WO2012077675A1 - Polarizing plate, method for producing same, liquid crystal panel provided with polarizing plate, and liquid crystal display device and electronic instrument comprising same - Google Patents

Polarizing plate, method for producing same, liquid crystal panel provided with polarizing plate, and liquid crystal display device and electronic instrument comprising same Download PDF

Info

Publication number
WO2012077675A1
WO2012077675A1 PCT/JP2011/078173 JP2011078173W WO2012077675A1 WO 2012077675 A1 WO2012077675 A1 WO 2012077675A1 JP 2011078173 W JP2011078173 W JP 2011078173W WO 2012077675 A1 WO2012077675 A1 WO 2012077675A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
layer
metal layer
substrate
liquid crystal
Prior art date
Application number
PCT/JP2011/078173
Other languages
French (fr)
Japanese (ja)
Inventor
彰規 伊藤
柴田 諭
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012077675A1 publication Critical patent/WO2012077675A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Definitions

  • the present invention relates to a polarizing plate and a manufacturing method thereof, a liquid crystal panel including the polarizing plate, a liquid crystal display device including the same, and an electronic apparatus.
  • This application claims priority based on Japanese Patent Application No. 2010-276237 filed in Japan on Dec. 10, 2010 and Japanese Patent Application No. 2010-276238 filed on Dec. 10, 2010 in Japan. And the contents thereof are incorporated herein.
  • a liquid crystal cell incorporated in a liquid crystal display device is roughly composed of a liquid crystal layer and two polarizing plates arranged so as to sandwich the liquid crystal layer.
  • a polarizing plate for example, an absorption anisotropy obtained by adsorbing iodine (I) compound molecules on a polymer sheet and then stretching the polymer sheet to orient the iodine (I) compound molecules is obtained. The one used is used.
  • the polarizing plate has a polarization characteristic that absorbs light of a component parallel to the absorption axis (stretching direction) of incident light and transmits light of a component orthogonal to the absorption axis.
  • such an absorption-type polarizing plate has a transmittance that does not exceed 50% when non-polarized light such as natural light is incident. Therefore, in order to improve the luminance of the liquid crystal display device without increasing the power consumption amount while reducing the power consumption of the liquid crystal display device, it is necessary to use the polarization component absorbed by the polarizing plate. It is considered effective.
  • a liquid crystal display device in which an absorption type polarizing plate is provided with a reflection type polarizing plate that reflects the absorbed polarized component at a position closer to the light source than the liquid crystal cell.
  • the reflective polarizing plate for example, a wire grid type polarizing plate having a structure in which a large number of thin metal lines are provided in parallel is known.
  • a wire grid type polarizing plate for example, a fine structure forming a lattice groove pattern is formed on a glass substrate, and the fine structure is made of aluminum oxide (for example, patents). Reference 1).
  • the outermost surface of the polarizing plate of Patent Document 1 is made of aluminum oxide, optical properties such as transmittance and contrast are low, and sufficient performance cannot be obtained to improve the luminance of the liquid crystal display device.
  • a pressing member made of a hard material such as silicon carbide (SiC) is pressed on the surface of the metal layer, and the surface has a regular arrangement.
  • SiC silicon carbide
  • a nanoimprint method for forming a recess and a pattern formation method using a positive photosensitive resist have been used.
  • these groove pattern forming methods have a problem that the number of processes is increased when a polarizing plate having a large area is produced.
  • the present invention has been made to solve the above-described problems, and a polarizing plate excellent in optical characteristics such as transmittance and contrast, a manufacturing method thereof, a liquid crystal panel including the polarizing plate, and a liquid crystal including the same It is an object to provide a display device and an electronic device.
  • the manufacturing method of the polarizing plate by the 1st aspect of this invention uses the process which forms a metal layer on a board
  • the metal layer is formed into a one-dimensional lattice by removing the metal oxide layer by etching using the one-dimensional lattice-shaped insulating layer as a mask. You may make it comprise the process processed into.
  • the manufacturing method of the polarizing plate according to the first aspect may include a step of forming a conductive layer on the substrate before the step of forming the metal layer on the substrate. good.
  • the metal oxide layer and the metal oxide layer in the conductive layer are formed. You may make it remove the part which opposes.
  • the polarizing plate according to the second aspect of the present invention includes a substrate transparent to incident light, and a one-dimensional lattice-shaped metal layer formed on the substrate, and the one-dimensional lattice-shaped substrate.
  • the pitch of the metal layer is smaller than the wavelength of incident light.
  • the one-dimensional lattice-shaped metal layer is obtained by buffing an insulating layer formed on the metal layer formed on the substrate using nervuff.
  • the metal layer and the one-dimensional in the substrate By anodizing the surface layer of the metal layer in a state where the surface on which the lattice-like insulating layer is formed and the cathode face each other, the surface of the metal layer faces the gap between the one-dimensional lattice-like insulating layers. It may be formed by forming a porous metal oxide layer in a portion and the vicinity thereof, removing the metal oxide layer by etching using the one-dimensional lattice-like insulating layer as a mask.
  • a conductive layer may be formed between the substrate and the metal layer.
  • the polarizing plate according to the second aspect may further include a metal oxide layer interposed between the metal layers.
  • the one-dimensional lattice-shaped metal layer is obtained by buffing an insulating layer formed on the metal layer formed on the substrate using nervuff.
  • a one-dimensional lattice-like insulating layer on the metal layer, the metal layer and the substrate on which the one-dimensional lattice-like insulating layer is formed as an anode, and the metal layer and the primary in the substrate
  • the metal layer faces the gap between the one-dimensional lattice-like insulating layers. It may be formed by forming a porous metal oxide layer in the vicinity and in the vicinity thereof.
  • a conductive layer may be interposed between the substrate, the metal layer, and the metal oxide layer.
  • a liquid crystal panel includes a substrate transparent to incident light, and a one-dimensional lattice-shaped metal layer formed on the substrate, the one-dimensional lattice-shaped The pitch of the metal layer includes a polarizing plate smaller than the wavelength of incident light.
  • a liquid crystal panel includes a substrate transparent to incident light, and a one-dimensional lattice-shaped metal layer formed on the substrate, the one-dimensional lattice-shaped
  • the pitch of the metal layer includes a liquid crystal panel having a polarizing plate smaller than the wavelength of incident light.
  • a liquid crystal panel includes a substrate transparent to incident light, and a one-dimensional lattice-shaped metal layer formed on the substrate, the one-dimensional lattice-shaped
  • the pitch of the metal layer includes a liquid crystal display device having a liquid crystal panel having a polarizing plate smaller than the wavelength of incident light.
  • a polarizing plate with high brightness can be obtained as compared with a conventional absorption type polarizing plate. Therefore, it is possible to increase the brightness of the liquid crystal display device, and it is possible to display a clear black with high contrast.
  • FIG. 2 is a diagram illustrating a schematic configuration of a polarizing plate according to the first embodiment, and is a cross-sectional view taken along line AA of FIG. 1A. It is a schematic perspective view which shows the effect
  • FIG. 26 is a diagram illustrating a schematic configuration of a polarizing plate according to a sixth embodiment, and is a cross-sectional view taken along line A1-A1 of FIG. 26A.
  • FIG. 36 is a diagram illustrating a schematic configuration of a polarizing plate according to a seventh embodiment, and is a cross-sectional view taken along line B1-B1 of FIG. 36A. It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 7th Embodiment. It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 7th Embodiment.
  • FIG. 1 A and FIG. 1B are figures which show schematic structure of the polarizing plate of 1st Embodiment. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A.
  • the polarizing plate 10 according to the first embodiment is roughly composed of a substrate 11, a one-dimensional lattice-shaped metal layer 12 formed on the substrate 11, and a conductive layer 13 formed between the substrate 11 and the metal layer 12. It is configured.
  • the conductive layer 13 and the metal layer 12 are sequentially formed on one surface 11 a of the substrate 11, and the laminate 14 including the conductive layer 13 and the metal layer 12 forms a one-dimensional lattice.
  • the stacked body 14 having a one-dimensional lattice shape means that a large number of linear stacked bodies 14 are formed at regular intervals and in parallel, that is, periodically.
  • the metal layer 12 and the conductive layer 13 are completely overlapped, and the conductive layer 13 does not protrude from the metal layer 12.
  • the adjacent laminated bodies 14 are formed in a state of being separated from each other, and a linear groove (gap) 14 a is formed between the laminated bodies 14.
  • the extending direction of the one-dimensional lattice-shaped laminate 14 is the absorption axis direction of the polarizing plate 10
  • the direction perpendicular to the extending direction of the laminate 14 is the transmission axis direction of the polarizing plate 10.
  • channel 14a between them are formed with the manufacturing method of the polarizing plate mentioned later.
  • the pitch P 1 of the laminate 14 is not particularly limited as long as it is smaller than the wavelength of incident light with respect to the polarizing plate 10.
  • the pitch P 1 is preferably 100 nm to 150 nm.
  • the width W 1 of the laminate 14 is preferably about 1/10 of the wavelength of the incident light with respect to the polarizing plate 10, and is preferably 40 nm to 80 nm.
  • the thickness of the stacked body 14 is determined by the thicknesses of the metal layer 12 and the conductive layer 13 constituting the stacked body 14, but is preferably 1000 nm to 3500 nm.
  • the thickness of the metal layer 12 is not particularly limited, but is preferably 1 ⁇ m to 3 ⁇ m.
  • the thickness of the conductive layer 13 is not particularly limited, but is preferably 50 nm to 200 nm.
  • the substrate 11 is not particularly limited as long as it is a transparent substrate, but a substrate having high visible light transmittance and excellent heat resistance and impact resistance is preferable.
  • Examples of such substrate 11 include substrates made of inorganic materials such as glass and quartz, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyether ketone, polyether sulfone, polyketone, polyimide, triacetyl cellulose, and polyvinyl.
  • thermoplastic resins such as alcohol, bulky cyclic olefin resin, polyester, polysulfone, polymethyl methacrylate, polystyrene, diethylene glycol biscarbonate, styrene / acrylonitrile copolymer, polyvinyl chloride, polysulfone, cellulose diacetate, cellulose triacetate Plastics with low photoelastic coefficient known by trademarks such as Arton, Zeonex, etc.
  • Film-like substrate made of a resin, such as a substrate of a polymer resin substrate becomes film-like, such as styrene / methacrylic acid copolymer.
  • the polarizing plate 10 when the polarizing plate 10 is applied to a liquid crystal display device, one having a small thermal expansion coefficient is preferable in order to prevent the liquid crystal display device from warping.
  • the resin from the point that it has a small mass, excellent impact resistance and flexibility, and can protect the laminate 14 which is weak against external force and can easily collapse or peel off.
  • a film-like substrate is preferable.
  • Al which is a material that has high reflectivity in visible light (light with a wavelength of about 380 nm to 780 nm) and can be anodized, is used.
  • Examples of the material of the conductive layer 13 include titanium (Ti), tin-doped indium oxide (Indium Tin Oxide: ITO), indium-zinc composite oxide (Indium-Zinc composite Oxide: IZO), and the like.
  • the polarizing plate 10 includes a refractive index n 1 of the one-dimensional lattice-shaped stacked body 14 and a refractive index of the linear groove 14 a between the stacked bodies 14 (that is, the refractive index of the substrate 11). n 2 is different. Therefore, polarization selection is performed according to the polarization direction of the light incident on the polarizing plate 10.
  • the light polarization direction is the direction of light electrolysis direction E. Specifically, as illustrated in FIG.
  • the polarizing plate 10 transmits linearly polarized light X having a polarization axis in a direction perpendicular to the extending direction of the one-dimensional lattice-shaped stacked body 14.
  • linearly polarized light having a polarization axis in a direction parallel to the extending direction of the one-dimensional lattice-like laminate 14 is reflected. Therefore, the polarizing plate 10 exhibits the same action as the light reflection polarizing element, that is, the action of transmitting polarized light parallel to the optical axis (transmission axis) and reflecting polarized light perpendicular to the optical axis.
  • symbol L1 indicates incident light
  • symbol L2 indicates transmitted light
  • symbol L3 indicates reflected light
  • symbol L4 indicates polarization X
  • symbol L5 indicates polarization Y.
  • the polarizing plate 10 of the first embodiment since the metal layer 12 made of aluminum is present on the outermost surface, the luminance is 1.2 to 1.3 times that of a conventional absorption polarizing plate. . Therefore, in the liquid crystal display device to which the polarizing plate 10 is applied, the light reflected by the metal layer 12 made of aluminum of the polarizing plate 10 can be reflected by the reflecting plate of the backlight and reused, so that high brightness can be achieved. Become. Further, the polarizing plate 10, the pitch P 1 of the laminate 14 and 100 nm ⁇ 150 nm. Thereby, in the conventional absorption-type polarizing plate, blue on the short wavelength side is easily transmitted, whereas in the polarizing plate 10, transmission of blue can be suppressed.
  • the polarizing plate 10 can use not only a glass substrate but also a substrate made of a resin film as the substrate 11, it is not only lightweight and difficult to break, but also can be easily processed into a liquid crystal panel.
  • the manufacturing method of the polarizing plate 10 is demonstrated.
  • the entire surface of one surface 11a of the substrate 11 is made of titanium (Ti), tin-doped indium oxide (ITO), indium oxide-zinc oxide (IZO), or the like by sputtering or vapor deposition.
  • the conductive layer 13 is formed uniformly.
  • the thickness of the conductive layer 13 is preferably 50 nm to 200 nm.
  • a metal layer 12 made of aluminum (Al) is uniformly applied to the entire surface 13a of the conductive layer 13 opposite to the surface in contact with the substrate 11 by sputtering or vapor deposition. To form.
  • the thickness of the metal layer 12 is preferably 1 ⁇ m to 3 ⁇ m.
  • the thickness of the metal layer 12 is uniform over the entire surface of the surface 12a opposite to the surface in contact with the conductive layer 13 (hereinafter referred to as "one surface”).
  • Apply a negative resist so that Thereafter, the negative resist is exposed to form an insulating layer 15 having a uniform thickness.
  • the thickness of the insulating layer 15 is not particularly limited, but is preferably 300 nm to 1000 nm.
  • the insulating layer 15 is buffed with nerbuff to form a one-dimensional lattice-like insulating layer 15 ⁇ / b> A on the metal layer 12. That is, the insulating layer 15 is buffed using nerbuff to partially remove the insulating layer 15 and form the adjacent insulating layers 15A on the metal layer 12 in a state of being separated from each other. At the same time, a linear groove (gap) 15a is formed between the insulating layers 15A.
  • the formation of the insulating layer 15A in a one-dimensional lattice means that a large number of linear insulating layers 15A are formed at regular intervals in parallel, that is, periodically.
  • Buffing is a processing method for polishing (shaving) a workpiece by attaching a buff to a machine that rotates at a high speed called a buff race.
  • the buff used depends on the material and shape of the work piece or the target surface roughness.
  • the buff is obtained by stacking several sheets of cotton cloth, sisal line, lasha cloth, felt, etc., and sewing them on a disk or fixing them with an adhesive.
  • the interval between the target primary lattice-like insulating layers 15A is as small as 40 nm to 80 nm.
  • the insulating layer 15A is formed in a state of being separated from each other by buffing using a flannel having a fine pitch on the surface, and a linear groove (gap) 15a is formed between the insulating layers 15A.
  • the buffing conditions are as follows. As the buff, a circular flannel having a diameter of 10 to 12 inches is used. The buff rotation speed is set to 2000 to 2800 rpm without using an abrasive.
  • Interval of a one-dimensional lattice-like insulating layer 15A i.e., the width of the groove 15a is adjusted according to the width W 1 of the laminated body 14 of interest is preferably 40 nm ⁇ 80 nm.
  • the substrate 11 on which the metal layer 12 and the one-dimensional lattice-like insulating layer 15 ⁇ / b> A are formed is used as the anode 21.
  • one surface 11a of the substrate 11, that is, the surface of the substrate 11 on which the metal layer 12 and the one-dimensional lattice-like insulating layer 15A are formed is made to face the cathode 22 made of stainless steel, platinum (Pt), or the like.
  • the surface layer of the metal layer 12 made of aluminum (Al) is anodized in the sulfuric acid solution 23.
  • a porous metal oxide layer 16 is formed in a portion of the metal layer 12 facing the gap 15a of the one-dimensional lattice-like insulating layer 15A and in the vicinity thereof.
  • the material layer 16 is formed in a self-organizing manner. Further, by performing the anodic oxidation of the metal layer 12, the metal oxide layer 16 is also formed on a part of the metal layer 12 covered with the insulating layer 15A.
  • the sulfuric acid concentration of the sulfuric acid solution 23 (FIG. 11) is appropriately adjusted according to the thickness of the metal layer 12 to be oxidized, but is preferably 5% by mass, for example.
  • the time for applying a voltage to both electrodes is not limited. Until the metal oxide layer 16 made of aluminum oxide reaches the conductive layer 13, that is, until no current flows between the two electrodes. To do.
  • the conductive layer 13 is used as an anode. Since the conductive layer 13 is provided so as to be in contact with the metal layer 12, it is possible to always apply a voltage to the metal layer 12 during the oxidation treatment. Therefore, even when the one surface 11a of the substrate 11 is uneven, it is possible to prevent problems such as the remaining non-oxidized metal layer 12 remaining. As a result, the anodic oxidation of the metal layer 12 can be performed efficiently.
  • the metal oxide layer 16 and the portion of the conductive layer 13 facing the metal oxide layer 16 are removed by etching.
  • the metal layer 12 is processed into a one-dimensional lattice shape.
  • a 1 mol / L phosphoric acid solution is used as an etching solution, and the substrate 11 on which the metal oxide layer 16 is formed is immersed in the etching solution.
  • Etching is performed at about 30 ° C. until the conductive layer 13 and the metal oxide layer 16 disappear.
  • the insulating layer 15 ⁇ / b> A remaining on the one surface 12 a of the metal layer 12 is removed by etching, and the substrate 11, the metal layer 12 and the conductive layer 13 formed in this order on the substrate 11.
  • the polarizing plate 10 roughly constituted by the one-dimensional lattice-like laminate 14 made of is obtained.
  • the etchant for example, an organic solvent or an alkali solution used for removing a general negative resist is used.
  • the surface layer of the metal layer 12 is anodized after the one-dimensional lattice-like insulating layer 15A is formed by buffing using nerbuff.
  • the manufacturing method of the polarizing plate of 1st Embodiment is applicable not only to a glass substrate but to a resin substrate.
  • FIGS. 12A and 12B are diagrams illustrating a schematic configuration of a polarizing plate according to a second embodiment.
  • 12A is a plan view
  • FIG. 12B is a cross-sectional view taken along line BB in FIG. 12A.
  • the polarizing plate 30 of the second embodiment is generally configured from a substrate 31 and a metal layer 32.
  • the metal layer 32 is a one-dimensional lattice-shaped metal layer formed on the substrate 31. That is, in the polarizing plate 30, the metal layer 32 is formed on one surface 31a of the substrate 31, and the metal layer 32 forms a one-dimensional lattice shape.
  • the metal layer 32 having a one-dimensional lattice shape means that a large number of linear metal layers 32 are formed at regular intervals and in parallel, that is, periodically. That is, when the polarizing plate 30 is viewed from the one surface 31 a side of the substrate 31, the adjacent metal layers 32 are formed in a state of being separated from each other, and a linear groove (gap) 32 a is formed between the metal layers 32.
  • the extending direction of the one-dimensional lattice-shaped metal layer 32 is the absorption axis direction of the polarizing plate 30, and the direction perpendicular to the extending direction of the metal layer 32 is the transmission axis direction of the polarizing plate 30.
  • the metal layer 32 and the groove 32a therebetween are formed by a polarizing plate manufacturing method described later.
  • the pitch P 2 of the metal layer 32 is not particularly limited as long as it is smaller than the wavelength of incident light with respect to the polarizing plate 30.
  • the pitch P 2 is preferably 100 nm to 150 nm.
  • the width W 2 of the metal layer 32 is preferably about 1/10 of the wavelength of the incident light with respect to the polarizing plate 30, and is preferably 40 nm to 80 nm.
  • the thickness of the metal layer 32 is not particularly limited, but is preferably 1 ⁇ m to 3 ⁇ m.
  • the same one as in the first embodiment described above is used.
  • the material of the metal layer 32 the same material as in the first embodiment described above is used.
  • Polarizer 30 a refractive index n 11 of the one-dimensional grid-like metal layer 32, the refractive index of the linear groove 32a between the metal layer 32 (i.e., the refractive index of the substrate 31) since the n 12 are different, Polarization selection is performed according to the polarization direction of the light incident on the polarizing plate 30. Specifically, the polarizing plate 30 transmits linearly polarized light X having a polarization axis in a direction perpendicular to the extending direction of the one-dimensional lattice-like metal layer 32.
  • the polarizing plate 30 reflects linearly polarized light having a polarization axis in a direction parallel to the extending direction of the one-dimensional lattice-like metal layer 32. Accordingly, the polarizing plate 30 exhibits the same action as the light reflection polarizing element, that is, the action of transmitting polarized light parallel to the optical axis (transmission axis) and reflecting polarized light perpendicular to the optical axis.
  • the polarizing plate 30 of the second embodiment since the metal layer 32 made of aluminum is present on the outermost surface, the luminance is 1.2 to 1.3 times that of a conventional absorption-type polarizing plate. . Therefore, in the liquid crystal display device to which the polarizing plate 30 is applied, the light reflected by the aluminum metal layer 32 of the polarizing plate 30 can be reflected by the reflecting plate of the backlight and reused. Become. Further, the polarizing plate 30, the pitch P 2 of the metal layer 32 and 100 nm ⁇ 150 nm.
  • the polarizing plate 30 can suppress the transmission of the blue color, so that the contrast is high and a clear black display is possible. Furthermore, since the polarizing plate 30 can use not only a glass substrate but also a substrate made of a resin film as the substrate 31, it is not only lightweight and difficult to break, but also can be easily processed into a liquid crystal panel.
  • a metal layer 32 made of aluminum (Al) is uniformly formed on the entire surface of one surface 31a of the substrate 31 by sputtering or vapor deposition.
  • the thickness of the metal layer 32 is preferably 1 ⁇ m to 3 ⁇ m.
  • the thickness of the metal layer 32 is uniform over the entire surface of the surface 32a opposite to the surface in contact with the substrate 31 (hereinafter referred to as "one surface”).
  • Apply a negative resist Thereafter, the negative resist is exposed to form an insulating layer 33 having a uniform thickness.
  • the thickness of the insulating layer 33 is not particularly limited, but is preferably 300 nm to 1000 nm.
  • the insulating layer 33 is buffed with nerbuff to form a one-dimensional lattice-like insulating layer 33 ⁇ / b> A on the metal layer 32.
  • the insulating layer 33 is buffed using nelbuff to partially remove the insulating layer 33 and form the adjacent insulating layers 33A on the metal layer 32 in a state of being separated from each other.
  • a linear groove (gap) 33a is formed between the insulating layers 33A.
  • the formation of the insulating layer 33A in a one-dimensional lattice means that a large number of linear insulating layers 33A are formed at regular intervals in parallel, that is, periodically.
  • the one-dimensional lattice-like insulating layer 33A is formed by buffing using nerbuff in the same manner as in the first embodiment.
  • the interval between the one-dimensional lattice-like insulating layers 33A, that is, the width of the grooves 33a is adjusted according to the pitch P 2 and the width W 2 of the target one-dimensional lattice-like metal layer 32. Preferably there is.
  • the substrate 31 on which the metal layer 32 and the one-dimensional lattice-like insulating layer 33A are formed is used as an anode.
  • one surface 31a of the substrate 31, that is, the surface of the substrate 31 on which the metal layer 32 and the one-dimensional lattice-like insulating layer 33A are formed is made to face a cathode made of stainless steel, platinum (Pt), or the like.
  • the surface layer of the metal layer 32 made of aluminum (Al) is anodized in a sulfuric acid solution. As a result, as shown in FIG.
  • a porous metal oxide layer 34 is formed in a portion of the metal layer 32 facing the gap 33a of the one-dimensional lattice-like insulating layer 33A and in the vicinity thereof.
  • a metal oxide made of aluminum oxide having a number of fine holes 34a in the thickness direction at and near the portion of the metal layer 32 facing the gap 33a of the one-dimensional lattice-like insulating layer 33A.
  • the material layer 34 is formed in a self-organizing manner. Further, by performing the anodic oxidation of the metal layer 32, the metal oxide layer 34 is also formed on a part of the metal layer 32 covered with the insulating layer 33A.
  • the voltage applied to both electrodes is 2V, for example.
  • the sulfuric acid concentration of the sulfuric acid solution is appropriately adjusted according to the thickness of the metal layer 32 to be oxidized, but is preferably 5% by mass, for example.
  • the time for applying a voltage to both electrodes is not limited, and is until the metal oxide layer 34 made of aluminum oxide reaches the substrate 31, that is, until no current flows between the two electrodes.
  • the metal layer 32 is processed into a one-dimensional lattice pattern by removing the metal oxide layer 34 by etching using the linear insulating layer 33A as a mask.
  • a 1 mol / L phosphoric acid solution is used as an etchant, and the substrate 31 on which the metal oxide layer 34 is formed is immersed in the etchant. Etching is performed at about 30 ° C. until the metal oxide layer 34 disappears.
  • the insulating layer 33A remaining on one surface 32a of the metal layer 32 is removed by etching, and the substrate 31 and the one-dimensional lattice-like metal layer 32 formed thereon are formed. Is obtained.
  • the etching solution for example, an organic solvent or an alkaline solution used for removing a general negative resist is used.
  • the surface layer of the metal layer 32 is anodized after the one-dimensional lattice-like insulating layer 33A is formed by buffing using nerbuff.
  • the manufacturing method of the polarizing plate of 2nd Embodiment can be applied not only to a glass substrate but to a resin substrate.
  • FIG. 20 is a schematic sectional drawing which shows the liquid crystal display device 40 of 1st Embodiment.
  • the liquid crystal display device 40 which comprises the liquid crystal panel provided with the polarizing plate 10 of the above-mentioned 1st Embodiment is illustrated.
  • the liquid crystal display device 40 of the first embodiment is schematically configured from a liquid crystal panel 50 and a backlight 60.
  • the backlight 60 is disposed on the surface 50b side opposite to the display screen 50a.
  • the liquid crystal panel 50 includes a first polarizing plate 51, a first substrate 52, a first transparent electrode 53, a liquid crystal layer 54, a second transparent electrode 55, a second polarizing plate 56, a color filter 57, 2 substrate 58 and the 3rd polarizing plate 59 are comprised, and these have been laminated
  • the color filter 57 includes a red color filter 57R, a green color filter 57G, and a blue color filter 57B.
  • the absorption axis of the second polarizing plate 56 faces the axial direction indicated by reference numeral 56a in FIG.
  • the absorption axis of the first polarizing plate 51 faces the axial direction indicated by reference numeral 51a in FIG. 20, and the absorption axis of the third polarizing plate 59 faces the axial direction indicated by reference numeral 59a in FIG.
  • a linear film called a louver arranged in a blind shape may be arranged between the liquid crystal panel 50 and the backlight 60.
  • the light emitted from the backlight 60 is collimated by the linear film, and the liquid crystal panel 50 is irradiated with the collimated light (parallel light).
  • the light emitted from the backlight 60 is substantially collimated by the linear film, and the liquid crystal panel 50 is irradiated with the substantially collimated light (substantially parallel light).
  • the second polarizing plate 56 of the liquid crystal panel 50 is the same as the polarizing plate 10 or the polarizing plate 30. Therefore, the light reflected by the second polarizing plate 56 can be reused by being reflected by the reflecting plate 61 of the backlight 60, so that high luminance can be achieved and high contrast and clear black display are possible. become. Further, when the light emitted from the backlight 60 passes through the color filter 57, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 56 is provided under the color filter 57. When the polarization degree of the second polarizing plate 56 is lower than the polarization degree of the iodine polarizing plate, the contrast can be increased by providing the third polarizing plate 59 in the first embodiment.
  • FIG. 21 is a schematic cross-sectional view showing a liquid crystal display device 70 of a second embodiment.
  • the same components as those in the first embodiment shown in FIG. 21 are the same components as those in the first embodiment shown in FIG.
  • the liquid crystal display device 70 of the second embodiment is generally configured by a liquid crystal panel 80 and a backlight 60.
  • the backlight 60 is disposed on the surface 80b side opposite to the display screen 80a.
  • the liquid crystal panel 80 includes a first polarizing plate 81, a first substrate 82, a first transparent electrode 83, a liquid crystal layer 84, a second transparent electrode 85, a second polarizing plate 86, a color filter 87, And two substrates 88, which are stacked in order.
  • the color filter 87 includes a red color filter 87R, a green color filter 87G, and a blue color filter 87B.
  • the absorption axis of the second polarizing plate 86 faces the axial direction indicated by reference numeral 86a in FIG.
  • the absorption axis of the first polarizing plate 81 faces the axial direction indicated by reference numeral 81a in FIG.
  • the second polarizing plate 86 of the liquid crystal panel 80 is the same as the polarizing plate 10 or the polarizing plate 30. Therefore, the light reflected by the second polarizing plate 86 can be reused by being reflected by the reflecting plate 61 of the backlight 60. Therefore, it is possible to increase the luminance and to display a clear black with high contrast. Further, when the light emitted from the backlight 60 passes through the color filter 87, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 86 is provided under the color filter 87.
  • FIG. 22 is a schematic cross-sectional view showing a liquid crystal display device 90 of a third embodiment. 22, the same code
  • the liquid crystal display device 90 of the third embodiment is roughly configured by a liquid crystal panel 100 and a backlight 60.
  • the backlight 60 is disposed on the surface 100b side opposite to the display screen 100a.
  • the liquid crystal panel 100 includes a first polarizing plate 101, a first substrate 102, a first transparent electrode 103, a liquid crystal layer 104, a second transparent electrode 105, a second polarizing plate 106, a color filter 107, 2 substrates 108, and these are laminated in order.
  • the color filter 107 includes a red color filter 107R, a green color filter 107G, and a blue color filter 107B.
  • the absorption axis of the first polarizing plate 101 is in the axial direction indicated by reference numeral 101a in FIG.
  • the absorption axis of the second polarizing plate 106 is oriented in the axial direction indicated by reference numeral 106a in FIG.
  • the same as the polarizing plate 10 or the polarizing plate 30 is used as the first polarizing plate 101 and the second polarizing plate 106 of the liquid crystal panel 100. Therefore, the light reflected by the first polarizing plate 101 and the second polarizing plate 106 is reflected by the reflecting plate 61 of the backlight 60 and can be reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast. Further, when the light emitted from the backlight 60 passes through the color filter 107, depolarization occurs and the contrast is lowered. In order to suppress this, the second polarizing plate 106 is provided under the color filter 107.
  • FIG. 23 is a schematic cross-sectional view showing a liquid crystal display device 110 of a fourth embodiment.
  • the same components as those in the first embodiment shown in FIG. 23 are the same components as those in the first embodiment shown in FIG.
  • the liquid crystal display device 110 is roughly composed of a liquid crystal panel 120 and a backlight 60.
  • the backlight 60 is disposed on the surface 120b side opposite to the display screen 120a.
  • the liquid crystal panel 120 includes a first polarizing plate 121, a first substrate 122, a first transparent electrode 123, a liquid crystal layer 124, a second transparent electrode 125, a color filter 126, a second substrate 127, and a second polarization.
  • the board 128 is provided, and these are laminated in order.
  • the color filter 126 includes a red color filter 126R, a green color filter 126G, and a blue color filter 126B.
  • the absorption axis of the first polarizing plate 121 faces the axial direction indicated by reference numeral 121a in FIG.
  • the absorption axis of the second polarizing plate 128 faces the axial direction indicated by reference numeral 128a in FIG.
  • the first polarizing plate 121 and the second polarizing plate 128 of the liquid crystal panel 120 are the same as the polarizing plate 10 or the polarizing plate 30. Therefore, the light reflected by the first polarizing plate 121 and the second polarizing plate 128 can be reflected by the reflecting plate 61 of the backlight 60 and reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast. Further, when the light emitted from the backlight 60 passes through the color filter 87, depolarization occurs and the contrast is lowered. In order to suppress this, in the fourth embodiment, the contrast can be increased by providing the second polarizing plate 128 on the outermost surface.
  • FIG. 24 is a schematic cross-sectional view showing a liquid crystal display device of a fifth embodiment.
  • symbol is attached
  • the liquid crystal display device 130 of the fifth embodiment is roughly configured by a liquid crystal panel 140 and a backlight 60.
  • the backlight 60 is disposed on the surface 140b side opposite to the display screen 140a.
  • the liquid crystal panel 140 includes a first substrate 141, a first transparent electrode 142, a first polarizing plate 143, a liquid crystal layer 144, a second transparent electrode 145, a second polarizing plate 146, a color filter 147, 2 substrates 148, and these are laminated in order.
  • the color filter 147 includes a red color filter 147R, a green color filter 147G, and a blue color filter 147B.
  • the absorption axis of the first polarizing plate 143 faces the axial direction indicated by reference numeral 143a in FIG.
  • the absorption axis of the second polarizing plate 146 faces the axial direction indicated by reference numeral 146a in FIG.
  • the same as the polarizing plate 10 or the polarizing plate 30 is used as the first polarizing plate 143 and the second polarizing plate 146 of the liquid crystal panel 140. Therefore, the light reflected by the first polarizing plate 143 and the second polarizing plate 146 can be reused by being reflected by the reflecting plate 61 of the backlight 60. Therefore, it is possible to increase the luminance and to display a clear black with high contrast. Further, when the light emitted from the backlight 60 passes through the color filter 147, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 146 is provided under the color filter 147.
  • FIG. 25A to FIG. 25D are diagrams showing an example of an electronic device provided with any one of the above-described liquid crystal display devices 40, 70, 90, 110, and 130 in a display unit.
  • FIG. 25A is a schematic perspective view showing a thin display device 200 as an example of an electronic apparatus.
  • the thin display device (electronic device) 200 is schematically configured by a housing 201, a support base 202, a display unit 203, a speaker unit 204, and a video input terminal 205.
  • As the display unit 203 one having the same configuration as that of any of the liquid crystal display devices 40, 70, 90, 110, and 130 according to the first to fifth embodiments of the present invention described above is used.
  • FIG. 25B is a schematic perspective view showing a notebook personal computer 300 as an example of an electronic apparatus.
  • a notebook personal computer (electronic device) 300 according to this embodiment is schematically configured by a main body 301, a housing 302, a display unit 303, a keyboard 304, an external connection port 305, and a pointing pad 306.
  • the display unit 303 a display unit having the same configuration as any of the liquid crystal display devices 40, 70, 90, 110, and 130 according to the first to fifth embodiments of the present invention described above is used.
  • FIG. 25C is a schematic perspective view showing a mobile phone 400 as an example of the electronic apparatus.
  • the cellular phone (electronic device) 400 includes a main body 401, a housing 402, a display unit 403, a voice input unit 404, a voice output unit 405, operation keys 406, an external connection port 407, an antenna 408, and the like. It is roughly composed.
  • FIG. 25D is a schematic perspective view showing a video camera 500 as an example of an electronic apparatus.
  • This video camera (electronic device) 500 includes a main body 501, a display unit 502, a housing 503, an external connection port 504, a remote control receiving unit 505, an image receiving unit 506, a battery 507, and an audio input unit 508.
  • the operation key 509 and the eyepiece unit 510 are roughly configured.
  • the electronic devices 200, 300, 400, and 500 shown in FIGS. 25A to 25D display any one of the liquid crystal display devices 40, 70, 90, 110, and 130 according to the first to fifth embodiments of the present invention described above.
  • the electronic apparatus includes a display unit that can display an image with high brightness and high contrast.
  • FIGS. 26A and 26B are diagrams illustrating a schematic configuration of a polarizing plate according to a sixth embodiment.
  • 26A is a plan view
  • FIG. 26B is a cross-sectional view taken along line A1-A1 of FIG. 26A.
  • a polarizing plate 1010 according to the sixth embodiment is generally configured by a substrate 1011, a metal layer 1012, a metal oxide layer 1013, and a conductive layer 1014.
  • the metal layer 1012 is a one-dimensional lattice-shaped metal layer formed on the substrate 1011.
  • the metal oxide layer 1013 is a porous metal oxide layer formed between the one-dimensional lattice-like metal layers 1012 on the substrate 1011.
  • the conductive layer 1014 is formed so as to be interposed between the substrate 1011, the metal layer 1012, and the metal oxide layer 1013.
  • a metal layer 1012 is formed on one surface 1011a of the substrate 1011, and the metal layer 1012 has a one-dimensional lattice shape.
  • the metal layer 1012 has a one-dimensional lattice shape means that a large number of linear metal layers 1012 are formed at regular intervals in parallel, that is, periodically.
  • a porous metal oxide layer 1013 is formed between the one-dimensional lattice-like metal layers 1012 on one surface 1011 a of the substrate 1011.
  • the polarizing plate 1010 when the polarizing plate 1010 is viewed from the one surface 1011 a side of the substrate 1011, adjacent metal layers 1012 are formed in a state of being separated from each other with the metal oxide layer 1013 interposed therebetween.
  • the extending direction of the one-dimensional lattice-shaped metal layer 1012 is the absorption axis direction of the polarizing plate 1010, and the direction perpendicular to the extending direction of the metal layer 1012 is the transmission axis direction of the polarizing plate 1010.
  • the one-dimensional lattice-like metal layer 1012 is formed by a polarizing plate manufacturing method described later.
  • the pitch P 10 of the metal layer 1012 is not particularly limited as long as it is smaller than the wavelength of incident light with respect to the polarizing plate 1010.
  • the pitch P 10 is preferably 100 nm to 150 nm.
  • the width W 10 of the metal layer 1012 is preferably about 1/10 of the wavelength of incident light with respect to the polarizing plate 1010, and is preferably 40 nm to 80 nm.
  • the thickness of the metal layer 1012 is not particularly limited, but is preferably 1 ⁇ m to 3 ⁇ m.
  • the thickness of the metal oxide layer 1013 is not particularly limited, but here is equal to the thickness of the metal layer 1012.
  • the thickness of the conductive layer 1014 is not particularly limited, but is preferably 50 nm to 200 nm.
  • the substrate 1011 is not particularly limited as long as it is a transparent substrate, but a substrate having high visible light transmittance and excellent heat resistance and impact resistance is preferable.
  • Examples of such substrate 1011 include substrates made of inorganic materials such as glass and quartz, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyether ketone, polyether sulfone, polyketone, polyimide, triacetyl cellulose, and polyvinyl.
  • thermoplastic resins such as alcohol, bulky cyclic olefin resin, polyester, polysulfone, polymethyl methacrylate, polystyrene, diethylene glycol biscarbonate, styrene / acrylonitrile copolymer, polyvinyl chloride, polysulfone, cellulose diacetate, cellulose triacetate Heat of low photoelastic coefficient known by trademarks such as Arton, ZEONEX, etc.
  • Film-like substrate made of plastic resin such as a substrate of a polymer resin substrate becomes film-like, such as styrene / methacrylic acid copolymer.
  • the polarizing plate 1010 when the polarizing plate 1010 is applied to a liquid crystal display device, one having a small thermal expansion coefficient is preferable in order to prevent the liquid crystal display device from warping.
  • the resin from the point that the mass is small and excellent in impact resistance and flexibility, and the metal layer 1012 that is weak against external force and can be easily collapsed and peeled off can be protected.
  • a film-like substrate is preferable.
  • Al aluminum
  • visible light light with a wavelength of about 380 nm to 780 nm
  • Al aluminum
  • Examples of the material of the conductive layer 1014 include titanium (Ti), tin-doped indium oxide (Indium Tin Oxide: ITO), indium-zinc composite oxide (Indium-Zinc composite Oxide: IZO), and the like.
  • Polarizer 1010 As shown in FIG. 27, the refractive index n 10 of the one-dimensional grid-like metallic layer 1012, and the refractive index n 20 of the metal oxide layer 1013 between the metal layer 1012 is different. Therefore, polarization selection is performed according to the polarization direction of the light incident on the polarizing plate 1010.
  • the light polarization direction is the direction of light electrolysis direction E.
  • the polarizing plate 1010 transmits linearly polarized light X1 having a polarization axis in a direction perpendicular to the extending direction of the one-dimensional lattice-like metal layer 1012.
  • the polarizing plate 1010 reflects linearly polarized light having a polarization axis in a direction parallel to the extending direction of the one-dimensional lattice-like metal layer 1012. Therefore, the polarizing plate 1010 exhibits the same action as the light reflection polarizing element, that is, the action of transmitting polarized light parallel to the optical axis (transmission axis) and reflecting polarized light perpendicular to the optical axis.
  • symbol L6 indicates incident light
  • symbol L7 indicates transmitted light
  • symbol L8 indicates reflected light
  • symbol L9 indicates polarization X
  • symbol L10 indicates polarization Y.
  • the polarizing plate 1010 of the sixth embodiment since the metal layer 1012 made of aluminum is present on the outermost surface, the luminance is 1.2 to 1.3 times that of a conventional absorption polarizing plate. . Therefore, in the liquid crystal display device to which the polarizing plate 1010 is applied, the light reflected by the metal layer 12 made of aluminum of the polarizing plate 1010 can be reflected by the reflector of the backlight and reused. Become. Further, the polarizing plate 1010, a pitch P 10 of the metal layer 1012 and 100 nm ⁇ 150 nm. Accordingly, the blue light on the short wavelength side is easily transmitted through the conventional absorption polarizing plate, whereas the polarizing plate 1010 can suppress the blue transmission.
  • a clear black display with high contrast becomes possible.
  • a porous metal oxide layer 1013 is formed between one-dimensional lattice-like metal layers 1012. Therefore, durability such as bending resistance is excellent, and the aspect ratio of the metal layer 1012 (ratio of the width and thickness of the metal layer 1012) can be increased. Furthermore, since the polarizing plate 1010 can use not only a glass substrate but also a resin film substrate as the substrate 1011, it is not only light and difficult to break, but also can be easily processed into a liquid crystal panel.
  • the entire surface of one surface 1011a of the substrate 1011 is made of titanium (Ti), tin-doped indium oxide (ITO), indium oxide-zinc oxide (IZO), or the like by sputtering or vapor deposition.
  • the conductive layer 1014 is formed uniformly.
  • the thickness of the conductive layer 1014 is preferably 50 nm to 200 nm.
  • a metal layer 1012 made of aluminum (Al) is uniformly formed on the entire surface 1014a of the conductive layer 1014 opposite to the surface in contact with the substrate 1011 by a sputtering method or an evaporation method. To form.
  • the thickness of the metal layer 1012 is preferably 1 ⁇ m to 3 ⁇ m.
  • the thickness of the metal layer 1012 is uniform over the entire surface of the surface 1012a opposite to the surface in contact with the conductive layer 1014 (hereinafter referred to as “one surface”). Apply a negative resist so that Thereafter, the negative resist is exposed to form an insulating layer 1015 having a uniform thickness.
  • the thickness of the insulating layer 1015 is not particularly limited, but is preferably 300 nm to 1000 nm.
  • the insulating layer 1015 is buffed with nerbuff to form a one-dimensional lattice-shaped insulating layer 1015 ⁇ / b> A on the metal layer 1012.
  • the insulating layer 1015 is buffed using nelbuff to partially remove the insulating layer 1015 and form the adjacent insulating layers 1015A on the metal layer 1012 in a state of being separated from each other.
  • a linear groove (gap) 1015a is formed between the insulating layers 1015A.
  • forming the insulating layers 1015A in a one-dimensional lattice means that a large number of linear insulating layers 1015A are formed at regular intervals in parallel, that is, periodically.
  • a method for forming the one-dimensional lattice-like insulating layer 1015A by buffing using nerbuff will be described.
  • Buffing is a processing method for polishing (shaving) a workpiece by attaching a buff to a machine that rotates at a high speed called a buff race.
  • the buff used depends on the material and shape of the work piece or the target surface roughness.
  • the buff is obtained by stacking several sheets of cotton cloth, sisal line, lasha cloth, felt, etc., and sewing them on a disk or fixing them with an adhesive.
  • the interval between the target primary lattice-shaped insulating layers 1015A is as small as 40 nm to 80 nm.
  • the insulating layer 1015A is formed in a state of being separated from each other by buffing using a flannel having a fine pitch on the surface, and a linear groove (gap) 1015a is formed between the insulating layers 1015A.
  • the buffing conditions are as follows. As the buff, a circular flannel having a diameter of 10 to 12 inches is used. The buff rotation speed is set to 2000 to 2800 rpm without using an abrasive.
  • a one-dimensional lattice spacing of the insulating layer 1015A, i.e., the width of the groove 1015a is adjusted according to the width W 10 of the one-dimensional grid-like metallic layer 1012 of interest is preferably 40 nm ⁇ 80 nm .
  • a substrate 1011 on which a metal layer 1012 and a one-dimensional lattice-like insulating layer 1015A are formed is used as an anode 1021.
  • one surface 1011a of the substrate 1011 that is, the surface of the substrate 1011 on which the metal layer 1012 and the one-dimensional lattice-like insulating layer 1015A are formed, and the cathode 1022 made of stainless steel, platinum (Pt), or the like are opposed to each other.
  • the surface layer of the metal layer 1012 made of aluminum (Al) is anodized in the sulfuric acid solution 1023.
  • a porous metal oxide layer 1013 is formed in a portion of the metal layer 1012 facing the gap 1015a of the insulating layer 1015A having a one-dimensional lattice shape and in the vicinity thereof.
  • a metal oxide made of aluminum oxide having a large number of fine holes 1013a in the thickness direction at and near the portion of the metal layer 1012 facing the gap 1015a of the one-dimensional lattice-like insulating layer 1015A.
  • a physical layer 1013 is formed in a self-organizing manner.
  • the metal oxide layer 1013 is also formed on part of the metal layer 1012 covered with the insulating layer 1015A.
  • the sulfuric acid concentration of the sulfuric acid solution 1023 is appropriately adjusted according to the thickness of the metal layer 1012 to be oxidized, but is preferably 5% by mass, for example.
  • the time for applying a voltage to both electrodes is not limited. Until the metal oxide layer 1013 made of aluminum oxide reaches the conductive layer 1014, that is, until no current flows between the two electrodes. To do.
  • the conductive layer 1014 in the anodic oxidation, it is preferable to use the conductive layer 1014 as an anode. Since the conductive layer 1014 is provided in contact with the metal layer 1012, a voltage can be applied to the metal layer 1012 at all times during the oxidation treatment. Therefore, even when the one surface 1011a of the substrate 1011 is uneven, it is possible to prevent problems such as the remaining non-oxidized metal layer 1012 remaining. As a result, the anodic oxidation of the metal layer 1012 can be performed efficiently.
  • the insulating layer 1015A remaining on one surface 1012a of the metal layer 1012 is removed by etching, and the substrate 1011, the metal layer 1012, the metal oxide layer 1013, and the conductive layer are removed. 1014 is obtained.
  • the metal layer 1012 is a one-dimensional lattice-shaped metal layer formed on the substrate 1011.
  • the metal oxide layer 1013 is a porous metal oxide layer formed between the one-dimensional lattice-like metal layers 1012 on the substrate 1011.
  • the conductive layer 1014 is formed so as to be interposed between the substrate 1011 and the metal layer 1012 and the metal oxide layer 1013.
  • the etchant for example, an organic solvent or an alkali solution used for removing a general negative resist is used.
  • the surface layer of the metal layer 1012 is anodized after the one-dimensional lattice-like insulating layer 1015A is formed by buffing using nerbuff.
  • the manufacturing method of the polarizing plate of 6th Embodiment can be applied not only to a glass substrate but to a resin substrate.
  • FIG. 36 A and FIG. 36B are figures which show schematic structure of the polarizing plate of 7th Embodiment.
  • 36A is a plan view
  • FIG. 36B is a cross-sectional view taken along line B1-B1 of FIG. 36A.
  • the polarizing plate 1030 according to the seventh embodiment is generally configured by a substrate 1031, a metal layer 1032, and a metal oxide layer 1033.
  • the metal layer 1032 is a one-dimensional lattice-shaped metal layer formed on the substrate 1031.
  • the metal oxide layer 1033 is a porous metal oxide layer formed between the metal layers 1032 having a one-dimensional lattice shape on the substrate 1031.
  • the metal layer 1032 is formed on one surface 1031a of the substrate 1031 and the metal layer 1032 has a one-dimensional lattice shape.
  • the metal layer 1032 has a one-dimensional lattice shape means that a large number of linear metal layers 1032 are formed at regular intervals and in parallel, that is, periodically.
  • a porous metal oxide layer 1033 is formed between the one-dimensional lattice-like metal layers 1032 on one surface 1031 a of the substrate 1031.
  • the polarizing plate 1030 when the polarizing plate 1030 is viewed from the one surface 1031 a side of the substrate 1031, adjacent metal layers 1032 are formed in a state of being separated from each other with the metal oxide layer 1033 interposed therebetween.
  • the extending direction of the one-dimensional lattice-shaped metal layer 1032 is the absorption axis direction of the polarizing plate 1030, and the direction perpendicular to the extending direction of the metal layer 1032 is the transmission axis direction of the polarizing plate 1030.
  • the one-dimensional lattice-like metal layer 1032 is formed by a polarizing plate manufacturing method described later.
  • the pitch P 20 of the metal layer 1032 is not particularly limited as long as it is smaller than the wavelength of incident light with respect to the polarizing plate 1030.
  • the pitch P 20 is preferably 100 nm to 150 nm.
  • the width W 20 of the metal layer 1032 is preferably about 1/10 of the wavelength of incident light with respect to the polarizing plate 1030, and is preferably 40 nm to 80 nm.
  • the thickness of the metal layer 1032 is not particularly limited, but is preferably 1 ⁇ m to 3 ⁇ m.
  • the thickness of the metal oxide layer 1033 is not particularly limited, but here is equal to the thickness of the metal layer 1032.
  • the substrate 1031 the same substrate as that in the sixth embodiment is used.
  • the material of the metal layer 1032 the same material as that of the above-described sixth embodiment is used.
  • the polarizing plate 1030 transmits linearly polarized light X having a polarization axis in a direction perpendicular to the extending direction of the one-dimensional lattice-shaped metal layer 1032, while the extension of the one-dimensional lattice-shaped metal layer 1032 is performed.
  • the polarizing plate 1030 exhibits the same action as the light reflection polarizing element, that is, the action of transmitting polarized light parallel to the optical axis (transmission axis) and reflecting polarized light perpendicular to the optical axis.
  • the polarizing plate 1030 of the seventh embodiment since the metal layer 1032 made of aluminum is present on the outermost surface, the luminance is 1.2 to 1.3 times that of the conventional absorption polarizing plate. . Therefore, in the liquid crystal display device to which the polarizing plate 1030 is applied, the light reflected by the aluminum metal layer 1032 of the polarizing plate 1030 can be reflected by the reflector of the backlight and reused. Become. Further, the polarizing plate 1030, a pitch P 20 of the metal layer 1032 and 100 nm ⁇ 150 nm. Accordingly, the blue light on the short wavelength side is easily transmitted in the conventional absorption-type polarizing plate, but the blue light transmission can be suppressed in the polarizing plate 1030.
  • a clear black display with high contrast becomes possible.
  • a porous metal oxide layer 1033 is formed between one-dimensional lattice-like metal layers 1032. Therefore, durability such as bending resistance is excellent, and the aspect ratio of the metal layer 1032 (ratio of the width and thickness of the metal layer 1032) can be increased. Furthermore, since the polarizing plate 1030 can use not only a glass substrate but also a resin film substrate as the substrate 1031, it is not only lightweight and difficult to break, but also can be easily processed into a liquid crystal panel.
  • a metal layer 1032 made of aluminum (Al) is uniformly formed on the entire surface of one surface 1031a of the substrate 1031 by sputtering or vapor deposition.
  • the thickness of the metal layer 1032 is preferably 1 ⁇ m to 3 ⁇ m.
  • the thickness of the metal layer 1032 is uniform over the entire surface of the surface 1032a opposite to the surface in contact with the substrate 1031 (hereinafter referred to as “one surface”). Apply a negative resist. Thereafter, the negative resist is exposed to form an insulating layer 1034 having a uniform thickness.
  • the thickness of the insulating layer 1034 is not particularly limited, but is preferably 300 nm to 1000 nm.
  • the insulating layer 1034 is buffed with nerbuff to form a one-dimensional lattice-shaped insulating layer 1034 ⁇ / b> A on the metal layer 1032.
  • the insulating layer 1034 is buffed using nelbuff to partially remove the insulating layer 1034 and form the adjacent insulating layers 1034A on the metal layer 1032 in a state of being separated from each other.
  • a linear groove (gap) 1034a is formed between the insulating layers 1034A.
  • the formation of the insulating layers 1034A in a one-dimensional lattice means that a large number of linear insulating layers 1034A are formed at regular intervals in parallel, that is, periodically.
  • the one-dimensional lattice-like insulating layer 1034A is formed by buffing using nerbuff in the same manner as in the sixth embodiment.
  • the interval between the one-dimensional lattice-like insulating layers 1034A, that is, the width of the groove 1034a is adjusted according to the pitch P 20 and the width W 20 of the target one-dimensional lattice-like metal layer 1032; Preferably there is.
  • the substrate 1031 over which the metal layer 1032 and the one-dimensional lattice-like insulating layer 1034A are formed is used as an anode.
  • one surface 1031a of the substrate 1031 that is, the surface of the substrate 1031 on which the metal layer 1032 and the one-dimensional lattice-like insulating layer 1034A are formed is made to face a cathode made of stainless steel, platinum (Pt), or the like.
  • the surface layer of the metal layer 1032 made of aluminum (Al) is anodized in a sulfuric acid solution.
  • a porous metal oxide layer 1033 is formed in a portion of the metal layer 1032 facing the gap 1034a of the one-dimensional lattice-like insulating layer 1034A and in the vicinity thereof.
  • a metal oxide made of aluminum oxide having a number of micropores 1033a in the thickness direction in a portion facing and adjacent to the gap 1034a of the one-dimensional lattice-like insulating layer 1034A in the metal layer 1032.
  • the physical layer 1033 is formed in a self-organizing manner. Further, by performing anodization of the metal layer 1032, the metal oxide layer 1033 is also formed on part of the portion of the metal layer 1032 that is covered with the insulating layer 1034 ⁇ / b> A.
  • the voltage applied to both electrodes is preferably 2 V, for example.
  • the sulfuric acid concentration of the sulfuric acid solution is appropriately adjusted according to the thickness of the metal layer 1032 to be oxidized, but is preferably 5% by mass, for example.
  • the time for applying a voltage to both electrodes is not limited, and is until the metal oxide layer 1033 made of aluminum oxide reaches the substrate 1031, that is, until no current flows between both electrodes.
  • the insulating layer 1034A remaining on one surface 1032a of the metal layer 1032 is removed by etching, and the substrate 1031, the metal layer 1032, and the metal oxide layer 1033 are roughly configured.
  • a polarizing plate 1030 is obtained.
  • the metal layer 1032 is a one-dimensional lattice-shaped metal layer formed on the substrate 1031.
  • the metal oxide layer 1033 is a porous metal oxide layer formed between the metal layers 1032 having a one-dimensional lattice shape on the substrate 1031.
  • the etchant for example, an organic solvent or an alkaline solution used for removing a general negative resist is used.
  • the surface layer of the metal layer 1032 is anodized after the one-dimensional lattice-like insulating layer 1034A is formed by buffing using nerbuff.
  • the manufacturing method of the polarizing plate of 7th Embodiment can be applied not only to a glass substrate but to a resin substrate.
  • FIG. 43 is a schematic cross-sectional view showing a liquid crystal display device 1040 of a sixth embodiment.
  • the liquid crystal display device 1040 which comprises the liquid crystal panel provided with the polarizing plate 1010 of the above-mentioned embodiment is illustrated.
  • a liquid crystal display device 1040 according to the sixth embodiment is schematically configured by a liquid crystal panel 1050 and a backlight 1060.
  • the backlight 1060 is disposed on the surface 1050b opposite to the display screen 1050a.
  • the liquid crystal panel 1050 includes a first polarizing plate 1051, a first substrate 1052, a first transparent electrode 1053, a liquid crystal layer 1054, a second transparent electrode 1055, a second polarizing plate 1056, a color filter 1057, It has a structure in which two substrates 1058 and a third polarizing plate 1059 are provided and these are laminated in order.
  • the color filter 1057 includes a red color filter 1057R, a green color filter 1057G, and a blue color filter 1057B.
  • the absorption axis of the second polarizing plate 1056 faces the axial direction indicated by reference numeral 1056a in FIG.
  • the absorption axis of the first polarizing plate 1051 is oriented in the axial direction indicated by reference numeral 1051a in FIG. 43
  • the absorption axis of the third polarizing plate 1059 is oriented in the axial direction indicated by reference numeral 1059a in FIG.
  • a linear film arranged in a blind shape called a louver may be disposed between the liquid crystal panel 1050 and the backlight 1060.
  • the linear film collimates the light emitted from the backlight 1060 and irradiates the liquid crystal panel 1050 with the collimated light (parallel light).
  • the light emitted from the backlight 1060 is substantially collimated by the linear film, and the liquid crystal panel 1050 is irradiated with the substantially collimated light (substantially parallel light).
  • the second polarizing plate 1056 of the liquid crystal panel 1050 is the same as the polarizing plate 1010 or the polarizing plate 1030. Therefore, the light reflected by the second polarizing plate 1056 is reflected by the reflecting plate 1061 of the backlight 1060 and can be reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast. Further, when the light emitted from the backlight 1060 passes through the color filter 1057, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 1056 is provided under the color filter 1057. When the polarization degree of the second polarizing plate 1056 is lower than the polarization degree of the iodine polarizing plate, the contrast can be increased by providing the third polarizing plate 1059 in the sixth embodiment.
  • FIG. 44 is a schematic cross-sectional view showing a liquid crystal display device 1070 of a seventh embodiment. 44, the same code
  • the liquid crystal display device 1070 is generally configured by a liquid crystal panel 1080 and a backlight 1060.
  • the backlight 1060 is disposed on the surface 1080b side opposite to the display screen 1080a.
  • the liquid crystal panel 1080 includes a first polarizing plate 1081, a first substrate 1082, a first transparent electrode 1083, a liquid crystal layer 1084, a second transparent electrode 1085, a second polarizing plate 1086, a color filter 1087, And two substrates 1088, which are sequentially stacked.
  • the color filter 1087 includes a red color filter 1087R, a green color filter 1087G, and a blue color filter 1087B.
  • the absorption axis of the second polarizing plate 1086 faces the axial direction indicated by reference numeral 1086a in FIG.
  • the absorption axis of the first polarizing plate 1081 is oriented in the axial direction indicated by reference numeral 1081a in FIG.
  • the second polarizing plate 1086 of the liquid crystal panel 1080 is the same as the polarizing plate 1010 or the polarizing plate 1030. Therefore, the light reflected by the second polarizing plate 1086 is reflected by the reflecting plate 1061 of the backlight 1060 and can be reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast. Further, when the light emitted from the backlight 1060 passes through the color filter 1087, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 1086 is provided under the color filter 1087.
  • FIG. 45 is a schematic cross-sectional view showing a liquid crystal display device 1090 of an eighth embodiment. 45, the same code
  • the liquid crystal display device 1090 is generally configured by a liquid crystal panel 1100 and a backlight 1060.
  • the backlight 1060 is disposed on the surface 1100b side opposite to the display screen 1100a.
  • the liquid crystal panel 1100 includes a first polarizing plate 1101, a first substrate 1102, a first transparent electrode 1103, a liquid crystal layer 1104, a second transparent electrode 1105, a second polarizing plate 1106, a color filter 1107, And two substrates 1108, which are stacked in order.
  • the color filter 1107 includes a red color filter 1107R, a green color filter 1107G, and a blue color filter 1107B.
  • the thing similar to the polarizing plate 1010 which concerns on the above-mentioned 6th Embodiment of this invention or the polarizing plate 1030 which concerns on 7th Embodiment is used.
  • the absorption axis of the first polarizing plate 1101 faces the axial direction indicated by reference numeral 1101a in FIG.
  • the absorption axis of the second polarizing plate 1106 faces the axial direction indicated by reference numeral 1106a in FIG.
  • the first polarizing plate 1101 and the second polarizing plate 1106 of the liquid crystal panel 1100 are the same as the polarizing plate 1010 or the polarizing plate 1030. Therefore, the light reflected by the first polarizing plate 1101 and the second polarizing plate 1106 can be reflected by the reflecting plate 1061 of the backlight 1060 and reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast. Further, when the light emitted from the backlight 1060 passes through the color filter 1107, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 1106 is provided under the color filter 1107.
  • FIG. 46 is a schematic sectional view showing a liquid crystal display device 1110 according to a ninth embodiment. 46, the same code
  • the liquid crystal display device 1110 of the ninth embodiment is roughly configured by a liquid crystal panel 1120 and a backlight 1060.
  • the backlight 1060 is disposed on the surface 1120b side opposite to the display screen 1120a.
  • the liquid crystal panel 1120 includes a first polarizing plate 1121, a first substrate 1122, a first transparent electrode 1123, a liquid crystal layer 1124, a second transparent electrode 1125, a color filter 1126, a second substrate 1127, and a second polarization.
  • the plate 1128 is provided, and these are laminated in order.
  • the color filter 1126 includes a red color filter 1126R, a green color filter 1126G, and a blue color filter 1126B.
  • the 1st polarizing plate 1121 and the 2nd polarizing plate 1128 the thing similar to the polarizing plate 1010 which concerns on the above-mentioned 6th Embodiment of this invention or the polarizing plate 1030 which concerns on 7th Embodiment is used.
  • the absorption axis of the first polarizing plate 1121 faces the axial direction indicated by reference numeral 1121a in FIG.
  • the absorption axis of the second polarizing plate 1128 faces the axial direction indicated by reference numeral 1128a in FIG.
  • the first polarizing plate 1121 and the second polarizing plate 1128 of the liquid crystal panel 1120 are the same as the polarizing plate 1010 or the polarizing plate 1030. Therefore, the light reflected by the first polarizing plate 1121 and the second polarizing plate 1128 can be reflected by the reflecting plate 1061 of the backlight 1060 and reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast. Further, when the light emitted from the backlight 1060 passes through the color filter 1087, depolarization occurs and the contrast is lowered. In order to suppress this, in the ninth embodiment, the contrast can be increased by providing the second polarizing plate 1128 on the outermost surface.
  • FIG. 47 is a schematic cross-sectional view showing a liquid crystal display device 1130 of a tenth embodiment. 47, the same code
  • the liquid crystal display device 1130 is roughly configured by a liquid crystal panel 1140 and a backlight 1060.
  • the backlight 1060 is disposed on the surface 1140b side opposite to the display screen 1140a.
  • the liquid crystal panel 1140 includes a first substrate 1141, a first transparent electrode 1142, a first polarizing plate 1143, a liquid crystal layer 1144, a second transparent electrode 1145, a second polarizing plate 1146, a color filter 1147, And two substrates 1148, which are stacked in order.
  • the color filter 1147 includes a red color filter 1147R, a green color filter 1147G, and a blue color filter 1147B.
  • the absorption axis of the first polarizing plate 1143 faces the axial direction indicated by reference numeral 1143a in FIG.
  • the absorption axis of the second polarizing plate 1146 is oriented in the axial direction indicated by reference numeral 1146a in FIG.
  • the first polarizing plate 1143 and the second polarizing plate 1146 of the liquid crystal panel 1140 are the same as the polarizing plate 1010 or the polarizing plate 1030. Therefore, the light reflected by the first polarizing plate 1143 and the second polarizing plate 1146 can be reflected by the reflecting plate 1061 of the backlight 1060 and reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast. Further, when the light emitted from the backlight 1060 passes through the color filter 1147, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 1146 is provided under the color filter 1147.
  • Electrodes 48A to 48D are diagrams each showing an example of an electronic device provided with a liquid crystal display device similar to any one of the liquid crystal display devices 1040, 1070, 1090, 1110, and 1130 described above in its display portion.
  • FIG. 48A is a schematic perspective view showing a thin display device 1200 as an example of an electronic apparatus.
  • the thin display device (electronic device) 1200 is generally configured by a housing 1201, a support stand 1202, a display unit 1203, a speaker unit 1204, and a video input terminal 1205.
  • FIG. 48B is a schematic perspective view showing a notebook computer 1300 as an example of an electronic apparatus.
  • the notebook personal computer (electronic device) 1300 is roughly configured by a main body 1301, a housing 1302, a display unit 1303, a keyboard 1304, an external connection port 1305, and a pointing pad 1306.
  • As the display unit 1303, a display unit having the same configuration as any of the liquid crystal display devices 1040, 1070, 1090, 1110, and 1130 according to the sixth to tenth embodiments of the present invention described above is used.
  • FIG. 48C is a schematic perspective view showing a mobile phone 400 as an example of the electronic apparatus.
  • the cellular phone (electronic device) 1400 includes a main body 1401, a housing 1402, a display unit 1403, a voice input unit 1404, a voice output unit 1405, operation keys 1406, an external connection port 1407, and an antenna 1408. It is roughly composed.
  • As the display unit 1403, a display unit having the same configuration as any of the liquid crystal display devices 1040, 1070, 1090, 1110, and 1130 according to the sixth to tenth embodiments of the present invention described above is used.
  • FIG. 48D is a schematic perspective view illustrating a video camera 1500 as an example of an electronic apparatus.
  • the video camera (electronic device) 1500 includes a main body 1501, a display unit 1502, a housing 1503, an external connection port 1504, a remote control receiving unit 1505, an image receiving unit 1506, a battery 1507, and an audio input unit 1508.
  • the operation key 1509 and the eyepiece unit 1510 are roughly configured.
  • the electronic devices 1200, 1300, 1400, and 1500 shown in FIGS. 48A to 48D display any one of the liquid crystal display devices 1040, 1070, 1090, 1110, and 1130 according to the sixth to tenth embodiments of the present invention described above.
  • the electronic apparatus includes a display unit that can display an image with high brightness and high contrast.
  • the present invention can be used in the fields of polarizing plates, liquid crystal display devices, and electronic equipment.
  • liquid crystal layer 55, 85, 105, 125, 145 ... second transparent electrode, 56, 86, 106, 128, 146 ... second polarizing plate, 57, 87, 107, 126, 147 ... color filters, 58, 88, 108, 127, 148 ... second substrate, 59 ... third polarizing plate, 60 ... Backlight, 61 ... reflector, 200 ... Thin display device (electronic device), 300 ⁇ ⁇ ⁇ Notebook computer (electronic equipment), 400: mobile phone (electronic device), 500 ... Video camera (electronic equipment), 1010, 1030 ... Polarizing plate, 1011, 1031... Substrate 1012, 1032 ...
  • metal layer 1013, 1033 ... Metal oxide layer, 1014 ... conductive layer, 1015, 1015A, 1034, 1034A ... insulating layer, 1021... Anode, 1022... Cathode, 1023 ... sulfuric acid solution, 1040, 1070, 1090, 1130 ... Liquid crystal display device, 1050, 1080, 1100, 1120, 1140 ... liquid crystal panel, 1051, 1081, 1101, 1121, 1143... First polarizing plate, 1052, 1082, 1102, 1122, 1141 ... the first substrate, 1053, 1083, 1103, 1123, 1142 ... first transparent electrode, 1054, 1084, 1104, 1124, 1144 ...
  • liquid crystal layer 1055, 1085, 1105, 1125, 1145, second transparent electrode, 1056, 1086, 1106, 1128, 1146 ... second polarizing plate, 1057, 1087, 1107, 1126, 1147 ... color filters, 1058, 1088, 1108, 1127, 1148 ... second substrate, 1059 ... third polarizing plate, 1060 ... Backlight, 1061... Reflector, 1200 ... thin display device (electronic device), 1300: Notebook computer (electronic device), 1400: mobile phone (electronic device), 1500 ... Video camera (electronic equipment)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

A polarizing plate comprises a substrate transparent to incident light, and a one-dimensional lattice-shaped metal layer formed on the substrate, wherein the pitch of the one-dimensional lattice-shaped metal layer is less than the wavelength of the incident light.

Description

偏光板およびその製造方法、偏光板を備えた液晶パネルおよびこれを備えた液晶表示装置、電子機器Polarizing plate and manufacturing method thereof, liquid crystal panel including polarizing plate, liquid crystal display device including the same, and electronic device
 本発明は、偏光板およびその製造方法、偏光板を備えた液晶パネルおよびこれを備えた液晶表示装置、電子機器に関する。
 本願は、2010年12月10日に、日本に出願された特願2010-276237号と、2010年12月10日に、日本に出願された特願2010-276238号とに基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a polarizing plate and a manufacturing method thereof, a liquid crystal panel including the polarizing plate, a liquid crystal display device including the same, and an electronic apparatus.
This application claims priority based on Japanese Patent Application No. 2010-276237 filed in Japan on Dec. 10, 2010 and Japanese Patent Application No. 2010-276238 filed on Dec. 10, 2010 in Japan. And the contents thereof are incorporated herein.
 液晶表示装置に組み込まれる液晶セルは、液晶層と、この液晶層を挟み込むように配置された二枚の偏光板とから概略構成されている。
 偏光板としては、例えば、高分子シートにヨウ素(I)化合物分子を吸着させた後、その高分子シートを延伸して、ヨウ素(I)化合物分子を配向させることによって得られる吸収異方性を利用したものが用いられる。
 偏光板は、入射した光のうち吸収軸(延伸方向)に平行な成分の光を吸収し、吸収軸と直交する成分の光を透過するという偏光特性を有している。このような吸収型の偏光板は、原理的に自然光のような非偏光を入射したときの透過率が50%を超えることがない。
 そこで、液晶表示装置の低消費電力化が求められる中、消費電力量を多くすることなく、液晶表示装置の輝度を向上させるためには、偏光板に吸収されていた偏光成分を利用することが有効であると考えられる。
A liquid crystal cell incorporated in a liquid crystal display device is roughly composed of a liquid crystal layer and two polarizing plates arranged so as to sandwich the liquid crystal layer.
As a polarizing plate, for example, an absorption anisotropy obtained by adsorbing iodine (I) compound molecules on a polymer sheet and then stretching the polymer sheet to orient the iodine (I) compound molecules is obtained. The one used is used.
The polarizing plate has a polarization characteristic that absorbs light of a component parallel to the absorption axis (stretching direction) of incident light and transmits light of a component orthogonal to the absorption axis. In principle, such an absorption-type polarizing plate has a transmittance that does not exceed 50% when non-polarized light such as natural light is incident.
Therefore, in order to improve the luminance of the liquid crystal display device without increasing the power consumption amount while reducing the power consumption of the liquid crystal display device, it is necessary to use the polarization component absorbed by the polarizing plate. It is considered effective.
 これに対して、吸収型の偏光板では吸収される偏光成分を反射する反射型の偏光板を、液晶セルより光源側の位置に設けた液晶表示装置が知られている。その反射型の偏光板としては、例えば、細い金属ラインが多数並列に設けられた構造のワイヤーグリッド型の偏光板が知られている。
 ワイヤーグリッド型の偏光板としては、例えば、ガラス基板上に、格子溝パターンをなす微細構造体が形成されてなり、その微細構造体が、酸化アルミニウムからなるものが知られている(例えば、特許文献1参照)。
On the other hand, a liquid crystal display device is known in which an absorption type polarizing plate is provided with a reflection type polarizing plate that reflects the absorbed polarized component at a position closer to the light source than the liquid crystal cell. As the reflective polarizing plate, for example, a wire grid type polarizing plate having a structure in which a large number of thin metal lines are provided in parallel is known.
As a wire grid type polarizing plate, for example, a fine structure forming a lattice groove pattern is formed on a glass substrate, and the fine structure is made of aluminum oxide (for example, patents). Reference 1).
特開2004-4621号公報Japanese Patent Application Laid-Open No. 2004-4621
 特許文献1の偏光板は、最表面が酸化アルミニウムからなるため、透過率やコントラストなどの光学特性が低く、液晶表示装置の輝度を向上するために十分な性能が得られなかった。
 また、従来の偏光板では、線状の溝パターンを形成するために、金属層の表面に炭化ケイ素(SiC)などの硬い材料からなる押し付け部材を押圧し、その表面に規則的な配列を有する凹部を形成するナノインプリント法や、ポジ型感光性レジストを用いたパターン形成方法が用いられていた。しかしながら、これらの溝パターンの形成方法は大面積の偏光板を作製する際には、工程が多くなるという問題があった。
Since the outermost surface of the polarizing plate of Patent Document 1 is made of aluminum oxide, optical properties such as transmittance and contrast are low, and sufficient performance cannot be obtained to improve the luminance of the liquid crystal display device.
Moreover, in the conventional polarizing plate, in order to form a linear groove pattern, a pressing member made of a hard material such as silicon carbide (SiC) is pressed on the surface of the metal layer, and the surface has a regular arrangement. A nanoimprint method for forming a recess and a pattern formation method using a positive photosensitive resist have been used. However, these groove pattern forming methods have a problem that the number of processes is increased when a polarizing plate having a large area is produced.
 本発明は、上記の課題を解決するためになされたものであって、透過率やコントラストなどの光学特性に優れた偏光板およびその製造方法、偏光板を備えた液晶パネルおよびこれを備えた液晶表示装置、電子機器を提供することを目的とする。 The present invention has been made to solve the above-described problems, and a polarizing plate excellent in optical characteristics such as transmittance and contrast, a manufacturing method thereof, a liquid crystal panel including the polarizing plate, and a liquid crystal including the same It is an object to provide a display device and an electronic device.
(1) 本発明の第1の態様による偏光板の製造方法は、基板上に金属層を形成する工程と、前記金属層上に絶縁層を形成する工程と、前記絶縁層を、ネルバフを用いてバフ研磨加工することにより、前記金属層上に一次元格子状の絶縁層を形成する工程と、前記金属層および前記一次元格子状の絶縁層が形成された前記基板を陽極とし、前記基板における前記金属層および前記一次元格子状の絶縁層が形成された面と、陰極とを対向させた状態で、前記金属層の表層を陽極酸化することにより、前記金属層における前記一次元格子状の絶縁層の間隙に対向する部分およびその近傍に多孔質状の金属酸化物層を形成する工程と、エッチングにより前記絶縁層を除去する工程と、を具備する。 (1) The manufacturing method of the polarizing plate by the 1st aspect of this invention uses the process which forms a metal layer on a board | substrate, the process which forms an insulating layer on the said metal layer, and the said insulating layer using nervaf A step of forming a one-dimensional lattice-like insulating layer on the metal layer by buffing, and using the substrate on which the metal layer and the one-dimensional lattice-like insulating layer are formed as an anode, The surface of the metal layer is anodized in a state where the surface on which the metal layer and the one-dimensional lattice-like insulating layer are formed and the cathode face each other, thereby the one-dimensional lattice-like shape in the metal layer. A step of forming a porous metal oxide layer in a portion facing the gap of the insulating layer and in the vicinity thereof, and a step of removing the insulating layer by etching.
(2) なお、第1の態様による偏光板の製造方法において、前記一次元格子状の絶縁層をマスクとして、エッチングにより前記金属酸化物層を除去することによって、前記金属層を一次元格子状に加工する工程を具備するようにしても良い。 (2) In the method of manufacturing a polarizing plate according to the first aspect, the metal layer is formed into a one-dimensional lattice by removing the metal oxide layer by etching using the one-dimensional lattice-shaped insulating layer as a mask. You may make it comprise the process processed into.
(3) また、第1の態様による偏光板の製造方法において、前記基板上に前記金属層を形成する工程の前に、前記基板上に導電性層を形成する工程を具備するようにしても良い。 (3) Moreover, the manufacturing method of the polarizing plate according to the first aspect may include a step of forming a conductive layer on the substrate before the step of forming the metal layer on the substrate. good.
(4) また、第1の態様による偏光板の製造方法において、前記金属酸化物層を形成する工程において、前記導電性層を陽極として用いるようにしても良い。 (4) Moreover, in the manufacturing method of the polarizing plate by a 1st aspect, you may make it use the said electroconductive layer as an anode in the process of forming the said metal oxide layer.
(5) また、第1の態様による偏光板の製造方法において、前記金属層を一次元格子状に加工する工程において、前記金属酸化物層とともに、前記導電性層のうち前記金属酸化物層に対向する部分を除去するようにしても良い。 (5) Moreover, in the manufacturing method of the polarizing plate according to the first aspect, in the step of processing the metal layer into a one-dimensional lattice, the metal oxide layer and the metal oxide layer in the conductive layer are formed. You may make it remove the part which opposes.
(6) 本発明の第2の態様による偏光板は、入射光に対して透明な基板と、前記基板上に形成された一次元格子状の金属層と、を備え、前記一次元格子状の金属層のピッチは、入射光の波長より小さい。 (6) The polarizing plate according to the second aspect of the present invention includes a substrate transparent to incident light, and a one-dimensional lattice-shaped metal layer formed on the substrate, and the one-dimensional lattice-shaped substrate. The pitch of the metal layer is smaller than the wavelength of incident light.
(7) なお、第2の態様による偏光板において、前記一次元格子状の金属層は、前記基板上に形成した金属層上に形成された絶縁層を、ネルバフを用いてバフ研磨加工することにより、前記金属層上に一次元格子状の絶縁層を形成し、前記金属層および前記一次元格子状の絶縁層が形成された前記基板を陽極とし、前記基板における前記金属層および前記一次元格子状の絶縁層が形成された面と、陰極とを対向させた状態で、前記金属層の表層を陽極酸化することにより、前記金属層における前記一次元格子状の絶縁層の間隙に対向する部分およびその近傍に多孔質状の金属酸化物層を形成し、前記一次元格子状の絶縁層をマスクとし、エッチングにより前記金属酸化物層を除去することによって形成されても良い。 (7) In the polarizing plate according to the second aspect, the one-dimensional lattice-shaped metal layer is obtained by buffing an insulating layer formed on the metal layer formed on the substrate using nervuff. By forming a one-dimensional lattice-like insulating layer on the metal layer, and using the metal layer and the substrate on which the one-dimensional lattice-like insulating layer is formed as an anode, the metal layer and the one-dimensional in the substrate By anodizing the surface layer of the metal layer in a state where the surface on which the lattice-like insulating layer is formed and the cathode face each other, the surface of the metal layer faces the gap between the one-dimensional lattice-like insulating layers. It may be formed by forming a porous metal oxide layer in a portion and the vicinity thereof, removing the metal oxide layer by etching using the one-dimensional lattice-like insulating layer as a mask.
(8) また、第2の態様による偏光板において、前記基板と前記金属層の間に導電性層が形成されても良い。 (8) In the polarizing plate according to the second aspect, a conductive layer may be formed between the substrate and the metal layer.
(9) また、第2の態様による偏光板において、前記金属層の間に介在する金属酸化物層を備えても良い。 (9) The polarizing plate according to the second aspect may further include a metal oxide layer interposed between the metal layers.
(10) また、第2の態様による偏光板において、前記一次元格子状の金属層は、前記基板上に形成された金属層上に形成された絶縁層を、ネルバフを用いてバフ研磨加工することにより、前記金属層上に一次元格子状の絶縁層を形成し、前記金属層および前記一次元格子状の絶縁層が形成された前記基板を陽極とし、前記基板における前記金属層および前記一次元格子状の絶縁層が形成された面と、陰極とを対向させた状態で、前記金属層の表層を陽極酸化することにより、前記金属層における前記一次元格子状の絶縁層の間隙に対向する部分およびその近傍に多孔質状の金属酸化物層を形成することによって形成されても良い。 (10) Further, in the polarizing plate according to the second aspect, the one-dimensional lattice-shaped metal layer is obtained by buffing an insulating layer formed on the metal layer formed on the substrate using nervuff. By forming a one-dimensional lattice-like insulating layer on the metal layer, the metal layer and the substrate on which the one-dimensional lattice-like insulating layer is formed as an anode, and the metal layer and the primary in the substrate By anodizing the surface layer of the metal layer in a state where the surface on which the original lattice-like insulating layer is formed and the cathode face each other, the metal layer faces the gap between the one-dimensional lattice-like insulating layers. It may be formed by forming a porous metal oxide layer in the vicinity and in the vicinity thereof.
(11) また、第2の態様による偏光板において、前記基板と、前記金属層および前記金属酸化物層との間に導電性層が介在しても良い。 (11) In the polarizing plate according to the second aspect, a conductive layer may be interposed between the substrate, the metal layer, and the metal oxide layer.
(12) 本発明の第3の態様による液晶パネルは、入射光に対して透明な基板と、前記基板上に形成された一次元格子状の金属層と、を備え、前記一次元格子状の金属層のピッチは、入射光の波長より小さい偏光板を備える。 (12) A liquid crystal panel according to a third aspect of the present invention includes a substrate transparent to incident light, and a one-dimensional lattice-shaped metal layer formed on the substrate, the one-dimensional lattice-shaped The pitch of the metal layer includes a polarizing plate smaller than the wavelength of incident light.
(13) 本発明の第4の態様による液晶パネルは、入射光に対して透明な基板と、前記基板上に形成された一次元格子状の金属層と、を備え、前記一次元格子状の金属層のピッチは、入射光の波長より小さい偏光板を有する液晶パネルを備える。 (13) A liquid crystal panel according to a fourth aspect of the present invention includes a substrate transparent to incident light, and a one-dimensional lattice-shaped metal layer formed on the substrate, the one-dimensional lattice-shaped The pitch of the metal layer includes a liquid crystal panel having a polarizing plate smaller than the wavelength of incident light.
(14) 本発明の第5の態様による液晶パネルは、入射光に対して透明な基板と、前記基板上に形成された一次元格子状の金属層と、を備え、前記一次元格子状の金属層のピッチは、入射光の波長より小さい偏光板を有する液晶パネルを有する液晶表示装置を備える。 (14) A liquid crystal panel according to a fifth aspect of the present invention includes a substrate transparent to incident light, and a one-dimensional lattice-shaped metal layer formed on the substrate, the one-dimensional lattice-shaped The pitch of the metal layer includes a liquid crystal display device having a liquid crystal panel having a polarizing plate smaller than the wavelength of incident light.
 本発明によれば、従来の吸収型の偏光板と比較して、高輝度の偏光板が得られる。したがって、液晶表示装置の高輝度化が可能になるとともに、コントラストが高く、はっきりとした黒表示が可能になる。 According to the present invention, a polarizing plate with high brightness can be obtained as compared with a conventional absorption type polarizing plate. Therefore, it is possible to increase the brightness of the liquid crystal display device, and it is possible to display a clear black with high contrast.
第1実施形態の偏光板の概略構成を示す平面図である。It is a top view which shows schematic structure of the polarizing plate of 1st Embodiment. 第1実施形態の偏光板の概略構成を示す図であって、図1AのA-A線に沿う断面図である。FIG. 2 is a diagram illustrating a schematic configuration of a polarizing plate according to the first embodiment, and is a cross-sectional view taken along line AA of FIG. 1A. 第1実施形態の偏光板の作用を示す概略斜視図である。It is a schematic perspective view which shows the effect | action of the polarizing plate of 1st Embodiment. 第1実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 1st Embodiment. 第1実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 1st Embodiment. 第1実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 1st Embodiment. 第1実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 1st Embodiment. 第1実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 1st Embodiment. 第1実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 1st Embodiment. 第1実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 1st Embodiment. 第1実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 1st Embodiment. 第1実施形態の偏光板の製造方法において、陽極酸化を示す概略斜視図である。It is a schematic perspective view which shows anodization in the manufacturing method of the polarizing plate of 1st Embodiment. 第2実施形態の偏光板の概略構成を示す平面図である。It is a top view which shows schematic structure of the polarizing plate of 2nd Embodiment. 第2実施形態の偏光板の概略構成を示す図であって、図12AのB-B線に沿う断面図である。It is a figure which shows schematic structure of the polarizing plate of 2nd Embodiment, Comprising: It is sectional drawing which follows the BB line of FIG. 12A. 第2実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 2nd Embodiment. 第2実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 2nd Embodiment. 第2実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 2nd Embodiment. 第2実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 2nd Embodiment. 第2実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 2nd Embodiment. 第2実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 2nd Embodiment. 第2実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 2nd Embodiment. 第1実施形態の液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device of 1st Embodiment. 第2実施形態の液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device of 2nd Embodiment. 第3実施形態の液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device of 3rd Embodiment. 第4実施形態の液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device of 4th Embodiment. 第5実施形態の液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device of 5th Embodiment. 液晶表示装置を備えた電子機器の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the electronic device provided with the liquid crystal display device. 液晶表示装置を備えた電子機器の他の一例を示す概略斜視図である。It is a schematic perspective view which shows another example of the electronic device provided with the liquid crystal display device. 液晶表示装置を備えた電子機器の更に他の一例を示す概略斜視図である。It is a schematic perspective view which shows another example of the electronic device provided with the liquid crystal display device. 液晶表示装置を備えた電子機器の更に他の一例を示す概略斜視図である。It is a schematic perspective view which shows another example of the electronic device provided with the liquid crystal display device. 第6実施形態の偏光板の概略構成を示す平面図である。It is a top view which shows schematic structure of the polarizing plate of 6th Embodiment. 第6実施形態の偏光板の概略構成を示す図であって、図26AのA1-A1線に沿う断面図である。FIG. 26 is a diagram illustrating a schematic configuration of a polarizing plate according to a sixth embodiment, and is a cross-sectional view taken along line A1-A1 of FIG. 26A. 第6実施形態の偏光板の作用を示す概略斜視図である。It is a schematic perspective view which shows the effect | action of the polarizing plate of 6th Embodiment. 第6実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 6th Embodiment. 第6実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 6th Embodiment. 第6実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 6th Embodiment. 第6実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 6th Embodiment. 第6実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 6th Embodiment. 第6実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 6th Embodiment. 第6実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 6th Embodiment. 第6実施形態の偏光板の製造方法において、陽極酸化を示す概略斜視図である。It is a schematic perspective view which shows anodization in the manufacturing method of the polarizing plate of 6th Embodiment. 第7実施形態の偏光板の概略構成を示す平面図である。It is a top view which shows schematic structure of the polarizing plate of 7th Embodiment. 第7実施形態の偏光板の概略構成を示す図であって、図36AのB1-B1線に沿う断面図である。FIG. 36 is a diagram illustrating a schematic configuration of a polarizing plate according to a seventh embodiment, and is a cross-sectional view taken along line B1-B1 of FIG. 36A. 第7実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 7th Embodiment. 第7実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 7th Embodiment. 第7実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 7th Embodiment. 第7実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 7th Embodiment. 第7実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 7th Embodiment. 第7実施形態の偏光板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the polarizing plate of 7th Embodiment. 第6実施形態の液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device of 6th Embodiment. 第7実施形態の液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device of 7th Embodiment. 第8実施形態の液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device of 8th Embodiment. 第9実施形態の液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device of 9th Embodiment. 第10実施形態の液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device of 10th Embodiment. 液晶表示装置を備えた電子機器の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the electronic device provided with the liquid crystal display device. 液晶表示装置を備えた電子機器の他の一例を示す概略斜視図である。It is a schematic perspective view which shows another example of the electronic device provided with the liquid crystal display device. 液晶表示装置を備えた電子機器の更に他の一例を示す概略斜視図である。It is a schematic perspective view which shows another example of the electronic device provided with the liquid crystal display device. 液晶表示装置を備えた電子機器の更に他の一例を示す概略斜視図である。It is a schematic perspective view which shows another example of the electronic device provided with the liquid crystal display device.
「偏光板」
(1)第1実施形態
 図1A及び図1Bは、第1実施形態の偏光板の概略構成を示す図である。図1Aは平面図であり、図1Bは図1AのA-A線に沿う断面図である。
 第1実施形態の偏光板10は、基板11と、基板11上に形成された一次元格子状の金属層12と、基板11と金属層12の間に形成された導電性層13とから概略構成されている。
 すなわち、偏光板10では、基板11の一方の面11aに、導電性層13と金属層12が順に形成され、導電性層13と金属層12からなる積層体14が一次元格子状をなしている。
 なお、積層体14が一次元格子状をなしているとは、線状の積層体14が等間隔かつ並列に、すなわち、周期的に多数形成されていることをいう。
"Polarizer"
(1) 1st Embodiment FIG. 1: A and FIG. 1B are figures which show schematic structure of the polarizing plate of 1st Embodiment. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A.
The polarizing plate 10 according to the first embodiment is roughly composed of a substrate 11, a one-dimensional lattice-shaped metal layer 12 formed on the substrate 11, and a conductive layer 13 formed between the substrate 11 and the metal layer 12. It is configured.
That is, in the polarizing plate 10, the conductive layer 13 and the metal layer 12 are sequentially formed on one surface 11 a of the substrate 11, and the laminate 14 including the conductive layer 13 and the metal layer 12 forms a one-dimensional lattice. Yes.
Note that the stacked body 14 having a one-dimensional lattice shape means that a large number of linear stacked bodies 14 are formed at regular intervals and in parallel, that is, periodically.
 つまり、偏光板10を、基板11の一方の面11a側から見た場合、金属層12と導電性層13が完全に重なり合っており、金属層12から導電性層13がはみ出していない。
 これにより、隣り合う積層体14が互いに離隔した状態で形成され、積層体14の間に線状の溝(間隙)14aが形成されている。
 また、一次元格子状の積層体14の延在方向が偏光板10の吸収軸方向であり、積層体14の延在方向と垂直な方向が偏光板10の透過軸方向である。
That is, when the polarizing plate 10 is viewed from the one surface 11 a side of the substrate 11, the metal layer 12 and the conductive layer 13 are completely overlapped, and the conductive layer 13 does not protrude from the metal layer 12.
Thereby, the adjacent laminated bodies 14 are formed in a state of being separated from each other, and a linear groove (gap) 14 a is formed between the laminated bodies 14.
Further, the extending direction of the one-dimensional lattice-shaped laminate 14 is the absorption axis direction of the polarizing plate 10, and the direction perpendicular to the extending direction of the laminate 14 is the transmission axis direction of the polarizing plate 10.
 また、積層体14およびその間の溝14aは、後述する偏光板の製造方法によって形成される。 Moreover, the laminated body 14 and the groove | channel 14a between them are formed with the manufacturing method of the polarizing plate mentioned later.
 積層体14のピッチPは、偏光板10に対する入射光の波長よりも小さければ特に限定されない。例えば、偏光板10が一般的な可視光(波長380nm~780nm程度の光)の偏光板として使用される場合、ピッチPは、100nm~150nmであることが好ましい。
 また、積層体14の幅Wは、偏光板10に対する入射光の波長の1/10程度が好ましく、40nm~80nmであることが好ましい。
The pitch P 1 of the laminate 14 is not particularly limited as long as it is smaller than the wavelength of incident light with respect to the polarizing plate 10. For example, when the polarizing plate 10 is used as a polarizing plate for general visible light (light having a wavelength of about 380 nm to 780 nm), the pitch P 1 is preferably 100 nm to 150 nm.
Further, the width W 1 of the laminate 14 is preferably about 1/10 of the wavelength of the incident light with respect to the polarizing plate 10, and is preferably 40 nm to 80 nm.
 積層体14の厚さは、積層体14を構成する金属層12および導電性層13の厚さによって決まるが、1000nm~3500nmであることが好ましい。
 金属層12の厚さは、特に限定されないが、1μm~3μmであることが好ましい。
 導電性層13の厚さは、特に限定されないが、50nm~200nmであることが好ましい。
The thickness of the stacked body 14 is determined by the thicknesses of the metal layer 12 and the conductive layer 13 constituting the stacked body 14, but is preferably 1000 nm to 3500 nm.
The thickness of the metal layer 12 is not particularly limited, but is preferably 1 μm to 3 μm.
The thickness of the conductive layer 13 is not particularly limited, but is preferably 50 nm to 200 nm.
 基板11としては、透明な基板であれば特に限定されないが、可視光の透過率が高く、耐熱性および耐衝撃性に優れた基板が好ましい。このような基板11としては、例えば、ガラス、石英などの無機材料からなる基板、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート、ポリエーテルケトン、ポリエーテルスルホン、ポリケトン、ポリイミド、トリアセチルセルロース、ポリビニルアルコール、嵩高環状オレフィン樹脂、ポリエステル、ポリサルホン、ポリメチルメタクリレート、ポリスチレン、ジエチレングリコールビスカーボネート、スチレン/アクリロニトリル共重合体、ポリ塩化ビニル、ポリスルホン、二酢酸セルロース、三酢酸セルロースなどの熱可塑性樹脂からなるフィルム状の基板、ポリメチルメタクリレートからなるフィルム状の基板、アートン、ゼオネックスなどの商標で知られる光弾性係数の小さい熱可塑性樹脂からなるフィルム状の基板、スチレン/メタクリル酸共重合体などの高分子樹脂基板からなるフィルム状の基板などが挙げられる。 The substrate 11 is not particularly limited as long as it is a transparent substrate, but a substrate having high visible light transmittance and excellent heat resistance and impact resistance is preferable. Examples of such substrate 11 include substrates made of inorganic materials such as glass and quartz, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyether ketone, polyether sulfone, polyketone, polyimide, triacetyl cellulose, and polyvinyl. Films made of thermoplastic resins such as alcohol, bulky cyclic olefin resin, polyester, polysulfone, polymethyl methacrylate, polystyrene, diethylene glycol biscarbonate, styrene / acrylonitrile copolymer, polyvinyl chloride, polysulfone, cellulose diacetate, cellulose triacetate Plastics with low photoelastic coefficient known by trademarks such as Arton, Zeonex, etc. Film-like substrate made of a resin, such as a substrate of a polymer resin substrate becomes film-like, such as styrene / methacrylic acid copolymer.
 これらの基板の中でも、偏光板10を液晶表示装置に適用する場合、液晶表示装置に反りが生じるのを防止するために、熱膨張係数が小さいものが好ましい。また、質量が小さく、耐衝撃性や屈曲性に優れている点や、外力に対して弱く、容易に倒壊、剥離するおそれのある積層体14を保護することができる点から、上記の樹脂からなるフィルム状の基板が好ましい。 Among these substrates, when the polarizing plate 10 is applied to a liquid crystal display device, one having a small thermal expansion coefficient is preferable in order to prevent the liquid crystal display device from warping. In addition, from the above-mentioned resin from the point that it has a small mass, excellent impact resistance and flexibility, and can protect the laminate 14 which is weak against external force and can easily collapse or peel off. A film-like substrate is preferable.
 金属層12の材質としては、可視光(波長380nm~780nm程度の光)において反射率が高く、陽極酸化可能な材質であるアルミニウム(Al)が用いられる。 As the material of the metal layer 12, aluminum (Al), which is a material that has high reflectivity in visible light (light with a wavelength of about 380 nm to 780 nm) and can be anodized, is used.
 導電性層13の材質としては、チタン(Ti)、スズドープ酸化インジウム(Indium Tin Oxide:ITO)、インジウム-亜鉛複合酸化物(Indium-Zinc composite Oxide:IZO)などが挙げられる。 Examples of the material of the conductive layer 13 include titanium (Ti), tin-doped indium oxide (Indium Tin Oxide: ITO), indium-zinc composite oxide (Indium-Zinc composite Oxide: IZO), and the like.
 次に、偏光板10の作用を説明する。
 偏光板10は、図2に示すように、一次元格子状の積層体14の屈折率nと、積層体14の間の線状の溝14aの屈折率(すなわち、基板11の屈折率)nとが異なる。そのため、偏光板10に入射した光の偏光方向に応じて、偏光選択が行われる。なお、光の偏光方向とは、光の電解方向Eの方向である。具体的には、図2に示すように、偏光板10は、一次元格子状の積層体14の延在方向と垂直な方向に偏光軸を有する直線偏光Xを透過する。一方、一次元格子状の積層体14の延在方向と平行な方向に偏光軸を有する直線偏光を反射する。したがって、偏光板10は、光反射偏光素子と同じ作用、すなわち、光軸(透過軸)と平行な偏光を透過し、光軸と垂直な偏光を反射する作用を示す。
 なお、図2において、符号L1は入射光を示し、符号L2は透過光を示し、符号L3は反射光を示し、符号L4は偏光Xを示し、符号L5は偏光Yを示している。
Next, the operation of the polarizing plate 10 will be described.
As illustrated in FIG. 2, the polarizing plate 10 includes a refractive index n 1 of the one-dimensional lattice-shaped stacked body 14 and a refractive index of the linear groove 14 a between the stacked bodies 14 (that is, the refractive index of the substrate 11). n 2 is different. Therefore, polarization selection is performed according to the polarization direction of the light incident on the polarizing plate 10. The light polarization direction is the direction of light electrolysis direction E. Specifically, as illustrated in FIG. 2, the polarizing plate 10 transmits linearly polarized light X having a polarization axis in a direction perpendicular to the extending direction of the one-dimensional lattice-shaped stacked body 14. On the other hand, linearly polarized light having a polarization axis in a direction parallel to the extending direction of the one-dimensional lattice-like laminate 14 is reflected. Therefore, the polarizing plate 10 exhibits the same action as the light reflection polarizing element, that is, the action of transmitting polarized light parallel to the optical axis (transmission axis) and reflecting polarized light perpendicular to the optical axis.
In FIG. 2, symbol L1 indicates incident light, symbol L2 indicates transmitted light, symbol L3 indicates reflected light, symbol L4 indicates polarization X, and symbol L5 indicates polarization Y.
 第1実施形態の偏光板10によれば、最表面にアルミニウムからなる金属層12が存在するので、従来の吸収型の偏光板と比較して、輝度が1.2~1.3倍になる。したがって、偏光板10を適用した液晶表示装置では、偏光板10のアルミニウムからなる金属層12で反射された光を、バックライトの反射板で反射して再利用できるので、高輝度化が可能になる。
 また、偏光板10では、積層体14のピッチPを100nm~150nmとする。これにより、従来の吸収型の偏光板では短波長側の青色が透過しやすいのに対して、偏光板10では青色の透過を抑制することができる。そのため、コントラストが高く、はっきりとした黒表示が可能になる。
 さらに、偏光板10は、基板11として、ガラス基板のみならず、樹脂フィルムからなる基板を使用することも可能であるので、軽量で割れ難いばかりでなく、液晶パネルへの加工が容易である。
According to the polarizing plate 10 of the first embodiment, since the metal layer 12 made of aluminum is present on the outermost surface, the luminance is 1.2 to 1.3 times that of a conventional absorption polarizing plate. . Therefore, in the liquid crystal display device to which the polarizing plate 10 is applied, the light reflected by the metal layer 12 made of aluminum of the polarizing plate 10 can be reflected by the reflecting plate of the backlight and reused, so that high brightness can be achieved. Become.
Further, the polarizing plate 10, the pitch P 1 of the laminate 14 and 100 nm ~ 150 nm. Thereby, in the conventional absorption-type polarizing plate, blue on the short wavelength side is easily transmitted, whereas in the polarizing plate 10, transmission of blue can be suppressed. Therefore, a clear black display is possible with high contrast.
Furthermore, since the polarizing plate 10 can use not only a glass substrate but also a substrate made of a resin film as the substrate 11, it is not only lightweight and difficult to break, but also can be easily processed into a liquid crystal panel.
 次に、偏光板10の製造方法を説明する。
 まず、図3に示すように、基板11の一方の面11aの全面に、スパッタリング法または蒸着法により、チタン(Ti)、スズドープ酸化インジウム(ITO)、酸化インジウム-酸化亜鉛(IZO)などからなる導電性層13を均一に形成する。
 導電性層13の厚さは、50nm~200nmであることが好ましい。
Next, the manufacturing method of the polarizing plate 10 is demonstrated.
First, as shown in FIG. 3, the entire surface of one surface 11a of the substrate 11 is made of titanium (Ti), tin-doped indium oxide (ITO), indium oxide-zinc oxide (IZO), or the like by sputtering or vapor deposition. The conductive layer 13 is formed uniformly.
The thickness of the conductive layer 13 is preferably 50 nm to 200 nm.
 次いで、図4に示すように、導電性層13の基板11と接している面とは反対側の面13aの全面に、スパッタリング法または蒸着法により、アルミニウム(Al)からなる金属層12を均一に形成する。
 金属層12の厚さは、1μm~3μmであることが好ましい。
Next, as shown in FIG. 4, a metal layer 12 made of aluminum (Al) is uniformly applied to the entire surface 13a of the conductive layer 13 opposite to the surface in contact with the substrate 11 by sputtering or vapor deposition. To form.
The thickness of the metal layer 12 is preferably 1 μm to 3 μm.
 次いで、図5に示すように、金属層12の導電性層13と接している面とは反対側の面(以下、「一方の面」と言う。)12aの全面に、厚さが均一となるようにネガ型レジストを塗布する。その後、そのネガ型レジストを露光して、厚さが均一の絶縁層15を形成する。
 絶縁層15の厚さは、特に限定されないが、300nm~1000nmであることが好ましい。
Next, as shown in FIG. 5, the thickness of the metal layer 12 is uniform over the entire surface of the surface 12a opposite to the surface in contact with the conductive layer 13 (hereinafter referred to as "one surface"). Apply a negative resist so that Thereafter, the negative resist is exposed to form an insulating layer 15 having a uniform thickness.
The thickness of the insulating layer 15 is not particularly limited, but is preferably 300 nm to 1000 nm.
 次いで、図6に示すように、絶縁層15を、ネルバフを用いてバフ研磨加工することにより、金属層12上に一次元格子状の絶縁層15Aを形成する。
 すなわち、絶縁層15を、ネルバフを用いてバフ研磨加工することにより、絶縁層15を部分的に除去して、金属層12上に、隣り合う絶縁層15Aを互いに離隔した状態で形成する。それとともに、絶縁層15Aの間に線状の溝(間隙)15aを形成する。
 なお、絶縁層15Aを一次元格子状に形成するとは、線状の絶縁層15Aを等間隔かつ並列に、すなわち、周期的に多数形成することをいう。
Next, as shown in FIG. 6, the insulating layer 15 is buffed with nerbuff to form a one-dimensional lattice-like insulating layer 15 </ b> A on the metal layer 12.
That is, the insulating layer 15 is buffed using nerbuff to partially remove the insulating layer 15 and form the adjacent insulating layers 15A on the metal layer 12 in a state of being separated from each other. At the same time, a linear groove (gap) 15a is formed between the insulating layers 15A.
The formation of the insulating layer 15A in a one-dimensional lattice means that a large number of linear insulating layers 15A are formed at regular intervals in parallel, that is, periodically.
 ネルバフを用いたバフ研磨加工により、一次元格子状の絶縁層15Aを形成する方法について説明する。
 バフ研磨とは、バフレースという高速で回転する機械にバフを取り付けて被加工物を磨く(削る)加工法のことである。被加工物の材質、形状、あるいは、目的とする面粗さに応じて使用するバフが異なる。また、バフとは、綿布やサイザル麻、ラシャ布、フェルトなどを数枚重ねて、それをディスク上に縫い合わせるか、または、接着材で固定したものである。
 第1実施形態では、目的とする一次格子状の絶縁層15Aの間隔が40nm~80nmと小さい。そのため、表面の凹凸のピッチが細かいネルを用いたバフ研磨により、絶縁層15Aを互いに離隔した状態で形成し、絶縁層15A間に線状の溝(間隙)15aを形成する。
 バフ研磨の条件を、以下の通りとする。バフとしては、直径10~12インチの円形状のネルを使用する。研磨剤を使用することなく、バフの回転数を2000~2800rpmとする。
A method of forming the one-dimensional lattice-like insulating layer 15A by buffing using nerbuff will be described.
Buffing is a processing method for polishing (shaving) a workpiece by attaching a buff to a machine that rotates at a high speed called a buff race. The buff used depends on the material and shape of the work piece or the target surface roughness. In addition, the buff is obtained by stacking several sheets of cotton cloth, sisal line, lasha cloth, felt, etc., and sewing them on a disk or fixing them with an adhesive.
In the first embodiment, the interval between the target primary lattice-like insulating layers 15A is as small as 40 nm to 80 nm. Therefore, the insulating layer 15A is formed in a state of being separated from each other by buffing using a flannel having a fine pitch on the surface, and a linear groove (gap) 15a is formed between the insulating layers 15A.
The buffing conditions are as follows. As the buff, a circular flannel having a diameter of 10 to 12 inches is used. The buff rotation speed is set to 2000 to 2800 rpm without using an abrasive.
 一次元格子状の絶縁層15Aの間隔、すなわち、溝15aの幅は、目的とする積層体14の幅Wに応じて調整されるが、40nm~80nmであることが好ましい。 Interval of a one-dimensional lattice-like insulating layer 15A, i.e., the width of the groove 15a is adjusted according to the width W 1 of the laminated body 14 of interest is preferably 40 nm ~ 80 nm.
 次いで、図11に示すように、金属層12および一次元格子状の絶縁層15Aが形成された基板11を陽極21とする。そして、その基板11の一方の面11a、すなわち、基板11における金属層12および一次元格子状の絶縁層15Aが形成された面と、ステンレス、白金(Pt)などからなる陰極22とを対向させた状態で、硫酸溶液23中にて、アルミニウム(Al)からなる金属層12の表層を陽極酸化する。これにより、図7に示すように、金属層12における一次元格子状の絶縁層15Aの間隙15aに対向する部分およびその近傍に、多孔質状の金属酸化物層16を形成する。
 言い換えれば、この陽極酸化により、金属層12における一次元格子状の絶縁層15Aの間隙15aに対向する部分およびその近傍に、その厚さ方向に多数の微細孔16aを有する酸化アルミニウムからなる金属酸化物層16が自己組織化的に形成される。また、金属層12の陽極酸化を行うことにより、金属層12における絶縁層15Aに覆われている部分の一部にも金属酸化物層16が形成される。
Next, as shown in FIG. 11, the substrate 11 on which the metal layer 12 and the one-dimensional lattice-like insulating layer 15 </ b> A are formed is used as the anode 21. Then, one surface 11a of the substrate 11, that is, the surface of the substrate 11 on which the metal layer 12 and the one-dimensional lattice-like insulating layer 15A are formed is made to face the cathode 22 made of stainless steel, platinum (Pt), or the like. In this state, the surface layer of the metal layer 12 made of aluminum (Al) is anodized in the sulfuric acid solution 23. As a result, as shown in FIG. 7, a porous metal oxide layer 16 is formed in a portion of the metal layer 12 facing the gap 15a of the one-dimensional lattice-like insulating layer 15A and in the vicinity thereof.
In other words, by this anodic oxidation, a metal oxide made of aluminum oxide having a large number of fine holes 16a in the thickness direction at and near the portion of the metal layer 12 facing the gap 15a of the one-dimensional lattice-like insulating layer 15A. The material layer 16 is formed in a self-organizing manner. Further, by performing the anodic oxidation of the metal layer 12, the metal oxide layer 16 is also formed on a part of the metal layer 12 covered with the insulating layer 15A.
 なお、この陽極酸化により形成される多数の微細孔16aにおいて、隣り合う微細孔16a間の最大距離をUとし、両電極間に印加する電圧をVaとした場合、U=0.0025Va(μm)の関係式が成立つことが知られている。この関係式は、例えば、H.Masuda et al.「Jpn.J.Appl.Phys.」、Vol.37、1998、p.L1340-p.L1342などに開示されている。
 このように、陽極酸化において、両電極に印加する電圧の大きさに比例して隣り合う微細孔16a間の最大距離が大きくなり、最終的に得られる線状の金属層12のピッチ(積層体14のピッチP)が大きくなる。そのため、両電極に印加する電圧は、目的とする金属層12のピッチに応じて適宜調整される。第1実施形態において、両電極に印加する電圧は、例えば、2Vであることが好ましい。
In addition, in many micro holes 16a formed by this anodic oxidation, when the maximum distance between adjacent micro holes 16a is U and the voltage applied between both electrodes is Va, U = 0.0025Va (μm) It is known that the following relational expression holds. This relational expression is, for example, H.264. Masuda et al. “Jpn. J. Appl. Phys.”, Vol. 37, 1998, p. L1340-p. L1342 and the like.
Thus, in anodic oxidation, the maximum distance between adjacent fine holes 16a increases in proportion to the magnitude of the voltage applied to both electrodes, and the pitch (laminated body) of the finally obtained linear metal layer 12 increases. 14 pitch P 1 ) increases. Therefore, the voltage applied to both electrodes is appropriately adjusted according to the target pitch of the metal layer 12. In 1st Embodiment, it is preferable that the voltage applied to both electrodes is 2V, for example.
 第1実施形態において、硫酸溶液23(図11)の硫酸濃度は、酸化する金属層12の厚さなどに応じて適宜調整されるが、例えば、5質量%であることが好ましい。
 第1実施形態において、両電極に電圧を印加する時間は限定されず、酸化アルミニウムからなる金属酸化物層16が導電性層13に到達するまで、すなわち、両電極間に電流が流れなくなるまでとする。
In the first embodiment, the sulfuric acid concentration of the sulfuric acid solution 23 (FIG. 11) is appropriately adjusted according to the thickness of the metal layer 12 to be oxidized, but is preferably 5% by mass, for example.
In the first embodiment, the time for applying a voltage to both electrodes is not limited. Until the metal oxide layer 16 made of aluminum oxide reaches the conductive layer 13, that is, until no current flows between the two electrodes. To do.
 また、陽極酸化において、導電性層13を陽極として利用することが好ましい。導電性層13は、金属層12に接するように設けられるので、酸化処理中、常に、金属層12に電圧を印加することができる。そのため、基板11の一方の面11aに凹凸がある場合にも、酸化されない金属層12が残るなどの不具合を防止することができる。ひいては、金属層12の陽極酸化を効率的に行うことができる。 Further, in the anodic oxidation, it is preferable to use the conductive layer 13 as an anode. Since the conductive layer 13 is provided so as to be in contact with the metal layer 12, it is possible to always apply a voltage to the metal layer 12 during the oxidation treatment. Therefore, even when the one surface 11a of the substrate 11 is uneven, it is possible to prevent problems such as the remaining non-oxidized metal layer 12 remaining. As a result, the anodic oxidation of the metal layer 12 can be performed efficiently.
 次いで、図8に示すように、金属酸化物層16が導電性層13に到達すると、陽極酸化反応が進行しなくなるので、その時点で陽極酸化反応を終了する。 Next, as shown in FIG. 8, when the metal oxide layer 16 reaches the conductive layer 13, the anodic oxidation reaction does not proceed, so the anodic oxidation reaction is terminated at that point.
 次いで、図9に示すように、線状の絶縁層15Aをマスクとして、エッチングにより、金属酸化物層16とともに、導電性層13のうち金属酸化物層16に対向する部分を除去することによって、金属層12を一次元格子状に加工する。
 この金属層12を一次元格子状に加工する工程において、エッチング液としては、例えば、1mol/Lのリン酸溶液を用い、そのエッチング液に金属酸化物層16が形成された基板11を浸漬し、約30℃で、導電性層13および金属酸化物層16が消失するまでエッチングを行う。
Next, as shown in FIG. 9, by using the linear insulating layer 15A as a mask, the metal oxide layer 16 and the portion of the conductive layer 13 facing the metal oxide layer 16 are removed by etching. The metal layer 12 is processed into a one-dimensional lattice shape.
In the process of processing the metal layer 12 into a one-dimensional lattice shape, for example, a 1 mol / L phosphoric acid solution is used as an etching solution, and the substrate 11 on which the metal oxide layer 16 is formed is immersed in the etching solution. Etching is performed at about 30 ° C. until the conductive layer 13 and the metal oxide layer 16 disappear.
 次いで、図10に示すように、エッチングにより、金属層12の一方の面12aに残っている絶縁層15Aを除去し、基板11と、その上に順に形成された金属層12および導電性層13からなる一次元格子状の積層体14とから概略構成される偏光板10を得る。
 この絶縁層15Aを除去する工程において、エッチング液としては、例えば、一般的なネガ型レジストの除去に用いられる有機溶剤やアルカリ溶液が用いられる。
Next, as shown in FIG. 10, the insulating layer 15 </ b> A remaining on the one surface 12 a of the metal layer 12 is removed by etching, and the substrate 11, the metal layer 12 and the conductive layer 13 formed in this order on the substrate 11. The polarizing plate 10 roughly constituted by the one-dimensional lattice-like laminate 14 made of is obtained.
In the step of removing the insulating layer 15A, as the etchant, for example, an organic solvent or an alkali solution used for removing a general negative resist is used.
 第1実施形態の偏光板の製造方法によれば、ネルバフを用いたバフ研磨加工により、一次元格子状の絶縁層15Aを形成した後、金属層12の表層を陽極酸化する。そのため、従来の偏光板の製造方法のように、ナノインプリント法やポジ型感光性レジストを用いたパターン形成方法が不要となる。よって、従来よりも製造工程を簡略化することができ、低コストかつ容易に、大面積の偏光板を製造することができる。また、第1実施形態の偏光板の製造方法は、ガラス基板のみならず、樹脂基板にも適用することができる。 According to the method for manufacturing a polarizing plate of the first embodiment, the surface layer of the metal layer 12 is anodized after the one-dimensional lattice-like insulating layer 15A is formed by buffing using nerbuff. This eliminates the need for a nanoimprint method or a pattern forming method using a positive photosensitive resist, unlike the conventional polarizing plate manufacturing method. Therefore, the manufacturing process can be simplified as compared with the conventional case, and a large-area polarizing plate can be easily manufactured at low cost. Moreover, the manufacturing method of the polarizing plate of 1st Embodiment is applicable not only to a glass substrate but to a resin substrate.
(2)第2実施形態
 図12A及び図12Bは、第2実施形態の偏光板の概略構成を示す図である。図12Aは平面図であり、図12Bは図12AのB-B線に沿う断面図である。
 第2実施形態の偏光板30は、基板31と、金属層32とから概略構成されている。金属層32は、基板31上に形成された一次元格子状の金属層である。
 すなわち、偏光板30では、基板31の一方の面31aに金属層32が形成され、その金属層32が一次元格子状をなしている。
 なお、金属層32が一次元格子状をなしているとは、線状の金属層32が等間隔かつ並列に、すなわち、周期的に多数形成されていることをいう。
 つまり、偏光板30を、基板31の一方の面31a側から見た場合、隣り合う金属層32が互いに離隔した状態で形成され、金属層32の間に線状の溝(間隙)32aが形成されている。
 また、一次元格子状の金属層32の延在方向が偏光板30の吸収軸方向であり、金属層32の延在方向と垂直な方向が偏光板30の透過軸方向である。
(2) Second Embodiment FIGS. 12A and 12B are diagrams illustrating a schematic configuration of a polarizing plate according to a second embodiment. 12A is a plan view, and FIG. 12B is a cross-sectional view taken along line BB in FIG. 12A.
The polarizing plate 30 of the second embodiment is generally configured from a substrate 31 and a metal layer 32. The metal layer 32 is a one-dimensional lattice-shaped metal layer formed on the substrate 31.
That is, in the polarizing plate 30, the metal layer 32 is formed on one surface 31a of the substrate 31, and the metal layer 32 forms a one-dimensional lattice shape.
The metal layer 32 having a one-dimensional lattice shape means that a large number of linear metal layers 32 are formed at regular intervals and in parallel, that is, periodically.
That is, when the polarizing plate 30 is viewed from the one surface 31 a side of the substrate 31, the adjacent metal layers 32 are formed in a state of being separated from each other, and a linear groove (gap) 32 a is formed between the metal layers 32. Has been.
The extending direction of the one-dimensional lattice-shaped metal layer 32 is the absorption axis direction of the polarizing plate 30, and the direction perpendicular to the extending direction of the metal layer 32 is the transmission axis direction of the polarizing plate 30.
 また、金属層32およびその間の溝32aは、後述する偏光板の製造方法によって形成される。 Further, the metal layer 32 and the groove 32a therebetween are formed by a polarizing plate manufacturing method described later.
 金属層32のピッチPは、偏光板30に対する入射光の波長よりも小さければ特に限定されない。例えば、偏光板30が一般的な可視光(波長380nm~780nm程度の光)の偏光板として使用される場合、ピッチPは、100nm~150nmであることが好ましい。
 また、金属層32の幅Wは、偏光板30に対する入射光の波長の1/10程度が好ましく、40nm~80nmであることが好ましい。
 金属層32の厚さは、特に限定されないが、1μm~3μmであることが好ましい。
The pitch P 2 of the metal layer 32 is not particularly limited as long as it is smaller than the wavelength of incident light with respect to the polarizing plate 30. For example, when the polarizing plate 30 is used as a general polarizing plate for visible light (light having a wavelength of about 380 nm to 780 nm), the pitch P 2 is preferably 100 nm to 150 nm.
Further, the width W 2 of the metal layer 32 is preferably about 1/10 of the wavelength of the incident light with respect to the polarizing plate 30, and is preferably 40 nm to 80 nm.
The thickness of the metal layer 32 is not particularly limited, but is preferably 1 μm to 3 μm.
 基板31としては、上述の第1実施形態と同様のものが用いられる。
 金属層32の材質としては、上述の第1実施形態と同様のものが用いられる。
As the substrate 31, the same one as in the first embodiment described above is used.
As the material of the metal layer 32, the same material as in the first embodiment described above is used.
 次に、偏光板30の作用を説明する。
 偏光板30は、一次元格子状の金属層32の屈折率n11と、金属層32の間の線状の溝32aの屈折率(すなわち、基板31の屈折率)n12とが異なるので、偏光板30に入射した光の偏光方向に応じて、偏光選択が行われる。具体的には、偏光板30は、一次元格子状の金属層32の延在方向と垂直な方向に偏光軸を有する直線偏光Xを透過する。一方、偏光板30は、一次元格子状の金属層32の延在方向と平行な方向に偏光軸を有する直線偏光を反射する。したがって、偏光板30は、光反射偏光素子と同じ作用、すなわち、光軸(透過軸)と平行な偏光を透過し、光軸と垂直な偏光を反射する作用を示す。
Next, the operation of the polarizing plate 30 will be described.
Polarizer 30, a refractive index n 11 of the one-dimensional grid-like metal layer 32, the refractive index of the linear groove 32a between the metal layer 32 (i.e., the refractive index of the substrate 31) since the n 12 are different, Polarization selection is performed according to the polarization direction of the light incident on the polarizing plate 30. Specifically, the polarizing plate 30 transmits linearly polarized light X having a polarization axis in a direction perpendicular to the extending direction of the one-dimensional lattice-like metal layer 32. On the other hand, the polarizing plate 30 reflects linearly polarized light having a polarization axis in a direction parallel to the extending direction of the one-dimensional lattice-like metal layer 32. Accordingly, the polarizing plate 30 exhibits the same action as the light reflection polarizing element, that is, the action of transmitting polarized light parallel to the optical axis (transmission axis) and reflecting polarized light perpendicular to the optical axis.
 第2実施形態の偏光板30によれば、最表面にアルミニウムからなる金属層32が存在するので、従来の吸収型の偏光板と比較して、輝度が1.2~1.3倍になる。したがって、偏光板30を適用した液晶表示装置では、偏光板30のアルミニウムからなる金属層32で反射された光を、バックライトの反射板で反射して再利用できるので、高輝度化が可能になる。
 また、偏光板30では、金属層32のピッチPを100nm~150nmとする。従来の吸収型の偏光板では短波長側の青色が透過しやすいのに対して、偏光板30では青色の透過を抑制することができるので、コントラストが高く、はっきりとした黒表示が可能になる。
 さらに、偏光板30は、基板31として、ガラス基板のみならず、樹脂フィルムからなる基板を使用することも可能であるので、軽量で割れ難いばかりでなく、液晶パネルへの加工が容易である。
According to the polarizing plate 30 of the second embodiment, since the metal layer 32 made of aluminum is present on the outermost surface, the luminance is 1.2 to 1.3 times that of a conventional absorption-type polarizing plate. . Therefore, in the liquid crystal display device to which the polarizing plate 30 is applied, the light reflected by the aluminum metal layer 32 of the polarizing plate 30 can be reflected by the reflecting plate of the backlight and reused. Become.
Further, the polarizing plate 30, the pitch P 2 of the metal layer 32 and 100 nm ~ 150 nm. In contrast to the conventional absorption type polarizing plate, the blue light on the short wavelength side is easily transmitted, whereas the polarizing plate 30 can suppress the transmission of the blue color, so that the contrast is high and a clear black display is possible. .
Furthermore, since the polarizing plate 30 can use not only a glass substrate but also a substrate made of a resin film as the substrate 31, it is not only lightweight and difficult to break, but also can be easily processed into a liquid crystal panel.
 次に、偏光板30の製造方法を説明する。
 まず、図13に示すように、基板31の一方の面31aの全面に、スパッタリング法または蒸着法により、アルミニウム(Al)からなる金属層32を均一に形成する。
 金属層32の厚さは、1μm~3μmであることが好ましい。
Next, the manufacturing method of the polarizing plate 30 is demonstrated.
First, as shown in FIG. 13, a metal layer 32 made of aluminum (Al) is uniformly formed on the entire surface of one surface 31a of the substrate 31 by sputtering or vapor deposition.
The thickness of the metal layer 32 is preferably 1 μm to 3 μm.
 次いで、図14に示すように、金属層32の基板31と接している面とは反対側の面(以下、「一方の面」と言う。)32aの全面に、厚さが均一となるようにネガ型レジストを塗布する。その後、そのネガ型レジストを露光して、厚さが均一の絶縁層33を形成する。
 絶縁層33の厚さは、特に限定されないが、300nm~1000nmであることが好ましい。
Next, as shown in FIG. 14, the thickness of the metal layer 32 is uniform over the entire surface of the surface 32a opposite to the surface in contact with the substrate 31 (hereinafter referred to as "one surface"). Apply a negative resist. Thereafter, the negative resist is exposed to form an insulating layer 33 having a uniform thickness.
The thickness of the insulating layer 33 is not particularly limited, but is preferably 300 nm to 1000 nm.
 次いで、図15に示すように、絶縁層33を、ネルバフを用いてバフ研磨加工することにより、金属層32上に一次元格子状の絶縁層33Aを形成する。
 すなわち、絶縁層33を、ネルバフを用いてバフ研磨加工することにより、絶縁層33を部分的に除去して、金属層32上に、隣り合う絶縁層33Aを互いに離隔した状態で形成する。それとともに、絶縁層33Aの間に線状の溝(間隙)33aを形成する。
 なお、絶縁層33Aを一次元格子状に形成するとは、線状の絶縁層33Aを等間隔かつ並列に、すなわち、周期的に多数形成することをいう。
Next, as shown in FIG. 15, the insulating layer 33 is buffed with nerbuff to form a one-dimensional lattice-like insulating layer 33 </ b> A on the metal layer 32.
In other words, the insulating layer 33 is buffed using nelbuff to partially remove the insulating layer 33 and form the adjacent insulating layers 33A on the metal layer 32 in a state of being separated from each other. At the same time, a linear groove (gap) 33a is formed between the insulating layers 33A.
The formation of the insulating layer 33A in a one-dimensional lattice means that a large number of linear insulating layers 33A are formed at regular intervals in parallel, that is, periodically.
 この工程では、上述の第1実施形態と同様にして、ネルバフを用いたバフ研磨加工により、一次元格子状の絶縁層33Aを形成する。 In this step, the one-dimensional lattice-like insulating layer 33A is formed by buffing using nerbuff in the same manner as in the first embodiment.
 一次元格子状の絶縁層33Aの間隔、すなわち、溝33aの幅は、目的とする一次元格子状の金属層32のピッチPおよび幅Wに応じて調整されるが、40nm~80nmであることが好ましい。 The interval between the one-dimensional lattice-like insulating layers 33A, that is, the width of the grooves 33a is adjusted according to the pitch P 2 and the width W 2 of the target one-dimensional lattice-like metal layer 32. Preferably there is.
 次いで、金属層32および一次元格子状の絶縁層33Aが形成された基板31を陽極とする。そして、その基板31の一方の面31a、すなわち、基板31における金属層32および一次元格子状の絶縁層33Aが形成された面と、ステンレス、白金(Pt)などからなる陰極とを対向させた状態で、硫酸溶液中にて、アルミニウム(Al)からなる金属層32の表層を陽極酸化する。これにより、図16に示すように、金属層32における一次元格子状の絶縁層33Aの間隙33aに対向する部分およびその近傍に、多孔質状の金属酸化物層34を形成する。
 言い換えれば、この陽極酸化により、金属層32における一次元格子状の絶縁層33Aの間隙33aに対向する部分およびその近傍に、その厚さ方向に多数の微細孔34aを有する酸化アルミニウムからなる金属酸化物層34が自己組織化的に形成される。また、金属層32の陽極酸化を行うことにより、金属層32における絶縁層33Aに覆われている部分の一部にも金属酸化物層34が形成される。
Next, the substrate 31 on which the metal layer 32 and the one-dimensional lattice-like insulating layer 33A are formed is used as an anode. Then, one surface 31a of the substrate 31, that is, the surface of the substrate 31 on which the metal layer 32 and the one-dimensional lattice-like insulating layer 33A are formed is made to face a cathode made of stainless steel, platinum (Pt), or the like. In this state, the surface layer of the metal layer 32 made of aluminum (Al) is anodized in a sulfuric acid solution. As a result, as shown in FIG. 16, a porous metal oxide layer 34 is formed in a portion of the metal layer 32 facing the gap 33a of the one-dimensional lattice-like insulating layer 33A and in the vicinity thereof.
In other words, by this anodic oxidation, a metal oxide made of aluminum oxide having a number of fine holes 34a in the thickness direction at and near the portion of the metal layer 32 facing the gap 33a of the one-dimensional lattice-like insulating layer 33A. The material layer 34 is formed in a self-organizing manner. Further, by performing the anodic oxidation of the metal layer 32, the metal oxide layer 34 is also formed on a part of the metal layer 32 covered with the insulating layer 33A.
 第2実施形態において、両電極に印加する電圧は、例えば、2Vであることが好ましい。
 第2実施形態において、硫酸溶液の硫酸濃度は、酸化する金属層32の厚さなどに応じて適宜調整されるが、例えば、5質量%であることが好ましい。
 第2実施形態において、両電極に電圧を印加する時間は限定されず、酸化アルミニウムからなる金属酸化物層34が基板31に到達するまで、すなわち、両電極間に電流が流れなくなるまでとする。
In 2nd Embodiment, it is preferable that the voltage applied to both electrodes is 2V, for example.
In the second embodiment, the sulfuric acid concentration of the sulfuric acid solution is appropriately adjusted according to the thickness of the metal layer 32 to be oxidized, but is preferably 5% by mass, for example.
In the second embodiment, the time for applying a voltage to both electrodes is not limited, and is until the metal oxide layer 34 made of aluminum oxide reaches the substrate 31, that is, until no current flows between the two electrodes.
 次いで、図17に示すように、金属酸化物層34が基板31に到達すると、陽極酸化反応が進行しなくなるので、その時点で陽極酸化反応を終了する。 Next, as shown in FIG. 17, when the metal oxide layer 34 reaches the substrate 31, the anodic oxidation reaction does not proceed, so the anodic oxidation reaction is terminated at that point.
 次いで、図18に示すように、線状の絶縁層33Aをマスクとして、エッチングにより、金属酸化物層34を除去することによって、金属層32を一次元格子状に加工する。
 この金属層32を一次元格子状に加工する工程において、エッチング液としては、例えば、1mol/Lのリン酸溶液を用い、そのエッチング液に金属酸化物層34が形成された基板31を浸漬し、約30℃で、金属酸化物層34が消失するまでエッチングを行う。
Next, as shown in FIG. 18, the metal layer 32 is processed into a one-dimensional lattice pattern by removing the metal oxide layer 34 by etching using the linear insulating layer 33A as a mask.
In the step of processing the metal layer 32 into a one-dimensional lattice, for example, a 1 mol / L phosphoric acid solution is used as an etchant, and the substrate 31 on which the metal oxide layer 34 is formed is immersed in the etchant. Etching is performed at about 30 ° C. until the metal oxide layer 34 disappears.
 次いで、図19に示すように、エッチングにより、金属層32の一方の面32aに残っている絶縁層33Aを除去し、基板31と、その上に形成された一次元格子状の金属層32とから概略構成される偏光板30を得る。
 この絶縁層33Aを除去する工程において、エッチング液としては、例えば、一般的なネガ型レジストの除去に用いられる有機溶剤やアルカリ溶液が用いられる。
Next, as shown in FIG. 19, the insulating layer 33A remaining on one surface 32a of the metal layer 32 is removed by etching, and the substrate 31 and the one-dimensional lattice-like metal layer 32 formed thereon are formed. Is obtained.
In the step of removing the insulating layer 33A, as the etching solution, for example, an organic solvent or an alkaline solution used for removing a general negative resist is used.
 第2実施形態の偏光板の製造方法によれば、ネルバフを用いたバフ研磨加工により、一次元格子状の絶縁層33Aを形成した後、金属層32の表層を陽極酸化する。そのため、従来の偏光板の製造方法のように、ナノインプリント法やポジ型感光性レジストを用いたパターン形成方法が不要となる。よって、従来よりも製造工程を簡略化することができ、低コストかつ容易に、大面積の偏光板を製造することができる。また、第2実施形態の偏光板の製造方法は、ガラス基板のみならず、樹脂基板にも適用することができる。 According to the method for manufacturing a polarizing plate of the second embodiment, the surface layer of the metal layer 32 is anodized after the one-dimensional lattice-like insulating layer 33A is formed by buffing using nerbuff. This eliminates the need for a nanoimprint method or a pattern forming method using a positive photosensitive resist, unlike the conventional polarizing plate manufacturing method. Therefore, the manufacturing process can be simplified as compared with the conventional case, and a large-area polarizing plate can be easily manufactured at low cost. Moreover, the manufacturing method of the polarizing plate of 2nd Embodiment can be applied not only to a glass substrate but to a resin substrate.
「液晶表示装置」
(1)第1実施形態
 図20は、第1実施形態の液晶表示装置40を示す概略断面図である。
 第1実施形態では、上述の第1実施形態の偏光板10を備えた液晶パネルを具備する液晶表示装置40を例示する。
 第1実施形態の液晶表示装置40は、液晶パネル50と、バックライト60とから概略構成されている。バックライト60は、表示画面50aとは反対側の面50b側に配置されている。
"Liquid Crystal Display"
(1) 1st Embodiment FIG. 20: is a schematic sectional drawing which shows the liquid crystal display device 40 of 1st Embodiment.
In 1st Embodiment, the liquid crystal display device 40 which comprises the liquid crystal panel provided with the polarizing plate 10 of the above-mentioned 1st Embodiment is illustrated.
The liquid crystal display device 40 of the first embodiment is schematically configured from a liquid crystal panel 50 and a backlight 60. The backlight 60 is disposed on the surface 50b side opposite to the display screen 50a.
 液晶パネル50は、第1偏光板51と、第1基板52と、第1透明電極53と、液晶層54と、第2透明電極55と、第2偏光板56と、カラーフィルタ57と、第2基板58と、第3偏光板59とを備えてなり、これらが順に積層された構造をなしている。
 カラーフィルタ57は、赤色カラーフィルタ57R、緑色カラーフィルタ57G、青色カラーフィルタ57Bとから構成されている。
The liquid crystal panel 50 includes a first polarizing plate 51, a first substrate 52, a first transparent electrode 53, a liquid crystal layer 54, a second transparent electrode 55, a second polarizing plate 56, a color filter 57, 2 substrate 58 and the 3rd polarizing plate 59 are comprised, and these have been laminated | stacked in order.
The color filter 57 includes a red color filter 57R, a green color filter 57G, and a blue color filter 57B.
 第2偏光板56としては、上述の第1実施形態に係る偏光板10または第2実施形態に係る偏光板30と同様のものが用いられる。
 また、第2偏光板56の吸収軸は、図20に符号56aで示す軸方向を向いている。
 なお、第1偏光板51の吸収軸は、図20に符号51aで示す軸方向を向いており、第3偏光板59の吸収軸は、図20に符号59aで示す軸方向を向いている。
As the 2nd polarizing plate 56, the thing similar to the polarizing plate 10 which concerns on the above-mentioned 1st Embodiment, or the polarizing plate 30 which concerns on 2nd Embodiment is used.
Further, the absorption axis of the second polarizing plate 56 faces the axial direction indicated by reference numeral 56a in FIG.
The absorption axis of the first polarizing plate 51 faces the axial direction indicated by reference numeral 51a in FIG. 20, and the absorption axis of the third polarizing plate 59 faces the axial direction indicated by reference numeral 59a in FIG.
 また、液晶パネル50とバックライト60との間には、ルーバーと呼ばれるブラインド状に配置された線状のフィルムを配置してもよい。この線状のフィルムにより、バックライト60から出射された光がコリメートされて、そのコリメート光(平行光)が、液晶パネル50に照射される。あるいは、その線状のフィルムにより、バックライト60から出射された光が略コリメートされて、その略コリメート光(略平行光)が、液晶パネル50に照射される。 Further, a linear film called a louver arranged in a blind shape may be arranged between the liquid crystal panel 50 and the backlight 60. The light emitted from the backlight 60 is collimated by the linear film, and the liquid crystal panel 50 is irradiated with the collimated light (parallel light). Alternatively, the light emitted from the backlight 60 is substantially collimated by the linear film, and the liquid crystal panel 50 is irradiated with the substantially collimated light (substantially parallel light).
 液晶表示装置40によれば、液晶パネル50の第2偏光板56として、偏光板10または偏光板30と同様のものが用いられる。そのため、第2偏光板56で反射された光を、バックライト60の反射板61で反射して再利用できるので、高輝度化が可能になるとともに、コントラストが高く、はっきりとした黒表示が可能になる。
 また、バックライト60から出射された光がカラーフィルタ57を通過する時、偏光解消が生じてコントラストが低下する。これを抑制するために、カラーフィルタ57の下に第2偏光板56が設けられる。第2偏光板56の偏光度が、ヨウ素偏光板の偏光度より低い場合、第1実施形態では第3偏光板59を設けることによりコントラストを高くすることができる。
According to the liquid crystal display device 40, the second polarizing plate 56 of the liquid crystal panel 50 is the same as the polarizing plate 10 or the polarizing plate 30. Therefore, the light reflected by the second polarizing plate 56 can be reused by being reflected by the reflecting plate 61 of the backlight 60, so that high luminance can be achieved and high contrast and clear black display are possible. become.
Further, when the light emitted from the backlight 60 passes through the color filter 57, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 56 is provided under the color filter 57. When the polarization degree of the second polarizing plate 56 is lower than the polarization degree of the iodine polarizing plate, the contrast can be increased by providing the third polarizing plate 59 in the first embodiment.
(2)第2実施形態
 図21は、第2実施形態の液晶表示装置70を示す概略断面図である。
 図21において、図20に示した第1実施形態と共通の構成要素には同一の符号を付して、説明を省略する。
(2) Second Embodiment FIG. 21 is a schematic cross-sectional view showing a liquid crystal display device 70 of a second embodiment.
In FIG. 21, the same components as those in the first embodiment shown in FIG.
 第2実施形態の液晶表示装置70は、液晶パネル80と、バックライト60とから概略構成されている。バックライト60は、表示画面80aとは反対側の面80b側に配置されている。 The liquid crystal display device 70 of the second embodiment is generally configured by a liquid crystal panel 80 and a backlight 60. The backlight 60 is disposed on the surface 80b side opposite to the display screen 80a.
 液晶パネル80は、第1偏光板81と、第1基板82と、第1透明電極83と、液晶層84と、第2透明電極85と、第2偏光板86と、カラーフィルタ87と、第2基板88とを備えてなり、これらが順に積層された構造をなしている。
 カラーフィルタ87は、赤色カラーフィルタ87R、緑色カラーフィルタ87G、青色カラーフィルタ87Bとから構成されている。
The liquid crystal panel 80 includes a first polarizing plate 81, a first substrate 82, a first transparent electrode 83, a liquid crystal layer 84, a second transparent electrode 85, a second polarizing plate 86, a color filter 87, And two substrates 88, which are stacked in order.
The color filter 87 includes a red color filter 87R, a green color filter 87G, and a blue color filter 87B.
 第2偏光板86としては、上述の第1実施形態に係る偏光板10または第2実施形態に係る偏光板30と同様のものが用いられる。
 また、第2偏光板86の吸収軸は、図21に符号86aで示す軸方向を向いている。
 なお、第1偏光板81の吸収軸は、図21に符号81aで示す軸方向を向いている。
As the 2nd polarizing plate 86, the thing similar to the polarizing plate 10 which concerns on the above-mentioned 1st Embodiment, or the polarizing plate 30 which concerns on 2nd Embodiment is used.
Further, the absorption axis of the second polarizing plate 86 faces the axial direction indicated by reference numeral 86a in FIG.
The absorption axis of the first polarizing plate 81 faces the axial direction indicated by reference numeral 81a in FIG.
 液晶表示装置70によれば、液晶パネル80の第2偏光板86として、偏光板10または偏光板30と同様のものが用いられる。そのため、第2偏光板86で反射された光を、バックライト60の反射板61で反射して再利用できる。よって、高輝度化が可能になるとともに、コントラストが高く、はっきりとした黒表示が可能になる。
 また、バックライト60から出射された光がカラーフィルタ87を通過する時、偏光解消が生じてコントラストが低下する。これを抑制するために、カラーフィルタ87の下に第2偏光板86が設けられる。
According to the liquid crystal display device 70, the second polarizing plate 86 of the liquid crystal panel 80 is the same as the polarizing plate 10 or the polarizing plate 30. Therefore, the light reflected by the second polarizing plate 86 can be reused by being reflected by the reflecting plate 61 of the backlight 60. Therefore, it is possible to increase the luminance and to display a clear black with high contrast.
Further, when the light emitted from the backlight 60 passes through the color filter 87, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 86 is provided under the color filter 87.
(3)第3実施形態
 図22は、第3実施形態の液晶表示装置90を示す概略断面図である。
 図22において、図20に示した第1実施形態と共通の構成要素には同一の符号を付して、説明を省略する。
(3) Third Embodiment FIG. 22 is a schematic cross-sectional view showing a liquid crystal display device 90 of a third embodiment.
22, the same code | symbol is attached | subjected to the same component as 1st Embodiment shown in FIG. 20, and description is abbreviate | omitted.
 第3実施形態の液晶表示装置90は、液晶パネル100と、バックライト60とから概略構成されている。バックライト60は、表示画面100aとは反対側の面100b側に配置されている。 The liquid crystal display device 90 of the third embodiment is roughly configured by a liquid crystal panel 100 and a backlight 60. The backlight 60 is disposed on the surface 100b side opposite to the display screen 100a.
 液晶パネル100は、第1偏光板101と、第1基板102と、第1透明電極103と、液晶層104と、第2透明電極105と、第2偏光板106と、カラーフィルタ107と、第2基板108とを備えてなり、これらが順に積層された構造をなしている。
 カラーフィルタ107は、赤色カラーフィルタ107R、緑色カラーフィルタ107G、青色カラーフィルタ107Bとから構成されている。
The liquid crystal panel 100 includes a first polarizing plate 101, a first substrate 102, a first transparent electrode 103, a liquid crystal layer 104, a second transparent electrode 105, a second polarizing plate 106, a color filter 107, 2 substrates 108, and these are laminated in order.
The color filter 107 includes a red color filter 107R, a green color filter 107G, and a blue color filter 107B.
 第1偏光板101および第2偏光板106としては、上述の第1実施形態に係る偏光板10または第2実施形態に係る偏光板30と同様のものが用いられる。
 第1偏光板101の吸収軸は、図22に符号101aで示す軸方向を向いている。また、第2偏光板106の吸収軸は、図22に符号106aで示す軸方向を向いている。
As the 1st polarizing plate 101 and the 2nd polarizing plate 106, the thing similar to the polarizing plate 10 which concerns on the above-mentioned 1st Embodiment or the polarizing plate 30 which concerns on 2nd Embodiment is used.
The absorption axis of the first polarizing plate 101 is in the axial direction indicated by reference numeral 101a in FIG. Further, the absorption axis of the second polarizing plate 106 is oriented in the axial direction indicated by reference numeral 106a in FIG.
 液晶表示装置90によれば、液晶パネル100の第1偏光板101および第2偏光板106として、偏光板10または偏光板30と同様のものが用いられる。そのため、第1偏光板101および第2偏光板106で反射された光を、バックライト60の反射板61で反射して再利用できる。よって、高輝度化が可能になるとともに、コントラストが高く、はっきりとした黒表示が可能になる。
 また、バックライト60から出射された光がカラーフィルタ107を通過する時、偏光解消が生じてコントラストが低下する。これを抑制するために、カラーフィルタ107の下に第2偏光板106が設けられる。
According to the liquid crystal display device 90, the same as the polarizing plate 10 or the polarizing plate 30 is used as the first polarizing plate 101 and the second polarizing plate 106 of the liquid crystal panel 100. Therefore, the light reflected by the first polarizing plate 101 and the second polarizing plate 106 is reflected by the reflecting plate 61 of the backlight 60 and can be reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast.
Further, when the light emitted from the backlight 60 passes through the color filter 107, depolarization occurs and the contrast is lowered. In order to suppress this, the second polarizing plate 106 is provided under the color filter 107.
(4)第4実施形態
 図23は、第4実施形態の液晶表示装置110を示す概略断面図である。
 図23において、図20に示した第1実施形態と共通の構成要素には同一の符号を付して、説明を省略する。
(4) Fourth Embodiment FIG. 23 is a schematic cross-sectional view showing a liquid crystal display device 110 of a fourth embodiment.
In FIG. 23, the same components as those in the first embodiment shown in FIG.
 第4実施形態の液晶表示装置110は、液晶パネル120と、バックライト60とから概略構成されている。バックライト60は、表示画面120aとは反対側の面120b側に配置されている。 The liquid crystal display device 110 according to the fourth embodiment is roughly composed of a liquid crystal panel 120 and a backlight 60. The backlight 60 is disposed on the surface 120b side opposite to the display screen 120a.
 液晶パネル120は、第1偏光板121と、第1基板122と、第1透明電極123と、液晶層124と、第2透明電極125と、カラーフィルタ126と、第2基板127、第2偏光板128とを備えてなり、これらが順に積層された構造をなしている。
 カラーフィルタ126は、赤色カラーフィルタ126R、緑色カラーフィルタ126G、青色カラーフィルタ126Bとから構成されている。
The liquid crystal panel 120 includes a first polarizing plate 121, a first substrate 122, a first transparent electrode 123, a liquid crystal layer 124, a second transparent electrode 125, a color filter 126, a second substrate 127, and a second polarization. The board 128 is provided, and these are laminated in order.
The color filter 126 includes a red color filter 126R, a green color filter 126G, and a blue color filter 126B.
 第1偏光板121および第2偏光板128としては、上述の第1実施形態に係る偏光板10または第2実施形態に係る偏光板30と同様のものが用いられる。
 第1偏光板121の吸収軸は、図23に符号121aで示す軸方向を向いている。また、第2偏光板128の吸収軸は、図23に符号128aで示す軸方向を向いている。
As the 1st polarizing plate 121 and the 2nd polarizing plate 128, the thing similar to the polarizing plate 10 which concerns on the above-mentioned 1st Embodiment, or the polarizing plate 30 which concerns on 2nd Embodiment is used.
The absorption axis of the first polarizing plate 121 faces the axial direction indicated by reference numeral 121a in FIG. Further, the absorption axis of the second polarizing plate 128 faces the axial direction indicated by reference numeral 128a in FIG.
 液晶表示装置110によれば、液晶パネル120の第1偏光板121および第2偏光板128として、偏光板10または偏光板30と同様のものが用いられる。そのため、第1偏光板121および第2偏光板128で反射された光を、バックライト60の反射板61で反射して再利用できる。よって、高輝度化が可能になるとともに、コントラストが高く、はっきりとした黒表示が可能になる。
 また、バックライト60から出射された光がカラーフィルタ87を通過する時、偏光解消が生じてコントラストが低下する。これを抑制するために、第4実施形態では、最表面に第2偏光板128を設けることによりコントラストを高くすることができる。
According to the liquid crystal display device 110, the first polarizing plate 121 and the second polarizing plate 128 of the liquid crystal panel 120 are the same as the polarizing plate 10 or the polarizing plate 30. Therefore, the light reflected by the first polarizing plate 121 and the second polarizing plate 128 can be reflected by the reflecting plate 61 of the backlight 60 and reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast.
Further, when the light emitted from the backlight 60 passes through the color filter 87, depolarization occurs and the contrast is lowered. In order to suppress this, in the fourth embodiment, the contrast can be increased by providing the second polarizing plate 128 on the outermost surface.
(5)第5実施形態
 図24は、第5実施形態の液晶表示装置を示す概略断面図である。
 図24において、図20に示した第1実施形態と共通の構成要素には同一の符号を付して、説明を省略する。
(5) Fifth Embodiment FIG. 24 is a schematic cross-sectional view showing a liquid crystal display device of a fifth embodiment.
In FIG. 24, the same code | symbol is attached | subjected to the same component as 1st Embodiment shown in FIG. 20, and description is abbreviate | omitted.
 第5実施形態の液晶表示装置130は、液晶パネル140と、バックライト60とから概略構成されている。バックライト60は、表示画面140aとは反対側の面140b側に配置されている。 The liquid crystal display device 130 of the fifth embodiment is roughly configured by a liquid crystal panel 140 and a backlight 60. The backlight 60 is disposed on the surface 140b side opposite to the display screen 140a.
 液晶パネル140は、第1基板141と、第1透明電極142と、第1偏光板143と、液晶層144と、第2透明電極145と、第2偏光板146と、カラーフィルタ147と、第2基板148とを備えてなり、これらが順に積層された構造をなしている。
 カラーフィルタ147は、赤色カラーフィルタ147R、緑色カラーフィルタ147G、青色カラーフィルタ147Bとから構成されている。
The liquid crystal panel 140 includes a first substrate 141, a first transparent electrode 142, a first polarizing plate 143, a liquid crystal layer 144, a second transparent electrode 145, a second polarizing plate 146, a color filter 147, 2 substrates 148, and these are laminated in order.
The color filter 147 includes a red color filter 147R, a green color filter 147G, and a blue color filter 147B.
 第1偏光板143および第2偏光板146としては、上述の第1実施形態に係る偏光板10または第2実施形態に係る偏光板30と同様のものが用いられる。
 第1偏光板143の吸収軸は、図24に符号143aで示す軸方向を向いている。また、第2偏光板146の吸収軸は、図24に符号146aで示す軸方向を向いている。
As the 1st polarizing plate 143 and the 2nd polarizing plate 146, the thing similar to the polarizing plate 10 which concerns on the above-mentioned 1st Embodiment, or the polarizing plate 30 which concerns on 2nd Embodiment is used.
The absorption axis of the first polarizing plate 143 faces the axial direction indicated by reference numeral 143a in FIG. Further, the absorption axis of the second polarizing plate 146 faces the axial direction indicated by reference numeral 146a in FIG.
 液晶表示装置130によれば、液晶パネル140の第1偏光板143および第2偏光板146として、偏光板10または偏光板30と同様のものが用いられる。そのため、第1偏光板143および第2偏光板146で反射された光を、バックライト60の反射板61で反射して再利用できる。よって、高輝度化が可能になるとともに、コントラストが高く、はっきりとした黒表示が可能になる。
 また、バックライト60から出射された光がカラーフィルタ147を通過する時、偏光解消が生じてコントラストが低下する。これを抑制するために、カラーフィルタ147の下に第2偏光板146が設けられる。
According to the liquid crystal display device 130, the same as the polarizing plate 10 or the polarizing plate 30 is used as the first polarizing plate 143 and the second polarizing plate 146 of the liquid crystal panel 140. Therefore, the light reflected by the first polarizing plate 143 and the second polarizing plate 146 can be reused by being reflected by the reflecting plate 61 of the backlight 60. Therefore, it is possible to increase the luminance and to display a clear black with high contrast.
Further, when the light emitted from the backlight 60 passes through the color filter 147, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 146 is provided under the color filter 147.
「電子機器」
 図25A~図25Dは、上述の液晶表示装置40、70、90、110、130のいずれかを表示部に備えた電子機器の一例を示す図である。
"Electronics"
FIG. 25A to FIG. 25D are diagrams showing an example of an electronic device provided with any one of the above-described liquid crystal display devices 40, 70, 90, 110, and 130 in a display unit.
 図25Aは、電子機器の一例として薄型表示装置200を示す概略斜視図である。
 この薄型表示装置(電子機器)200は、筐体201と、支持台202と、表示部203と、スピーカー部204と、ビデオ入力端子205とから概略構成されている。
 表示部203としては、上述の本発明の第1~第5実施形態に係る液晶表示装置40、70、90、110、130のいずれかと同様の構成のものが用いられる。
FIG. 25A is a schematic perspective view showing a thin display device 200 as an example of an electronic apparatus.
The thin display device (electronic device) 200 is schematically configured by a housing 201, a support base 202, a display unit 203, a speaker unit 204, and a video input terminal 205.
As the display unit 203, one having the same configuration as that of any of the liquid crystal display devices 40, 70, 90, 110, and 130 according to the first to fifth embodiments of the present invention described above is used.
 図25Bは、電子機器の一例としてノート型パソコン300を示す概略斜視図である。
 この実施形態のノート型パソコン(電子機器)300は、本体301と、筐体302と、表示部303と、キーボード304と、外部接続ポート305と、ポインティングパッド306とから概略構成されている。
 表示部303としては、上述の本発明の第1~第5実施形態に係る液晶表示装置40、70、90、110、130のいずれかと同様の構成のものが用いられる。
FIG. 25B is a schematic perspective view showing a notebook personal computer 300 as an example of an electronic apparatus.
A notebook personal computer (electronic device) 300 according to this embodiment is schematically configured by a main body 301, a housing 302, a display unit 303, a keyboard 304, an external connection port 305, and a pointing pad 306.
As the display unit 303, a display unit having the same configuration as any of the liquid crystal display devices 40, 70, 90, 110, and 130 according to the first to fifth embodiments of the present invention described above is used.
 図25Cは、電子機器の一例として携帯電話400を示す概略斜視図である。
 この携帯電話(電子機器)400は、本体401と、筐体402と、表示部403と、音声入力部404と、音声出力部405と、操作キー406と、外部接続ポート407と、アンテナ408とから概略構成されている。
 表示部403としては、上述の本発明の第1~第5実施形態に係る液晶表示装置40、70、90、110、130のいずれかと同様の構成のものが用いられる。
FIG. 25C is a schematic perspective view showing a mobile phone 400 as an example of the electronic apparatus.
The cellular phone (electronic device) 400 includes a main body 401, a housing 402, a display unit 403, a voice input unit 404, a voice output unit 405, operation keys 406, an external connection port 407, an antenna 408, and the like. It is roughly composed.
As the display unit 403, a display unit having the same configuration as that of any of the liquid crystal display devices 40, 70, 90, 110, and 130 according to the first to fifth embodiments of the present invention described above is used.
 図25Dは、電子機器の一例としてビデオカメラ500を示す概略斜視図である。
 このビデオカメラ(電子機器)500は、本体501と、表示部502と、筐体503と、外部接続ポート504と、リモコン受信部505と、受像部506と、バッテリー507と、音声入力部508と、操作キー509と、接眼部510とから概略構成されている。
 表示部502としては、上述の本発明の第1~第5実施形態に係る液晶表示装置40、70、90、110、130のいずれかと同様の構成のものが用いられる。
FIG. 25D is a schematic perspective view showing a video camera 500 as an example of an electronic apparatus.
This video camera (electronic device) 500 includes a main body 501, a display unit 502, a housing 503, an external connection port 504, a remote control receiving unit 505, an image receiving unit 506, a battery 507, and an audio input unit 508. The operation key 509 and the eyepiece unit 510 are roughly configured.
As the display unit 502, a display unit having the same configuration as that of any of the liquid crystal display devices 40, 70, 90, 110, and 130 according to the first to fifth embodiments of the present invention described above is used.
 図25A~図25Dに示した電子機器200、300、400、500は、上述の本発明の第1~第5実施形態に係る液晶表示装置40、70、90、110、130のいずれかを表示部に備えている。そのため、高輝度化かつコントラストが高い画像表示が可能な表示部を備えた電子機器となる。 The electronic devices 200, 300, 400, and 500 shown in FIGS. 25A to 25D display any one of the liquid crystal display devices 40, 70, 90, 110, and 130 according to the first to fifth embodiments of the present invention described above. In the department. Therefore, the electronic apparatus includes a display unit that can display an image with high brightness and high contrast.
「偏光板」
(6)第6実施形態
 図26A及び図26Bは、第6実施形態の偏光板の概略構成を示す図である。図26Aは平面図であり、図26Bは図26AのA1-A1線に沿う断面図である。
 第6実施形態の偏光板1010は、基板1011と、金属層1012と、金属酸化物層1013と、導電性層1014とから概略構成されている。金属層1012は、基板1011上に形成された一次元格子状の金属層である。金属酸化物層1013は、基板1011上において、一次元格子状の金属層1012の間に形成された多孔質状の金属酸化物層である。導電性層1014は、基板1011と金属層1012および金属酸化物層1013との間に介在するように形成されている。
"Polarizer"
(6) Sixth Embodiment FIGS. 26A and 26B are diagrams illustrating a schematic configuration of a polarizing plate according to a sixth embodiment. 26A is a plan view, and FIG. 26B is a cross-sectional view taken along line A1-A1 of FIG. 26A.
A polarizing plate 1010 according to the sixth embodiment is generally configured by a substrate 1011, a metal layer 1012, a metal oxide layer 1013, and a conductive layer 1014. The metal layer 1012 is a one-dimensional lattice-shaped metal layer formed on the substrate 1011. The metal oxide layer 1013 is a porous metal oxide layer formed between the one-dimensional lattice-like metal layers 1012 on the substrate 1011. The conductive layer 1014 is formed so as to be interposed between the substrate 1011, the metal layer 1012, and the metal oxide layer 1013.
 すなわち、偏光板1010では、基板1011の一方の面1011aに金属層1012が形成され、その金属層1012が一次元格子状をなしている。
 なお、金属層1012が一次元格子状をなしているとは、線状の金属層1012が等間隔かつ並列に、すなわち、周期的に多数形成されていることをいう。
 また、偏光板1010では、基板1011の一方の面1011aにおいて、一次元格子状の金属層1012の間に多孔質状の金属酸化物層1013が形成されている。
That is, in the polarizing plate 1010, a metal layer 1012 is formed on one surface 1011a of the substrate 1011, and the metal layer 1012 has a one-dimensional lattice shape.
Note that the metal layer 1012 has a one-dimensional lattice shape means that a large number of linear metal layers 1012 are formed at regular intervals in parallel, that is, periodically.
In the polarizing plate 1010, a porous metal oxide layer 1013 is formed between the one-dimensional lattice-like metal layers 1012 on one surface 1011 a of the substrate 1011.
 つまり、偏光板1010を、基板1011の一方の面1011a側から見た場合、隣り合う金属層1012が、金属酸化物層1013を介して互いに離隔した状態で形成されている。
 また、一次元格子状の金属層1012の延在方向が偏光板1010の吸収軸方向であり、金属層1012の延在方向と垂直な方向が偏光板1010の透過軸方向である。
That is, when the polarizing plate 1010 is viewed from the one surface 1011 a side of the substrate 1011, adjacent metal layers 1012 are formed in a state of being separated from each other with the metal oxide layer 1013 interposed therebetween.
The extending direction of the one-dimensional lattice-shaped metal layer 1012 is the absorption axis direction of the polarizing plate 1010, and the direction perpendicular to the extending direction of the metal layer 1012 is the transmission axis direction of the polarizing plate 1010.
 また、一次元格子状の金属層1012は、後述する偏光板の製造方法によって形成される。 The one-dimensional lattice-like metal layer 1012 is formed by a polarizing plate manufacturing method described later.
 金属層1012のピッチP10は、偏光板1010に対する入射光の波長よりも小さければ特に限定されない。例えば、偏光板1010が一般的な可視光(波長380nm~780nm程度の光)の偏光板として使用される場合、ピッチP10は、100nm~150nmであることが好ましい。
 また、金属層1012の幅W10は、偏光板1010に対する入射光の波長の1/10程度が好ましく、40nm~80nmであることが好ましい。
The pitch P 10 of the metal layer 1012 is not particularly limited as long as it is smaller than the wavelength of incident light with respect to the polarizing plate 1010. For example, when the polarizing plate 1010 is used as a general polarizing plate for visible light (light having a wavelength of about 380 nm to 780 nm), the pitch P 10 is preferably 100 nm to 150 nm.
Further, the width W 10 of the metal layer 1012 is preferably about 1/10 of the wavelength of incident light with respect to the polarizing plate 1010, and is preferably 40 nm to 80 nm.
 金属層1012の厚さは、特に限定されないが、1μm~3μmであることが好ましい。
 金属酸化物層1013の厚さは、特に限定されないが、ここでは、金属層1012の厚さと等しい。
 導電性層1014の厚さは、特に限定されないが、50nm~200nmであることが好ましい。
The thickness of the metal layer 1012 is not particularly limited, but is preferably 1 μm to 3 μm.
The thickness of the metal oxide layer 1013 is not particularly limited, but here is equal to the thickness of the metal layer 1012.
The thickness of the conductive layer 1014 is not particularly limited, but is preferably 50 nm to 200 nm.
 基板1011としては、透明な基板であれば特に限定されないが、可視光の透過率が高く、耐熱性および耐衝撃性に優れた基板が好ましい。このような基板1011としては、例えば、ガラス、石英などの無機材料からなる基板、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート、ポリエーテルケトン、ポリエーテルスルホン、ポリケトン、ポリイミド、トリアセチルセルロース、ポリビニルアルコール、嵩高環状オレフィン樹脂、ポリエステル、ポリサルホン、ポリメチルメタクリレート、ポリスチレン、ジエチレングリコールビスカーボネート、スチレン/アクリロニトリル共重合体、ポリ塩化ビニル、ポリスルホン、二酢酸セルロース、三酢酸セルロースなどの熱可塑性樹脂からなるフィルム状の基板、ポリメチルメタクリレートからなるフィルム状の基板、アートン、ゼオネックスなどの商標で知られる光弾性係数の小さい熱可塑性樹脂からなるフィルム状の基板、スチレン/メタクリル酸共重合体などの高分子樹脂基板からなるフィルム状の基板などが挙げられる。 The substrate 1011 is not particularly limited as long as it is a transparent substrate, but a substrate having high visible light transmittance and excellent heat resistance and impact resistance is preferable. Examples of such substrate 1011 include substrates made of inorganic materials such as glass and quartz, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyether ketone, polyether sulfone, polyketone, polyimide, triacetyl cellulose, and polyvinyl. Films made of thermoplastic resins such as alcohol, bulky cyclic olefin resin, polyester, polysulfone, polymethyl methacrylate, polystyrene, diethylene glycol biscarbonate, styrene / acrylonitrile copolymer, polyvinyl chloride, polysulfone, cellulose diacetate, cellulose triacetate Heat of low photoelastic coefficient known by trademarks such as Arton, ZEONEX, etc. Film-like substrate made of plastic resin, such as a substrate of a polymer resin substrate becomes film-like, such as styrene / methacrylic acid copolymer.
 これらの基板の中でも、偏光板1010を液晶表示装置に適用する場合、液晶表示装置に反りが生じるのを防止するために、熱膨張係数が小さいものが好ましい。また、質量が小さく、耐衝撃性や屈曲性に優れている点や、外力に対して弱く、容易に倒壊、剥離するおそれのある金属層1012を保護することができる点から、上記の樹脂からなるフィルム状の基板が好ましい。 Among these substrates, when the polarizing plate 1010 is applied to a liquid crystal display device, one having a small thermal expansion coefficient is preferable in order to prevent the liquid crystal display device from warping. In addition, from the above-mentioned resin from the point that the mass is small and excellent in impact resistance and flexibility, and the metal layer 1012 that is weak against external force and can be easily collapsed and peeled off can be protected. A film-like substrate is preferable.
 金属層1012の材質としては、可視光(波長380nm~780nm程度の光)において反射率が高く、陽極酸化可能な材質であるアルミニウム(Al)が用いられる。 As the material of the metal layer 1012, aluminum (Al), which is a material that has high reflectivity in visible light (light with a wavelength of about 380 nm to 780 nm) and can be anodized, is used.
 導電性層1014の材質としては、チタン(Ti)、スズドープ酸化インジウム(Indium Tin Oxide:ITO)、インジウム-亜鉛複合酸化物(Indium-Zinc composite Oxide:IZO)などが挙げられる。 Examples of the material of the conductive layer 1014 include titanium (Ti), tin-doped indium oxide (Indium Tin Oxide: ITO), indium-zinc composite oxide (Indium-Zinc composite Oxide: IZO), and the like.
 次に、偏光板1010の作用を説明する。
 偏光板1010は、図27に示すように、一次元格子状の金属層1012の屈折率n10と、金属層1012の間の金属酸化物層1013の屈折率n20とが異なる。そのため、偏光板1010に入射した光の偏光方向に応じて、偏光選択が行われる。なお、光の偏光方向とは、光の電解方向Eの方向である。具体的には、図27に示すように、偏光板1010は、一次元格子状の金属層1012の延在方向と垂直な方向に偏光軸を有する直線偏光X1を透過する。一方、偏光板1010は、一次元格子状の金属層1012の延在方向と平行な方向に偏光軸を有する直線偏光を反射する。したがって、偏光板1010は、光反射偏光素子と同じ作用、すなわち、光軸(透過軸)と平行な偏光を透過し、光軸と垂直な偏光を反射する作用を示す。
 なお、図27において、符号L6は入射光を示し、符号L7は透過光を示し、符号L8は反射光を示し、符号L9は偏光Xを示し、符号L10は偏光Yを示している。
Next, the operation of the polarizing plate 1010 will be described.
Polarizer 1010, as shown in FIG. 27, the refractive index n 10 of the one-dimensional grid-like metallic layer 1012, and the refractive index n 20 of the metal oxide layer 1013 between the metal layer 1012 is different. Therefore, polarization selection is performed according to the polarization direction of the light incident on the polarizing plate 1010. The light polarization direction is the direction of light electrolysis direction E. Specifically, as illustrated in FIG. 27, the polarizing plate 1010 transmits linearly polarized light X1 having a polarization axis in a direction perpendicular to the extending direction of the one-dimensional lattice-like metal layer 1012. On the other hand, the polarizing plate 1010 reflects linearly polarized light having a polarization axis in a direction parallel to the extending direction of the one-dimensional lattice-like metal layer 1012. Therefore, the polarizing plate 1010 exhibits the same action as the light reflection polarizing element, that is, the action of transmitting polarized light parallel to the optical axis (transmission axis) and reflecting polarized light perpendicular to the optical axis.
In FIG. 27, symbol L6 indicates incident light, symbol L7 indicates transmitted light, symbol L8 indicates reflected light, symbol L9 indicates polarization X, and symbol L10 indicates polarization Y.
 第6実施形態の偏光板1010によれば、最表面にアルミニウムからなる金属層1012が存在するので、従来の吸収型の偏光板と比較して、輝度が1.2~1.3倍になる。したがって、偏光板1010を適用した液晶表示装置では、偏光板1010のアルミニウムからなる金属層12で反射された光を、バックライトの反射板で反射して再利用できるので、高輝度化が可能になる。
 また、偏光板1010では、金属層1012のピッチP10を100nm~150nmとする。これにより、従来の吸収型の偏光板では短波長側の青色が透過しやすいのに対して、偏光板1010では青色の透過を抑制することができる。よって、コントラストが高く、はっきりとした黒表示が可能になる。
 また、偏光板1010は、一次元格子状の金属層1012の間に多孔質状の金属酸化物層1013が形成されている。そのため、耐屈曲性などの耐久性に優れ、金属層1012のアスペクト比(金属層1012の幅と厚さの比)を上げることができる。
 さらに、偏光板1010は、基板1011として、ガラス基板のみならず、樹脂フィルムからなる基板を使用することも可能であるので、軽量で割れ難いばかりでなく、液晶パネルへの加工が容易である。
According to the polarizing plate 1010 of the sixth embodiment, since the metal layer 1012 made of aluminum is present on the outermost surface, the luminance is 1.2 to 1.3 times that of a conventional absorption polarizing plate. . Therefore, in the liquid crystal display device to which the polarizing plate 1010 is applied, the light reflected by the metal layer 12 made of aluminum of the polarizing plate 1010 can be reflected by the reflector of the backlight and reused. Become.
Further, the polarizing plate 1010, a pitch P 10 of the metal layer 1012 and 100 nm ~ 150 nm. Accordingly, the blue light on the short wavelength side is easily transmitted through the conventional absorption polarizing plate, whereas the polarizing plate 1010 can suppress the blue transmission. Therefore, a clear black display with high contrast becomes possible.
In the polarizing plate 1010, a porous metal oxide layer 1013 is formed between one-dimensional lattice-like metal layers 1012. Therefore, durability such as bending resistance is excellent, and the aspect ratio of the metal layer 1012 (ratio of the width and thickness of the metal layer 1012) can be increased.
Furthermore, since the polarizing plate 1010 can use not only a glass substrate but also a resin film substrate as the substrate 1011, it is not only light and difficult to break, but also can be easily processed into a liquid crystal panel.
 次に、偏光板1010の製造方法を説明する。
 まず、図28に示すように、基板1011の一方の面1011aの全面に、スパッタリング法または蒸着法により、チタン(Ti)、スズドープ酸化インジウム(ITO)、酸化インジウム-酸化亜鉛(IZO)などからなる導電性層1014を均一に形成する。
 導電性層1014の厚さは、50nm~200nmであることが好ましい。
Next, a method for manufacturing the polarizing plate 1010 will be described.
First, as shown in FIG. 28, the entire surface of one surface 1011a of the substrate 1011 is made of titanium (Ti), tin-doped indium oxide (ITO), indium oxide-zinc oxide (IZO), or the like by sputtering or vapor deposition. The conductive layer 1014 is formed uniformly.
The thickness of the conductive layer 1014 is preferably 50 nm to 200 nm.
 次いで、図29に示すように、導電性層1014の基板1011と接している面とは反対側の面1014aの全面に、スパッタリング法または蒸着法により、アルミニウム(Al)からなる金属層1012を均一に形成する。
 金属層1012の厚さは、1μm~3μmであることが好ましい。
Next, as shown in FIG. 29, a metal layer 1012 made of aluminum (Al) is uniformly formed on the entire surface 1014a of the conductive layer 1014 opposite to the surface in contact with the substrate 1011 by a sputtering method or an evaporation method. To form.
The thickness of the metal layer 1012 is preferably 1 μm to 3 μm.
 次いで、図30に示すように、金属層1012の導電性層1014と接している面とは反対側の面(以下、「一方の面」と言う。)1012aの全面に、厚さが均一となるようにネガ型レジストを塗布する。その後、そのネガ型レジストを露光して、厚さが均一の絶縁層1015を形成する。
 絶縁層1015の厚さは、特に限定されないが、300nm~1000nmであることが好ましい。
Next, as shown in FIG. 30, the thickness of the metal layer 1012 is uniform over the entire surface of the surface 1012a opposite to the surface in contact with the conductive layer 1014 (hereinafter referred to as “one surface”). Apply a negative resist so that Thereafter, the negative resist is exposed to form an insulating layer 1015 having a uniform thickness.
The thickness of the insulating layer 1015 is not particularly limited, but is preferably 300 nm to 1000 nm.
 次いで、図31に示すように、絶縁層1015を、ネルバフを用いてバフ研磨加工することにより、金属層1012上に一次元格子状の絶縁層1015Aを形成する。
 すなわち、絶縁層1015を、ネルバフを用いてバフ研磨加工することにより、絶縁層1015を部分的に除去して、金属層1012上に、隣り合う絶縁層1015Aを互いに離隔した状態で形成する。それともに、絶縁層1015Aの間に線状の溝(間隙)1015aを形成する。
 なお、絶縁層1015Aを一次元格子状に形成するとは、線状の絶縁層1015Aを等間隔かつ並列に、すなわち、周期的に多数形成することをいう。
Next, as illustrated in FIG. 31, the insulating layer 1015 is buffed with nerbuff to form a one-dimensional lattice-shaped insulating layer 1015 </ b> A on the metal layer 1012.
In other words, the insulating layer 1015 is buffed using nelbuff to partially remove the insulating layer 1015 and form the adjacent insulating layers 1015A on the metal layer 1012 in a state of being separated from each other. In addition, a linear groove (gap) 1015a is formed between the insulating layers 1015A.
Note that forming the insulating layers 1015A in a one-dimensional lattice means that a large number of linear insulating layers 1015A are formed at regular intervals in parallel, that is, periodically.
 ネルバフを用いたバフ研磨加工により、一次元格子状の絶縁層1015Aを形成する方法について説明する。
 バフ研磨とは、バフレースという高速で回転する機械にバフを取り付けて被加工物を磨く(削る)加工法のことである。被加工物の材質、形状、あるいは、目的とする面粗さに応じて使用するバフが異なる。また、バフとは、綿布やサイザル麻、ラシャ布、フェルトなどを数枚重ねて、それをディスク上に縫い合わせるか、または、接着材で固定したものである。
 第6実施形態では、目的とする一次格子状の絶縁層1015Aの間隔が40nm~80nmと小さい。そのため、表面の凹凸のピッチが細かいネルを用いたバフ研磨により、絶縁層1015Aを互いに離隔した状態で形成し、絶縁層1015A間に線状の溝(間隙)1015aを形成する。
 バフ研磨の条件を、以下の通りとする。バフとしては、直径10~12インチの円形状のネルを使用する。研磨剤を使用することなく、バフの回転数を2000~2800rpmとする。
A method for forming the one-dimensional lattice-like insulating layer 1015A by buffing using nerbuff will be described.
Buffing is a processing method for polishing (shaving) a workpiece by attaching a buff to a machine that rotates at a high speed called a buff race. The buff used depends on the material and shape of the work piece or the target surface roughness. In addition, the buff is obtained by stacking several sheets of cotton cloth, sisal line, lasha cloth, felt, etc., and sewing them on a disk or fixing them with an adhesive.
In the sixth embodiment, the interval between the target primary lattice-shaped insulating layers 1015A is as small as 40 nm to 80 nm. Therefore, the insulating layer 1015A is formed in a state of being separated from each other by buffing using a flannel having a fine pitch on the surface, and a linear groove (gap) 1015a is formed between the insulating layers 1015A.
The buffing conditions are as follows. As the buff, a circular flannel having a diameter of 10 to 12 inches is used. The buff rotation speed is set to 2000 to 2800 rpm without using an abrasive.
 一次元格子状の絶縁層1015Aの間隔、すなわち、溝1015aの幅は、目的とする一次元格子状の金属層1012の幅W10に応じて調整されるが、40nm~80nmであることが好ましい。 A one-dimensional lattice spacing of the insulating layer 1015A, i.e., the width of the groove 1015a is adjusted according to the width W 10 of the one-dimensional grid-like metallic layer 1012 of interest is preferably 40 nm ~ 80 nm .
 次いで、図35に示すように、金属層1012および一次元格子状の絶縁層1015Aが形成された基板1011を陽極1021とする。そして、その基板1011の一方の面1011a、すなわち、基板1011における金属層1012および一次元格子状の絶縁層1015Aが形成された面と、ステンレス、白金(Pt)などからなる陰極1022とを対向させた状態で、硫酸溶液1023中にて、アルミニウム(Al)からなる金属層1012の表層を陽極酸化する。これにより、図32に示すように、金属層1012における一次元格子状の絶縁層1015Aの間隙1015aに対向する部分およびその近傍に、多孔質状の金属酸化物層1013を形成する。
 言い換えれば、この陽極酸化により、金属層1012における一次元格子状の絶縁層1015Aの間隙1015aに対向する部分およびその近傍に、その厚さ方向に多数の微細孔1013aを有する酸化アルミニウムからなる金属酸化物層1013が自己組織化的に形成される。また、金属層1012の陽極酸化を行うことにより、金属層1012における絶縁層1015Aに覆われている部分の一部にも金属酸化物層1013が形成される。
Next, as illustrated in FIG. 35, a substrate 1011 on which a metal layer 1012 and a one-dimensional lattice-like insulating layer 1015A are formed is used as an anode 1021. Then, one surface 1011a of the substrate 1011, that is, the surface of the substrate 1011 on which the metal layer 1012 and the one-dimensional lattice-like insulating layer 1015A are formed, and the cathode 1022 made of stainless steel, platinum (Pt), or the like are opposed to each other. In this state, the surface layer of the metal layer 1012 made of aluminum (Al) is anodized in the sulfuric acid solution 1023. Thus, as shown in FIG. 32, a porous metal oxide layer 1013 is formed in a portion of the metal layer 1012 facing the gap 1015a of the insulating layer 1015A having a one-dimensional lattice shape and in the vicinity thereof.
In other words, by this anodic oxidation, a metal oxide made of aluminum oxide having a large number of fine holes 1013a in the thickness direction at and near the portion of the metal layer 1012 facing the gap 1015a of the one-dimensional lattice-like insulating layer 1015A. A physical layer 1013 is formed in a self-organizing manner. In addition, by performing anodic oxidation of the metal layer 1012, the metal oxide layer 1013 is also formed on part of the metal layer 1012 covered with the insulating layer 1015A.
 なお、この陽極酸化により形成される多数の微細孔1013aにおいて、隣り合う微細孔1013a間の最大距離をUとし、両電極間に印加する電圧をVaとした場合、U=0.0025Va(μm)の関係式が成立つことが知られている。この関係式は、例えば、H.Masuda et al.「Jpn.J.Appl.Phys.」、Vol.37、1998、p.L1340-p.L1342などに開示されている。
 このように、陽極酸化において、両電極に印加する電圧の大きさに比例して隣り合う微細孔1013a間の最大距離が大きくなり、最終的に得られる線状の金属層1012のピッチP10が大きくなる。そのため、両電極に印加する電圧は、目的とする金属層1012のピッチP10に応じて適宜調整される。第6実施形態において、両電極に印加する電圧は、例えば、2Vであることが好ましい。
In addition, in a large number of fine holes 1013a formed by this anodic oxidation, when U is the maximum distance between adjacent fine holes 1013a and Va is the voltage applied between the two electrodes, U = 0.0025Va (μm) It is known that the following relational expression holds. This relational expression is, for example, H.264. Masuda et al. “Jpn. J. Appl. Phys.”, Vol. 37, 1998, p. L1340-p. L1342 and the like.
Thus, in the anodic oxidation, the maximum distance between the two electrodes voltage applied to the magnitude proportional to neighboring micropores 1013a is increased, the pitch P 10 of the final linear metal layer 1012 to be obtained growing. Therefore, the voltage applied to the electrodes is appropriately adjusted according to the pitch P 10 of the metal layer 1012 of interest. In 6th Embodiment, it is preferable that the voltage applied to both electrodes is 2V, for example.
 第6実施形態において、硫酸溶液1023の硫酸濃度は、酸化する金属層1012の厚さなどに応じて適宜調整されるが、例えば、5質量%であることが好ましい。
 第6実施形態において、両電極に電圧を印加する時間は限定されず、酸化アルミニウムからなる金属酸化物層1013が導電性層1014に到達するまで、すなわち、両電極間に電流が流れなくなるまでとする。
In the sixth embodiment, the sulfuric acid concentration of the sulfuric acid solution 1023 is appropriately adjusted according to the thickness of the metal layer 1012 to be oxidized, but is preferably 5% by mass, for example.
In the sixth embodiment, the time for applying a voltage to both electrodes is not limited. Until the metal oxide layer 1013 made of aluminum oxide reaches the conductive layer 1014, that is, until no current flows between the two electrodes. To do.
 また、陽極酸化において、導電性層1014を陽極として利用することが好ましい。導電性層1014は、金属層1012に接するように設けられるので、酸化処理中、常に、金属層1012に電圧を印加することができる。そのため、基板1011の一方の面1011aに凹凸がある場合にも、酸化されない金属層1012が残るなどの不具合を防止することができる。ひいては、金属層1012の陽極酸化を効率的に行うことができる。 In addition, in the anodic oxidation, it is preferable to use the conductive layer 1014 as an anode. Since the conductive layer 1014 is provided in contact with the metal layer 1012, a voltage can be applied to the metal layer 1012 at all times during the oxidation treatment. Therefore, even when the one surface 1011a of the substrate 1011 is uneven, it is possible to prevent problems such as the remaining non-oxidized metal layer 1012 remaining. As a result, the anodic oxidation of the metal layer 1012 can be performed efficiently.
 次いで、図33に示すように、金属酸化物層1013が導電性層1014に到達すると、陽極酸化反応が進行しなくなるので、その時点で陽極酸化反応を終了する。 Next, as shown in FIG. 33, when the metal oxide layer 1013 reaches the conductive layer 1014, the anodic oxidation reaction does not proceed, so the anodic oxidation reaction is terminated at that point.
 次いで、図34に示すように、エッチングにより、金属層1012の一方の面1012aに残っている絶縁層1015Aを除去し、基板1011と、金属層1012と、金属酸化物層1013と、導電性層1014とから概略構成される偏光板1010を得る。金属層1012は、基板1011上に形成された一次元格子状の金属層である。金属酸化物層1013は、基板1011上において、一次元格子状の金属層1012の間に形成された多孔質状の金属酸化物層である。導電性層1014は、基板1011と金属層1012および金属酸化物層1013との間に介在するように形成される。
 この絶縁層1015Aを除去する工程において、エッチング液としては、例えば、一般的なネガ型レジストの除去に用いられる有機溶剤やアルカリ溶液が用いられる。
Next, as shown in FIG. 34, the insulating layer 1015A remaining on one surface 1012a of the metal layer 1012 is removed by etching, and the substrate 1011, the metal layer 1012, the metal oxide layer 1013, and the conductive layer are removed. 1014 is obtained. The metal layer 1012 is a one-dimensional lattice-shaped metal layer formed on the substrate 1011. The metal oxide layer 1013 is a porous metal oxide layer formed between the one-dimensional lattice-like metal layers 1012 on the substrate 1011. The conductive layer 1014 is formed so as to be interposed between the substrate 1011 and the metal layer 1012 and the metal oxide layer 1013.
In the step of removing the insulating layer 1015A, as the etchant, for example, an organic solvent or an alkali solution used for removing a general negative resist is used.
 第6実施形態の偏光板の製造方法によれば、ネルバフを用いたバフ研磨加工により、一次元格子状の絶縁層1015Aを形成した後、金属層1012の表層を陽極酸化する。そのため、従来の偏光板の製造方法のように、ナノインプリント法やポジ型感光性レジストを用いたパターン形成方法が不要となる。よって、従来よりも製造工程を簡略化することができ、低コストかつ容易に、大面積の偏光板を製造することができる。また、第6実施形態の偏光板の製造方法は、ガラス基板のみならず、樹脂基板にも適用することができる。 According to the method for manufacturing a polarizing plate of the sixth embodiment, the surface layer of the metal layer 1012 is anodized after the one-dimensional lattice-like insulating layer 1015A is formed by buffing using nerbuff. This eliminates the need for a nanoimprint method or a pattern forming method using a positive photosensitive resist, unlike the conventional polarizing plate manufacturing method. Therefore, the manufacturing process can be simplified as compared with the conventional case, and a large-area polarizing plate can be easily manufactured at low cost. Moreover, the manufacturing method of the polarizing plate of 6th Embodiment can be applied not only to a glass substrate but to a resin substrate.
(7)第7実施形態
 図36A及び図36Bは、第7実施形態の偏光板の概略構成を示す図である。図36Aは平面図であり、図36Bは図36AのB1-B1線に沿う断面図である。
 第7実施形態の偏光板1030は、基板1031と、金属層1032と、金属酸化物層1033とから概略構成されている。金属層1032は、基板1031上に形成された一次元格子状の金属層である。金属酸化物層1033は、基板1031上において、一次元格子状の金属層1032の間に形成された多孔質状の金属酸化物層である。
(7) 7th Embodiment FIG. 36: A and FIG. 36B are figures which show schematic structure of the polarizing plate of 7th Embodiment. 36A is a plan view, and FIG. 36B is a cross-sectional view taken along line B1-B1 of FIG. 36A.
The polarizing plate 1030 according to the seventh embodiment is generally configured by a substrate 1031, a metal layer 1032, and a metal oxide layer 1033. The metal layer 1032 is a one-dimensional lattice-shaped metal layer formed on the substrate 1031. The metal oxide layer 1033 is a porous metal oxide layer formed between the metal layers 1032 having a one-dimensional lattice shape on the substrate 1031.
 すなわち、偏光板1030では、基板1031の一方の面1031aに金属層1032が形成され、その金属層1032が一次元格子状をなしている。
 なお、金属層1032が一次元格子状をなしているとは、線状の金属層1032が等間隔かつ並列に、すなわち、周期的に多数形成されていることをいう。
 また、偏光板1030では、基板1031の一方の面1031aにおいて、一次元格子状の金属層1032の間に多孔質状の金属酸化物層1033が形成されている。
 つまり、偏光板1030を、基板1031の一方の面1031a側から見た場合、隣り合う金属層1032が、金属酸化物層1033を介して互いに離隔した状態で形成されている。
 また、一次元格子状の金属層1032の延在方向が偏光板1030の吸収軸方向であり、金属層1032の延在方向と垂直な方向が偏光板1030の透過軸方向である。
That is, in the polarizing plate 1030, the metal layer 1032 is formed on one surface 1031a of the substrate 1031 and the metal layer 1032 has a one-dimensional lattice shape.
Note that the metal layer 1032 has a one-dimensional lattice shape means that a large number of linear metal layers 1032 are formed at regular intervals and in parallel, that is, periodically.
In the polarizing plate 1030, a porous metal oxide layer 1033 is formed between the one-dimensional lattice-like metal layers 1032 on one surface 1031 a of the substrate 1031.
That is, when the polarizing plate 1030 is viewed from the one surface 1031 a side of the substrate 1031, adjacent metal layers 1032 are formed in a state of being separated from each other with the metal oxide layer 1033 interposed therebetween.
The extending direction of the one-dimensional lattice-shaped metal layer 1032 is the absorption axis direction of the polarizing plate 1030, and the direction perpendicular to the extending direction of the metal layer 1032 is the transmission axis direction of the polarizing plate 1030.
 また、一次元格子状の金属層1032は、後述する偏光板の製造方法によって形成される。 The one-dimensional lattice-like metal layer 1032 is formed by a polarizing plate manufacturing method described later.
 金属層1032のピッチP20は、偏光板1030に対する入射光の波長よりも小さければ特に限定されない。例えば、偏光板1030が一般的な可視光(波長380nm~780nm程度の光)の偏光板として使用される場合、ピッチP20は、100nm~150nmであることが好ましい。
 また、金属層1032の幅W20は、偏光板1030に対する入射光の波長の1/10程度が好ましく、40nm~80nmであることが好ましい。
 金属層1032の厚さは、特に限定されないが、1μm~3μmであることが好ましい。
 金属酸化物層1033の厚さは、特に限定されないが、ここでは、金属層1032の厚さと等しい。
The pitch P 20 of the metal layer 1032 is not particularly limited as long as it is smaller than the wavelength of incident light with respect to the polarizing plate 1030. For example, when the polarizing plate 1030 is used as a polarizing plate for general visible light (light having a wavelength of about 380 nm to 780 nm), the pitch P 20 is preferably 100 nm to 150 nm.
The width W 20 of the metal layer 1032 is preferably about 1/10 of the wavelength of incident light with respect to the polarizing plate 1030, and is preferably 40 nm to 80 nm.
The thickness of the metal layer 1032 is not particularly limited, but is preferably 1 μm to 3 μm.
The thickness of the metal oxide layer 1033 is not particularly limited, but here is equal to the thickness of the metal layer 1032.
 基板1031としては、上述の第6実施形態と同様のものが用いられる。
 金属層1032の材質としては、上述の第6実施形態と同様のものが用いられる。
As the substrate 1031, the same substrate as that in the sixth embodiment is used.
As the material of the metal layer 1032, the same material as that of the above-described sixth embodiment is used.
 次に、偏光板1030の作用を説明する。
 偏光板1030は、一次元格子状の金属層1032の屈折率n11と、金属層1032の間の金属酸化物層1033の屈折率n12とが異なる。そのため、偏光板1030に入射した光の偏光方向に応じて、偏光選択が行われる。具体的には、偏光板1030は、一次元格子状の金属層1032の延在方向と垂直な方向に偏光軸を有する直線偏光Xを透過し、一方、一次元格子状の金属層1032の延在方向と平行な方向に偏光軸を有する直線偏光を反射する。したがって、偏光板1030は、光反射偏光素子と同じ作用、すなわち、光軸(透過軸)と平行な偏光を透過し、光軸と垂直な偏光を反射する作用を示す。
Next, the operation of the polarizing plate 1030 will be described.
In the polarizing plate 1030, the refractive index n 11 of the one-dimensional lattice-like metal layer 1032 and the refractive index n 12 of the metal oxide layer 1033 between the metal layers 1032 are different. Therefore, polarization selection is performed according to the polarization direction of the light incident on the polarizing plate 1030. Specifically, the polarizing plate 1030 transmits linearly polarized light X having a polarization axis in a direction perpendicular to the extending direction of the one-dimensional lattice-shaped metal layer 1032, while the extension of the one-dimensional lattice-shaped metal layer 1032 is performed. Reflects linearly polarized light having a polarization axis in a direction parallel to the current direction. Therefore, the polarizing plate 1030 exhibits the same action as the light reflection polarizing element, that is, the action of transmitting polarized light parallel to the optical axis (transmission axis) and reflecting polarized light perpendicular to the optical axis.
 第7実施形態の偏光板1030によれば、最表面にアルミニウムからなる金属層1032が存在するので、従来の吸収型の偏光板と比較して、輝度が1.2~1.3倍になる。したがって、偏光板1030を適用した液晶表示装置では、偏光板1030のアルミニウムからなる金属層1032で反射された光を、バックライトの反射板で反射して再利用できるので、高輝度化が可能になる。
 また、偏光板1030では、金属層1032のピッチP20を100nm~150nmとする。これにより、従来の吸収型の偏光板では短波長側の青色が透過しやすいのに対して、偏光板1030では青色の透過を抑制することができる。よって、コントラストが高く、はっきりとした黒表示が可能になる。
 また、偏光板1030は、一次元格子状の金属層1032の間に多孔質状の金属酸化物層1033が形成されている。そのため、耐屈曲性などの耐久性に優れ、金属層1032のアスペクト比(金属層1032の幅と厚さの比)を上げることができる。
 さらに、偏光板1030は、基板1031として、ガラス基板のみならず、樹脂フィルムからなる基板を使用することも可能であるので、軽量で割れ難いばかりでなく、液晶パネルへの加工が容易である。
According to the polarizing plate 1030 of the seventh embodiment, since the metal layer 1032 made of aluminum is present on the outermost surface, the luminance is 1.2 to 1.3 times that of the conventional absorption polarizing plate. . Therefore, in the liquid crystal display device to which the polarizing plate 1030 is applied, the light reflected by the aluminum metal layer 1032 of the polarizing plate 1030 can be reflected by the reflector of the backlight and reused. Become.
Further, the polarizing plate 1030, a pitch P 20 of the metal layer 1032 and 100 nm ~ 150 nm. Accordingly, the blue light on the short wavelength side is easily transmitted in the conventional absorption-type polarizing plate, but the blue light transmission can be suppressed in the polarizing plate 1030. Therefore, a clear black display with high contrast becomes possible.
In the polarizing plate 1030, a porous metal oxide layer 1033 is formed between one-dimensional lattice-like metal layers 1032. Therefore, durability such as bending resistance is excellent, and the aspect ratio of the metal layer 1032 (ratio of the width and thickness of the metal layer 1032) can be increased.
Furthermore, since the polarizing plate 1030 can use not only a glass substrate but also a resin film substrate as the substrate 1031, it is not only lightweight and difficult to break, but also can be easily processed into a liquid crystal panel.
 次に、偏光板1030の製造方法を説明する。
 まず、図37に示すように、基板1031の一方の面1031aの全面に、スパッタリング法または蒸着法により、アルミニウム(Al)からなる金属層1032を均一に形成する。
 金属層1032の厚さは、1μm~3μmであることが好ましい。
Next, a method for manufacturing the polarizing plate 1030 will be described.
First, as shown in FIG. 37, a metal layer 1032 made of aluminum (Al) is uniformly formed on the entire surface of one surface 1031a of the substrate 1031 by sputtering or vapor deposition.
The thickness of the metal layer 1032 is preferably 1 μm to 3 μm.
 次いで、図38に示すように、金属層1032の基板1031と接している面とは反対側の面(以下、「一方の面」と言う。)1032aの全面に、厚さが均一となるようにネガ型レジストを塗布する。その後、そのネガ型レジストを露光して、厚さが均一の絶縁層1034を形成する。
 絶縁層1034の厚さは、特に限定されないが、300nm~1000nmであることが好ましい。
Next, as shown in FIG. 38, the thickness of the metal layer 1032 is uniform over the entire surface of the surface 1032a opposite to the surface in contact with the substrate 1031 (hereinafter referred to as “one surface”). Apply a negative resist. Thereafter, the negative resist is exposed to form an insulating layer 1034 having a uniform thickness.
The thickness of the insulating layer 1034 is not particularly limited, but is preferably 300 nm to 1000 nm.
 次いで、図39に示すように、絶縁層1034を、ネルバフを用いてバフ研磨加工することにより、金属層1032上に一次元格子状の絶縁層1034Aを形成する。
 すなわち、絶縁層1034を、ネルバフを用いてバフ研磨加工することにより、絶縁層1034を部分的に除去して、金属層1032上に、隣り合う絶縁層1034Aを互いに離隔した状態で形成する。それとともに、絶縁層1034Aの間に線状の溝(間隙)1034aを形成する。
 なお、絶縁層1034Aを一次元格子状に形成するとは、線状の絶縁層1034Aを等間隔かつ並列に、すなわち、周期的に多数形成することをいう。
Next, as illustrated in FIG. 39, the insulating layer 1034 is buffed with nerbuff to form a one-dimensional lattice-shaped insulating layer 1034 </ b> A on the metal layer 1032.
In other words, the insulating layer 1034 is buffed using nelbuff to partially remove the insulating layer 1034 and form the adjacent insulating layers 1034A on the metal layer 1032 in a state of being separated from each other. At the same time, a linear groove (gap) 1034a is formed between the insulating layers 1034A.
Note that the formation of the insulating layers 1034A in a one-dimensional lattice means that a large number of linear insulating layers 1034A are formed at regular intervals in parallel, that is, periodically.
 この工程では、上述の第6実施形態と同様にして、ネルバフを用いたバフ研磨加工により、一次元格子状の絶縁層1034Aを形成する。 In this step, the one-dimensional lattice-like insulating layer 1034A is formed by buffing using nerbuff in the same manner as in the sixth embodiment.
 一次元格子状の絶縁層1034Aの間隔、すなわち、溝1034aの幅は、目的とする一次元格子状の金属層1032のピッチP20および幅W20に応じて調整されるが、40nm~80nmであることが好ましい。 The interval between the one-dimensional lattice-like insulating layers 1034A, that is, the width of the groove 1034a is adjusted according to the pitch P 20 and the width W 20 of the target one-dimensional lattice-like metal layer 1032; Preferably there is.
 次いで、金属層1032および一次元格子状の絶縁層1034Aが形成された基板1031を陽極とする。そして、その基板1031の一方の面1031a、すなわち、基板1031における金属層1032および一次元格子状の絶縁層1034Aが形成された面と、ステンレス、白金(Pt)などからなる陰極とを対向させた状態で、硫酸溶液中にて、アルミニウム(Al)からなる金属層1032の表層を陽極酸化する。これにより、図40に示すように、金属層1032における一次元格子状の絶縁層1034Aの間隙1034aに対向する部分およびその近傍に、多孔質状の金属酸化物層1033を形成する。
 言い換えれば、この陽極酸化により、金属層1032における一次元格子状の絶縁層1034Aの間隙1034aに対向する部分およびその近傍に、その厚さ方向に多数の微細孔1033aを有する酸化アルミニウムからなる金属酸化物層1033が自己組織化的に形成される。また、金属層1032の陽極酸化を行うことにより、金属層1032における絶縁層1034Aに覆われている部分の一部にも金属酸化物層1033が形成される。
Next, the substrate 1031 over which the metal layer 1032 and the one-dimensional lattice-like insulating layer 1034A are formed is used as an anode. Then, one surface 1031a of the substrate 1031, that is, the surface of the substrate 1031 on which the metal layer 1032 and the one-dimensional lattice-like insulating layer 1034A are formed is made to face a cathode made of stainless steel, platinum (Pt), or the like. In this state, the surface layer of the metal layer 1032 made of aluminum (Al) is anodized in a sulfuric acid solution. Thus, as shown in FIG. 40, a porous metal oxide layer 1033 is formed in a portion of the metal layer 1032 facing the gap 1034a of the one-dimensional lattice-like insulating layer 1034A and in the vicinity thereof.
In other words, by this anodic oxidation, a metal oxide made of aluminum oxide having a number of micropores 1033a in the thickness direction in a portion facing and adjacent to the gap 1034a of the one-dimensional lattice-like insulating layer 1034A in the metal layer 1032. The physical layer 1033 is formed in a self-organizing manner. Further, by performing anodization of the metal layer 1032, the metal oxide layer 1033 is also formed on part of the portion of the metal layer 1032 that is covered with the insulating layer 1034 </ b> A.
 第7実施形態において、両電極に印加する電圧は、例えば、2Vであることが好ましい。
 第7実施形態において、陽極酸化において、硫酸溶液の硫酸濃度は、酸化する金属層1032の厚さなどに応じて適宜調整されるが、例えば、5質量%であることが好ましい。
 第7実施形態において、両電極に電圧を印加する時間は限定されず、酸化アルミニウムからなる金属酸化物層1033が基板1031に到達するまで、すなわち、両電極間に電流が流れなくなるまでとする。
In the seventh embodiment, the voltage applied to both electrodes is preferably 2 V, for example.
In the seventh embodiment, in the anodic oxidation, the sulfuric acid concentration of the sulfuric acid solution is appropriately adjusted according to the thickness of the metal layer 1032 to be oxidized, but is preferably 5% by mass, for example.
In the seventh embodiment, the time for applying a voltage to both electrodes is not limited, and is until the metal oxide layer 1033 made of aluminum oxide reaches the substrate 1031, that is, until no current flows between both electrodes.
 次いで、図41に示すように、金属酸化物層1033が基板1031に到達すると、陽極酸化反応が進行しなくなるので、その時点で陽極酸化反応を終了する。 Next, as shown in FIG. 41, when the metal oxide layer 1033 reaches the substrate 1031, the anodizing reaction does not proceed, and the anodizing reaction is terminated at that point.
 次いで、図42に示すように、エッチングにより、金属層1032の一方の面1032aに残っている絶縁層1034Aを除去し、基板1031と、金属層1032と、金属酸化物層1033とから概略構成される偏光板1030を得る。金属層1032は、基板1031上に形成された一次元格子状の金属層である。金属酸化物層1033は、基板1031上において、一次元格子状の金属層1032の間に形成された多孔質状の金属酸化物層である。
 この絶縁層1034Aを除去する工程において、エッチング液としては、例えば、一般的なネガ型レジストの除去に用いられる有機溶剤やアルカリ溶液が用いられる。
Next, as shown in FIG. 42, the insulating layer 1034A remaining on one surface 1032a of the metal layer 1032 is removed by etching, and the substrate 1031, the metal layer 1032, and the metal oxide layer 1033 are roughly configured. A polarizing plate 1030 is obtained. The metal layer 1032 is a one-dimensional lattice-shaped metal layer formed on the substrate 1031. The metal oxide layer 1033 is a porous metal oxide layer formed between the metal layers 1032 having a one-dimensional lattice shape on the substrate 1031.
In the step of removing the insulating layer 1034A, as the etchant, for example, an organic solvent or an alkaline solution used for removing a general negative resist is used.
 第7実施形態の偏光板の製造方法によれば、ネルバフを用いたバフ研磨加工により、一次元格子状の絶縁層1034Aを形成した後、金属層1032の表層を陽極酸化する。そのため、従来の偏光板の製造方法のように、ナノインプリント法やポジ型感光性レジストを用いたパターン形成方法が不要となる。よって、従来よりも製造工程を簡略化することができ、低コストかつ容易に、大面積の偏光板を製造することができる。また、第7実施形態の偏光板の製造方法は、ガラス基板のみならず、樹脂基板にも適用することができる。 According to the polarizing plate manufacturing method of the seventh embodiment, the surface layer of the metal layer 1032 is anodized after the one-dimensional lattice-like insulating layer 1034A is formed by buffing using nerbuff. This eliminates the need for a nanoimprint method or a pattern forming method using a positive photosensitive resist, unlike the conventional polarizing plate manufacturing method. Therefore, the manufacturing process can be simplified as compared with the conventional case, and a large-area polarizing plate can be easily manufactured at low cost. Moreover, the manufacturing method of the polarizing plate of 7th Embodiment can be applied not only to a glass substrate but to a resin substrate.
「液晶表示装置」
(6)第6実施形態
 図43は、第6実施形態の液晶表示装置1040を示す概略断面図である。
 第6実施形態では、上述の実施形態の偏光板1010を備えた液晶パネルを具備する液晶表示装置1040を例示する。
 第6実施形態の液晶表示装置1040は、液晶パネル1050と、バックライト1060とから概略構成されている。バックライト1060は、表示画面1050aとは反対側の面1050b側に配置されている。
"Liquid Crystal Display"
(6) Sixth Embodiment FIG. 43 is a schematic cross-sectional view showing a liquid crystal display device 1040 of a sixth embodiment.
In 6th Embodiment, the liquid crystal display device 1040 which comprises the liquid crystal panel provided with the polarizing plate 1010 of the above-mentioned embodiment is illustrated.
A liquid crystal display device 1040 according to the sixth embodiment is schematically configured by a liquid crystal panel 1050 and a backlight 1060. The backlight 1060 is disposed on the surface 1050b opposite to the display screen 1050a.
 液晶パネル1050は、第1偏光板1051と、第1基板1052と、第1透明電極1053と、液晶層1054と、第2透明電極1055と、第2偏光板1056と、カラーフィルタ1057と、第2基板1058と、第3偏光板1059とを備えてなり、これらが順に積層された構造をなしている。
 カラーフィルタ1057は、赤色カラーフィルタ1057R、緑色カラーフィルタ1057G、青色カラーフィルタ1057Bとから構成されている。
The liquid crystal panel 1050 includes a first polarizing plate 1051, a first substrate 1052, a first transparent electrode 1053, a liquid crystal layer 1054, a second transparent electrode 1055, a second polarizing plate 1056, a color filter 1057, It has a structure in which two substrates 1058 and a third polarizing plate 1059 are provided and these are laminated in order.
The color filter 1057 includes a red color filter 1057R, a green color filter 1057G, and a blue color filter 1057B.
 第2偏光板1056としては、上述の本発明の第6実施形態に係る偏光板1010または第7実施形態に係る偏光板1030と同様のものが用いられる。
 また、第2偏光板1056の吸収軸は、図43に符号1056aで示す軸方向を向いている。
 なお、第1偏光板1051の吸収軸は、図43に符号1051aで示す軸方向を向いており、第3偏光板1059の吸収軸は、図43に符号1059aで示す軸方向を向いている。
As the 2nd polarizing plate 1056, the thing similar to the polarizing plate 1010 which concerns on the above-mentioned 6th Embodiment of this invention or the polarizing plate 1030 which concerns on 7th Embodiment is used.
Further, the absorption axis of the second polarizing plate 1056 faces the axial direction indicated by reference numeral 1056a in FIG.
Note that the absorption axis of the first polarizing plate 1051 is oriented in the axial direction indicated by reference numeral 1051a in FIG. 43, and the absorption axis of the third polarizing plate 1059 is oriented in the axial direction indicated by reference numeral 1059a in FIG.
 また、液晶パネル1050とバックライト1060との間には、ルーバーと呼ばれるブラインド状に配置された線状のフィルムを配置してもよい。この線状のフィルムにより、バックライト1060から出射された光がコリメートされて、そのコリメート光(平行光)が、液晶パネル1050に照射される。あるいは、その線状のフィルムにより、バックライト1060から出射された光が略コリメートされて、その略コリメート光(略平行光)が、液晶パネル1050に照射される。 Further, a linear film arranged in a blind shape called a louver may be disposed between the liquid crystal panel 1050 and the backlight 1060. The linear film collimates the light emitted from the backlight 1060 and irradiates the liquid crystal panel 1050 with the collimated light (parallel light). Alternatively, the light emitted from the backlight 1060 is substantially collimated by the linear film, and the liquid crystal panel 1050 is irradiated with the substantially collimated light (substantially parallel light).
 液晶表示装置1040によれば、液晶パネル1050の第2偏光板1056として、偏光板1010または偏光板1030と同様のものが用いられる。そのため、第2偏光板1056で反射された光を、バックライト1060の反射板1061で反射して再利用できる。よって、高輝度化が可能になるとともに、コントラストが高く、はっきりとした黒表示が可能になる。
 また、バックライト1060から出射された光がカラーフィルタ1057を通過する時、偏光解消が生じてコントラストが低下する。これを抑制するために、カラーフィルタ1057の下に第2偏光板1056が設けられる。第2偏光板1056の偏光度が、ヨウ素偏光板の偏光度より低い場合、第6実施形態では第3偏光板1059を設けることによりコントラストを高くすることができる。
According to the liquid crystal display device 1040, the second polarizing plate 1056 of the liquid crystal panel 1050 is the same as the polarizing plate 1010 or the polarizing plate 1030. Therefore, the light reflected by the second polarizing plate 1056 is reflected by the reflecting plate 1061 of the backlight 1060 and can be reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast.
Further, when the light emitted from the backlight 1060 passes through the color filter 1057, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 1056 is provided under the color filter 1057. When the polarization degree of the second polarizing plate 1056 is lower than the polarization degree of the iodine polarizing plate, the contrast can be increased by providing the third polarizing plate 1059 in the sixth embodiment.
(7)第7実施形態
 図44は、第7実施形態の液晶表示装置1070を示す概略断面図である。
 図44において、図43に示した第6実施形態と共通の構成要素には同一の符号を付して、説明を省略する。
(7) Seventh Embodiment FIG. 44 is a schematic cross-sectional view showing a liquid crystal display device 1070 of a seventh embodiment.
44, the same code | symbol is attached | subjected to the same component as 6th Embodiment shown in FIG. 43, and description is abbreviate | omitted.
 第7実施形態の液晶表示装置1070は、液晶パネル1080と、バックライト1060とから概略構成されている。バックライト1060は、表示画面1080aとは反対側の面1080b側に配置されている。 The liquid crystal display device 1070 according to the seventh embodiment is generally configured by a liquid crystal panel 1080 and a backlight 1060. The backlight 1060 is disposed on the surface 1080b side opposite to the display screen 1080a.
 液晶パネル1080は、第1偏光板1081と、第1基板1082と、第1透明電極1083と、液晶層1084と、第2透明電極1085と、第2偏光板1086と、カラーフィルタ1087と、第2基板1088とを備えてなり、これらが順に積層された構造をなしている。
 カラーフィルタ1087は、赤色カラーフィルタ1087R、緑色カラーフィルタ1087G、青色カラーフィルタ1087Bとから構成されている。
The liquid crystal panel 1080 includes a first polarizing plate 1081, a first substrate 1082, a first transparent electrode 1083, a liquid crystal layer 1084, a second transparent electrode 1085, a second polarizing plate 1086, a color filter 1087, And two substrates 1088, which are sequentially stacked.
The color filter 1087 includes a red color filter 1087R, a green color filter 1087G, and a blue color filter 1087B.
 第2偏光板1086としては、上述の本発明の第6実施形態に係る偏光板1010または第7実施形態に係る偏光板1030と同様のものが用いられる。
 また、第2偏光板1086の吸収軸は、図44に符号1086aで示す軸方向を向いている。
 なお、第1偏光板1081の吸収軸は、図44に符号1081aで示す軸方向を向いている。
As the 2nd polarizing plate 1086, the thing similar to the polarizing plate 1010 which concerns on the above-mentioned 6th Embodiment of this invention or the polarizing plate 1030 which concerns on 7th Embodiment is used.
Further, the absorption axis of the second polarizing plate 1086 faces the axial direction indicated by reference numeral 1086a in FIG.
Note that the absorption axis of the first polarizing plate 1081 is oriented in the axial direction indicated by reference numeral 1081a in FIG.
 液晶表示装置1070によれば、液晶パネル1080の第2偏光板1086として、偏光板1010または偏光板1030と同様のものが用いられる。そのため、第2偏光板1086で反射された光を、バックライト1060の反射板1061で反射して再利用できる。よって、高輝度化が可能になるとともに、コントラストが高く、はっきりとした黒表示が可能になる。
 また、バックライト1060から出射された光がカラーフィルタ1087を通過する時、偏光解消が生じてコントラストが低下する。これを抑制するために、カラーフィルタ1087の下に第2偏光板1086が設けられる。
According to the liquid crystal display device 1070, the second polarizing plate 1086 of the liquid crystal panel 1080 is the same as the polarizing plate 1010 or the polarizing plate 1030. Therefore, the light reflected by the second polarizing plate 1086 is reflected by the reflecting plate 1061 of the backlight 1060 and can be reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast.
Further, when the light emitted from the backlight 1060 passes through the color filter 1087, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 1086 is provided under the color filter 1087.
(8)第8実施形態
 図45は、第8実施形態の液晶表示装置1090を示す概略断面図である。
 図45において、図43に示した第6実施形態と共通の構成要素には同一の符号を付して、説明を省略する。
(8) Eighth Embodiment FIG. 45 is a schematic cross-sectional view showing a liquid crystal display device 1090 of an eighth embodiment.
45, the same code | symbol is attached | subjected to the same component as 6th Embodiment shown in FIG. 43, and description is abbreviate | omitted.
 第8実施形態の液晶表示装置1090は、液晶パネル1100と、バックライト1060とから概略構成されている。バックライト1060は、表示画面1100aとは反対側の面1100b側に配置されている。 The liquid crystal display device 1090 according to the eighth embodiment is generally configured by a liquid crystal panel 1100 and a backlight 1060. The backlight 1060 is disposed on the surface 1100b side opposite to the display screen 1100a.
 液晶パネル1100は、第1偏光板1101と、第1基板1102と、第1透明電極1103と、液晶層1104と、第2透明電極1105と、第2偏光板1106と、カラーフィルタ1107と、第2基板1108とを備えてなり、これらが順に積層された構造をなしている。
 カラーフィルタ1107は、赤色カラーフィルタ1107R、緑色カラーフィルタ1107G、青色カラーフィルタ1107Bとから構成されている。
The liquid crystal panel 1100 includes a first polarizing plate 1101, a first substrate 1102, a first transparent electrode 1103, a liquid crystal layer 1104, a second transparent electrode 1105, a second polarizing plate 1106, a color filter 1107, And two substrates 1108, which are stacked in order.
The color filter 1107 includes a red color filter 1107R, a green color filter 1107G, and a blue color filter 1107B.
 第1偏光板1101および第2偏光板1106としては、上述の本発明の第6実施形態に係る偏光板1010または第7実施形態に係る偏光板1030と同様のものが用いられる。
 第1偏光板1101の吸収軸は、図45に符号1101aで示す軸方向を向いている。また、第2偏光板1106の吸収軸は、図45に符号1106aで示す軸方向を向いている。
As the 1st polarizing plate 1101 and the 2nd polarizing plate 1106, the thing similar to the polarizing plate 1010 which concerns on the above-mentioned 6th Embodiment of this invention or the polarizing plate 1030 which concerns on 7th Embodiment is used.
The absorption axis of the first polarizing plate 1101 faces the axial direction indicated by reference numeral 1101a in FIG. Further, the absorption axis of the second polarizing plate 1106 faces the axial direction indicated by reference numeral 1106a in FIG.
 液晶表示装置1090によれば、液晶パネル1100の第1偏光板1101および第2偏光板1106として、偏光板1010または偏光板1030と同様のものが用いられる。そのため、第1偏光板1101および第2偏光板1106で反射された光を、バックライト1060の反射板1061で反射して再利用できる。よって、高輝度化が可能になるとともに、コントラストが高く、はっきりとした黒表示が可能になる。
 また、バックライト1060から出射された光がカラーフィルタ1107を通過する時、偏光解消が生じてコントラストが低下する。これを抑制するために、カラーフィルタ1107の下に第2偏光板1106が設けられる。
According to the liquid crystal display device 1090, the first polarizing plate 1101 and the second polarizing plate 1106 of the liquid crystal panel 1100 are the same as the polarizing plate 1010 or the polarizing plate 1030. Therefore, the light reflected by the first polarizing plate 1101 and the second polarizing plate 1106 can be reflected by the reflecting plate 1061 of the backlight 1060 and reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast.
Further, when the light emitted from the backlight 1060 passes through the color filter 1107, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 1106 is provided under the color filter 1107.
(9)第9実施形態
 図46は、第9実施形態の液晶表示装置1110を示す概略断面図である。
 図46において、図43に示した第6実施形態と共通の構成要素には同一の符号を付して、説明を省略する。
(9) Ninth Embodiment FIG. 46 is a schematic sectional view showing a liquid crystal display device 1110 according to a ninth embodiment.
46, the same code | symbol is attached | subjected to the same component as 6th Embodiment shown in FIG. 43, and description is abbreviate | omitted.
 第9実施形態の液晶表示装置1110は、液晶パネル1120と、バックライト1060とから概略構成されている。バックライト1060は、表示画面1120aとは反対側の面1120b側に配置されている。 The liquid crystal display device 1110 of the ninth embodiment is roughly configured by a liquid crystal panel 1120 and a backlight 1060. The backlight 1060 is disposed on the surface 1120b side opposite to the display screen 1120a.
 液晶パネル1120は、第1偏光板1121と、第1基板1122と、第1透明電極1123と、液晶層1124と、第2透明電極1125と、カラーフィルタ1126と、第2基板1127、第2偏光板1128とを備えてなり、これらが順に積層された構造をなしている。
 カラーフィルタ1126は、赤色カラーフィルタ1126R、緑色カラーフィルタ1126G、青色カラーフィルタ1126Bとから構成されている。
The liquid crystal panel 1120 includes a first polarizing plate 1121, a first substrate 1122, a first transparent electrode 1123, a liquid crystal layer 1124, a second transparent electrode 1125, a color filter 1126, a second substrate 1127, and a second polarization. The plate 1128 is provided, and these are laminated in order.
The color filter 1126 includes a red color filter 1126R, a green color filter 1126G, and a blue color filter 1126B.
 第1偏光板1121および第2偏光板1128としては、上述の本発明の第6実施形態に係る偏光板1010または第7実施形態に係る偏光板1030と同様のものが用いられる。
 第1偏光板1121の吸収軸は、図46に符号1121aで示す軸方向を向いている。また、第2偏光板1128の吸収軸は、図46に符号1128aで示す軸方向を向いている。
As the 1st polarizing plate 1121 and the 2nd polarizing plate 1128, the thing similar to the polarizing plate 1010 which concerns on the above-mentioned 6th Embodiment of this invention or the polarizing plate 1030 which concerns on 7th Embodiment is used.
The absorption axis of the first polarizing plate 1121 faces the axial direction indicated by reference numeral 1121a in FIG. Further, the absorption axis of the second polarizing plate 1128 faces the axial direction indicated by reference numeral 1128a in FIG.
 液晶表示装置1110によれば、液晶パネル1120の第1偏光板1121および第2偏光板1128として、偏光板1010または偏光板1030と同様のものが用いられる。そのため、第1偏光板1121および第2偏光板1128で反射された光を、バックライト1060の反射板1061で反射して再利用できる。よって、高輝度化が可能になるとともに、コントラストが高く、はっきりとした黒表示が可能になる。
 また、バックライト1060から出射された光がカラーフィルタ1087を通過する時、偏光解消が生じてコントラストが低下する。これを抑制するために、第9実施形態では、最表面に第2偏光板1128を設けることによりコントラストを高くすることができる。
According to the liquid crystal display device 1110, the first polarizing plate 1121 and the second polarizing plate 1128 of the liquid crystal panel 1120 are the same as the polarizing plate 1010 or the polarizing plate 1030. Therefore, the light reflected by the first polarizing plate 1121 and the second polarizing plate 1128 can be reflected by the reflecting plate 1061 of the backlight 1060 and reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast.
Further, when the light emitted from the backlight 1060 passes through the color filter 1087, depolarization occurs and the contrast is lowered. In order to suppress this, in the ninth embodiment, the contrast can be increased by providing the second polarizing plate 1128 on the outermost surface.
(10)第10実施形態
 図47は、第10実施形態の液晶表示装置1130を示す概略断面図である。
 図47において、図43に示した第6実施形態と共通の構成要素には同一の符号を付して、説明を省略する。
(10) Tenth Embodiment FIG. 47 is a schematic cross-sectional view showing a liquid crystal display device 1130 of a tenth embodiment.
47, the same code | symbol is attached | subjected to the same component as 6th Embodiment shown in FIG. 43, and description is abbreviate | omitted.
 第10実施形態の液晶表示装置1130は、液晶パネル1140と、バックライト1060とから概略構成されている。バックライト1060は、表示画面1140aとは反対側の面1140b側に配置されている。 The liquid crystal display device 1130 according to the tenth embodiment is roughly configured by a liquid crystal panel 1140 and a backlight 1060. The backlight 1060 is disposed on the surface 1140b side opposite to the display screen 1140a.
 液晶パネル1140は、第1基板1141と、第1透明電極1142と、第1偏光板1143と、液晶層1144と、第2透明電極1145と、第2偏光板1146と、カラーフィルタ1147と、第2基板1148とを備えてなり、これらが順に積層された構造をなしている。
 カラーフィルタ1147は、赤色カラーフィルタ1147R、緑色カラーフィルタ1147G、青色カラーフィルタ1147Bとから構成されている。
The liquid crystal panel 1140 includes a first substrate 1141, a first transparent electrode 1142, a first polarizing plate 1143, a liquid crystal layer 1144, a second transparent electrode 1145, a second polarizing plate 1146, a color filter 1147, And two substrates 1148, which are stacked in order.
The color filter 1147 includes a red color filter 1147R, a green color filter 1147G, and a blue color filter 1147B.
 第1偏光板1143および第2偏光板1146としては、上述の本発明の第6実施形態に係る偏光板1010または第7実施形態に係る偏光板1030と同様のものが用いられる。
 第1偏光板1143の吸収軸は、図47に符号1143aで示す軸方向を向いている。また、第2偏光板1146の吸収軸は、図47に符号1146aで示す軸方向を向いている。
As the 1st polarizing plate 1143 and the 2nd polarizing plate 1146, the thing similar to the polarizing plate 1010 which concerns on the above-mentioned 6th Embodiment of this invention or the polarizing plate 1030 which concerns on 7th Embodiment is used.
The absorption axis of the first polarizing plate 1143 faces the axial direction indicated by reference numeral 1143a in FIG. Further, the absorption axis of the second polarizing plate 1146 is oriented in the axial direction indicated by reference numeral 1146a in FIG.
 液晶表示装置1130によれば、液晶パネル1140の第1偏光板1143および第2偏光板1146として、偏光板1010または偏光板1030と同様のものが用いられる。そのため、第1偏光板1143および第2偏光板1146で反射された光を、バックライト1060の反射板1061で反射して再利用できる。よって、高輝度化が可能になるとともに、コントラストが高く、はっきりとした黒表示が可能になる。
 また、バックライト1060から出射された光がカラーフィルタ1147を通過する時、偏光解消が生じてコントラストが低下する。これを抑制するために、カラーフィルタ1147の下に第2偏光板1146が設けられる。
According to the liquid crystal display device 1130, the first polarizing plate 1143 and the second polarizing plate 1146 of the liquid crystal panel 1140 are the same as the polarizing plate 1010 or the polarizing plate 1030. Therefore, the light reflected by the first polarizing plate 1143 and the second polarizing plate 1146 can be reflected by the reflecting plate 1061 of the backlight 1060 and reused. Therefore, it is possible to increase the luminance and to display a clear black with high contrast.
Further, when the light emitted from the backlight 1060 passes through the color filter 1147, depolarization occurs and the contrast is lowered. In order to suppress this, a second polarizing plate 1146 is provided under the color filter 1147.
「電子機器」
 図48A~図48Dは、上述の液晶表示装置1040、1070、1090、1110、1130のいずれかと同様の液晶表示装置を表示部に備えた電子機器の一例を示す図である。
"Electronics"
48A to 48D are diagrams each showing an example of an electronic device provided with a liquid crystal display device similar to any one of the liquid crystal display devices 1040, 1070, 1090, 1110, and 1130 described above in its display portion.
 図48Aは、電子機器の一例として薄型表示装置1200を示す概略斜視図である。
 この薄型表示装置(電子機器)1200は、筐体1201と、支持台1202と、表示部1203と、スピーカー部1204と、ビデオ入力端子1205とから概略構成されている。
 表示部1203としては、上述の本発明の第6~第10実施形態に係る液晶表示装置1040、1070、1090、1110、1130のいずれかと同様の構成のものが用いられる。
FIG. 48A is a schematic perspective view showing a thin display device 1200 as an example of an electronic apparatus.
The thin display device (electronic device) 1200 is generally configured by a housing 1201, a support stand 1202, a display unit 1203, a speaker unit 1204, and a video input terminal 1205.
As the display unit 1203, a display unit having the same configuration as any of the liquid crystal display devices 1040, 1070, 1090, 1110, and 1130 according to the sixth to tenth embodiments of the present invention described above is used.
 図48Bは、電子機器の一例としてノート型パソコン1300を示す概略斜視図である。
 このノート型パソコン(電子機器)1300は、本体1301と、筐体1302と、表示部1303と、キーボード1304と、外部接続ポート1305と、ポインティングパッド1306とから概略構成されている。
 表示部1303としては、上述の本発明の第6~第10実施形態に係る液晶表示装置1040、1070、1090、1110、1130のいずれかと同様の構成のものが用いられる。
FIG. 48B is a schematic perspective view showing a notebook computer 1300 as an example of an electronic apparatus.
The notebook personal computer (electronic device) 1300 is roughly configured by a main body 1301, a housing 1302, a display unit 1303, a keyboard 1304, an external connection port 1305, and a pointing pad 1306.
As the display unit 1303, a display unit having the same configuration as any of the liquid crystal display devices 1040, 1070, 1090, 1110, and 1130 according to the sixth to tenth embodiments of the present invention described above is used.
 図48Cは、電子機器の一例として携帯電話400を示す概略斜視図である。
 この携帯電話(電子機器)1400は、本体1401と、筐体1402と、表示部1403と、音声入力部1404と、音声出力部1405と、操作キー1406と、外部接続ポート1407と、アンテナ1408とから概略構成されている。
 表示部1403としては、上述の本発明の第6~第10実施形態に係る液晶表示装置1040、1070、1090、1110、1130のいずれかと同様の構成のものが用いられる。
FIG. 48C is a schematic perspective view showing a mobile phone 400 as an example of the electronic apparatus.
The cellular phone (electronic device) 1400 includes a main body 1401, a housing 1402, a display unit 1403, a voice input unit 1404, a voice output unit 1405, operation keys 1406, an external connection port 1407, and an antenna 1408. It is roughly composed.
As the display unit 1403, a display unit having the same configuration as any of the liquid crystal display devices 1040, 1070, 1090, 1110, and 1130 according to the sixth to tenth embodiments of the present invention described above is used.
 図48Dは、電子機器の一例としてビデオカメラ1500を示す概略斜視図である。
 このビデオカメラ(電子機器)1500は、本体1501と、表示部1502と、筐体1503と、外部接続ポート1504と、リモコン受信部1505と、受像部1506と、バッテリー1507と、音声入力部1508と、操作キー1509と、接眼部1510とから概略構成されている。
 表示部1502としては、上述の本発明の第6~第10実施形態に係る液晶表示装置1040、1070、1090、1110、1130のいずれかと同様の構成のものが用いられる。
FIG. 48D is a schematic perspective view illustrating a video camera 1500 as an example of an electronic apparatus.
The video camera (electronic device) 1500 includes a main body 1501, a display unit 1502, a housing 1503, an external connection port 1504, a remote control receiving unit 1505, an image receiving unit 1506, a battery 1507, and an audio input unit 1508. The operation key 1509 and the eyepiece unit 1510 are roughly configured.
As the display unit 1502, a display unit having the same configuration as any of the liquid crystal display devices 1040, 1070, 1090, 1110, and 1130 according to the sixth to tenth embodiments of the present invention described above is used.
 図48A~図48Dに示した電子機器1200、1300、1400、1500は、上述の本発明の第6~第10実施形態に係る液晶表示装置1040、1070、1090、1110、1130のいずれかを表示部に備えている。そのため、高輝度化かつコントラストが高い画像表示が可能な表示部を備えた電子機器となる。 The electronic devices 1200, 1300, 1400, and 1500 shown in FIGS. 48A to 48D display any one of the liquid crystal display devices 1040, 1070, 1090, 1110, and 1130 according to the sixth to tenth embodiments of the present invention described above. In the department. Therefore, the electronic apparatus includes a display unit that can display an image with high brightness and high contrast.
 本発明は、偏光板、液晶表示装置および電子機器の分野などに利用することができる。 The present invention can be used in the fields of polarizing plates, liquid crystal display devices, and electronic equipment.
10、30・・・偏光板、
11、31・・・基板、
12、32・・・金属層、
13・・・導電性層、
14・・・積層体、
15、15A、33、33A・・・絶縁層、
16、34・・・金属酸化物層、
21・・・陽極、
22・・・陰極、
23・・・硫酸溶液、
40、70、90、130・・・液晶表示装置、
50、80、100、120、140・・・液晶パネル、
51、81、101、121、143・・・第1偏光板、
52、82、102、122、141・・・第1基板、
53、83、103、123、142・・・第1透明電極、
54、84、104、124、144・・・液晶層、
55、85、105、125、145・・・第2透明電極、
56、86、106、128、146・・・第2偏光板、
57、87、107、126、147・・・カラーフィルタ、
58、88、108、127、148・・・第2基板、
59・・・第3偏光板、
60・・・バックライト、
61・・・反射板、
200・・・薄型表示装置(電子機器)、
300・・・ノート型パソコン(電子機器)、
400・・・携帯電話(電子機器)、
500・・・ビデオカメラ(電子機器)、
1010、1030・・・偏光板、
1011、1031・・・基板、
1012、1032・・・金属層、
1013、1033・・・金属酸化物層、
1014・・・導電性層、
1015、1015A、1034、1034A・・・絶縁層、
1021・・・陽極、
1022・・・陰極、
1023・・・硫酸溶液、
1040、1070、1090、1130・・・液晶表示装置、
1050、1080、1100、1120、1140・・・液晶パネル、
1051、1081、1101、1121、1143・・・第1偏光板、
1052、1082、1102、1122、1141・・・第1基板、
1053、1083、1103、1123、1142・・・第1透明電極、
1054、1084、1104、1124、1144・・・液晶層、
1055、1085、1105、1125、1145・・・第2透明電極、
1056、1086、1106、1128、1146・・・第2偏光板、
1057、1087、1107、1126、1147・・・カラーフィルタ、
1058、1088、1108、1127、1148・・・第2基板、
1059・・・第3偏光板、
1060・・・バックライト、
1061・・・反射板、
1200・・・薄型表示装置(電子機器)、
1300・・・ノート型パソコン(電子機器)、
1400・・・携帯電話(電子機器)、
1500・・・ビデオカメラ(電子機器)
10, 30 ... Polarizing plate,
11, 31 ... substrate,
12, 32 ... metal layer,
13 ... conductive layer,
14 ... laminate,
15, 15A, 33, 33A ... insulating layer,
16, 34 ... metal oxide layer,
21 ... Anode,
22 ... cathode,
23 ... sulfuric acid solution,
40, 70, 90, 130 ... liquid crystal display device,
50, 80, 100, 120, 140 ... liquid crystal panel,
51, 81, 101, 121, 143 ... first polarizing plate,
52, 82, 102, 122, 141 ... first substrate,
53, 83, 103, 123, 142 ... first transparent electrode,
54, 84, 104, 124, 144 ... liquid crystal layer,
55, 85, 105, 125, 145 ... second transparent electrode,
56, 86, 106, 128, 146 ... second polarizing plate,
57, 87, 107, 126, 147 ... color filters,
58, 88, 108, 127, 148 ... second substrate,
59 ... third polarizing plate,
60 ... Backlight,
61 ... reflector,
200 ... Thin display device (electronic device),
300 ・ ・ ・ Notebook computer (electronic equipment),
400: mobile phone (electronic device),
500 ... Video camera (electronic equipment),
1010, 1030 ... Polarizing plate,
1011, 1031... Substrate
1012, 1032 ... metal layer,
1013, 1033 ... Metal oxide layer,
1014 ... conductive layer,
1015, 1015A, 1034, 1034A ... insulating layer,
1021... Anode,
1022... Cathode,
1023 ... sulfuric acid solution,
1040, 1070, 1090, 1130 ... Liquid crystal display device,
1050, 1080, 1100, 1120, 1140 ... liquid crystal panel,
1051, 1081, 1101, 1121, 1143... First polarizing plate,
1052, 1082, 1102, 1122, 1141 ... the first substrate,
1053, 1083, 1103, 1123, 1142 ... first transparent electrode,
1054, 1084, 1104, 1124, 1144 ... liquid crystal layer,
1055, 1085, 1105, 1125, 1145, second transparent electrode,
1056, 1086, 1106, 1128, 1146 ... second polarizing plate,
1057, 1087, 1107, 1126, 1147 ... color filters,
1058, 1088, 1108, 1127, 1148 ... second substrate,
1059 ... third polarizing plate,
1060 ... Backlight,
1061... Reflector,
1200 ... thin display device (electronic device),
1300: Notebook computer (electronic device),
1400: mobile phone (electronic device),
1500 ... Video camera (electronic equipment)

Claims (14)

  1.  基板上に金属層を形成する工程と、
     前記金属層上に絶縁層を形成する工程と、
     前記絶縁層を、ネルバフを用いてバフ研磨加工することにより、前記金属層上に一次元格子状の絶縁層を形成する工程と、
     前記金属層および前記一次元格子状の絶縁層が形成された前記基板を陽極とし、前記基板における前記金属層および前記一次元格子状の絶縁層が形成された面と、陰極とを対向させた状態で、前記金属層の表層を陽極酸化することにより、前記金属層における前記一次元格子状の絶縁層の間隙に対向する部分およびその近傍に多孔質状の金属酸化物層を形成する工程と、
     エッチングにより前記絶縁層を除去する工程と、を具備する偏光板の製造方法。
    Forming a metal layer on the substrate;
    Forming an insulating layer on the metal layer;
    Forming a one-dimensional lattice-like insulating layer on the metal layer by buffing the insulating layer using nerbuff;
    The substrate on which the metal layer and the one-dimensional lattice-like insulating layer are formed is used as an anode, and the surface of the substrate on which the metal layer and the one-dimensional lattice-like insulating layer are formed is opposed to the cathode. Forming a porous metal oxide layer in and near the portion of the metal layer facing the gap of the one-dimensional lattice-like insulating layer by anodizing the surface layer of the metal layer in the state ,
    And a step of removing the insulating layer by etching.
  2.  前記一次元格子状の絶縁層をマスクとして、エッチングにより前記金属酸化物層を除去することによって、前記金属層を一次元格子状に加工する工程を具備する請求項1に記載の偏光板の製造方法。 The manufacturing method of a polarizing plate according to claim 1, comprising a step of processing the metal layer into a one-dimensional lattice by removing the metal oxide layer by etching using the one-dimensional lattice-like insulating layer as a mask. Method.
  3.  前記基板上に前記金属層を形成する工程の前に、前記基板上に導電性層を形成する工程を具備する請求項1に記載の偏光板の製造方法。 The method for producing a polarizing plate according to claim 1, further comprising a step of forming a conductive layer on the substrate before the step of forming the metal layer on the substrate.
  4.  前記金属酸化物層を形成する工程において、前記導電性層を陽極として用いる請求項3に記載の偏光板の製造方法。 The method for producing a polarizing plate according to claim 3, wherein in the step of forming the metal oxide layer, the conductive layer is used as an anode.
  5.  前記金属層を一次元格子状に加工する工程において、前記金属酸化物層とともに、前記導電性層のうち前記金属酸化物層に対向する部分を除去する請求項3に記載の偏光板の製造方法。 The manufacturing method of the polarizing plate of Claim 3 which removes the part which opposes the said metal oxide layer among the said electroconductive layers with the said metal oxide layer in the process of processing the said metal layer in a one-dimensional lattice form. .
  6.  入射光に対して透明な基板と、前記基板上に形成された一次元格子状の金属層と、を備え、前記一次元格子状の金属層のピッチは、入射光の波長より小さい偏光板。 A polarizing plate comprising a substrate transparent to incident light and a one-dimensional lattice-like metal layer formed on the substrate, wherein the pitch of the one-dimensional lattice-like metal layer is smaller than the wavelength of incident light.
  7.  前記一次元格子状の金属層は、前記基板上に形成した金属層上に形成された絶縁層を、ネルバフを用いてバフ研磨加工することにより、前記金属層上に一次元格子状の絶縁層を形成し、前記金属層および前記一次元格子状の絶縁層が形成された前記基板を陽極とし、前記基板における前記金属層および前記一次元格子状の絶縁層が形成された面と、陰極とを対向させた状態で、前記金属層の表層を陽極酸化することにより、前記金属層における前記一次元格子状の絶縁層の間隙に対向する部分およびその近傍に多孔質状の金属酸化物層を形成し、前記一次元格子状の絶縁層をマスクとし、エッチングにより前記金属酸化物層を除去することによって形成された請求項6に記載の偏光板。 The one-dimensional grid-like metal layer is formed by buffing an insulating layer formed on the metal layer formed on the substrate using a nerbuff to form a one-dimensional grid-like insulating layer on the metal layer. The substrate on which the metal layer and the one-dimensional lattice-like insulating layer are formed is an anode, the surface of the substrate on which the metal layer and the one-dimensional lattice-like insulating layer are formed, and a cathode With the surface of the metal layer facing each other, the surface layer of the metal layer is anodized, so that a porous metal oxide layer is formed in and near the portion of the metal layer facing the gap of the one-dimensional lattice-like insulating layer. The polarizing plate according to claim 6, which is formed by removing the metal oxide layer by etching using the one-dimensional lattice-like insulating layer as a mask.
  8.  前記基板と前記金属層の間に導電性層が形成された請求項6に記載の偏光板。 The polarizing plate according to claim 6, wherein a conductive layer is formed between the substrate and the metal layer.
  9.  前記金属層の間に介在する金属酸化物層を備える請求項6に記載の偏光板。 The polarizing plate according to claim 6, further comprising a metal oxide layer interposed between the metal layers.
  10.  前記一次元格子状の金属層は、前記基板上に形成された金属層上に形成された絶縁層を、ネルバフを用いてバフ研磨加工することにより、前記金属層上に一次元格子状の絶縁層を形成し、前記金属層および前記一次元格子状の絶縁層が形成された前記基板を陽極とし、前記基板における前記金属層および前記一次元格子状の絶縁層が形成された面と、陰極とを対向させた状態で、前記金属層の表層を陽極酸化することにより、前記金属層における前記一次元格子状の絶縁層の間隙に対向する部分およびその近傍に多孔質状の金属酸化物層を形成することによって形成された請求項9に記載の偏光板。 The one-dimensional grid-like metal layer is formed by buffing an insulating layer formed on the metal layer formed on the substrate using a nerbuff, thereby forming a one-dimensional grid-like insulation on the metal layer. Forming a layer, the substrate on which the metal layer and the one-dimensional lattice-like insulating layer are formed as an anode, a surface of the substrate on which the metal layer and the one-dimensional lattice-like insulating layer are formed, and a cathode And a portion of the metal layer facing the gap of the one-dimensional lattice-like insulating layer and a porous metal oxide layer in the vicinity thereof, by anodizing the surface layer of the metal layer The polarizing plate according to claim 9, formed by forming a film.
  11.  前記基板と、前記金属層および前記金属酸化物層との間に導電性層が介在している請求項10に記載の偏光板。 The polarizing plate according to claim 10, wherein a conductive layer is interposed between the substrate and the metal layer and the metal oxide layer.
  12.  入射光に対して透明な基板と、前記基板上に形成された一次元格子状の金属層と、を備え、前記一次元格子状の金属層のピッチは、入射光の波長より小さい偏光板を備える液晶パネル。 A substrate transparent to incident light, and a one-dimensional grid-like metal layer formed on the substrate, wherein the pitch of the one-dimensional grid-like metal layer is smaller than the wavelength of the incident light. A liquid crystal panel.
  13.  入射光に対して透明な基板と、前記基板上に形成された一次元格子状の金属層と、を備え、前記一次元格子状の金属層のピッチは、入射光の波長より小さい偏光板を有する液晶パネルを備える液晶表示装置。 A substrate transparent to incident light, and a one-dimensional grid-like metal layer formed on the substrate, wherein the pitch of the one-dimensional grid-like metal layer is smaller than the wavelength of the incident light. A liquid crystal display device comprising a liquid crystal panel.
  14.  入射光に対して透明な基板と、前記基板上に形成された一次元格子状の金属層と、を備え、前記一次元格子状の金属層のピッチは、入射光の波長より小さい偏光板を有する液晶パネルを有する液晶表示装置を備える電子機器。 A substrate transparent to incident light, and a one-dimensional grid-like metal layer formed on the substrate, wherein the pitch of the one-dimensional grid-like metal layer is smaller than the wavelength of the incident light. An electronic apparatus including a liquid crystal display device having a liquid crystal panel.
PCT/JP2011/078173 2010-12-10 2011-12-06 Polarizing plate, method for producing same, liquid crystal panel provided with polarizing plate, and liquid crystal display device and electronic instrument comprising same WO2012077675A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-276237 2010-12-10
JP2010276237 2010-12-10
JP2010276238 2010-12-10
JP2010-276238 2010-12-10

Publications (1)

Publication Number Publication Date
WO2012077675A1 true WO2012077675A1 (en) 2012-06-14

Family

ID=46207163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078173 WO2012077675A1 (en) 2010-12-10 2011-12-06 Polarizing plate, method for producing same, liquid crystal panel provided with polarizing plate, and liquid crystal display device and electronic instrument comprising same

Country Status (1)

Country Link
WO (1) WO2012077675A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200050048A1 (en) * 2018-08-07 2020-02-13 Sharp Kabushiki Kaisha Display device
TWI700524B (en) * 2018-10-03 2020-08-01 采鈺科技股份有限公司 Optical elements and method for fabricating the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326783A (en) * 1997-05-27 1998-12-08 Toshiba Corp Wiring structure, semiconductor device using the wiring structure and circuit wiring board
JPH11200090A (en) * 1997-11-12 1999-07-27 Canon Inc Nanostructural body and its production
JP2002332578A (en) * 2001-05-10 2002-11-22 Canon Inc Method of manufacturing nano-structure
JP2003033936A (en) * 2001-07-23 2003-02-04 Matsushita Electric Works Ltd Manufacturing method for building material
JP2004004621A (en) * 2002-03-25 2004-01-08 Sanyo Electric Co Ltd Element having microstructure and method for manufacturing the same
JP2006343559A (en) * 2005-06-09 2006-12-21 Seiko Epson Corp Method for manufacturing optical element and projection type display device
JP2007310249A (en) * 2006-05-19 2007-11-29 Hitachi Maxell Ltd Method of manufacturing wire grid polarizer, wire grid polarizer and optical device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326783A (en) * 1997-05-27 1998-12-08 Toshiba Corp Wiring structure, semiconductor device using the wiring structure and circuit wiring board
JPH11200090A (en) * 1997-11-12 1999-07-27 Canon Inc Nanostructural body and its production
JP2002332578A (en) * 2001-05-10 2002-11-22 Canon Inc Method of manufacturing nano-structure
JP2003033936A (en) * 2001-07-23 2003-02-04 Matsushita Electric Works Ltd Manufacturing method for building material
JP2004004621A (en) * 2002-03-25 2004-01-08 Sanyo Electric Co Ltd Element having microstructure and method for manufacturing the same
JP2006343559A (en) * 2005-06-09 2006-12-21 Seiko Epson Corp Method for manufacturing optical element and projection type display device
JP2007310249A (en) * 2006-05-19 2007-11-29 Hitachi Maxell Ltd Method of manufacturing wire grid polarizer, wire grid polarizer and optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200050048A1 (en) * 2018-08-07 2020-02-13 Sharp Kabushiki Kaisha Display device
TWI700524B (en) * 2018-10-03 2020-08-01 采鈺科技股份有限公司 Optical elements and method for fabricating the same
US10850462B2 (en) 2018-10-03 2020-12-01 Visera Technologies Company Limited Optical elements and method for fabricating the same

Similar Documents

Publication Publication Date Title
TWI454758B (en) Polarizer and display device including polarizer
JP5303928B2 (en) Reflective polarizing plate, method for producing the same, and liquid crystal display device using the same
US9860981B2 (en) Transparent conductive film and method for producing same
US20110292311A1 (en) Liquid crystal display screen
US20080137188A1 (en) Wire grid polarizer and method of manufacturing the same
WO2003023594A1 (en) Touch panel having high durability
JP2006018800A (en) Touch panel with high durability
KR101476893B1 (en) Anti-scratch film for flexible display
TWI468786B (en) Method of fabricating lightweight and thin liquid crystal display device
JP2008204320A (en) Touch panel
WO2016101598A1 (en) Polarizer, manufacturing method thereof, display panel and display device
JP2004214069A (en) Transparent conductive film, transparent conductive laminate, and touch panel
JP2006079149A (en) Touch panel
CN113383297A (en) Flexible display module, manufacturing method thereof and electronic equipment
JP4577734B2 (en) Low reflective resistive touch panel and method for manufacturing the same
WO2012077675A1 (en) Polarizing plate, method for producing same, liquid crystal panel provided with polarizing plate, and liquid crystal display device and electronic instrument comprising same
JP2006107015A (en) Touch panel
US11604373B2 (en) Electrically controllable viewing angle switch device and display apparatus
JP5259539B2 (en) Narrow frame touch input sheet with protective film, laminated narrow frame touch input sheet with protective film, and methods for manufacturing the same
TW200919279A (en) Touch panel and liquid crystal display panel
JP2000082338A (en) Transparent conductive film, transparent touch panel, and liquid crystal display element
JP4219735B2 (en) Low reflection touch panel mounting structure and low reflection touch panel mounting sheet
JP2000082335A (en) Transparent conductive film, transparent touch panel, and liquid crystal display element
JP2003157149A (en) Touch panel having high durability
JPH1153118A (en) Stack sheet for polarizing plate-integrated inner touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP