるが、これら絶縁体層のうち一方のみを設ける構成としてもよい。 3 and 4 show an embodiment in which both the insulator layer 50 functioning as a barrier layer and the insulator layer 60 functioning as a cap layer are provided, but only one of these insulator layers is shown. It is good also as a structure which provides.
 上部電極層40の材料は、透光性を有する導電材料であればよく、ITO(インジウム錫酸化物)、FTO(フッ素添加酸化スズ)、SnO、PEDOT(ポリエチレンジオキシチオフェン)、及びCNT(カーボンナノチューブ)等が好ましく用いられる。 The material of the upper electrode layer 40 may be any conductive material having translucency, such as ITO (indium tin oxide), FTO (fluorine-added tin oxide), SnO 2 , PEDOT (polyethylenedioxythiophene), and CNT ( Carbon nanotubes) are preferably used.
 発光体層30、上部電極層40、及び絶縁体層50、60の成膜方法は特に制限されず、公知の方法を採用することができる。
 成膜法としては、スパッタリング法、あるいは電子線蒸着法等の真空下での物理的蒸着法、並びに、成膜しようとする層の成分又は前駆体を含む溶液又は分散液を、スピンコート法、ディップコート法、バーコート法、又はスプレー塗工法等により塗布する塗布法等の液相法等が挙げられる。
 発光体層30と絶縁体層50、60は、バインダとして非導電性ポリマーを含むものであってもよい。
The film formation method of the light emitting layer 30, the upper electrode layer 40, and the insulator layers 50 and 60 is not particularly limited, and a known method can be adopted.
As a film forming method, a sputtering method or a physical vapor deposition method under vacuum such as an electron beam evaporation method, and a solution or dispersion containing a component or precursor of a layer to be formed into a film, a spin coating method, Examples thereof include a liquid phase method such as a coating method applied by a dip coating method, a bar coating method, a spray coating method, or the like.
The light emitter layer 30 and the insulator layers 50 and 60 may include a non-conductive polymer as a binder.
 本実施形態のEL素子1は、下部電極層10と発光体層30との間に、発光体層30の下部電極層10側の面30Sに対して交差方向に延びた複数の針状導電体22と、複数の針状導電体22の間を絶縁する絶縁体(本実施形態では細孔構造体21)とを含む針状導電体層20を備えている。 The EL element 1 of the present embodiment includes a plurality of needle-like conductors extending in a direction intersecting the surface 30S of the light emitter layer 30 on the lower electrode layer 10 side between the lower electrode layer 10 and the light emitter layer 30. 22 and an acicular conductor layer 20 including an insulator (in this embodiment, a pore structure 21) that insulates the acicular conductors 22 from each other.
 「発明が解決しようとする課題」の項で述べたように、特許文献1等に記載の従来の薄膜型無機EL素子では、発光輝度及び発光効率等の発光特性改良が試みられている。しかしながら、充分な発光輝度を得るためには高電界が必要であり、発光効率が低下する傾向がある。
 本実施形態の構成では、針状導電体22の先端部付近で集中電界が発生することで、比較的低電界でも高い発光輝度が得られる。
As described in the section “Problems to be Solved by the Invention”, the conventional thin-film inorganic EL elements described in Patent Document 1 and the like have attempted to improve the light emission characteristics such as light emission luminance and light emission efficiency. However, in order to obtain sufficient light emission luminance, a high electric field is required, and the light emission efficiency tends to decrease.
In the configuration of the present embodiment, a concentrated electric field is generated in the vicinity of the tip of the needle-like conductor 22, so that high emission luminance can be obtained even with a relatively low electric field.
 「発明が解決しようとする課題」の項で述べたように、特許文献2等に記載の従来の分散型無機EL素子は、針状導電体の先端部付近で高電界が発生することで、比較的低電界で高発光輝度が得られる。しかしながら、発光体層に含まれるバインダにより消費される電力が大きく、発光効率が低下する傾向がある。また、蛍光体粒子内の針状導電体は結晶面内で多方向(ランダム方向)に析出することから、電極面に対して垂直配向している針状導電体の割合が少なく、電界が集中しにくい。
 本実施形態では、針状導電体層20にバインダが不要であるため、バインダにより消費される電力による発光効率の低下が生じない。本実施形態ではまた、針状導電体22を電圧印加方向又はそれに近い方向に容易に配向させることができ、電界集中を効果的に起こすことができる。
As described in the section “Problems to be Solved by the Invention”, the conventional dispersion-type inorganic EL element described in Patent Document 2 and the like generates a high electric field in the vicinity of the tip of the acicular conductor, High luminance can be obtained with a relatively low electric field. However, the electric power consumed by the binder contained in the light emitting layer is large, and the light emission efficiency tends to decrease. In addition, since the acicular conductors in the phosphor particles are deposited in multiple directions (random directions) in the crystal plane, the proportion of acicular conductors oriented perpendicular to the electrode surface is small and the electric field is concentrated. Hard to do.
In the present embodiment, since no binder is required for the needle-like conductor layer 20, the light emission efficiency is not reduced by the power consumed by the binder. In the present embodiment, the needle-like conductor 22 can be easily oriented in the voltage application direction or a direction close thereto, and electric field concentration can be effectively caused.
 本実施形態によれば、上記の作用効果が相俟って、高電界を印加せずとも、発光輝度と発光効率を共に向上させることが可能なEL素子1を提供することができる。
 本発明は、無機EL素子及び有機EL素子のいずれにも適用可能であり、無機EL素子に好ましく適用できる。
According to this embodiment, it is possible to provide the EL element 1 that can improve both the light emission luminance and the light emission efficiency without applying a high electric field by combining the above-described effects.
The present invention is applicable to both inorganic EL elements and organic EL elements, and is preferably applicable to inorganic EL elements.
 以下に実施例と比較例を挙げて本発明をさらに説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be further described with reference to examples and comparative examples, but the present invention is not limited thereto.
<実施例1>
 厚み3mmの100×100mmアルミニウム板に対して、以下の条件で陽極酸化処理を行い、複数の針状細孔を有するアルミナ層を形成した。
・対向電極(陰極):アルミニウム
・電解液:0.3M硫酸
・浴温:15~19℃
・電圧:直流40V
・時間:100分
<Example 1>
An anodizing process was performed on a 100 × 100 mm aluminum plate having a thickness of 3 mm under the following conditions to form an alumina layer having a plurality of acicular pores.
-Counter electrode (cathode): Aluminum-Electrolyte: 0.3 M sulfuric acid-Bath temperature: 15-19 ° C
・ Voltage: DC 40V
・ Time: 100 minutes
 得られたアルミナ層について、走査型電子顕微鏡(SEM、日立製作所社製「S-4800」)を用いて表面及び断面を観察した。表面SEM像(80,000倍)において、細孔100個の細孔面積から平均細孔径を求めた。また、同表面SEM像中の細孔個数から細孔密度を求めた。断面SEM像 (10,000倍)において、細孔100個の細孔長から平均細孔長を求めた。
 得られたアルミナ層は、複数の針状細孔がほぼ規則正しく開孔しており、平均細孔径0.02μm、平均細孔長8μm、平均細孔密度300個/μmであった。
The surface and the cross section of the obtained alumina layer were observed using a scanning electron microscope (SEM, “S-4800” manufactured by Hitachi, Ltd.). In the surface SEM image (80,000 times), the average pore diameter was determined from the pore area of 100 pores. Further, the pore density was determined from the number of pores in the same surface SEM image. In the cross-sectional SEM image (10,000 times), the average pore length was determined from the pore length of 100 pores.
The obtained alumina layer had a plurality of needle-like pores opened almost regularly, and had an average pore diameter of 0.02 μm, an average pore length of 8 μm, and an average pore density of 300 / μm 2 .
 次に、上記アルミナ層の複数の針状細孔の内部に、次の条件下でNiを電解メッキ析出させて、複数の針状導電体を形成した。
・電解浴:0.3M硫酸ニッケル・6水和物、0.1M硫酸アンモニウム、及び0.5M硼酸の混合液
・浴温:22~25℃
・pH:4.0~4.5
・電圧:交流10V(50Hz)
・処理時間:30分
Next, Ni was electrolytically deposited inside the plurality of needle-shaped pores of the alumina layer under the following conditions to form a plurality of needle-shaped conductors.
Electrolytic bath: 0.3M nickel sulfate hexahydrate, 0.1M ammonium sulfate, and 0.5M boric acid mixed solution Bath temperature: 22-25 ° C
・ PH: 4.0 to 4.5
・ Voltage: AC 10V (50Hz)
・ Processing time: 30 minutes
 得られた針状導電体層のSEM断面観察を実施したところ、針状細孔の内部における針状導電体の充填率は70~100%であった。 When SEM cross-section observation of the obtained acicular conductor layer was performed, the filling rate of the acicular conductor inside the acicular pores was 70 to 100%.
 次に、0.5質量%のMnを添加したZnS粉末を900℃、50MPaで1時間ホットプレスにより焼結した焼結体をターゲットとし、スパッタリング法により発光体層を成膜した。蒸着時の真空度は5×10-4Pa以下、基板温度200℃、蒸着速度20nm/minに設定し、膜厚800nmのZnS:Mn発光体層を得た。得られた発光体層に対して、窒素雰囲気下500℃で1時間の熱処理を行い、発光中心のMnを活性化した。 Next, a phosphor layer was formed by sputtering using a sintered body obtained by sintering ZnS powder added with 0.5 mass% Mn by hot pressing at 900 ° C. and 50 MPa for 1 hour. The degree of vacuum at the time of vapor deposition was set to 5 × 10 −4 Pa or less, the substrate temperature was set to 200 ° C., and the vapor deposition rate was set to 20 nm / min. The obtained phosphor layer was heat-treated at 500 ° C. for 1 hour in a nitrogen atmosphere to activate Mn at the emission center.
 次に、上記発光体層上にITOをスパッタリング法により100nm厚で成膜し、上部電極層を形成した。
 以上のようにして、無機EL素子を得た。
Next, ITO was deposited to a thickness of 100 nm on the phosphor layer by sputtering to form an upper electrode layer.
As described above, an inorganic EL element was obtained.
<実施例2>
 針状導電体層とZnS:Mn発光体層との間に、バリア層として機能する酸窒化ケイ素(SiON)層を100nmの膜厚でスパッタリング成膜したこと以外は実施例1と同様の条件で、無機EL素子を作製した。
<Example 2>
Except that a silicon oxynitride (SiON) layer functioning as a barrier layer was formed by sputtering at a thickness of 100 nm between the acicular conductor layer and the ZnS: Mn phosphor layer, the same conditions as in Example 1 were used. An inorganic EL element was produced.
<実施例3>
 針状導電体層とZnS:Mn発光体層との間にバリア層として機能する酸窒化ケイ素(SiON)層を100nm厚でスパッタリング成膜し、ZnS:Mn発光体層と上部電極層との間にキャップ層として機能する酸窒化ケイ素(SiON)層を100nm厚でスパッタリング成膜したこと以外は実施例1と同様の条件で、2重絶縁型の無機EL素子を作製した。
<Example 3>
A silicon oxynitride (SiON) layer functioning as a barrier layer between the acicular conductor layer and the ZnS: Mn phosphor layer is formed by sputtering at a thickness of 100 nm, and between the ZnS: Mn phosphor layer and the upper electrode layer. A double-insulated inorganic EL element was produced under the same conditions as in Example 1 except that a silicon oxynitride (SiON) layer functioning as a cap layer was formed by sputtering to a thickness of 100 nm.
<実施例4>
 針状導電体層の形成後に、研磨機(マルトー社製 ダイヤラップ ML-150P)にて表面研磨を行い、Niの電解析出時に針状細孔の上部に残った非封孔部分を除去したこと以外は実施例3と同様の条件で、無機EL素子を作製した。
 針状導電体層の表面研磨は、2回に分けて実施した。粒度が大きい耐水研磨紙(三共理化学社製、平均粒径7.9μm、2000番)と液体研磨剤(マルトー社製、平均粒径0.5μmダイヤモンドスラリー)を用いて、1回目の研磨を30分間実施した。その後、粒度が小さい研磨布(マルトー社製、硬質ポリシングクロスMM414)と液体研磨剤(フジミ社製、平均粒径70nmコロイダルシリカ)を用いて、2回目の研磨を30分間実施した。これら2回の表面研磨後、表面に残留した砥粒を除去するため、0.6質量%リン酸と0.18質量%クロム酸の混酸で洗浄した。
 この例では、すべての針状細孔の内部における針状導電体の充填率を100%とした。
<Example 4>
After the formation of the acicular conductor layer, surface polishing was performed with a polishing machine (Diawrap ML-150P manufactured by Marto) to remove the non-sealed portion remaining on the upper portion of the acicular pores during the electrolytic deposition of Ni Except for this, an inorganic EL element was produced under the same conditions as in Example 3.
The surface polishing of the acicular conductor layer was performed in two steps. Using a water-resistant abrasive paper having a large particle size (manufactured by Sankyo Rikagaku Co., Ltd., average particle size of 7.9 μm, No. 2000) and a liquid abrasive (manufactured by Marto Co., Ltd., average particle size of 0.5 μm diamond slurry) Conducted for a minute. Thereafter, a second polishing was performed for 30 minutes using a polishing cloth having a small particle size (manufactured by Marto, hard polishing cloth MM414) and a liquid abrasive (manufactured by Fujimi, colloidal silica having an average particle size of 70 nm). After these two times of surface polishing, in order to remove the abrasive grains remaining on the surface, the surface was washed with a mixed acid of 0.6% by mass phosphoric acid and 0.18% by mass chromic acid.
In this example, the filling rate of the acicular conductors in all the acicular pores was 100%.
<実施例5>
 溶媒としてのN,N-ジメチルホルムアミド15ml中に、バインダとしてのシアノエチル化ポリビニルアルコール(信越化学社製)0.4gを分散させ、粒径D50=1.0μmのZnS:Mn粒子1gを超音波分散させた分散液を調製した。針状導電体層上に、得られた分散液をスピンコート法にて塗布し、溶媒を90℃で1時間乾燥除去して、1.5μm厚の発光体層を形成した以外は実施例1と同様の条件で、無機EL素子を作製した。
<Example 5>
0.4 g of cyanoethylated polyvinyl alcohol (manufactured by Shin-Etsu Chemical Co., Ltd.) as a binder is dispersed in 15 ml of N, N-dimethylformamide as a solvent, and 1 g of ZnS: Mn particles having a particle diameter D50 = 1.0 μm is ultrasonically dispersed. A dispersion was prepared. Example 1 except that the obtained dispersion was applied onto the acicular conductor layer by spin coating, and the solvent was dried and removed at 90 ° C. for 1 hour to form a 1.5 μm-thick phosphor layer. An inorganic EL element was manufactured under the same conditions as those described above.
<実施例6>
 陽極酸化の処理時間を8時間と長くした以外は、実施例1と同様の条件とし、アルミニウム板の一部を陽極酸化して、複数の針状細孔を有するアルミナ層を形成した。次いで、アルミニウム基板の残部と複数の針状細孔を有するアルミナ層とをリン酸に浸漬し、アルミニウム基板の残部とアルミナ層のバリア層及びその近傍を溶解させ、複数の針状細孔を貫通孔とした。
 得られたアルミナ層について、実施例1と同様にSEM観察及び細孔評価を実施したところ、複数の針状細孔がほぼ規則正しく開孔しており、平均細孔径0.03μm、平均細孔長40μm、平均細孔密度300個/μmであった。
<Example 6>
Except that the treatment time for anodization was increased to 8 hours, the conditions were the same as in Example 1, and a part of the aluminum plate was anodized to form an alumina layer having a plurality of needle-shaped pores. Next, the remaining part of the aluminum substrate and the alumina layer having a plurality of acicular pores are immersed in phosphoric acid to dissolve the remaining part of the aluminum substrate, the barrier layer of the alumina layer and the vicinity thereof, and penetrate the plurality of acicular pores. It was a hole.
The obtained alumina layer was subjected to SEM observation and pore evaluation in the same manner as in Example 1. As a result, a plurality of needle-like pores were opened almost regularly, with an average pore diameter of 0.03 μm and an average pore length. It was 40 μm and the average pore density was 300 / μm 2 .
 上記アルミナ層のバリア層を除去した側に、Auを100nmスパッタリング成膜した。
 別途、市販のアルミナ基板(京セラ製A476T)を用意し、この上に銀ペーストをスクリーン印刷し、この上に上記Au膜付きアルミナ層を、Au膜側を下にして載置した。その後、500℃で1時間大気中で熱処理して、アルミナ基板とAu膜付きアルミナ層とを接着した。
On the side of the alumina layer from which the barrier layer was removed, Au was formed by sputtering to a thickness of 100 nm.
Separately, a commercially available alumina substrate (A476T manufactured by Kyocera) was prepared, and a silver paste was screen-printed thereon, and the above-mentioned alumina layer with the Au film was placed thereon with the Au film side down. Then, it heat-processed in air | atmosphere at 500 degreeC for 1 hour, and the alumina substrate and the alumina layer with Au film | membrane were adhere | attached.
 次に、上記アルミナ層の複数の針状細孔の内部に、次の条件下でNiを電解メッキ析出させて、複数の針状導電体を形成した。
・電解浴:1.4Mスルファミン酸Ni、及び0.7Mホウ酸の混合液
・浴温:22~25℃
・pH:4.0~4.5
・電圧:直流2V
・処理時間:30分
Next, Ni was electrolytically deposited inside the plurality of needle-shaped pores of the alumina layer under the following conditions to form a plurality of needle-shaped conductors.
Electrolytic bath: 1.4M Ni sulfamate and 0.7M boric acid mixture Bath temperature: 22-25 ° C
・ PH: 4.0 to 4.5
・ Voltage: DC 2V
・ Processing time: 30 minutes
 得られた針状導電体層のSEM断面観察を実施したところ、針状細孔の内部における針状導電体の充填率は80~100%であった。
 その後、実施例3と同様に、バリア層、発光体層、キャップ層、及び上部電極層を形成した。
 以上のようにして、無機EL素子を得た。
When the SEM cross-section observation of the obtained acicular conductor layer was carried out, the filling rate of the acicular conductor inside the acicular pores was 80 to 100%.
Thereafter, similarly to Example 3, a barrier layer, a light emitting layer, a cap layer, and an upper electrode layer were formed.
As described above, an inorganic EL element was obtained.
<比較例1>
 無アルカリガラス基板上に、下部電極層としてITO膜を300nm厚でスパッタリング成膜し、針状導電体層を設けずに下部電極層上に発光体層を成膜したこと以外は実施例1と同様の条件で、電界集中が無い従来の薄膜型無機EL素子を作製した。
<Comparative Example 1>
Example 1 except that an ITO film was sputtered to a thickness of 300 nm as a lower electrode layer on an alkali-free glass substrate, and a phosphor layer was formed on the lower electrode layer without providing a needle-like conductor layer. Under the same conditions, a conventional thin-film inorganic EL element having no electric field concentration was produced.
<比較例2>
 無アルカリガラス基板上に、下部電極層としてITO膜を300nm厚でスパッタリング成膜し、針状導電体層を設けずに下部電極層上に発光体層を成膜したこと以外は実施例3と同様の条件で、電界集中が無い従来の薄膜型無機EL素子を作製した。
<Comparative example 2>
Example 3 except that an ITO film as a lower electrode layer was formed by sputtering on an alkali-free glass substrate with a thickness of 300 nm, and a phosphor layer was formed on the lower electrode layer without providing a needle-like conductor layer. Under the same conditions, a conventional thin-film inorganic EL element having no electric field concentration was produced.
<比較例3>
 無アルカリガラス基板上に、下部電極層としてITO膜を300nm厚でスパッタリング成膜し、針状導電体層を設けずに下部電極層上に発光体層を成膜したこと以外は実施例5と同様の条件で、電界集中が無い従来の薄膜型無機EL素子を作製した。
<Comparative Example 3>
Example 5 is the same as Example 5 except that an ITO film as a lower electrode layer was sputtered to a thickness of 300 nm on an alkali-free glass substrate, and a phosphor layer was formed on the lower electrode layer without providing a needle-like conductor layer. Under the same conditions, a conventional thin-film inorganic EL element having no electric field concentration was produced.
<評価1>
 各例において得られたEL素子について、交流電源により周波数1kHzの交流電圧を印加し、電圧200Vにおける発光輝度と発光効率を評価した。発光輝度は、色彩輝度計(トプコン社製、BM7)にて測定した。
 また、発光輝度1cd/mが得られた電圧を発光開始電圧として求めた。
 各例の積層構成と評価結果を表1に示す。
<Evaluation 1>
About the EL element obtained in each example, the alternating voltage of frequency 1kHz was applied with alternating current power supply, and the light-emitting luminance and luminous efficiency in voltage 200V were evaluated. The light emission luminance was measured with a color luminance meter (manufactured by Topcon Corporation, BM7).
Further, the voltage at which the light emission luminance of 1 cd / m 2 was obtained was obtained as the light emission start voltage.
Table 1 shows the laminated structure and evaluation results of each example.
 表1に示すように、針状導電体層を設けた実施例1~6では、針状導電体層を設けなかった比較例1~3に対して、発光輝度及び発光効率のいずれもが向上された無機EL素子が得られた。
 特に、針状導電体層の表面研磨を実施した実施例4、及びアルミナ層のバリア層を除去した実施例6では、高い発光輝度と発光効率が得られた。
 針状導電体層の有無以外は同様の積層構成とした実施例と比較例同士を比較した場合(具体的には、実施例1と比較例1、実施例3と比較例2、実施例5と比較例3)、発光開始電圧は同等レベルであった。
 以上の結果から、針状導電体層を設けることで、高電界を印加せずとも、発光輝度と発光効率を共に向上させることが可能な無機EL素子を提供できることが示された。
As shown in Table 1, in Examples 1 to 6 in which the needle-shaped conductor layer was provided, both the luminance and the luminous efficiency were improved compared to Comparative Examples 1 to 3 in which the needle-shaped conductor layer was not provided. Thus obtained inorganic EL device was obtained.
In particular, in Example 4 in which the surface polishing of the needle-shaped conductor layer and Example 6 in which the barrier layer of the alumina layer was removed, high emission luminance and luminous efficiency were obtained.
When Examples and Comparative Examples having the same laminated configuration except for the presence or absence of the acicular conductor layer are compared (specifically, Example 1 and Comparative Example 1, Example 3 and Comparative Example 2, Example 5) And Comparative Example 3), the emission start voltage was at the same level.
From the above results, it was shown that by providing the acicular conductor layer, it is possible to provide an inorganic EL element capable of improving both the light emission luminance and the light emission efficiency without applying a high electric field.
<評価2>
 実施例1及び比較例1において得られた無機EL素子について、光学顕微鏡(株式会社ナカデン社製、デジタルマイクロスコープMX-1200II)を用い、周波数1kHzの交流電圧を200V印加したときの発光の様子を観察した。
 図5に顕微鏡写真を示すように、実施例1の無機EL素子では、針状導電体の先端部付近における電界集中による点状の発光が無数に観られた。これに対して、図6に顕微鏡写真を示すように、比較例1の無機EL素子では、全体的に一様な面状の発光が観られた。
<Evaluation 2>
About the inorganic EL element obtained in Example 1 and Comparative Example 1, using an optical microscope (manufactured by Nakaden Co., Ltd., digital microscope MX-1200II), the state of light emission when 200 V AC voltage with a frequency of 1 kHz was applied. Observed.
As shown in the micrograph in FIG. 5, in the inorganic EL element of Example 1, countless point-like light emission due to electric field concentration in the vicinity of the tip of the needle-like conductor was observed. On the other hand, as shown in the micrograph in FIG. 6, the inorganic EL element of Comparative Example 1 exhibited uniform planar light emission as a whole.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この出願は、2012年6月22日に出願された日本出願特願2012-141160号および2012年11月13日に出願された日本出願特願2012-249292号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-141160 filed on June 22, 2012 and Japanese Patent Application No. 2012-249292 filed on November 13, 2012. , The entire disclosure of which is incorporated herein.
 本発明のEL素子は、表示装置および照明装置等に利用可能である。 The EL element of the present invention can be used for display devices, lighting devices, and the like.
1~3 EL素子
10 下部電極層(第1の電極層)
20 針状導電体層
21 細孔構造体
21B バリア層
21C 柱状体
21P 針状細孔
22 針状導電体
30 発光体層
30S 発光体層の下部電極層側の面
40 上部電極層(第2の電極層)
50、60 絶縁体層
M 被陽極酸化金属体
1 to 3 EL element 10 Lower electrode layer (first electrode layer)
20 Needle-like conductor layer 21 Porous structure 21B Barrier layer 21C Columnar body 21P Needle-like pore 22 Needle-like conductor 30 Light emitter layer 30S Surface 40 of the light emitter layer on the lower electrode layer side Upper electrode layer (second Electrode layer)
50, 60 Insulator layer M Metal object to be anodized

Claims (14)

  1.  第1の電極層と発光体層と透光性を有する第2の電極層とを順次備えたエレクトロルミネセンス素子であって、
     前記第1の電極層と前記発光体層との間に、
     前記発光体層の前記第1の電極層側の面に対して交差方向に延びた複数の針状導電体と、当該複数の針状導電体の間を絶縁する絶縁体とを含む針状導電体層を備えたエレクトロルミネセンス素子。
    An electroluminescent device comprising a first electrode layer, a light emitter layer, and a second electrode layer having translucency in order,
    Between the first electrode layer and the phosphor layer,
    Needle-like conductivity including a plurality of needle-like conductors extending in a crossing direction with respect to the surface on the first electrode layer side of the phosphor layer, and an insulator that insulates between the plurality of needle-like conductors. An electroluminescent device comprising a body layer.
  2.  前記針状導電体層と前記発光体層との間に導電体層を備えていない請求項1に記載のエレクトロルミネセンス素子。 The electroluminescent device according to claim 1, wherein a conductor layer is not provided between the needle-like conductor layer and the light emitting layer.
  3.  前記針状導電体層の前記絶縁体は、前記発光体層側の面において開口し、当該発光体層側の面に対して交差方向に延びた複数の針状細孔を有する細孔構造体からなり、当該細孔構造体の前記複数の針状細孔の内部に前記複数の針状導電体が形成された請求項1又は2に記載のエレクトロルミネセンス素子。 The insulator of the acicular conductor layer has a pore structure having a plurality of acicular pores that open in the surface on the light emitter layer side and extend in a direction intersecting the surface on the light emitter layer side The electroluminescent element according to claim 1, wherein the plurality of needle-like conductors are formed inside the plurality of needle-like pores of the pore structure.
  4.  前記細孔構造体は、被陽極酸化金属体の少なくとも一部を陽極酸化して得られる金属酸化物体である請求項3に記載のエレクトロルミネセンス素子。 The electroluminescent device according to claim 3, wherein the pore structure is a metal oxide body obtained by anodizing at least a part of an anodized metal body.
  5.  前記細孔構造体は、前記被陽極酸化金属体の一部を陽極酸化して得られる金属酸化物体であり、
     前記第1の電極層は、陽極酸化後に残る前記被陽極酸化金属体の残部である請求項4に記載のエレクトロルミネセンス素子。
    The pore structure is a metal oxide body obtained by anodizing a part of the anodized metal body,
    The electroluminescent element according to claim 4, wherein the first electrode layer is a remaining part of the metal to be anodized remaining after anodization.
  6.  前記細孔構造体は、前記被陽極酸化金属体の少なくとも一部を陽極酸化して得られる金属酸化物体のバリア層を除去し、前記複数の針状細孔を貫通孔としたものである請求項4に記載のエレクトロルミネセンス素子。 The pore structure is obtained by removing a barrier layer of a metal oxide body obtained by anodizing at least a part of the anodized metal body, and forming the plurality of needle-like pores as through holes. Item 5. The electroluminescent device according to Item 4.
  7.  前記針状導電体は、Ag、Au、Cd、Co、Cu、Fe、Ni、Sn、及びZnからなる群より選択された少なくとも1種の金属を含む請求項1~6のいずれかに記載のエレクトロルミネセンス素子。 The acicular conductor includes at least one metal selected from the group consisting of Ag, Au, Cd, Co, Cu, Fe, Ni, Sn, and Zn. Electroluminescence element.
  8.  前記針状導電体の長さが1μm以上である請求項1~7のいずれかに記載のエレクトロルミネセンス素子。 The electroluminescent device according to any one of claims 1 to 7, wherein the needle-like conductor has a length of 1 µm or more.
  9.  前記針状導電体の直径が0.5μm以下である請求項1~8のいずれかに記載のエレクトロルミネセンス素子。 The electroluminescent device according to any one of claims 1 to 8, wherein the needle-like conductor has a diameter of 0.5 µm or less.
  10.  前記針状導電体の長さ/直径が100以上である請求項1~9のいずれかに記載のエレクトロルミネセンス素子。 10. The electroluminescent device according to claim 1, wherein the length / diameter of the acicular conductor is 100 or more.
  11.  前記針状導電体層における前記針状導電体の数密度が1個/μm以上である請求項1~10のいずれかに記載のエレクトロルミネセンス素子。 The electroluminescent device according to any one of claims 1 to 10, wherein the number density of the needle-like conductors in the needle-like conductor layer is 1 piece / µm 2 or more.
  12.  前記針状導電体層と前記発光体層との間に絶縁体層をさらに備えた請求項1~11のいずれかに記載のエレクトロルミネセンス素子。 12. The electroluminescent device according to claim 1, further comprising an insulator layer between the needle-like conductor layer and the light emitter layer.
  13.  前記針状導電体と前記発光体層との離間距離が1μm以下である請求項1~12のいずれかに記載のエレクトロルミネセンス素子。 The electroluminescent device according to any one of claims 1 to 12, wherein a distance between the acicular conductor and the light emitting layer is 1 µm or less.
  14.  前記発光体層と前記第2の電極層との間に絶縁体層をさらに備えた請求項1~13のいずれか1項に記載のエレクトロルミネセンス素子。 The electroluminescent device according to any one of claims 1 to 13, further comprising an insulator layer between the light emitter layer and the second electrode layer.
PCT/JP2013/003614 2012-06-22 2013-06-07 Electroluminescent element WO2013190797A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014520918A JPWO2013190797A1 (en) 2012-06-22 2013-06-07 Electroluminescence element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012141160 2012-06-22
JP2012-141160 2012-06-22
JP2012249292 2012-11-13
JP2012-249292 2012-11-13

Publications (1)

Publication Number Publication Date
WO2013190797A1 true WO2013190797A1 (en) 2013-12-27

Family

ID=49768412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003614 WO2013190797A1 (en) 2012-06-22 2013-06-07 Electroluminescent element

Country Status (3)

Country Link
JP (1) JPWO2013190797A1 (en)
TW (1) TW201405872A (en)
WO (1) WO2013190797A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076939A1 (en) * 2012-11-13 2014-05-22 株式会社クラレ Electroluminescent element and method for producing same
JP2014099274A (en) * 2012-11-13 2014-05-29 Kuraray Co Ltd Electroluminescence element and method for manufacturing the same
JP2014099273A (en) * 2012-11-13 2014-05-29 Kuraray Co Ltd Electroluminescence element and method for manufacturing the same
JP2014099272A (en) * 2012-11-13 2014-05-29 Kuraray Co Ltd Electroluminescence element and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245491A (en) * 1990-02-22 1991-11-01 Nippon Sheet Glass Co Ltd Electroluminescence element
JPH05290977A (en) * 1992-04-14 1993-11-05 Stanley Electric Co Ltd Element and manufacturing thereof
JP2005026275A (en) * 2003-06-30 2005-01-27 Sumitomo Electric Ind Ltd Porous semiconductor device and its manufacturing method
JP2005044619A (en) * 2003-07-22 2005-02-17 Univ Nihon Electroluminescent device and its manufacturing method
JP2006127780A (en) * 2004-10-26 2006-05-18 Canon Inc Electroluminescent element
JP2006260982A (en) * 2005-03-17 2006-09-28 Canon Inc Light emitting element and its manufacturing method
JP2007180036A (en) * 2002-08-08 2007-07-12 Matsushita Electric Ind Co Ltd Light emitting element, its manufacturing method, and display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245491A (en) * 1990-02-22 1991-11-01 Nippon Sheet Glass Co Ltd Electroluminescence element
JPH05290977A (en) * 1992-04-14 1993-11-05 Stanley Electric Co Ltd Element and manufacturing thereof
JP2007180036A (en) * 2002-08-08 2007-07-12 Matsushita Electric Ind Co Ltd Light emitting element, its manufacturing method, and display device
JP2005026275A (en) * 2003-06-30 2005-01-27 Sumitomo Electric Ind Ltd Porous semiconductor device and its manufacturing method
JP2005044619A (en) * 2003-07-22 2005-02-17 Univ Nihon Electroluminescent device and its manufacturing method
JP2006127780A (en) * 2004-10-26 2006-05-18 Canon Inc Electroluminescent element
JP2006260982A (en) * 2005-03-17 2006-09-28 Canon Inc Light emitting element and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076939A1 (en) * 2012-11-13 2014-05-22 株式会社クラレ Electroluminescent element and method for producing same
JP2014099274A (en) * 2012-11-13 2014-05-29 Kuraray Co Ltd Electroluminescence element and method for manufacturing the same
JP2014099273A (en) * 2012-11-13 2014-05-29 Kuraray Co Ltd Electroluminescence element and method for manufacturing the same
JP2014099272A (en) * 2012-11-13 2014-05-29 Kuraray Co Ltd Electroluminescence element and method for manufacturing the same

Also Published As

Publication number Publication date
TW201405872A (en) 2014-02-01
JPWO2013190797A1 (en) 2016-02-08

Similar Documents

Publication Publication Date Title
US7700968B2 (en) Method of forming a light-emitting device with a triple junction
JP4776955B2 (en) Light emitting device and manufacturing method thereof
JP4890311B2 (en) Light emitting element
KR20060114387A (en) Field-emission phosphor, its manufacturing method, and field-emission device
WO2013190797A1 (en) Electroluminescent element
WO2016205484A2 (en) Planar electroluminescent devices and uses thereof
WO2006093095A1 (en) Dispersion-type electroluminescent element
JP4748940B2 (en) AC operation electroluminescence element
JP4164150B2 (en) Method for producing optical functional thin film
WO2014076939A1 (en) Electroluminescent element and method for producing same
JPWO2008072520A1 (en) Linear light emitting device
JP2014099273A (en) Electroluminescence element and method for manufacturing the same
JP2005203336A (en) Electroluminescent element and electroluminescent particle
JP2014116284A (en) Electroluminescent element
JP2014099272A (en) Electroluminescence element and method for manufacturing the same
JP2780889B2 (en) EL element and manufacturing method thereof
JP2014099274A (en) Electroluminescence element and method for manufacturing the same
JP2010215787A (en) Inorganic phosphor particle and distributed electroluminescence element using the same
TW201427081A (en) Electroluminescence device and manufacturing method thereof
JP2005347192A (en) Electroluminescent element
JP2013109862A (en) Dispersion type el element and method for manufacturing the same
JP2015032501A (en) Electroluminescent element
JP4954535B2 (en) Electroluminescent device
JP5859005B2 (en) Dispersion type EL device manufacturing method
KR101064166B1 (en) Inorganic Electro Luminescence device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807509

Country of ref document: EP

Kind code of ref document: A1