EP0992761B1 - Procédé de correction du déclenchement préprogrammé d'un processus dans un projectile à stabilisation par rotation, dispositif de mise en oeuvre dudit procédé et utilisation dudit dispositif - Google Patents

Procédé de correction du déclenchement préprogrammé d'un processus dans un projectile à stabilisation par rotation, dispositif de mise en oeuvre dudit procédé et utilisation dudit dispositif Download PDF

Info

Publication number
EP0992761B1
EP0992761B1 EP99117580A EP99117580A EP0992761B1 EP 0992761 B1 EP0992761 B1 EP 0992761B1 EP 99117580 A EP99117580 A EP 99117580A EP 99117580 A EP99117580 A EP 99117580A EP 0992761 B1 EP0992761 B1 EP 0992761B1
Authority
EP
European Patent Office
Prior art keywords
projectile
actual
muzzle velocity
magnetic field
rotations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99117580A
Other languages
German (de)
English (en)
Other versions
EP0992761A1 (fr
Inventor
Pierre H. Freymond
Klaus Muenzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RWM Schweiz AG
Original Assignee
Oerlikon Contraves Pyrotec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Contraves Pyrotec AG filed Critical Oerlikon Contraves Pyrotec AG
Publication of EP0992761A1 publication Critical patent/EP0992761A1/fr
Application granted granted Critical
Publication of EP0992761B1 publication Critical patent/EP0992761B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C11/00Electric fuzes
    • F42C11/06Electric fuzes with time delay by electric circuitry
    • F42C11/065Programmable electronic delay initiators in projectiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C17/00Fuze-setting apparatus
    • F42C17/04Fuze-setting apparatus for electric fuzes

Definitions

  • the invention relates to a method for correcting a preprogrammed trip a process in a spin-stabilized floor according to the preamble of the claim 1, an apparatus for performing this method according to the preamble of the claim 9 and a use of the device according to the preamble of the claim 10th
  • Methods and devices of this type are used in connection with the time preprogrammable Triggering functions in a spin-stabilized ballistic projectile used, the triggering of the function at a specific trigger location and thus in a certain triggering distance from the launch site or at a certain triggering time and thus should take place after a certain flight time.
  • timers the Disassembly after a certain or determinable time interval, for example starts at launch; initiated; in the case of revolution detonators, the decomposition becomes a certain or determinable number of revolutions that the floor after the Carried out, initiated.
  • the detonator can be timed for Disassembly can be communicated, for example, by remote reporting.
  • Such facilities point but various disadvantages; firstly, they require complex implementation a receiver and secondly there is a risk of hostile interference with the telecommunications processes, which can lead to incorrect temping. These disadvantages are so serious That is why it is often preferred to only provide a preprogrammed temp. which are no longer influenced during the flight, so none Telecommunication connection is necessary.
  • Pre-programmable revolution detonators are preprogrammed, preferably when charging, that the ignition after a certain, predetermined number of revolutions of the floor. Such preprogramming can be carried out without corrective measures to relatively inaccurate results because they reflect the deviations of the actual The flight behavior of the projectile does not depend on the theoretically determined flight behavior may take into account.
  • various measures can be taken that are based on having the effective rotational frequency of the projectile and / or the effective muzzle velocity correlated with the effective rotation frequency of the floor and determines this within the floor in the determination of the Includes tempering time.
  • the effective muzzle velocity outside the gun barrel immediately after its mouth by means of a coil arrangement with two spaced apart Measuring coils can be determined.
  • Such measuring coils are proportionate sensitive and therefore form a particularly vulnerable, at least for mobile guns Assembly.
  • the effective muzzle velocity can also be obtained by extrapolation from within of the gun barrel in the area of the muzzle cross-section measured bullet speed be determined.
  • the floor speed is measured here by means of two sensors arranged at a certain mutual distance from one another. The disadvantage of this is that this procedure is relatively complex Facilities on the gun barrel are necessary, and that results as a result extrapolation are not very accurate.
  • the bullet rotations are counted in conventional methods of this type Help of the earth's magnetic field.
  • the detonator has a counter that shows the number of round rotations continuously integrated.
  • the counter adds up continuously, i.e. throughout the entire period Floor flight time, the number of pulses between two rectified zero crossings this tension.
  • the ignition or the story dismantling takes place at one Detonator, which, as mentioned above, is referred to as a revolution detonator once the Number of summed pulses has reached a pre-programmed value.
  • EP-0 661 516-A1 discloses a multifunctional detonator for spin-stabilized projectiles, in which the actual muzzle velocity is calculated on the basis of the actual rotation frequency of the projectile.
  • the earth's magnetic field is used to determine the rotation frequency, with each projectile rotation providing a pulse.
  • the number of storey rotations is counted by summing the impulses caused by the storey rotations.
  • EP-0 661 516-A1 it is proposed, among other things, to carry out the ongoing determination of the flight duration or the flight path during a first flight phase of approximately 1000 meters via the number of storeys rotation; at the beginning of a second flight phase, starting at around 1000 meters, the transition from revolution counting to time counting should then be carried out, since it has been shown that the accuracy of revolution detonators is quite good at flight distances of up to about 1000 meters, but it is more accurate at longer flight distances inferior to timers.
  • the earth's magnetic field is thus during the relatively long first flight phase of 1000 meters or during the time required to fly this distance continuous counting of the floor rotations used. Disturbances in the earth's magnetic field can therefore affect the count for a very long time and thereby the accuracy severely affect the function of the igniter.
  • the measurement is carried out to determine the rotational frequency of the projectile only for a relatively short period of time, known as the calibration phase immediately after the projectile is fired.
  • the new process delivers Relatively accurate results because the bullet speed during this calibration phase only to a very small extent due to the floor rotation frequency determined muzzle velocity deviates. It is also advantageous that the influence of Interference of the earth's magnetic field remains low, since it only occurs during the relatively short Calibration phase affects.
  • Another advantage of the time limitation according to the invention Use of the earth's magnetic field is that that required for signal amplification in the igniter Energy is low.
  • the calibration phase is preferably calculated, specifically ideally so that the total error from the relevant unavoidable errors is possible becomes low.
  • the way in which such a calculation is carried out is described below; the requirements and simplifications made in such a calculation will of course affect their accuracy; higher accuracy needs to be done as usual can be bought with a greater effort.
  • the accuracy of the determination of the muzzle velocity essentially depends on the number of storey rotations during which the measurement or counting of the Pulses of the internal oscillator or frequency generator takes place. Will during measured on a large number of projectile rotations, the measuring method is on itself more precisely because of the influence of uncounted impulses, especially at the beginning and end the measurement, decreases proportionally; to keep the errors of the measurement method too small, is therefore the measurement during a large number of floor rotations advantageous.
  • the first relative error thus decreases with increasing R , as stated above.
  • the second relative error increases with increasing R, as stated above.
  • is differentiated according to R and the result of this differentiation, ie d ⁇ / dR , is set to zero; the R that can be calculated from this corresponds to the Ropt sought.
  • R opt 2 ((tg ( ⁇ e)) / ( ⁇ * D)) 2 * (2 * V0 * ⁇ M) / (fz * (2a-k))
  • Ropt By pulling the root out of Ropt 2 you finally get Ropt. It is not possible to determine an Ropt in the manner of an invariant key figure; Ropt can - even with the underlying simplifications - only be calculated taking into account the respective geometric conditions such as caliber D and final twist angle ⁇ e and the respective muzzle velocity V0 .
  • Eight floor rotations correspond to a distance of approximately 10 meters that the floor travels on its trajectory.
  • the earth's magnetic field is exemplary in this Use case according to the above calculation during a flight path of approx. 10 meters; in the previously known method, however, the earth's magnetic field is during a flight path of 1000 meters, i.e. on a 100 times longer route and therefore during one used more than 100 times longer.
  • the inventive Method is far more accurate than the previously known method because during the limited Number of storey rotations the drop in speed is insignificant and since a disturbance of the earth's magnetic field only occurs during the very limited calibration phase affects and thereby results in significantly fewer errors than the previously known Method. This also applies if it is taken into account that the above calculation with numerous Simplifications and inaccuracies.
  • the new method uses the earth's magnetic field to determine the effective muzzle velocity of the projectile via the effective projectile rotation frequency.
  • the conventional method takes place in such a way that each projectile rotation delivers a pulse and that during a defined time interval which is given by an internal projectile oscillator, the number of projectile rotations is counted by summing the pulses caused by the projectile rotations.
  • the actual muzzle velocity is determined according to formula ( 1 ):
  • the muzzle velocity V0s calculated in this way is directly proportional to the measured value, i.e. the measured value of the number of projectile rotations.
  • this measurement method is not very precise.
  • the number of pulses of the frequency generator per floor rotation is measured or counted, by changing the position of the floor, i.e. the floor rotation, in the Course of its rotation by changing a tension in a suitably arranged Coil arrangement on the floor determines what voltage is caused by the earth's magnetic field is induced. It should be mentioned here again that to determine a floor rotation instead of the physical properties of the earth's magnetic field also the physical ones Properties of another magnetic field can be used.
  • a coil device is generally used to determine the earth's magnetic field, in which changes the earth's magnetic field sinusoidally with the natural rotation of the projectile Voltage is induced.
  • a coil can be used to harness the earth's magnetic field also another suitable device, for example magnetic sensors such as Hall elements or field plates.
  • Fig. 1 shows schematically a fire control device 1 and an igniter 2 of a floor, not shown in the following.
  • the igniter 2 receives an input from the fire control device 1 via a gun electronics via a decoder 3 with the standard muzzle velocity or the standard rotation frequency and the standard final twist angle or, if applicable, the actual final twist angle, which has otherwise been determined and entered, as well as with data regarding the movement of the flight target, which is to be hit by the projectile, whereby the temping or the theoretical standard decomposition time. is set.
  • a measuring device 5 is used for the autonomous measurement of the effective rotational frequency of the projectile using the earth's magnetic field 4 immediately after the muzzle.
  • the result of the autonomous measurement is then compared at 6 with the corresponding standard values, from which a correction or update of the standard values to updated values can be determined at 7 ;
  • the correction shows the updated programmed disassembly time.
  • This is compared at 8 with the current time, and as soon as the current time reaches the value of the updated programmed disassembly time, the disassembly is initialized at 9 and an ignition pulse I is given to disassemble the projectile.
  • FIGS. 2 and 3 are to pre-program a detonator in a spin-stabilized projectile fired by a gun before the launch phase in such a way that the projectile is broken down into projectile fragments or sub-projectiles after a certain flight duration takes place at a certain point in time and then updates this programming.
  • the gun has a gun electronics, via which it is connected to a fire control device, not shown.
  • the fire control device calculates the theoretical or
  • Standard disassembly time of the projectile fired from a gun barrel of the gun This calculation assumes that the muzzle velocity is the theoretical muzzle velocity.
  • the final twist angle can theoretically known end twist angle or, preferably, the effective end twist angle, where in the first case, the correction of the final twist angle by the fire control device or Gun electronics is done.
  • a correction or update is then carried out programming the disassembly time taking into account the actual muzzle velocity or floor rotation frequency and possibly the actual measured Enddrallwinkels.
  • the example shown in FIG. 2 is to pre-program a detonator in a spin-stabilized projectile 100 fired by a gun 10 prior to the launch phase in such a way that the projectile 100 is broken down into projectile fragments or sub-projectiles after a specific flight duration or to a specific one Time takes place.
  • the detonator does not know the speed VT of the target.
  • the gun 10 has a gun electronics 11 , via which it is connected to a fire control device, not shown.
  • the fire control device calculates in the usual way the distance a between the gun 10 and the location of the disassembly of the projectile shot from a gun barrel of the gun as a function of the speed of the target.
  • the theoretical flight time TP N until the projectile is disassembled is calculated.
  • This calculation assumes that the muzzle velocity is the theoretical muzzle velocity or standard muzzle velocity V0 N and the final helix angle is the theoretical final helix angle ⁇ e N.
  • the theoretical disassembly time or flight time to disassembly calculated in this way is transmitted to the gun 10 and passed on to a first counter or a shift register 102 of the projectile 100 via a coil driver 12 and a decoder 14 , and there as a theoretical or preprogrammed flight duration or disassembly time memorized.
  • An oscillator 106 is arranged on the projectile 100 or on its igniter, the oscillator frequency of which is considered to be constant is fZ . Furthermore, a coil 108 is arranged on the projectile 100 or on the detonator, in which the earth's magnetic field H induces a voltage which changes sinusoidally when the projectile 100 rotates. This voltage is amplified by means of an amplifier 110 and the rotational frequency fG of the projectile is determined therefrom. Element 112 then determines a calibration value which is equal to the quotient fZ / fG (switch S2 open, switch S1 closed ).
  • the oscillator frequency fZ is divided by the calibration value at 116 , and the result of this division is then divided at 117 by a previously determined reduction factor K1 (switch S2 closed , switch S1 open).
  • K1 reduction factor
  • the result of this second division reaches a second counter 118 and is summed there during the flight time of the projectile.
  • the product of the flight time of the projectile TP and the muzzle velocity is invariant.
  • the above-described device according to FIG. 2 is suitable for carrying out the new method in cases in which targets which are at rest or moving at relatively low speeds have to be combated; these are terrestrial targets or, if necessary, slow flight targets such as combat helicopters.
  • the device described below with reference to FIG. 3 is more complex to implement than the device according to FIG. 2 , but it is also suitable for cases in which rapidly approaching flight destinations have to be combated.
  • K and K1 are factors that are used to take into account certain variable, but each for at least one shot of fixed sizes.
  • the factor K is determined by the fire control system.
  • the factor K1 takes into account the final twist angle ⁇ e .
  • T1 TP N * (V0 N + VT) / (V0 + VT)
  • T1 TP N * (V0 N + VT) / ( ⁇ V + V0 N + VT).
  • T1 TP N * (1 - ⁇ V / (V0 N + VT))
  • the detonator can independently calculate the exact disassembly time T1 ; it is essential that the formula (24) contains only known quantities for K.
  • the autonomous measurement for determining the effective muzzle velocity V0 now takes place second, the switch S1 being closed and the switch S2 being open.
  • the actual muzzle velocity depends on the final twist angle. Since the value of the actual final twist angle deviates from the value of the standard final twist angle or differs from gun barrel to gun barrel, it must also be determined and included in the calculations. This angle is preferably determined beforehand, and a value with the actual final twist angle is already fed into the register 204 .
  • the earth's magnetic field H induces a voltage in the coil 208 , which is amplified by means of the amplifier 220 .
  • an oscillator 206 with a frequency of 5 MHz is used to determine the actual muzzle velocity, and a division by 5 takes place in a divider 226 .
  • (V0 * K1) is calculated, switch S1 being open and switch S2 being closed.
  • the programmable divisor which essentially comprises a second counter 222 and a comparator 230 , is started. The programmable divisor results in a reduction.
  • the second counter 222 counts up to the counter reading of the first counter 221 , whereupon a reset takes place and the second counter 222 is reset to zero.
  • the serial result is summed in a third counter 223 during exactly 200 ms. This time of 200 ms is determined by a precision oscillator 228 with 4KHZ.
  • R1 comes from formula (25).
  • the result is available at the output of the subtraction level.
  • a fifth step the just calculated differential speed is multiplied by the value K / K1 stored in the register 204 in a multiplier 234 , whereby the factor K1 is eliminated.
  • TP TP N + K * (V0 N - V0)
  • the moment of disassembly is determined in a seventh step.
  • the pulses of the 4 kHz oscillator 228 are summed in a fourth counter 224 .
  • the counter reading of the fourth counter 224 is compared with the determined value for the actual disassembly time. As soon as the count of the fourth counter 224 coincides with the actual disassembly time from the addition stage 236 , a pulse I is issued for the disassembly. of the floor.
  • the disassembly is blocked during a safety time, for example during 220 ms, which are supplied by the oscillator 228 or the counter 224 over 240 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Electrotherapy Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Debugging And Monitoring (AREA)
  • Control Of Turbines (AREA)

Claims (10)

  1. Procédé destiné à déterminer une correction d'un déclenchement préprogrammé d'un processus dans un projectile à gyrostabilisation, et notamment de sa destruction, en prenant en compte la différence entre la vitesse initiale réelle (V0) du projectile et la vitesse initiale théorique (V0N) du projectile,
    la vitesse initiale réelle (V0N) étant indirectement déterminée, à l'aide de l'effet d'un champ magnétique sur le projectile, par la fréquence de rotation effective (fG) du projectile, et
    la fréquence de rotation effective (fG) du projectile étant utilisée juste après le lancement du projectile, pour déterminer la vitesse initiale réelle, pendant une phase d'étalonnage limitée dans le temps,
    caractérisé en ce que
    la détermination de l'effet du champ magnétique sur le projectile est interrompue à la fin de la phase d'étalonnage.
  2. Procédé conforme à la revendication 1,
    caractérisé en ce que
    le champ magnétique (H) est le champ magnétique terrestre.
  3. Procédé conforme à la revendication 1,
    caractérisé en ce que
    la durée de la phase d'étalonnage est calculée en minimisant l'erreur totale (ε) survenue, qui comprend au moins une erreur importante.
  4. Procédé conforme à la revendication 3,
    caractérisé en ce que
    afin de calculer la durée de la phase d'étalonnage,
    on détermine, en fonction du nombre de rotations (R) du projectile, une première erreur relative (ΔM / M) dépendant du processus de détermination de la fréquence de rotation réelle,
    on détermine, en fonction du nombre de rotations (R) du projectile, une deuxième erreur relative (Δs / s) dépendant de la distance parcourue par le projectile,
    on additionne les erreurs relatives susmentionnées (ΔM / M, Δs / s) pour donner une erreur relative totale (ε),
    on différentie l'erreur relative totale (ε) en fonction du nombre de rotations du projectile (R), on met à zéro le résultat de la différentiation et on calcule à partir de cela le nombre de rotations du projectile (R), qui correspond à la valeur optimale des rotations du projectile (Ropt) pour une erreur relative totale minimale (ε), et
    on interrompt la phase d'étalonnage dès que le nombre de rotations du projectile se trouve au moins approximativement dans la zone de la valeur optimale (Ropt) susmentionnée.
  5. Procédé conforme à au moins l'une des revendications ci-dessus,
    caractérisé en ce que
    le moment théorique du déclenchement (TPN ) est mémorisé,
    le moment réel du déclenchement (TP) est calculé à l'aide d'une correction prenant en compte la différence entre la vitesse initiale réelle (V0) et la vitesse initiale théorique (V0N), puis est mémorisé, et
    le déclenchement a lieu dès que la valeur d'un compteur en marche atteint la valeur du moment réel du déclenchement (TP).
  6. Procédé conforme à au moins l'une des revendications ci-dessus,
    caractérisé en ce que
    on calcule, pendant la phase d'étalonnage, un effet du champ magnétique (H) sur le projectile, qui varie en fonction du changement de position du projectile, à l'aide d'un dispositif placé de façon adéquate sur le projectile, par exemple à l'aide d'un dispositif à bobines (108, 208), d'éléments à effet Hall ou de magnétorésistances, et
    on compte, à partir de l'effet variable du champ magnétique (H), le nombre d'impulsions (M) d'un oscillateur à fréquence d'oscillation fixe (FZ) s'étant produites pendant un nombre déterminé de rotations (R) du projectile, et
    on calcule la fréquence de rotation effective (fG) du projectile à partir du nombre de rotations du projectile (R), du nombre des impulsions comptées (M) et de la fréquence (FZ) de l'oscillateur.
  7. Procédé conforme à au moins l'une des revendications ci-dessus,
    caractérisé en ce que
    pendant la phase d'étalonnage, on effectue plus d'une mesure afin de déterminer la fréquence de rotation réelle (fG) du projectile,
    le résultat de chaque mesure est soumis à un contrôle de vraisemblance, et/ou
    le résultat d'une mesure n'est ensuite exploité que s'il est confirmé par une autre mesure.
  8. Procédé conforme à au moins l'une des revendications ci-dessus,
    caractérisé en ce que
    on prend en compte la différence entre l'inclinaison terminale des rainures réelle (e) et l'inclinaison terminale des rainures théorique (eN).
  9. Dispositif destiné à réaliser le procédé conforme à au moins l'une de revendications 1 à 8,
    caractérisé en ce que
    il comporte
    des moyens de mémorisation du moment du déclenchement (TPN), programmé à partir de la fréquence de rotation théorique (fGN) du projectile,
    des moyens de détermination de la fréquence de rotation réelle (fG) du projectile, et
    des moyens d'actualisation du moment théorique du déclenchement (TPN) par rapport au moment réel du déclenchement (TP), à partir de la fréquence réelle de rotation (fG) ou de la vitesse initiale (V0) du projectile,
    les moyens de détermination de la fréquence réelle de rotation (fG) ou de calcul de la vitesse initiale réelle (V0) du projectile comprenant
    un dispositif à bobines (108, 208) dans lequel il est possible d'induire une tension par le champ magnétique (H), et
    un oscillateur (106, 206) ayant une fréquence d'oscillation constante (fZ), et
    les sorties du dispositif à bobines et de l'oscillateur étant exclusivement reliées l'une avec l'autre pendant une phase d'étalonnage afin de produire une valeur d'étalonnage.
  10. Utilisation du dispositif conforme à la revendication 9 afin d'augmenter l'efficacité d'un système d'armes destiné à combattre des cibles à l'aide de projectiles programmables,
    caractérisée en ce que
    les cibles sont des cibles terrestres ou aériennes, en particulier des cibles aériennes s'approchant à vive allure.
EP99117580A 1998-10-08 1999-09-06 Procédé de correction du déclenchement préprogrammé d'un processus dans un projectile à stabilisation par rotation, dispositif de mise en oeuvre dudit procédé et utilisation dudit dispositif Expired - Lifetime EP0992761B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH203298 1998-10-08
CH203298 1998-10-08

Publications (2)

Publication Number Publication Date
EP0992761A1 EP0992761A1 (fr) 2000-04-12
EP0992761B1 true EP0992761B1 (fr) 2002-11-13

Family

ID=4224338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99117580A Expired - Lifetime EP0992761B1 (fr) 1998-10-08 1999-09-06 Procédé de correction du déclenchement préprogrammé d'un processus dans un projectile à stabilisation par rotation, dispositif de mise en oeuvre dudit procédé et utilisation dudit dispositif

Country Status (5)

Country Link
US (1) US6484115B1 (fr)
EP (1) EP0992761B1 (fr)
AT (1) ATE227839T1 (fr)
DE (1) DE59903384D1 (fr)
ES (1) ES2185285T3 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005024179A1 (de) * 2005-05-23 2006-11-30 Oerlikon Contraves Ag Verfahren und Vorrichtung zur Tempierung und/oder Korrektur des Zündzeitpunktes eines Geschosses
US7926402B2 (en) * 2006-11-29 2011-04-19 Alliant Techsystems Inc. Method and apparatus for munition timing and munitions incorporating same
US8706440B2 (en) * 2009-06-18 2014-04-22 Aai Corporation Apparatus, system, method, and computer program product for registering the time and location of weapon firings
US8275571B2 (en) * 2009-06-18 2012-09-25 Aai Corporation Method and system for correlating weapon firing events with scoring events
US11047663B1 (en) * 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of coding polymer ammunition cartridges
FR2967770B1 (fr) * 2010-11-18 2012-12-07 Continental Automotive France Capteur de mesure de position angulaire et procede de compensation de mesure
US20180335288A1 (en) * 2017-05-18 2018-11-22 Jacob Gitman Method and system of launching a projectile for destroying a target
US10883809B1 (en) * 2019-05-07 2021-01-05 U.S. Government As Represented By The Secretary Of The Army Muzzle velocity correction

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353487A (en) * 1966-05-11 1967-11-21 Bendix Corp Device for measuring flight distance of a missile
SE331245B (fr) * 1969-01-03 1970-12-14 Bofors Ab
US3844217A (en) * 1972-09-28 1974-10-29 Gen Electric Controlled range fuze
US3955069A (en) * 1972-09-28 1976-05-04 General Electric Company Presettable counter
US3919642A (en) * 1973-05-09 1975-11-11 Us Army Low cost telemeter for monitoring a battery and DC voltage converter power supply
CH589838A5 (fr) * 1975-03-10 1977-07-15 Oerlikon Buehrle Ag
US4229741A (en) * 1979-03-12 1980-10-21 Motorola, Inc. Two-way communications system and method of synchronizing
US4283989A (en) * 1979-07-31 1981-08-18 Ares, Inc. Doppler-type projectile velocity measurement and communication apparatus, and method
US4777352A (en) * 1982-09-24 1988-10-11 Moore Sidney D Microcontroller operated optical apparatus for surveying rangefinding and trajectory compensating functions
DE3307785A1 (de) * 1983-03-04 1984-09-06 Deutsch-Französisches Forschungsinstitut Saint-Louis, Saint-Louis Verfahren und vorrichtung zur einstellung eines geschoss-zeitzuenders
US4686882A (en) 1986-02-20 1987-08-18 Shaw Eric D Expandible and collapsible acoustic guitar
US4686885A (en) * 1986-04-17 1987-08-18 Motorola, Inc. Apparatus and method of safe and arming munitions
DE3830518A1 (de) * 1988-09-08 1990-03-22 Rheinmetall Gmbh Vorrichtung zur einstellung eines geschosszeitzuenders
DE3934363A1 (de) * 1989-10-14 1991-04-25 Rheinmetall Gmbh Vorrichtung zur erzeugung von referenzimpulsen
DE4111002A1 (de) * 1991-04-05 1992-10-08 Wegmann & Co Vorrichtung zum tempieren von zuendern an grosskalibrigen geschossen
CA2082448C (fr) * 1991-05-08 2002-04-30 Christopher Robert Gent Systemes d'armes
US5343795A (en) * 1991-11-07 1994-09-06 General Electric Co. Settable electronic fuzing system for cannon ammunition
US5497704A (en) 1993-12-30 1996-03-12 Alliant Techsystems Inc. Multifunctional magnetic fuze
DE4416210C2 (de) * 1994-05-07 1997-05-22 Rheinmetall Ind Ag Verfahren und Vorrichtung zur Ermittlung der Rollwinkellage eines rotierenden Flugkörpers
EP0769673B1 (fr) * 1995-09-28 2002-03-20 Oerlikon Contraves Pyrotec AG Procédé et dispositif pour la programmation des fusées à temps de projectiles
NO312143B1 (no) * 1996-04-19 2002-03-25 Contraves Ag Fremgangsmåte for å bestemme önsket oppdelingstidspunkt, s¶rlig for et programmerbart prosjektil
NO311954B1 (no) * 1996-04-19 2002-02-18 Contraves Ag Fremgangsmåte for å bestemme et programmerbart prosjektils oppdelingstidspunkt
NO311953B1 (no) * 1996-04-19 2002-02-18 Contraves Ag Fremgangsmåte og innretning for å bestemme et programmerbart prosjektils oppdelingstidspunkt
FR2761767B1 (fr) * 1997-04-03 1999-05-14 Giat Ind Sa Procede de programmation en vol d'un instant de declenchement d'un element de projectile, conduite de tir et fusee mettant en oeuvre un tel procede

Also Published As

Publication number Publication date
EP0992761A1 (fr) 2000-04-12
DE59903384D1 (de) 2002-12-19
ES2185285T3 (es) 2003-04-16
US6484115B1 (en) 2002-11-19
ATE227839T1 (de) 2002-11-15

Similar Documents

Publication Publication Date Title
EP1726911B1 (fr) Méthode et dispositif pour programmer et corriger le moment de détonation d'un projectile
EP0118122A1 (fr) Procédé et dispositif de réglage d'une fusée d'amorçage chronométrique
EP0802391B1 (fr) Procédé de détermination d'un temps de désintegration corrigé d'un projectile programmable et frangible
EP0992761B1 (fr) Procédé de correction du déclenchement préprogrammé d'un processus dans un projectile à stabilisation par rotation, dispositif de mise en oeuvre dudit procédé et utilisation dudit dispositif
DE2347374C2 (de) Abstandszünder für einen Gefechtskopf
EP0802392B1 (fr) Procédé et dispositif de détermination d'un temps de désintégration corrigé d'un projectile programmable et frangible
EP1482311B1 (fr) Dispositif et procédé de détermination de la vitesse initiale d'un projectile
EP0802390B1 (fr) Procédé de détermination d'un temps de désintégration corrigé d'un projectile programmable et frangible
EP0411073A1 (fr) Procede et dispositif d'amelioration de la precision du tir
DE1623362C3 (de) Einrichtung zum Zünden einer Sprengladung bzw. zum Auslosen einer Funktion
EP0547391A1 (fr) Procédé pour élever la probabilité de succès pour une défence anti-aérienne utilisant des projectiles à dispersion télé-commandée
EP2226607B1 (fr) Procédé d'allumage d'une tête militaire d'une grenade et véhicule
EP0992758B1 (fr) Procédé et dispositif pour la correction du temps de désintégration ou bien du nombre de rotations jusqu'à la désintégration d'un projectile programmable stabilisé par rotation
DE3821309C2 (fr)
DE60219564T2 (de) Verfahren zum Einstellen eines Geschosszünders, Programmiereinrichtung und Zeitzünder die in einen solchem Verfahren verwendet werden
EP0348985A2 (fr) Fusée d'allumage pour des projectiles explosifs
DE2348268C2 (de) Dopplerradareinrichtung zur Messung der Geschwindigkeit eines sich in einer Bahn bewegenden Objekts
DE3348136C2 (en) Method for determining the ballistic trajectory (flight path) of a projectile, and a device for carrying out the method
DE19805850C1 (de) Lenkflugkörper
DE4304058C2 (de) Verfahren und Vorrichtung zum Bekämpfen von Zielobjekten mit Submunitionen
DE3407691C1 (en) Device for correction of the setting of an electronic projectile time detonator
DE10028746A1 (de) Verfahren und Vorrichtung zur Bestimmung der Zündverzugszeit bei zielverfolgenden Lenkflugkörpern
DE4201572C2 (de) Zieldeckungs-Lenkung mit adaptierbarem Flugkörper-Geschwindigkeits-Profil
DE3429719C1 (de) Verfahren zur Programmierung eines elektronischen Kurzzeitgebers
DE2023938A1 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000531

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010202

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021113

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021113

REF Corresponds to:

Ref document number: 227839

Country of ref document: AT

Date of ref document: 20021115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG PATENTE MARKEN LIZENZEN

REF Corresponds to:

Ref document number: 59903384

Country of ref document: DE

Date of ref document: 20021219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030213

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030213

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030317

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2185285

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0992761E

Country of ref document: IE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030906

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030906

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030906

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

26N No opposition filed

Effective date: 20030814

BERE Be: lapsed

Owner name: *OERLIKON CONTRAVES PYROTEC A.G.

Effective date: 20030930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: RWM SCHWEIZ AG

Free format text: OERLIKON CONTRAVES PYROTEC AG#BIRCHSTRASSE 155#8050 ZUERICH (CH) -TRANSFER TO- RWM SCHWEIZ AG#BIRCHSTRASSE 155#8050 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060914

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060921

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060922

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060926

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060928

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060914

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070907

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070906

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070906