EP0991762A2 - OBERFLÄCHENPROTEIN (SPSA-PROTEIN) VON $i(STREPTOCOCCUS PNEUMONIAE) DELIERTE ABKÖMMLINGE, EXPRESSIONSSSYSTEM FÜR DIESE PROTEINE UND VACCINE MIT DEN PROTEINEN - Google Patents

OBERFLÄCHENPROTEIN (SPSA-PROTEIN) VON $i(STREPTOCOCCUS PNEUMONIAE) DELIERTE ABKÖMMLINGE, EXPRESSIONSSSYSTEM FÜR DIESE PROTEINE UND VACCINE MIT DEN PROTEINEN

Info

Publication number
EP0991762A2
EP0991762A2 EP98916880A EP98916880A EP0991762A2 EP 0991762 A2 EP0991762 A2 EP 0991762A2 EP 98916880 A EP98916880 A EP 98916880A EP 98916880 A EP98916880 A EP 98916880A EP 0991762 A2 EP0991762 A2 EP 0991762A2
Authority
EP
European Patent Office
Prior art keywords
protein
secretory
deleted
surface protein
positions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98916880A
Other languages
English (en)
French (fr)
Inventor
Gursharan Singh Chhatwal
Sven Hammerschmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum fuer Infektionsforschung HZI GmbH
Original Assignee
Helmholtz Zentrum fuer Infektionsforschung HZI GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum fuer Infektionsforschung HZI GmbH filed Critical Helmholtz Zentrum fuer Infektionsforschung HZI GmbH
Publication of EP0991762A2 publication Critical patent/EP0991762A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • C07K14/3156Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci from Streptococcus pneumoniae (Pneumococcus)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • Streptococcus pneumoniae are gram-positive bacteria that are surrounded by a capsule polysaccharide and were first isolated from a healthy carrier in 1881 (1). Pneumococci are part of the natural flora of the upper human respiratory tract and colonize the nasopharynx in up to 40% of healthy adults, whereby up to four different serotypes have been demonstrated over several months (2). Streptococcus pneumoniae is a common source of infection in the United States and many other parts of the world. The infections, which are mostly endogenous, and deaths occur especially in very young children under the age of 2, in people over 60 and in immunocompromised people
  • Pneumococci are also the second most common cause of bacterial meningitis (after Haemophilus influenzae type b)
  • otitis media otitis media
  • pneumococci caused 500,000 pneumonia, 7 million cases of otitis media and 40,000 deaths in one year (6.7).
  • the mortality rate for diseases caused by Streptococcus pneumoniae is, despite the antibiotics available, at a consistently high level. For example, mortality from pneumococcal bacteremia in the past four decades has been between 25 and 29% (8).
  • the capsular polysaccharide protects the pneumococci from phagocytosis by polymorphonuclear leukocytes (PMN's), prevents activation of the alternative pathway of the complement (10,11,12) and is therefore an important virulence factor of Streptococcus pneumoniae (13,14,15).
  • PMN's polymorphonuclear leukocytes
  • the virulence of the strain with respect to the capsule depends on the chemical composition of the polysaccharide and not on the size of the capsule polysaccharide (16).
  • the vaccine currently used contains the unconjugated form of 23 capsule polysaccharides from Streptococcus pneumoniae.
  • This vaccine contains the serotype polysacccharides, which cause 85-90 percent of bacteremic infections. Since there is no stimulation of the T helper cells by a polysaccharide antigen in children and the elderly (17), the use of this vaccine is restricted to adults only.
  • the proteins currently considered as vaccine candidates are autolysin (20), neuraminidase (21), pneumococcal surface adhesin A (PsaA) (22), pneumococcal surface protein A (PspA) (23) and the pneumolysin (24).
  • Pneumolysin is an intracellular protein and belongs to the family of thiol-activated toxins (25). This 53 kDa cytoplasmic protein is released when the pneumococci spontaneously lyse under the influence of autolysin. In high concentrations, oligomers of pneumolysin form on mammalian cells and cause cell lysis by increasing the transmembrane pores. In lower concentrations, pneumolysin stimulates the production of inflammatory cytokines (26), destroys monolayer of the epithelial cells of the upper respiratory tract (27) in vitro and reduces the bactericidal activity and migration of the neutrophils (28). Pneumolysin also activates the classic complement pathway in the absence of anti-toxin antibodies (29).
  • the pneumoccocal surface protein A (PspA) is a surface protein with structural and antigenetic variability between the different pneumococcal strains, the function of which has not yet been elucidated. PspA occurs in most clinical isolates (30) and is also important for the development of full virulence in pneumococci (31,32).
  • virulence factors are an IgAl protease (33) whose gene has been cloned and characterized (34, 35), an inhibitor of elastase (36) and peptide permeases that are homologous to permeases from other streptococci that also colonize the nasopharynx.
  • IgAl protease 33
  • elastase 36
  • peptide permeases that are homologous to permeases from other streptococci that also colonize the nasopharynx.
  • permeases in which the loss of function results in reduced adherence of the pneumococci to eukaryotic cells
  • One embodiment of the invention relates to a surface protein of Streptococcus pneunomiae (SpsA protein), which is characterized in that it binds to secretory IgA (slgA).
  • SpsA protein Streptococcus pneunomiae
  • Another embodiment of the invention relates to a secretory protein from Streptococcus pneumoniae, which is characterized in that it binds to secretory IgA (slgA).
  • the surface protein or secretory protein of Streptococcus pneumonia e according to the invention can be partially digested and characterized in that it is associated with secretory IgA (slgA) binds.
  • the invention further relates to a C-terminally deleted derivative of a surface protein or secretory protein according to the invention, which is characterized in that it binds to secretory IgA (slgA).
  • the invention further relates to a deleted derivative of a surface protein or secretory protein according to the invention, which is characterized in that
  • the secretory IgA (slgA) binding domain is present, so that the descendant binds to secretory IgA (slgA).
  • the derivative according to the invention can be characterized in that the surface protein or the secretory protein are deleted except for the secretory IgA (slgA) binding domain.
  • the surface protein according to the invention can be characterized by 523 amino acids according to FIG. 2 (positions 1 to 523).
  • the invention further relates to an N-terminally deleted derivative of the surface protein, which is characterized in that it (i) in the region of positions 1 to 159 according to FIG. 2 has been deleted by 1 to a maximum of 159 amino acids,
  • the invention further relates to an N-terminal and C-terminally deleted derivative of the surface protein according to the invention, which is characterized in that it
  • the offspring according to the invention can be characterized in that it is not deleted in the region of positions 174 to 285.
  • Another embodiment of the invention relates to a ⁇ ? secretory IgA (slgA) binding protein, which is characterized in that its amino acid sequence is at least 80% identical to that of the surface protein according to the invention or one of its derivatives.
  • slgA secretory IgA
  • a further embodiment of the invention relates to an expression system, in particular for Escherichia coli, for expressing a surface protein, a secretory protein, a derivative or a protein according to the Invention comprising a DNA sequence encoding the surface protein or the progeny.
  • the invention relates to a vaccine for protection against diseases caused by Streptococcus pneunomiae, which can be produced with the aid of a surface protein according to the invention, a secretory protein or a derivative.
  • Figure 1 Western blot analysis of Streptococcus pneumoniae ATCC 33400 [serotype 1] (lane 1), NCTC 10319 [serotype 47, R36A] (lane 2), ATCC 11733 [serotype 2, R36A] (lane 3) and ATCC 12213 [serotype 1 , I-192R] (lane 4) with secretory immunoglobulin A.
  • a peroxidase-labeled anti-human IgA antibody was used to detect the binding.
  • Figure 2 Nucleic acid sequence of the gene spsA and the amino acid sequence of the protein SpsA (Streptococcus pneumoniae secretory IgA binding protein) from Streptococcus pneumoniae ATCC 33400 serotype 1.
  • RBS Ribosomal binding site; Leader: signal sequence of SpsA (amino acid 1-37); mature protein: SpsA after processing; Repeats: 9 repeating sequences of 20 amino acids each.
  • FIG. 3 Western blot analysis with slgA after cloning of spsA and sps ⁇ fragments in the expression vector pQE (Pharmacia) and overexpression of the proteins in Escherichia coli M15 [pREP4].
  • Lane 1 SpsA (AS1-523; pQSHA12);
  • Lane 2 N-terminus of SpsA (AS1-324; pQSHA14);
  • Lane 3 truncated N-terminus of SpsA (AS1-159; pSHA3);
  • Lane 4 Repeats from SpsA (AS325-523; pQSHA30).
  • Figure 4 Southern blot analysis of Streptococcus pneumoniae ATCC 33400 [serotype 1] (lane 1) and Streptococcus pneumoniae ATCC 11733 [serotype 2, R36A] (lane 2) with a 32 phosphorus- labeled DNA probe from spsA (A), from a 5 '-spsA fragment [ntl-nt476] (B) and pspA (C).
  • nt nucleotide.
  • the gene coding for the slgA binding protein was detected by screening a LambdaZAP expression bank of Streptococcus pneumoniae ATCC 33400 (serotype 1) with secretory IgA.
  • the selected positive clone, pSHAl has a 5085 bp insert of Streptococcus pneumoniae ATCC 33400 in the phase id pBK-CMV.
  • deletion clones of pSHAl the gene coding for the slgA binding protein could be detected in the subclone pSHA2.
  • the subclone pSHA2 showed a binding of the secretory IgA in the Western blot.
  • the sequencing and subsequent analysis of the sequence of the 2204 large insert showed an open reading frame from nucleotide 282 to 1853 in pSHA2 (FIG. 2).
  • This 1572 bp reading frame codes for a 523 amino acid slgA binding protein from pneumococci of serotype 1.
  • the molecular weight of the protein called SpsA is 59151 Da (FIG. 2).
  • the comparison of the nucleic acid sequence of spsA with the sequences stored in the EMBL database showed a 78.8% identity to the pspA of Streptococcus pneumoniae.
  • a 64.1% identity to PspA was demonstrated at the protein level. The identity is primarily limited to the C-terminus of the two proteins.
  • the C-terminus of the PspA consists of ten repeats, each 20 amino acids long (41).
  • the identity to the C-terminus of SpsA, which consists of nine repeats, is 92.5%.
  • the repeats of PspA are involved in attaching the protein to the pneumococcal cell wall. This mechanism requires a choline-mediated interaction between the membrane-associated lipoteichoic acid and the repeat region of PspsA (42). To attach to the cell wall, at least six of the 20 amino acid repeats must be expressed, otherwise the PspA is secreted (42, 43).
  • the identity in the N-terminus of the two proteins SpsA and PspA is only 34.5%.
  • the signal sequence (leader) of SpsA is 37 amino acids long and shows a 75.7% identity to the signal sequence of the IgA receptor from Streptococcus agala ctiae (45, 46).
  • spsA pQSH12
  • pQSH14 the N-terminus
  • pQSH30 the nucleic acid sequence which codes for the nine repeats of SpsA
  • binding domain of SpsA could be restricted to amino acids 160 to 324 by a further subclone of pSHAl, which only expresses amino acids 1 to 159 of the N-terminus of SpsA (pSHA3) and does not bind slgA (FIG. 3).
  • SpsA therefore codes for a new surface protein of Streptococcus pneumoniae, whose biological function is the binding of secretory immunoglobulin A in the N-terminus of SpsA.
  • the secretory IgA which consists of an IgA-J-IgA-SC (SC: secretory component) complex, is the most important immunoglobulin in the human respiratory and gastrointestinal tract.
  • the precursor of the secretory IgA an IgA dimer linked by the 15.6 kDa J chain, is synthesized in B lymphocytes and binds to a poly-immunoglobulin receptor located on the basolateral surface of the epithelial cells. This poly-Ig receptor mediates transcytosis through the cells (47).
  • the C-terminal part of the receptor is separated and becomes the secretory component of the (IgA) 2 ⁇ J chain complex. After transport to the apical membrane of the cells, the complex fuses with the membrane and is released as secretory IgA (48).
  • the secretory component which is covalently bound to the complex by a disulfide bridge, protects the synthesized slgA in external liquids from denaturation and proteolysis.
  • the secretory IgA binding protein, SpsA, from Streptococcus pneumoniae is therefore a promising new candidate for vaccine development.
  • Example 1 This example describes the secretory IgA binding of Streptococcus pneumoniae strains in a Western blot.
  • the proteins of the Streptococcus pneumoniae lysate (ODgQO adjusted by l'O and after absorption of the bacteria in 100 ⁇ l digestion solution (20% glycerol, 3% SDS, 3% ß-mercaptoethanol, 0.05% bromophenol blue) boiled at 94 ° C. for 10 minutes ) were separated in SDS-PAGE and then transferred to a nitrocellulose membrane.
  • the filters were incubated with secretive IgA [1 ⁇ g / ml] (Sigma, Kunststoff, Germany) in 0.1 M PBS for 1 hour at room temperature with shaking. After washing three times with 0.1 M PBS, the filters were incubated for 1 hour with a Goat-Anti Human IgA-HRP conjugate antibody (ICN, Eschwege, Germany). The color development was carried out after three washes with 1 mg of 4-chloro-1-naphthol and 0.1% H 2 0 2 per 1 ml of PBS.
  • This example describes the binding of 125j oc j-labeled secretory IgA from Streptococcus pneumoniae strains.
  • 100 ng slgA in 1 ml 0.05 M phosphate buffer pH 7.5 were added after the addition of 20 ⁇ g chloramine T with 350 ⁇ Ci 12 5 iodine and the reaction was stopped after 5 minutes by adding 20 ⁇ g Na-Metabisul- fit.
  • the labeled proteins were separated from the unlabeled proteins with a PDIO column (Pharmacia, Freiburg, Germany) and frozen at -20 ° C.
  • slgA binding to the Streptococcus pneumoniae strains was measured by measuring the activity of the bacteria in the gamma counter (Packard, Dreieich, Germany).
  • Example 3 This example describes the cloning of the chromosomal DNA from Streptococcus pneumoniae ATCC 33400 into the vector Lambda ZAP Express TM and the screening of the gene bank for a Streptococcus pneumoniae secretory IgA binding protein (SpsA).
  • the chromosomal DNA from Streptococcus pneumoniae ATCC 33400 was isolated, partially digested with Sau3A and fractionated according to the size of the DNA fragments in a sodium chloride gradient which was formed by freezing and thawing a 20% strength sodium chloride solution.
  • the ligation of the 2.0 kb to 6.0 kb DNA fragments of the chromosomal DNA in the BamHI-cut Lambda ZAP Express TM and in vi tro packaging was carried out using a commercial kit according to the manufacturer (Stratagene, Heidelberg, Germany).
  • the phage gene library was plated out without further amplification and the recombinant plaques were examined for the expression of a secretory IgA binding protein.
  • the proteins were transferred to nitrocellulose filters, and after saturation with 10% skim milk in 0.1 M PBS, secretarial IgA [1 ⁇ g / ml] (Sigma, Kunststoff, Germany) in 0.1 M PBS for 1 hour Incubated room temperature with shaking.
  • the filters were incubated for 1 hour with a Goat-Anti Human IgA-HRP conjugate antibody.
  • Positive plaques were isolated and, after amplification, the in vivo excision of the pBK-CMV phagmid was carried out using the Exassist helper phage and XLOLR system according to the manufacturer's instructions (Stratagene, Heidelberg, Germany).
  • This example describes DNA sequencing and the derivation of the amino acid sequence.
  • the translation of the nucleic acid sequence into the amino acid sequence was carried out with the aid of the GeneWorks program, version 2.45 (Intelligence, Montain View, CA).
  • This example describes the construction of the subclones of pSHAl and their characterization in the Western blot.
  • Subclone pSHA2 (ntl-nt2203 from pSHAl) was obtained by deleting a 2882 bp EcoRI fragment and subclone pSHA3 (ntl-nt757) by deleting a 4328 bp HindiII fragment from pSHAl.
  • Another subclone called pSHA4 (nt2952-nt5085 from pSHAl) was obtained by deleting a 2133 bp SacI fragment.
  • the characterization of the clones was carried out after separation of the proteins of the cell lysate [ODgQO of ⁇ r ⁇ set and according to the bacteria ⁇ acceptance in 100 ul lysis solution (20% glycerol, 3% SDS, 3% ß-mercaptoethanol, 0.05% bromophenol blue) Boiled for 10 minutes at 94 ° C.] of the recombinant E. coli cells in SDS-PAGE and transfer of the proteins to a nitrocellulose membrane in the Western blot with secretory IgA.
  • the filters were incubated with secretory IgA [1 ⁇ g / ml] (Sigma, Kunststoff, Germany) in 0.1 M PBS for 1 hour at room temperature with shaking. After washing three times with 0.1 M PBS, the filters were incubated for 1 hour with a Goat-Anti Human IgA-HRP conjugate antibody. The color development was carried out after three washes with 1 mg of 4-chloro-1-naphthol and 0.1% H 2 0 2 per 1 ml of PBS.
  • This example describes the PCR amplification and cloning of spsA, the 5 'region of spsA (ntl-nt972) and the 3' region (nt973-ntl572) of spsA into the expression vector pQE30 (Pharmacia).
  • the PCR primers for spsA and the sps ⁇ fragments were derived from the spsA sequence of Streptococcus pneumoniae ATCC 33400 serotype 1 obtained in pSHAl.
  • the 5 'primer SH22 (5'-GCGCGCG CGCGGATCCTTGTTTGCATCAAAAAGCGAAAG-3') is 39 bp long and begins with a modified start codon of the sps ⁇ gene (TTG instead of ATG).
  • the 5 'primer for the repeats, SH24 (5' -GCGCGCGCGCGCGGATCCACAGGCT GGAAACAAGAAAAC-3 '), begins with the initial sequence of the first repeat at nucleotide 973 of the sps ⁇ gene.
  • the 3 'primer of spsASH23 begins with the stop codon and the 3 'primer of the N-terminus, SH25 (5'-CTCAGCTAATTAAGCTTTTTTTGGAGTAGATG2 nucleotide-3), starts at
  • the primers SH22-SH23 were used to construct pQSH12, the primers SH22-SH25 to construct pQSH14 and the primers SH24-SH23 to construct pQSH30.
  • the 5 'primers contained a B-amtil restriction site for cloning, the 3' primers a HindiII restriction site.
  • the amplification of the genomic pneumococcal DNA with the 5 'and 3' primers (20 pmol each) was carried out in a thermal cycler (MWG-Biotech, Ebersberg, Germany) in a 100 ⁇ l volume with 2.5 units of the Goldstar Taq polymerase according to the manufacturer (Eurogentec, Seraing, Belgium) and 50 ng chromosomal DNA.
  • the samples were denatured at 94 ° C for two minutes and the amplification was carried out in 35 cycles consisting of 1 minute denaturation of the DNA at 94 ° C, 1 minute annealing of the primer at 55 ° C and 2 minutes extension at 72 ° C.
  • the primers SH22 to SH23 were also used for the amplification and cloning of the spsA genes from Streptococcus pneumoniae serotype 2
  • the primers SH22 to SH25 could also be used for the amplification and cloning of the 5 'region of Streptococcus pneumoniae serotype 47 (R36A rough, NCTC 10319).
  • This example describes the study of the adherence of Streptococcus pneumoniae strains to human epithelial cells.
  • mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect. Immune. 62: 5683-5688
  • Pneumococcal surface protein A is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae. Infect. Immune. 58: 3293-3299

Abstract

Die Erfindung betrifft ein neues Oberflächenprotein (SpsA-Protein) von Streptococcus pneumoniae, deletierte Abkömmlinge des Oberflächenproteins, ein Expressionssystem für das Oberflächenprotein und seine Abkömmlinge sowie eine sie verwendende Vaccine.

Description

OBERFLÄCHENPROTEIN (SPSA-PROTEIN) VON STREPTOCOCCUS PNEUMONIAE DELIERTE ABKÖMMLINGE, EXPRESSIONSSSYSTEM FÜR DIESE PROTEINE UND VACCINE MIT DEN PROTEINEN
Einleitung :
Streptococcus pneumoniae (Pneumokokken) sind gram-positive Bakterien, die von einem Kapselpolysaccharid umgeben sind und erstmals 1881 von einem gesunden Träger isoliert werden konnten (1). Pneumokokken gehören zur natürlichen Flora des oberen menschlichen Respirationstrakts und kolonisieren den Nasopharynx in bis zu 40 % der gesunden Erwachsenen, wobei bis zu vier verschiedene Serotypen über mehrere Monate nachgewiesen werden konnten (2) . Streptococcus pneumoniae ist in den USA und vielen anderen Teilen der Welt ein häufiger Verursacher von Infektionen. Die Infektionen, die meist endogen erfolgen, und Todesfälle treten vorallem bei sehr jungen Kindern unter 2 Jahren, bei Personen über 60 Jahren sowie bei immungeschwächten Personen auf
(3) .
Des weiteren sind Pneumokokken die zweithäufigsten Verursacher von bakterieller Meningitis (nach Haemophilus influenzae Typ b)
(4) und Otitis Media (Mittelohrentzündung) bei Kindern (5). So verursachten Pneumokokken allein in den USA innerhalb eines Jahres 500 000 Pneumonien, 7 Millionen Fälle von Otitis Media und 40 000 Todesfälle (6,7).
Auch die Sterblichkeitsrate bei den durch Streptococcus pneumoniae verursachten Erkrankungen liegt, trotz der zur Verfügung stehenden Antibiotika, auf einem konstant hohen Niveau. Zum Beispiel betrug die Sterblichkeit bei Bakteriämien, die durch Pneumokokken verursacht wurden, in den letzten vier Jahrzehnten zwischen 25 und 29 % (8) .
Aufgrund der Zusammensetzung der Kapselpolysaccharidstrukturen werden Pneumokokken in 90 Serotypen unterteilt (9). Das Kapsel- polysaccharid schützt die Pneumokokken vor der Phagozytose durch polymorphkernige Leukozyten (PMN's), verhindert die Aktivierung des alternativen Weges des Komplements (10,11,12) und ist daher ein wichtiger Virulenzfaktor von Streptococcus pneumoniae (13,14,15) .
Die Virulenz des Stammes ist in Bezug auf die Kapsel abhängig von der chemischen Zusammensetzung des Polysaccharids und nicht von der Größe des Kapselpolysaccharids (16) .
Der zur Zeit verwendete Impfstoff (Pneumokokken-Vakzin) zur aktiven Immunisierung enthält die unkonjugierte Form von 23 Kap- selpolysacchariden von Streptococcus pneumoniae . Dieser Impfstoff enthält die Polysacccharide der Serotypen, die 85-90 Prozent der bakteriämischen Infektionen verursachen. Da bei Kindern und älteren Menschen keine Stimulation der T-Helferzellen durch ein Polysaccharidantigen erfolgt (17), ist die Anwendung dieses Impfstoffes ausschließlich auf Erwachsene beschränkt.
Ein weiteres Problem der Behandlung bei Pneumokokken-Infektionen ist das weltweit verstärkte Auftreten von antibiotikaresistenten Stämmen (Penicillin-Resistenz) (18). Außerdem führt der Einsatz von ß-Laktam-Antibiotika bei empfindlichen Stämmen von Strepto- coccus pneumoniae in 30 % der behandelten Kindern zum Tod oder es verbleiben permante, irreversible Gehirnschäden. Die Bakterien werden durch ß-Laktam-Antibiotika lysiert und die freiwerdenden Zellwandbestandteile verursachen eine Anschwellung des Gehirns. Die Schwellung des Gehirns führt dann zu einem gefährlich hohen interkranialen Druck, der einen irreversiblen Schaden auslöst (19) .
Aufgrund der steigenden Antibiotikaresistenz und der eingeschränkten Wirkung des Polysaccharid-Vakzins, besteht ein großes Interesse am Auffinden eines Pneumokokken-Proteins, das als Träger für die Kapselpolysaccharide fungieren kann oder das aufgrund seiner eigenen starken Immunogenität und des ubiquitären Vorkommens bei Streptococcus pneumoniae Isolaten als präventiver Impfstoff Verwendung finden kann.
Die zur Zeit als Vakzin-Kandidaten in Frage kommenden Proteine sind das Autolysin (20) , die Neuraminidase (21) , das pneumo- coccal surface adhesin A (PsaA) (22) , das pneumococcal surface protein A (PspA) (23) sowie das Pneumolysin (24).
Pneumolysin ist ein intrazelluläres Protein und gehört zu der Familie der Thiol-aktivierten Toxine (25) . Dieses cytoplasmati- sche 53 kDa große Protein wird freigesetzt, wenn die Pneumokokken unter dem Einfluß des Autolysins spontan lysieren. In hohen Konzentrationen bilden sich auf Säugetierzellen Oligomere des Pneumolysins und verursachen durch einen Anstieg der transmem- branen Poren eine Zellyse. In geringeren Konzentrationen stimuliert Pneumolysin die Produktion von inflammatorischen Cytokinen (26) , zerstört in vitro Monolayer der Epithelzellen des oberen respiratorischen Trakts (27) und vermindert die bakterizide Aktivität und Wanderung der Neutrophilen (28) . Des weiteren aktiviert Pneumolysin bei Abwesenheit von anti-Toxin Antikörpern den klassischen Komplementweg (29) . Das pneumoccocal surface protein A (PspA) ist ein Oberflächenprotein mit struktureller und antigenetischer Variabilität zwischen den verschiedenen Pneumokokken-Stämmen, dessen Funktion bisher nicht aufgeklärt ist. PspA kommt in den meisten klinischen Isolaten vor (30) und ist auch wichtig für die Entwicklung der vollen Virulenz der Pneumokokken (31,32).
Weitere bekannte Virulenzfaktoren sind eine IgAl-Protease (33), deren Gen kloniert und charakterisiert wurde (34, 35), ein Inhibitor der Elastase (36) und Peptidpermeasen, die homolog zu Permeasen von anderen Streptokokken, die ebenfalls den Nasopharynx besiedeln, sind. Von besonderem Interesse sind dabei die Permeasen, bei denen der Verlust der Funktion eine verminderte Adhärenz der Pneumokokken an eukaryotische Zellen zur Folge hat
(37). Der Nachweis für eine direkte Beteiligung dieser Permeasen, von denen die AmiA-Permease und das PlpA (permease-like protein A) zur Familie der Protein-abhängigen Permeasen gehören, die für den Transport von kleinen Peptiden verantwortlich sind
(38, 39) an der Adhärenz an eukaryotische Zellen konnte bisher aber nicht erbracht werden. Als ein weiterer potentieller Regulator der Pneumokokken-Adhärenz wird die Pyruvatoxidase, SpxB, angesehen, die die Konzentration des Acetylphosphats beeinflußt
(40) .
Eine Ausführungsform der Erfindung betrifft ein Oberflächenprotein von Streptococcus pneunomiae (SpsA- Protein) , das dadurch gekennzeichnet ist, daß es an sekretorisches IgA (slgA) bindet.
Eine weitere Ausführungsform der Erfindung betrifft ein sekretorisches Protein von Streptococcus pneumoniae, das dadurch gekennzeichnet ist, daß es an sekretorisches IgA (slgA) bindet.
Das erfindungsgemäße Oberflächenprotein oder sekretorisches Protein von Streptococcus pneumonia e kann teilverdaut und dadurch gekennzeichnet sein, daß es an sekretorisches IgA (slgA) bindet .
Ferner betrifft die Erfindung einen C-terminal deletierten Abkömmling eines erfindungsgemäßen Oberflächenproteins oder sekretorischen Proteins, der dadurch gekennzeichnet ist, daß es an sekretorisches IgA (slgA) bindet.
Ferner betrifft die Erfindung einen deletierten Abkömmling eines erfindungsbemäßen Oberflächenproteins oder sekretorischen Proteins, der dadurch gekennzeichnet ist, daß
— zumindest die Signalsequenz und/oder
— zumindest fakultative Repeats des Oberflächenproteins oder sekretorischen Proteins deletiert sind, jedoch
— die sekretorisches IgA (slgA) bindende Domäne vorliegt, so daß der Abkömmling an sekretorisches IgA (slgA) bindet.
Der erfindungsgemäße Abkömmling kann dadurch gekennzeichnet sein, daß das Oberflächenprotein oder das sekretorische Protein bis auf die sekretorisches IgA (slgA) bindende Domäne deletiert sind.
Das erfindungsgemäße Oberflächenprotein kann gekennzeichnet sein durch 523 Aminosäuren gemäß Fig. 2 (Positionen 1 bis 523) .
Der C-terminal deletierter Abkömmling des erfindungsgemäßen
Oberflächenproteins kann gekennzeichnet sein durch 324
Aminosäuren gemäß Fig. 2 (Positionen 1 bis 324) und
Repeats 1 bis 6 (Positionen 325 bis 444) oder
Repeats 1 bis 7 (Positionen 325 bis 464) oder
Repeats 1 bis 8 (Positionen 325 bis 484 oder bis 485) .
Ferner betrifft die Erfindung einen N-terminal deletierten Abkömmling des Oberflächenproteins, der dadurch gekennzeichnet ist, daß er (i) im Bereich der Positionen 1 bis 159 gemäß Fig. 2 um 1 bis maximal 159 Aminosäuren deletiert ist,
(ii) nicht jedoch im Bereich der Positionen 160 bis 523 deletiert ist.
Ferner betrifft die Erfindung einen N-terminal und C-terminal deletierten Abkömmling des erfindungsgemäßen Oberflächenproteins, der dadurch gekennzeichnet ist, daß er
(i) im Bereich der Positionen 1 bis 159 gemäß Fig. 2 um 1 bis maximal 159 Aminosäuren deletiert ist,
(ii) nicht jedoch im Bereich der Positionen 160 bis 324 deletiert ist und gegebenenfalls
(iii) Repeats 1 bis 8 (Positionen 325 bis 484 oder bis 485) oder Repeats 1 bis 7 (Positionen 325 bis 464) oder Repeats 1 bis 6 (Postionen 325 bis 444) aufweist.
Der erfindungsgemäße Abkömmling kann dadurch gekennzeichnet sein, daß er nicht im Bereich der Positionen 174 bis 285 deletiert ist.
Eine weitere Ausführungsform der Erfindung betrifft ein < ? sekretorisches IgA (slgA) bindendes Protein, das dadurch gekennzeichnet ist, daß seine Aminosäure-Sequenz zu mindestens 80 % mit der des erfindungsgemäßen Oberflächenproteins oder eines seiner Abkömmlinge identisch ist.
Eine weitere Ausführungsform der Erfindung betrifft ein Expressionssystem insbesondere für Escherichia coli zur Expression eines Oberflächenproteins, eines sekretorischen Proteins, eines Abkömmlings oder eines Proteins gemäß der Erfindung, umfassend eine DNA-Sequenz, die das Oberflächenprotein oder den Abkömmling kodiert.
Schließlich betrifft die Erfindung eine Vaccine zur Protektion gegen Erkrankungen durch Streptococcus pneunomiae, herstellbar mit Hilfe eines erfindungsgemäßen Oberflächenproteins, eines sekretorischen Proteins oder eines Abkömmlings.
Nachstehend wird die Erfindung anhand von Figuren, experimenteller Ergebnisse und Beispiele näher erläutert. Es zeigen:
Figur 1: Western blot Analyse von Streptococcus pneumoniae ATCC 33400 [Serotyp 1] (Spur 1), NCTC 10319 [Serotyp 47, R36A] (Spur 2), ATCC 11733 [Serotyp 2, R36A] (Spur3) und ATCC 12213 [Serotyp 1, I-192R] (Spur 4) mit sekretorischem Immunglobulin A. Zur Detektion der Bindung wurde ein peroxidase markierter anti-human IgA Antikörper eingesetzt.
Figur 2: Nukleinsäuresequenz des Gens spsA und die Aminosäuresequenz des Proteins SpsA ( Streptococcus pneumoniae secretory IgA binding protein) von Streptococcus pneumoniae ATCC 33400 Serotyp 1. RBS : Ribosomale Bindungsstelle; Leader: Signalsequenz von SpsA (Aminosäure 1-37); mature Protein: SpsA nach der Prozessierung; Repeats: 9 jeweils 20 Aminosäuren lange, sich wiederholende Sequenzen.
Figur 3: Western blot Analyse mit slgA nach Klonierung von spsA und spsΛ-Fragmenten in den Expressionsvektor pQE (Pharmacia) und Überexpression der Proteine in Escherichia coli M15 [pREP4]. Spur 1: SpsA (AS1-523; pQSHA12); Spur 2: N-Terminus von SpsA (AS1-324; pQSHA14); Spur 3: verkürzter N-Terminus von SpsA (AS1- 159; pSHA3) ; Spur 4: Repeats von SpsA (AS325-523; pQSHA30). Figur 4: Southern blot Analyse von Streptococcus pneumoniae ATCC 33400 [Serotyp 1] (Spur 1) und Streptococcus pneumoniae ATCC 11733 [Serotyp 2, R36A] (Spur 2) mit einer 32Phosphor radioaktiv markierten DNA-Sonden von spsA (A) , von einem 5 ' -spsA Fragment [ntl-nt476] (B) und pspA (C) . nt : Nukleotid.
Ergebnisse:
In Bindungsstudien mit radioaktiv markiertem humanem sekretorischen Immunglobulin A (slgA) und in Western-blots mit humanem slgA konnte nachgewiesen werden, daß Streptococcus pneumoniae sekretorisches IgA bindet. Auf die Fähigkeit slgA zu binden, wurden sowohl klinische Isolate als auch Stämme aus den Type Culture Collections (ATCC bzw. NCTC) der häufigsten Serotypen klinischer Isolate getestet. Von den untersuchten Pneumokokken- Stämmen konnten im Western-blot 73 % slgA binden (Figur 1) . Des weiteren konnte in Bindungsstudien gezeigt werden, nach Verdau der Pneumokokken-Proteine mit Protease, daß die Bindung von sekretorischem IgA durch ein Protein von Streptococcus pneumoniae erfolgt .
Die Detektion des Gens, das für das slgA-Bindungsprotein kodiert, erfolgte durch Screening einer LambdaZAP-Expressionsbank von Streptococcus pneumoniae ATCC 33400 (Serotyp 1) mit sekretorischem IgA. Der ausgewählte positive Klon, pSHAl, hat ein 5085 bp großes Insert von Streptococcus pneumoniae ATCC 33400 im Pha- ge id pBK-CMV. Durch die Konstruktion von Deletionsklonen von pSHAl konnte das für das slgA-Bindungsprotein kodierende Gen im Subklon pSHA2 nachgewiesen werden. Der Subklon pSHA2 zeigte im Gegensatz zu den beiden anderen Subklonen pSHA3 und pSHA4 eine Bindung des sekretorischen IgA im Western-blot. Die Sequenzierung und anschließende Analyse der Sequenz des 2204 großen In- serts zeigte ein offenes Leseraster von Nukleotid 282 bis 1853 in pSHA2 (Figur 2) . Dieses 1572 bp große Leseraster kodiert für ein 523 Aminosäuren großes slgA-Bindungsprotein von Pneumokokken des Serotyps 1. Das Molekulargewicht des SpsA { Streptococcus pneumoniae secretory IgA binding-protein) genannten Proteins beträgt 59151 Da (Figur 2) .
Der Vergleich der Nukleotidsäuresequenz von spsA mit den in der EMBL-Datenbank gespeicherten Sequenzen zeigte eine 78,8 %-ige Identität zum pspA von Streptococcus pneumoniae . Auf Proteinebene wurde eine 64,1 %-ige Identität zum PspA nachgewiesen. Die Identität beschränkt sich dabei vor allem auf den C-Terminus der beiden Proteine. Der C-Terminus des PspA besteht aus zehn Repeats, die jeweils 20 Aminosäuren lang sind (41). Die Identität zum C-Terminus von SpsA, der aus neun Repeats besteht, beträgt 92,5 %.
Die Repeats von PspA sind an der Anheftung des Proteins an der Pneumokokken-Zellwand beteiligt. Dieser Mechanismus erfordert eine Cholin vermittelte Interaktion zwischen der membranassoziierten Lipoteichonsäure und der Repeatregion von PspsA (42) . Zur Anheftung an die Zellwand müssen mindestens sechs der 20 Aminosäuren langen Repeats exprimiert werden, ansonsten kommt es zu einer Sekretion des PspA (42, 43).
Da der C-Terminus von SpsA, d.h. die Region der Repeats von SpsA, zu 92,5 % identisch mit den Repeats von PspA ist, kann eine Beteiligung der SpsA-Repeats an der Anheftung an die Zellwand der Pneumokokken angenommen werden. Dieser Mechanismus der Anheftung von SpsA wird unterstützt durch die Tatsache, daß eine Computeranalyse der Sekundärstruktur von SpsA keine helikale transmembranöse Struktur detektierte, die für eine Verankerung des Proteins in der gram-positiven Zellwand notwendig wäre.
Des weiteren deuteten frühere Ergebnisse darauf hin, daß das 3'- Ende von pspA eine konservierte Sequenz ist, die homolog zu anderen Sequenzen bei Streptococcus pneumoniae ist. Diese homologen Sequenzen könnten für Proteine kodieren, die einen ähnlichen Anheftungsmechanismus an die Zellwand haben wie das pneumococcal surface protein A (PspA) (44).
Die Identität im N-Terminus der beiden Proteine SpsA und PspA beträgt nur von 34,5 %. Die Signalsequenz (Leader) von SpsA ist 37 Aminosäuren lang und zeigt eine 75,7 %-ige Identität zur Signalsequenz des IgA-Rezeptors von Streptococcus agala ctiae (45, 46) .
Zur Aufklärung der Bindungsdomaine wurden i) spsA (pQSH12), ii) der N-Terminus (pQSH14) und iii) die Nukleinsäuresequenz, die für die neun Repeats von SpsA kodiert (pQSH30), in den Expressionsvektor pQE30 kloniert und die slgA-Bindung im Western-blot untersucht. Die Analyse im Western-blot zeigte eine Bindung des sekretorischen IgA im N-Terminus von SpsA. Zusätzlich konnte die Bindungsdomaine von SpsA durch einen weiteren Subklon von pSHAl, der nur die Aminosäuren 1 bis 159 des N-Terminus von SpsA expri- miert (pSHA3) und slgA nicht bindet, auf die Aminosäuren 160 bis 324 eingeengt werden (Figur 3) .
Durch Southern-blot Analyse von Streptococcus pneumoniae ATCC 33400 (Serotypl) und S . pneumoniae ATCC 11733 (Serotyp 2, R36A) konnte mit einer pspA- , spsA und einer b ' -spsA spezifischen DNA- Sonde nachgewiesen werden, daß spsA nicht identisch mit pspA ist (Figur 4) .
Mit diesen Untersuchungen konnte nachgewiesen werden, daß die C- terminale Sequenz von spsA eine der beschriebenen konservierten Sequenzen ist, die zu pspA homolog sind und bei Streptococcus pneumoniae an der Anheftung der Proteine an die Zellwand beteiligt ist.
SpsA kodiert daher für ein neues Oberflächenprotein von Streptococcus pneumoniae, dessen biologische Funktion die Bindung von sekretorischem Immunglobulin A im N-Terminus von SpsA ist. Das sekretorische IgA, das aus einem IgA-J-IgA-SC (SC: sekretorische Komponente) Komplex besteht, ist das wichtigste Immuno- globulin im humanen respiratorischen und gastrointestinalen Trakt. Die Vorstufe des sekretorischen IgA, ein IgA-Dimer verbunden durch die 15,6 kDa große J-Kette, wird in B-Lymphozyten synthetisiert und bindet an einen auf der basolateralen Oberfläche der Epithelzellen lokalisierten poly-Immunglobulin Rezeptor. Dieser poly-Ig-Rezeptor vermittelt die Transzytose durch die Zellen (47). Dabei wird der C-terminale Teil des Rezeptors abgetrennt und zur sekretorischen Komponente des ( IgA) 2~J-Ketten Komplex. Nach Transport an die apikale Membran der Zellen, fusioniert der Komplex mit der Membran und wird als sekretorisches IgA freigesetzt (48). Die sekretorische Komponente, die durch eine Disulfidbrücke kovalent an den Komplex gebunden ist, schützt das synthetisierte slgA in externen Flüssigkeiten vor Denaturierung und Proteolyse.
Untersuchungen zur Adhärenz der Pneumokokken an humane Epithelzellen zeigten eine Adhärenz von größer als 100 Pneumokokken pro Epithelzelle für Stämme, die in den Bindungsstudien slgA gebunden hatten, aber nur eine Adhärenz von μ2 Pneumokokken für in Bindungsstudien negativ getestete Stämme.
Diese Ergebnisse weisen darauf hin, daß das SpsA an der Adhärenz der Pneumokokken an die Epithelzellen und an der Invasion in die Epithelzellen beteiligt ist.
Das sekretorische IgA-Bindungsprotein, SpsA, von Streptococcus pneumoniae ist damit ein aussichtsreicher neuer Kandidat für die Impfstoffentwicklung .
Beispiel 1 : Dieses Beispiel beschreibt die sekretorische IgA-Bindung von Streptococcus pneumoniae Stämmen im Western-blot. Die Proteine der Streptococcus pneumoniae Lysate (ODgQO von l'O eingestellt und nach Aufnahme der Bakterien in 100 μl Aufschlußlösung (20 % Glycerin, 3 % SDS, 3 % ß-Mercaptoethanol, 0,05 % Bromphenolblau) 10 Minuten bei 94 °C gekocht) wurden im SDS-PAGE aufgetrennt und anschließend auf eine Nitrozellulosemembran transferriert . Nach Absättigung mit 10 %-iger Magermilch in 0,1 M PBS wurden die Filter mit sekretischem IgA [1 μg/ml] (Sigma, München, Germany) in 0,1 M PBS für 1 Stunde bei Raumtemperatur unter Schütteln inkubiert. Nach dreimaligem Waschen mit 0,1 M PBS wurden die Filter 1 Stunde mit einem Goat-Anti Human IgA- HRP-Konjugat Antikörper (ICN, Eschwege, Germany) inkubiert. Die Farbentwicklung erfolgte nach dreimaligem Waschen mit 1 mg 4- Chloro-1-Naphthol und 0,1 % H202 pro 1 ml PBS.
Beispiel 2 :
Dieses Beispiel beschreibt die Bindung von 125jocj-markiertem sekretorischem IgA von Streptococcus pneumoniae Stämmen. 100 ng slgA in 1 ml 0,05 M Phosphatpuffer pH 7,5 wurden nach Zugabe von 20 ug Chloramin T mit 350 μCi 125jod inkubiert und die Reaktion nach 5 Minuten durch Zugabe von 20 μg Na-Metabisul- fit gestoppt. Die markierten Proteine wurden von den nicht markierten Proteinen mit einer PDIO-Säule (Pharmacia, Freiburg, Germany) abgetrennt und bei -20 °C eingefroren. 250 μl einer Pneumokokkensuspension (Transmission 10 % bei 600 nm) in PBST (PBS mit 0,05 % Tween 20) wurden mit 0,023 μCi 125Jod-markiertem slgA 45 Minuten inkubiert und die Reaktion mit 1 ml PBST abgestoppt. Die Messung der slgA-Bindung an die Streptococcus pneumoniae Stämme erfolgte durch Messung der Aktivität der Bakterien im Gamma-Counter (Packard, Dreieich, Germany) .
Beispiel 3 : Dieses Beispiel beschreibt die Klonierung der chromosomalen DNA von Streptococcus pneumoniae ATCC 33400 in den Vektor Lambda ZAP Express™ und das Screening der Genbank nach einem Streptococcus pneumoniae secretory IgA binding protein (SpsA) . Die chromosomale DNA von Streptococcus pneumoniae ATCC 33400 wurde isoliert, mit Sau3A partiell verdaut und in einem Natriumchloridgradienten, der durch Einfrieren und Auftauen einer 20 %- igen Natriumchloridlösung gebildet wurde, nach Größe der DNA- Fragmente fraktioniert. Die Ligation der 2,0 kb bis 6,0 kb großen DNA-Fragmente der chromosomalen DNA in den BamHI-ge- schnittenen Lambda ZAP Express™ und die in vi tro Verpackung erfolgte mit einem komerziellen Kit nach Angaben des Herstellers (Stratagene, Heidelberg, Germany) . Die Phagengenbank wurde ohne weitere Amplifikation ausplattiert und die rekombinanten Plaques auf die Expression eines sekretorischen IgA-Bindungsprotein untersucht. Der Transfer der Proteine erfolgte auf Nitrozellulosefilter, und nach Absättigung mit 10 %-iger Magermilch in 0,1 M PBS wurde mit sekretorischem IgA [1 μg/ml] (Sigma, München, Germany) in 0,1 M PBS für 1 Stunde bei Raumtemperatur unter Schütteln inkubiert. Nach dreimaligem Waschen mit 0,1 M PBS wurden die Filter 1 Stunde mit einem Goat-Anti Human IgA-HRP-Konju- gat Antikörper inkubiert. Die Farbentwicklung erfolgte nach dreimaligem Waschen mit 1 mg 4-Chloro-l-Naphthol und 0,1 % H2O2 in 1 ml PBS. Positive Plaques wurden isoliert und nach Amplifi- kation die in vivo Excision des pBK-CMV Phagmids mit Hilfe des Exassist Helferphagen und XLOLR System nach den Angaben des Herstellers (Stratagene, Heidelberg, Germany) durchgeführt.
Beispiel 4 :
Dieses Beispiel beschreibt die DNA-Sequenzierung und die Ableitung der Aminosäuresequenz. Die Sequenzierung des 5,085 kb In- serts von Streptococcus pneumoniae ATCC 33400 im Phagemid pBK- CMV, pSHAl genannt, erfolgte durch das ABI PRISM™ Dye Terminator Cycle Sequencing nach Angaben des Herstellers (Perkin-Elmer, Germany) mit den Vektorprimern T3X ( 5 ' -AATTAACCCTCACTAAAGGG-3 ' ) und T7X (5'-TAATACGACTCACTATCGGG-3' ) sowie den von der erhaltenen Sequenz abgeleiteten Primern (siehe Tabelle) . Die Translation der Nukleinsäuresequenz in die Aminosäuresequenz erfolgte mit Hilfe des Programms GeneWorks, Version 2.45 ( Intelligene- tics, Montain View, CA) .
Tabelle 1:
SH1 5'-ATATACAGTTCATATTGAAGTG-3' (220-241)
SH2 5'-CAATATGAACTGTATATAAATCG-3 (236-214)
SH5 5'-GAGAGATAGACATAAAGATAC-3' (553-571)
SH6 5'-GAACTATTTTATTCAAATACTCG-3' (630-608)
SH8 5'-CAATATAGAACGAGATAAGGC-3' (470-490)
SH9 5'-GCTGGAAACAAGAAAACGG-3' (1259-1276)
SH10 5'-AATCTAAACTTCCTACAAGGG-3' (1962-1942)
SH11 5'-GGTGCTATGAAAGCAAGCC-3' (1722-1740)
SH17 5'-GAATTCACGAACTGCGACG-3' (2203-2221)
Beispiel 5 :
Dieses Beispiel beschreibt die Konstruktion der Subklone von pSHAl und deren Charakterisierung im Western-blot. Subklon pSHA2 (ntl-nt2203 von pSHAl) wurde durch Deletion eines 2882 bp großen EcoRI-Fragments erhalten und Subklon pSHA3 (ntl- nt757) durch Deletion eines 4328 bp großen HindiII-Fragments von pSHAl. Ein weiterer Subklon, genannt pSHA4 (nt2952-nt5085 von pSHAl) , wurde durch Deletion eines 2133 bp großen Sacl-Fragments erhalten.
Die Charakterisierung der Klone erfolgte nach Auftrennung der Proteine des Zellysats [ODgQO von λ r ^ eingestellt und nach Auf¬ nahme der Bakterien in 100 μl Aufschlußlösung (20 % Glycerin, 3 % SDS, 3 % ß-Mercaptoethanol, 0,05 % Bromphenolblau) 10 Minuten bei 94 °C gekocht] der rekombinanten E . coli Zellen im SDS-PAGE und Transfer der Proteine auf eine Nitrozellulosemembran im Western-blot mit sekretorischem IgA. Nach Absättigung mit 10 %- iger Magermilch in 0,1 M PBS wurden die Filter mit sekretorischem IgA [1 μg/ml] (Sigma, München, Germany) in 0,1 M PBS für 1 Stunde bei Raumtemperatur unter Schütteln inkubiert. Nach dreimaligem Waschen mit 0,1 M PBS wurden die Filter 1 Stunde mit einem Goat-Anti Human IgA-HRP-Konjugat Antikörper inkubiert. Die Farbentwicklung erfolgte nach dreimaligem Waschen mit 1 mg 4- Chloro-1-Naphthol und 0,1 % H202 pro 1 ml PBS.
Beispiel 6:
Dieses Beispiel beschreibt die PCR-Amplifikation und Klonierung von spsA, des 5 '-Bereichs von spsA (ntl-nt972) und des 3 ' -Bereichs (nt973-ntl572) von spsA in den Expressionsvektor pQE30 (Pharmacia) .
Die PCR Primer für spsA und der spsΛ-Fragmente wurden abgeleitet von der in pSHAl erhaltenen spsA-Sequenz von Streptococcus pneumoniae ATCC 33400 Serotyp 1. Der 5 '-Primer SH22 (5'-GCGCGCG CGCGGATCCTTGTTTGCATCAAAAAGCGAAAG-3' ) ist 39 bp lang und beginnt mit einem veränderten Startkodon des spsÄ-Gens (TTG statt ATG) . Der 5 '-Primer für die Repeats, SH24 ( 5 ' -GCGCGCGCGCGGATCCACAGGCT GGAAACAAGAAAAC-3' ) , beginnt mit der Anfangssequenz des ersten Repeats bei Nukleotid 973 des spsÄ-Gens . Der 3 '-Primer von spsASH23 (CTCAGCTAATTAAGCTTGTTTAGTTTACCCATTCACCATTGGC-3' ) , beginnt mit dem Stopkodon und der 3 '-Primer des N-Terminus, SH25 (5'-CTCAGCTAATTAAGCTTTTTTGGAGTAGATGGTTGTGCTGG-3' ) , beginnt bei Nukleotid 972 des spsA-Gens . Die Primer SH22-SH23 wurden zur Konstruktion von pQSH12, die Primer SH22-SH25 zur Konstruktion von pQSH14 und die Primer SH24-SH23 zur Konstruktion von pQSH30 genutzt. Die 5 '-Primer enthielten zur Klonierung eine B-amtil Restriktionsschnittstelle, die 3 '-Primer eine HindiII Restriktionsschnittstelle.
Die Amplifikation der genomischen Pneumokokken-DNA mit den 5'- und 3 '-Primern (20 pmol jeweils) erfolgte in einem Thermocycler (MWG-Biotech, Ebersberg, Germany) in einem 100 μl Volumen mit 2,5 Units der Goldstar Taq-Polymerase nach den Angaben des Herstellers (Eurogentec, Seraing, Belgien) und 50 ng chromosomaler DNA. Die Proben wurden bei 94 °C zwei Minuten denaturiert und die Amplifikation erfolgte in 35 Zyklen bestehend aus 1 Minute Denaturierung der DNA bei 94 °C, 1 Minute Annealing des Primers bei 55 °C und 2 Minuten Extension bei 72 °C.
Die Primer SH22 bis SH23 konnten auch für die Amplifikation und Klonierung der spsA-Gene von Streptococcus pneumoniae Serotyp 2
(R36A smooth, ATCC 11733 und D39, NCTC 7466) und Serotyp 47
(R36A rough, NCTC 10319) verwendet werden.
Die Primer SH22 bis SH25 konnten auch für die Amplifikation und Klonierung des 5 ' -Bereichs von Streptococcus pneumoniae Serotyp 47 (R36A rough, NCTC 10319) verwendet werden.
Beispiel 7 :
Dieses Beispiel beschreibt die Untersuchung der Adhärenz von Streptococcus pneumoniae Stämmen an humane Epithelzellen.
Konfluente HEp-2 Larynxkarzinom Zellen oder A549 alveolare Lungenzellen (2xl05), die in DMEM/5 % fetales Kälberserum (FCS) wuchsen, wurden nach Waschen der Zellen mit DMEM/lmM HEPES mit 107 Pneumokokken in DMEM/1 mM HEPES für 1 Stunde bei 37 °C infiziert. Anschließend wurden die Zellen dreimal mit PBS gewaschen und mit Methanol fixiert (-20 °C, 30 Minuten) . Die extrazellulären Pneumokokken wurden zur mikroskopischen Auszählung mit Giemsa nach den Angaben des Herstellers (Sigma Diagnostic, München, Germany) angefärbt. Die Anzahl der adhärenten Pneumokokken wurde durch Auszählen von mindestens 100 Epithelzellen bestimmt.
1 Sternberg, G. M. A fatal form of septicaemia in the rabbit, produced by the subcutaneous injection of human saliva. National Board of Health Bulletin 1881; 2: 781-783 2 Austrian, R. Some aspects of the pneumococcal carrier State. J. Antimicrob. Chemother. 1986; 18 (suppl.A): 35-45
3 Gray, B. A. , G. M. Converse III, and H. C. Dillon, Jr. 1979. Serotypes of Streptococcus pneumonmiae causing disease. J. Infect. Dis. 140: 979-983
4 Dagan, R. , M. Isaachson, R. Lang, J. Karpuch, C. Block, and J. Amir from the Israeli Pediatric Bacteremia and eningitis Group. 1994. Epidemiology of pediatric meningitis caused by Haemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningi tidis in Israel: a 3-year nationwide study. J. Infect. Dis. 169: 912-916
5 Musher, D. M. 1992. infections caused by Streptococcus pneumoniae : clinical spectrum, pathogenesis, immunity, and treatment. Clin. Infect. Dis. 14: 801-809
6 Centers for Disease Control, 1984 [update: pneumococcal polysaccharide 0 vaccine usage-United states. Morbid. Mortal. Weekly Rep. 33: 273-276];
7 Filice, G. A. , L. L. Van Etta, C. P. Darby, and D. W. Frä¬ ser. 1986. Bacteremia in Charlston County, South Carolina. Am. J. Epidem. 123: 128-136]
8 Gillespe, S. H. 1989. Aspects of pneumococcal infection including bacterial virulence, host response and vaccination. J. Med. Microbiol. 28: 237-248
9 Henrichsen, J. 1995. Six newly recognized types of Strepto¬ coccus pneumoniae . J. Clin. Microbiol. 33: 2759-2762
10 Fine, D. P. 1975 Pneumococcal type associated variability in alternate complement pathway activation. Infect. Immun. 12: 772-778 11 Chudwin, D. S., Artrip, S. G., Korenblit, A., Schiffman, G., and Rao, S. 1985 Correlation of serum opsonins with in vitro phagocytosis of Streptococcus pneumoniae . Infect. Immun. 50: 213-217;
12 Silvenoinen-Kasinen, S., and Koskela, M. 1986. Optimal con- ditions for the opsonophagocytosis test with Streptococcus pneumoniae serotypes 3, 6A, 7F and 19F and human granulocytes . Acta Pathol. Microbiol. Scand. Sect . C 94: 105-111
13 Stryker, L. Variations in the pneumococcus induced by growth in immune serum. J. Exp. Med 1916; 24: 49-68
14 Griffith, F. The significance of pneumococcal types. J. Hyg 1928; 27: 113-159
15 Avery, 0. T., MacLeod, C. M., McCarthy, M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79: 137-158
16 Knecht J. C, Schiffmann, G., Austrian, R. Some biological properties of Pneumococcus type 37 and the chemistry of its cap- sular polysaccharide. J. Exp. Med. 1970; 132: 475-487
17 Stein, K. E. 1992. Thymus-independent and thymus-dependent responses to polysaccharide antigens. J. Infect. Dis. 165 (Suppl. 1) : S49-S52
18 Appelbaum, P. C. 1992. Clin. Infect. Dis. 15: S77
19 Tuomanen, E. 1993. Breaching the blood-brain barrier. Sei. Ami. 268 (2) : 80-84
20 Lock, R. A., Hansman, D., and Paton, J. C. 1992 Comparative efficaey of autolysin and pneumolysin as im unogens protecting mice against infection by Streptococcus pneumoniae . Microb. Pa- thog. 12: 137-143
21 Lock, R. A. , Paton, J. C, and Hansman, D., 1988 Compara- tive efficacy of pneumococcal neuraminidase and pneumolysin as immunogens protective against Streptococcus pneumoniae . Microb. Pathog. 5: 461-467
22 Sampson, J. S., O'Connor, S. P., Stinson, A. R. , Tharpe, J. A., and Russell, H. 1994. Cloning and nucleotide sequence analy- sis of psaA, the Streptococcus pneumoniae gene encoding a 37- kilodalton protein homologius to previously reported Streptococcus sp. adhesins. Infect. Immun. 62: 319-324
23 Tart, R. C, McDaniel, L. S., Ralph, B. A., and Briles, D. E. 1996. Truncated Streptococcus pneumoniae pspA molecules elicit cross-protective immunity against pneumococcal challenge in mice. J. Infect. Dis. 173: 380-386
24 Alexander, J. E., Lock, R. A. , Peeters, C. C. A. M., Pool- man, J. T., Andrew, P. W., Mitchell, T. J. , Hansman, D. , and Paton, J. C. 1994. Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect. Immun. 62: 5683- 5688
25 Boulnois, G. J. 1992. Pneumococcal proteins and the patho- genesis of disease caused by Streptococcus pneumoniae . J. Gen. Microbiol. 138: 249-259
26 Houldsworth, S., Andrew, P. W., and Mitchell, T. J. 1994. Pneumolysin stimulates production of tumor necrosis factor alpha and interleukin-lß by human mononuklear phagocytes. Infect. Immun. 62: 1501-1503 27 Feldman, C, Mitchell, T. J. , Andrew, P. W., Boulnois, G. J., Read, R. C, Todd, H. C, Cole, P. J. , and Wilson, R. 1990. The effect of Streptococcus pneumoniae pneumolysin on human respiratory epithelium in vitro. Micob. Pathog. 9: 275-284
28 Paton, J. C, and Ferrante, A. 1983. Inhibition of human polymorphonuclear leukocyte respiratory burst, bactericidal activity, and migration by pneumolysin. Infect. Immun. 41: 1212- 1216
29 Paon, J. C, Andrew, P. W., Bounois, G. J. , and Mitchell, T. J. 1993. Molecular analysis of the pathogenicity of Streptococcus pneumoniae : the role of pneumococcal proteins. Annu. Rev. Microbiol. 47: 89-115
30 Crain, M. J. , Waltman II, W. D. , Turner, J. S., Yother, J. Talkington, D. F., McDaniel, L. S., Gray, B. M., and Briles, D. E. 1990. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae . Infect. Immun. 58: 3293-3299
31 Briles, D. E., Yother, J. , and McDaniel, L. S. 1988. Role of pneumococcal surface protein A in the virulence of Streptococcus pneumoniae . Rev. Infect. Dis. 10 (Suppl. 4): 797-805
32 McDaniel, L. S, Yother, J., Vijayakumar, M., McGarry, L. , Guild, W. R., and Briles, D. E: 1987. Use of insertional activa- tion to facilitate studies of biological properties of pneumococcal surface protein A (PspA). J. Exp. Med. 165: 381-394
33 Male, C. J. Immunglobulin AI protease production by Haemo- philus influenzae und Streptococcus pneumoniae . Infect. Immun. 1979; 26: 254-261 34 Wani, J. H., Gilbert, J. V., Plaut, A. G., and Weiser, J. N. 1996. Identfication, cloning, and sequencing of the Immunoglobulin AI protease gene of Streptococcus pneumoniae . Infect. Immun. 64(10): 3967-3974
35 Poulsen, K. , Reinholdt, J. , and Kilian, M. Characterization of the Streptococcus pneumoniae Immunglobulin AI protease gene ( iga ) and ist translation product. Infect. Immun. 64(10): 3957- 3966
36 Vered, M., Schutzbank, T., Janoff, A. Inhibitors of human neutrophil elastase in extracts of Streptococcus pneumoniae . Am. Rev. Respir. Dis. 1984; 130: 1118-1124
37 Cundell, C. R. , Pearce, B. J. , Young, A. , Tuomanen, E. I., Masure, H. R. Protein dependent peptide permeases from Streptococcus pneumoniae medite cytoadherence to type II lung cells and to human endothelial cells [abstract no . B107]. J. Cell Biochem. Suppl. 1994; 18A: 45
38 Lacks, S. A. Purification and properties of the complemen- tary endonucleases Dpnl and Dpnll. Methods Enzymol. 1980; 65: 138-146
39 Pearce, B. J. , Naughton, A. M. , Masure, H. R. Peptide permeases modulate transformation in Streptococcus pneumoniae . Mol. Microbiol. 1994; 12: 881-892
40 Masure, H. R. , Campbell, E. A. , Cundell, D. R. , Pearce, B. J. , Sandros, J., Speilerberg, B. A. 1995. New genetic strategy for the analysis of virulence and transformation in Streptococcus pneumoniae . Dev. Biol. Stand. 85: 251-260
41 Yother, J. , Briles, D. E. 1992. Structural and evolutionary relationships of PspA, a surface protein of Streptococcus pneu- moniae, as revealeds by sequence analysis. J. Bacteriol . 174: 601-609
42 Yother, J. , and White, J. M.. 1994. Novel surface attach- ment mechanism of the Streptococcus pneumoniae Protein PspA. J. Bacteriol. 176: 2976-2985
43 Yother, J. , Handsome, G. I., and Briles, D. E. 1992. Trun- cated forms of PspA that are secreted from Streptococcus pneumoniae and their use in functional studies and cloning of the pspA gene. J. Bacteriol. 174: 610-618;
44 McDaniel, L. S., Sheffield, J. S., Swiatlo, E., Yother, J. , Crain, M. C, and Briles, D. E. 1992. Molecular localization of variable and conserved region of pspA and identification of additional pspA homologous sequences in Streptococcus pneumoniae . Micro. Pathog. 13: 261-269
45 Jerlström, P. G., Chhatwal, G. S., Timmis, K. N. 1991. The IgA-binding B antigen of the c protein complex of group B strep- tococci: sequence determination of its gene and detection of two binding regions. Mol. Microbiol. 5: 843-849
46 Heden, L., Frithz, E. Lindhai, G. 1991. Molecular characte- rization of an IgA receptor from group B streptococci : Sequence of the gene, identification of a proline-rich region with unique structure and isolation of N-terminal fragments with IgA-binding capacity. Eur. J. Immun. 21: 1481-1490
47 Solary, R., and Krähenbühl, J. P. 1985. Immunol . Today, 17- 20
48 Brown, W. R. , Isobe, Y., Nakane, P. K. 1976. Studies on translocation of immunoglobulins across intestinal epithilium. II. Immunelectron-microscopic localization of immunoglobulins and secretory component in human intestinal mucosa. Gastro- enterology 71: 985-995

Claims

Patentansprüche
1. Oberflächenprotein von Streptococcus pneunomiae (SpsA- Protein) , dadurch gekennzeichnet, daß es an sekretorisches IgA (slgA) bindet.
2. Sekretorisches Protein von Streptococcus pneumoniae, dadurch gekennzeichnet, daß es an sekretorisches IgA (slgA) bindet.
3. Teilverdautes Oberflächenprotein oder sekretorisches Protein von Streptococcus pneumoniae gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß es an sekretorisches IgA (slgA) bindet.
4. C-terminal deletierter Abkömmling eines Oberflächenproteins oder sekretorischen Proteins gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß es an sekretorisches IgA (slgA) bindet.
5. Deletierter Abkömmling eines Oberflächenproteins oder sekre¬ torischen Proteins gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß
- zumindest die Signalsequenz und/oder
— zumindest fakultative Repeats des Oberflächenproteins oder sekretorischen Proteins deletiert sind, jedoch — die sekretorisches IgA (slgA) bindende Domäne vorliegt, so daß der Abkömmling an sekretorisches IgA (slgA) bindet.
6. Abkömmling nach Anspruch 5, dadurch gekennzeichnet, daß das Oberflächenprotein oder das sekretorische Protein bis auf die sekretorisches IgA (slgA) bindende Domäne deletiert sind.
7. Oberflächenprotein nach Anspruch 1, gekennzeichnet durch 523 Aminosäuren gemäß Fig. 2 (Positionen 1 bis 523).
8. C-terminal deletierter Abkömmling des Oberflächenproteins gemäß Anspruch 1 oder 7, gekennzeichnet durch 324 Aminosäuren gemäß Fig. 2 (Positionen 1 bis 324) und
Repeats 1 bis 6 (Positionen 325 bis 444) oder Repeats 1 bis 7 (Positionen 325 bis 464) oder Repeats 1 bis 8 (Positionen 325 bis 484 oder bis 485) .
9. N-terminal deletierter Abkömmling des Oberflächenproteins gemäß Anspruch 1 oder 7, dadurch gekennzeichnet, daß er
(i) im Bereich der Positionen 1 bis 159 gemäß Fig. 2 um 1 bis maximal 159 Aminosäuren deletiert ist,
(ii) nicht jedoch im Bereich der Positionen 160 bis 523 deletiert ist.
10. N-terminal und C-terminal deletierter Abkömmling des Oberflächenproteins gemäß Anspruch 1 oder 7, dadurch gekennzeichnet, daß er
(i) im Bereich der Positionen 1 bis 159 gemäß Fig. 2 um 1 bis maximal 159 Aminosäuren deletiert ist,
(ii) nicht jedoch im Bereich der Positionen 160 bis 324 deletiert ist und gegebenenfalls (iii) Repeats 1 bis 8 (Positionen 325 bis 484 oder bis 485) oder Repeats 1 bis 7 (Positionen 325 bis 464) oder Repeats 1 bis 6 (Postionen 325 bis 444) aufweist.
11. Abkömmling nach Anspruch 10, dadurch gekennzeichnet, daß er nicht im Bereich der Positionen 174 bis 285 deletiert ist.
12. Ein sekretorisches IgA (slgA) bindendes Protein, dadurch gekennzeichnet, daß seine Aminosäure-Sequenz zu mindestens 80 % mit der des Oberflächenproteins gemäß Anspruch 7 oder eines seiner Abkömmlinge gemäß Anspruch 8, 9, 10 oder 11 identisch ist.
13. Expressionssystem insbesondere für Escherichia coli zur Expression eines Oberflächenproteins, eines sekretorischen Proteins, eines Abkömmlings oder eines Proteins gemäß einem der vorhergehenden Ansprüche, umfassend eine DNA-Sequenz, die das Oberflächenprotein oder den Abkömmling kodiert.
14. Vaccine zur Protektion gegen Erkrankungen durch Streptococcus pneunomiae, herstellbar mit Hilfe eines sekretorischen Proteins oder eines Oberflächenproteins oder eines Abkömmlings gemäß einem der Ansprüche 1 bis 12.
EP98916880A 1997-03-03 1998-03-02 OBERFLÄCHENPROTEIN (SPSA-PROTEIN) VON $i(STREPTOCOCCUS PNEUMONIAE) DELIERTE ABKÖMMLINGE, EXPRESSIONSSSYSTEM FÜR DIESE PROTEINE UND VACCINE MIT DEN PROTEINEN Withdrawn EP0991762A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19708537 1997-03-03
DE19708537A DE19708537A1 (de) 1997-03-03 1997-03-03 Neues Oberflächenprotein (SpsA-Protein) von Streptococcus pneumoniae etc.
PCT/EP1998/001149 WO1998039450A2 (de) 1997-03-03 1998-03-02 Oberflächenprotein (spsa-protein) von streptococcus pneumoniae deletierte abkömmlinge, expressionssssystem für diese proteine und vaccine mit den proteinen

Publications (1)

Publication Number Publication Date
EP0991762A2 true EP0991762A2 (de) 2000-04-12

Family

ID=7822047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98916880A Withdrawn EP0991762A2 (de) 1997-03-03 1998-03-02 OBERFLÄCHENPROTEIN (SPSA-PROTEIN) VON $i(STREPTOCOCCUS PNEUMONIAE) DELIERTE ABKÖMMLINGE, EXPRESSIONSSSYSTEM FÜR DIESE PROTEINE UND VACCINE MIT DEN PROTEINEN

Country Status (4)

Country Link
EP (1) EP0991762A2 (de)
JP (1) JP2001524073A (de)
DE (1) DE19708537A1 (de)
WO (1) WO1998039450A2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928895A (en) * 1996-09-24 1999-07-27 Smithkline Beecham Corporation IgA Fc binding protein
US6800744B1 (en) 1997-07-02 2004-10-05 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
KR20060126844A (ko) 1998-04-07 2006-12-08 메디뮨 인코포레이티드 백신용 폐렴 구균의 콜린 결합성 단백질의 유도체
AU2027400A (en) * 1998-11-19 2000-06-05 St. Jude Children's Research Hospital Identification and characterization of novel pneumococcal choline binding proteins, cbpg and cbpd, and diagnostic and therapeutic uses thereof
WO2002008426A2 (en) * 2000-07-20 2002-01-31 Hansa Medical Ab Fh-binding protein of streptococcus pneumoniae
GB0022742D0 (en) 2000-09-15 2000-11-01 Smithkline Beecham Biolog Vaccine
TWI457133B (zh) 2005-12-13 2014-10-21 Glaxosmithkline Biolog Sa 新穎組合物
GB0607088D0 (en) 2006-04-07 2006-05-17 Glaxosmithkline Biolog Sa Vaccine
AR058707A1 (es) 2005-12-22 2008-02-20 Glaxosmithkline Biolog Sa Vacuna, procedimiento para fabricarla y su uso
EA200901578A1 (ru) 2007-06-26 2010-08-30 Глаксосмитклайн Байолоджикалс С.А. Вакцина, содержащая конъюгаты капсульных полисахаридов streptococcus pneumoniae
WO2009127676A1 (en) 2008-04-16 2009-10-22 Glaxosmithkline Biologicals S.A. Vaccine
GB201003924D0 (en) 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Immunogenic composition
AR086405A1 (es) 2011-05-17 2013-12-11 Glaxosmithkline Biolog Sa Vacuna de streptococcus pneumoniae
US9815886B2 (en) 2014-10-28 2017-11-14 Adma Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
GB201518684D0 (en) 2015-10-21 2015-12-02 Glaxosmithkline Biolog Sa Vaccine
US10259865B2 (en) 2017-03-15 2019-04-16 Adma Biologics, Inc. Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996039113A2 (en) * 1995-06-02 1996-12-12 Uab Research Foundation Oral administration of pneumococcal antigens
CA2253252A1 (en) * 1996-05-01 1997-11-06 The Rockefeller University Choline binding proteins for anti-pneumococcal vaccines
DE69737125T3 (de) * 1996-10-31 2015-02-26 Human Genome Sciences, Inc. Streptococcus pneumoniae-Antigene und Impfstoffe
AU5355398A (en) * 1996-11-12 1998-06-03 Regents Of The University Of Minnesota C3 binding protein of (streptococcus pneumoniae)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9839450A2 *

Also Published As

Publication number Publication date
JP2001524073A (ja) 2001-11-27
WO1998039450A3 (de) 1998-11-05
DE19708537A1 (de) 1998-09-10
WO1998039450A2 (de) 1998-09-11

Similar Documents

Publication Publication Date Title
BRILES et al. PspA and PspC: their potential for use as pneumococcal vaccines
Hammerschmidt et al. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component
WO1998039450A2 (de) Oberflächenprotein (spsa-protein) von streptococcus pneumoniae deletierte abkömmlinge, expressionssssystem für diese proteine und vaccine mit den proteinen
DE69737125T3 (de) Streptococcus pneumoniae-Antigene und Impfstoffe
Briles et al. PspA, a protection-eliciting pneumococcal protein: immunogenicity of isolated native PspA in mice
US7820789B2 (en) Mutant pneumolysin proteins
DE69934299T2 (de) Gruppe b-streptococcus antigene
PATON et al. Molecular analysis of putative pneumococcal virulence proteins
Jacobs et al. Identification, purification, and characterization of a thiol-activated hemolysin (suilysin) of Streptococcus suis
DE60027890T2 (de) Streptococcus pneumoniae proteine und impfstoffe
EP2281891A2 (de) Antigene aus Streptococcus
EP2261358A2 (de) Streptokokken-Antigene
US6426074B1 (en) Group B Streptococcus vaccine
US20120308596A1 (en) Novel streptococcus antigens
Lu et al. Species-specific interaction of Streptococcus pneumoniae with human complement factor H
US20060177465A1 (en) Streptococcus antigens
US20040265933A1 (en) Proteins
JPH0710774A (ja) スプレプトコッカス・スイス感染に対するワクチン
AU776735B2 (en) Genes and proteins, and their use
WO1991004049A1 (en) CONJUGATE VACCINE FOR GROUP B $i(STREPTOCOCCUS)
DE69925866T2 (de) Aussermembranproteine, ihre gene, und deren verwendung
US20030104000A1 (en) Genes and proteins, and their use
AU2008229967B2 (en) Novel streptococcus antigens
EP1950302A2 (de) Streptokokken-Antigene
Roche Characterization of the protective antibody responses to PSPA in Streptococcus pneumoniae

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990902

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20000714