EP0989950B1 - Procede et dispositif pour l'enroulement sur une bobine d'une matiere a enrouler en forme de fil - Google Patents

Procede et dispositif pour l'enroulement sur une bobine d'une matiere a enrouler en forme de fil Download PDF

Info

Publication number
EP0989950B1
EP0989950B1 EP98936175A EP98936175A EP0989950B1 EP 0989950 B1 EP0989950 B1 EP 0989950B1 EP 98936175 A EP98936175 A EP 98936175A EP 98936175 A EP98936175 A EP 98936175A EP 0989950 B1 EP0989950 B1 EP 0989950B1
Authority
EP
European Patent Office
Prior art keywords
winding
turns
coil
turn
winding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98936175A
Other languages
German (de)
English (en)
Other versions
EP0989950A1 (fr
Inventor
Michael Grandauer
Dieter Spriegel
Reiner Schneider
Günter DOEMENS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Research and Development Corp
Original Assignee
CCS Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCS Technology Inc filed Critical CCS Technology Inc
Publication of EP0989950A1 publication Critical patent/EP0989950A1/fr
Application granted granted Critical
Publication of EP0989950B1 publication Critical patent/EP0989950B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2848Arrangements for aligned winding
    • B65H54/2854Detection or control of aligned winding or reversal
    • B65H54/2869Control of the rotating speed of the reel or the traversing speed for aligned winding
    • B65H54/2878Control of the rotating speed of the reel or the traversing speed for aligned winding by detection of incorrect conditions on the wound surface, e.g. material climbing on the next layer, a gap between windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2848Arrangements for aligned winding
    • B65H54/2854Detection or control of aligned winding or reversal
    • B65H54/2869Control of the rotating speed of the reel or the traversing speed for aligned winding
    • B65H54/2875Control of the rotating speed of the reel or the traversing speed for aligned winding by detecting or following the already wound material, e.g. contour following
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/40Sensing or detecting means using optical, e.g. photographic, elements
    • B65H2553/42Cameras

Definitions

  • the invention relates to a method and a device for winding strand-like winding material on a spool, wherein the winding material is continuously supplied, and wherein at least one Video camera observed the position of the winding material and is recorded and the data thus obtained on the Wrapping a computing unit to be fed, the one corresponding adjustment of the feed of the winding material causes.
  • a method of this kind is known from EP-B1 0 043 366.
  • Video camera detects the possibly of a headlight illuminated winding layer. By means of the video camera is doing the position of the winding flank of the last wound turn determined and at one to a certain Coil rotation angle in front of the contact point of the winding material distant point.
  • a second Measuring device for detecting the respective traversing position the coil and a sensor for the winding strand provided. Out the measured data of both measuring devices are those Calculates relative positions, which the coil and the Guide device for the strand after turning the coil to the aforementioned coil rotation angle for maintaining of the casserole angle must have reached.
  • a Control device is used to maintain a constant angle for laying the turns within each winding layer.
  • WO 94/13568 discloses a control system and a method for controlling a machine for winding a electrical cable and the like on a spool described.
  • a light source projects a band of light a cable section between the spool and a guide device for guiding the cable. At the intersection of Light band and the cable becomes a characteristic point determined, located near a casserole point of the cable located.
  • Drive means of the machine become dependent from the speed of movement of the characteristic Point regulated relative to an axis.
  • JP-A-4016464 discloses an arrangement for winding a cable described on a spool, from one in the direction the coil axis oscillating projection device a light spot is generated on a turn of the cable, the taken by a camera.
  • the projection device and the camera can be attached to a side flange surface of the Coil can be tilted.
  • the invention is based on the object in a simple manner a quick and efficient correction of deviations to ensure.
  • This task is at a Method of the type mentioned solved in that seen in the radial direction relative to the coil axis each for at least two turns of the new winding layer the location of the vertices of these turns is determined and that if these vertices deviate from one Setpoint a deviation-reducing adjustment at the supply of the winding material is performed.
  • a particularly advantageous embodiment of the invention is that due to a rise in the last turn resulting deviation of the size of the Peak value of the last turn of the size of the Peak value of a previous turn a Adjustment of the supply in the sense of increasing the lateral distance performed by the penultimate turn becomes.
  • Another particularly advantageous embodiment of Invention is characterized in that in parallel Direction to the coil axis seen in the area of Impact point of the winding material for at least two Windings of the new winding layer the distance of the vertices of these turns is determined and that due to a Occurrence of a gap between the penultimate and the last turn resulting enlargement of the distance an adjustment between the neighboring peaks the supply in the sense of a reduction of the lateral Distance of the last turn from the penultimate one Winding is performed.
  • the invention further relates to a device for Aufwikkeln of strand-shaped winding material on a spool according to claim 16th
  • the invention gives the possibility that by appropriate Lighting, in particular in the form of a light band, simultaneously turns and - at approach of turns the flange - the drum flange, can be detected and Thus, the current distance of the current turn of Flange is actually determined.
  • Figure 1 is transverse to a winding axis AX a coil or Drum SP shown in section, the inner cylinder with IZ is designated.
  • this coil SP is in one or preferably several layers wound a winding material WM, wherein it is desirable that this winding material as close as possible and applied uniformly, i. that neither between adjacent layers of columns arise, nor that about the Winding material rises, i. to an unfinished situation is wound up.
  • the winding material can be a thread, strand, Pipe or other, configuration and has preferably a circular cross-section. The following is assumed that as a winding WM (electric or optical) cable is applied.
  • the multi-wood coil (e.g., cable drum) SP generally has two lateral flanges, of which in the present example only the rear, namely FL1 is visible.
  • a Light source LS provided, which a, advantageous divergent, light band LB directed to the cable WM.
  • the Light band LB should be wider than the diameter or the width of the winding material WM and that at least the Be twice the width of the winding material, advantageous but at least four times that width.
  • Light source LS is preferably a laser used because of this way the light will be focused very sharply and accurately can.
  • the lighting in the area of the impact point AP so make sure that both the left and the right flange are always lit and of course all in between lying windings are detected with. That means that then the width of the light band is chosen slightly larger than the Coil width. In this case it is not necessary that Continuous line LB along the axis AX with the Impact point AP of the winding material WM to move. It is sufficient then a fixed arrangement of the light source LS, which with its wide beam always the entire width, including the flanges of the coil SP illuminated. If a fixed light source LS is used, then this is useful in about the middle of the coil SP position, i. that the distance to the left and to right flange of the coil is chosen approximately equal.
  • the management device FE which coupled with her light source LS and the video camera, be executed fixed when the traversing movement of the Drum is generated by the winding device itself. It will then only the described disorders in Winding course by corresponding fast Correcting movements of the guide device eliminated.
  • the Light source LS should definitely be outside the outermost edge of the respective flanges (e.g., FL1) may also be arranged to be one Flange detection with allow.
  • the two light sources can also be designed so that their light bands of of the same length and congruent to an area around the impact point AP of the cable will be projected.
  • This arrangement is advantageous when using a fixed guide device used. In the Switching the video cameras, depending on the direction of the traversing drum, the impact point AP remains Cable at the same image position.
  • each light source and video camera preferably at an angle of 5 ° inclined from the orthogonal to the flange. This can a possible partitioning of the light band on the flange be prevented.
  • the left flange side or with the left light source illuminates the right flange side.
  • three and more light sources are conceivable, in particular, when it comes to very wide coils. These several Light sources are suitably firmly positioned.
  • the casserole AP is a spatial coordinate system shown, wherein the z-direction of the tangent to the underlying layer WL1 corresponds, so in the circumferential direction runs.
  • the y-direction points relative to the axis of rotation AX in the radial outward direction, while the x-direction itself extends parallel to the axis of rotation AX.
  • the width of the Light band LB in the z-direction should be kept as small as possible to ensure optimal optical imaging. Preferred are band widths in the z direction, i. at the Impact of the light band LB on the upper contour of the Wickelgutes WM in the range between 0.5 mm and 5 mm, especially provided between 1 mm and 3 mm.
  • angle ⁇ between the beam axis of the light band LB. and the radial direction y is preferably not so large. Also for other reasons, angle values ⁇ are between 10 and 60 ° appropriate and values between 30 and 40 °, in particular around 35 °, particularly advantageous.
  • the beam direction of Align light source LS so that this substantially approximately in the radial direction, d. H. on the axis AX the drum is directed.
  • This is increasing Winding diameter, d. H. increasing number of angry Turns the impact point essentially on one continuous line.
  • This point of impact AP is generally a little further to the left than in the illustration of Figure 1, because the supplied winding WM is not tangential or horizontal but essentially rather obliquely from below is supplied.
  • the beam axis of the video camera VC should expediently extend in an angle range ⁇ between 0 ° and 60 °, wherein, owing to the better optical conditions, an angle of 0! Is used. In some cases, values between 30 ° and 40 °, in particular of 35 °, may also be used. In general, it is expedient if the angles ⁇ and ⁇ are not chosen to be equal, because then the evaluation is optically more favorable. The sum angle ( ⁇ + ⁇ ) is chosen such that values of about 10 to 60 °, in particular about 35 °, are obtained.
  • the one have very high resolution, especially so-called CCD cameras.
  • the light information provided by the video camera VC become from the video camera VC to a computing unit CU forwarded, in which the evaluation continuously is carried out and from the corresponding control signals be given to the guiding or laying device FE, in the sense of a control loop the optimal guidance of the Wikkelgutes To reach the World Cup.
  • FIG Referenced where in perspective the Conditions in the area of the contact point AP increased are shown.
  • the schematically indicated light band LB of the light source LS which in the z-direction of the Winding material has only a small extent, arise the turns WD21 to WD23 of the upper layer WL2 arcuate Height profile lines labeled LP23, LP22 and LP21 are.
  • the underlying winding layer WL1 with the turns WD11 to WD15 also gives two bright height profile lines, of which due to the perspective representation only the outermost partially visible and labeled LP15.
  • the light band LB results in the region of the flange FL1 is a substantially straight line LPF.
  • the associated gray scale image is shown for the xy plane of Figure 1, which in the evaluation the line scan of the video camera VC received becomes.
  • the line scan of the video camera itself takes place expedient in the x-direction and it will be for the Example according to FIG. 2 from the light height profile lines LP21, LP22 and LP23 of the uppermost layer WL2 the image signals BD21, BD22 and BD23 obtained according to FIG.
  • Underneath are the Picture signals BD14 and BD15 of the height profile lines LP14 and LP15 the turns WD14 and WD15 of the underlying layer WL1 recognizable.
  • the bright line BDF is detected, which corresponds to the course of the flange at this point and goes back to the bright light band LPF of Figure 2.
  • FIG. 4 shows in the representation of FIGS. 2 and 3 Possible errors when tumbling. It is included Assuming that the winding WD23 in an impermissibly large Distance from the adjacent turn WD22 runs, i. between the two turns is a gap, which with ⁇ x is designated. The winding layer is therefore no longer tight Open enough and it must be a controlled variable generated be, which as soon as possible this gap again eliminated. As can be seen, is for the outer, by thick black lines indicated height profile lines and the Resulting light or image sheets BD21 to BD23 of Value of ⁇ y each about (i.e. within the usual Diameter variations, etc.) are the same size, i. it comes here to no ascend.
  • the size .DELTA.F is shown, which is the distance indicates the last turn WD23 from the flange FL1. If this Distance ⁇ F is smaller than the diameter or the width of the winding material, then it may be in the next turn too come up, but that is not a mistake, because the flange FL1 is reached anyway.
  • the quantities ⁇ y and ⁇ F are continuously determined and related, i. it will be respectively examines whether it is within the outer layer to a permissible or impermissible change. Switched off is at the peak value of the light bands or Height profile lines, because it makes a simple and special exact position determination is possible.
  • Relative to the coil axis AX is in the radial direction seen for at least two turns, e.g. WD22, WD23 the new winding layer WL2 the location of the vertices of this Turns determined and a deviation of this Vertices from a setpoint one the deviation decreasing adjustment when feeding the winding material carried out.
  • a previous turn (e.g., WD22) becomes a Adjustment of the supply in the sense of increasing the lateral distance from the penultimate turn WD22 carried out and thereby the ascension withdrawn.
  • D as a cable diameter is advantageous in a Deviation of the vertex of the last turn WD23 in radial direction (y direction) from the previous one Winding WD22 beyond a tolerance value (preferably from about D / 20) by means of the central controller CU Adjustment signal generated, which advantageously proportional to Height difference of the vertices and the cable diameter D is as fast as possible to the measured deviation counteract.
  • FIG 5 is a corresponding to Figures 2 and 3 to a Cable layer focused camera image of a video camera through a dashed outline indicated and designated KB.
  • the Video camera is used to reduce the image evaluation time expediently provided a smaller evaluation window AF, the dotted is indicated.
  • This evaluation window AF should At least 2 turns of the outer layer and advantageous at least one, better at least two turns of the inner Location include, i. prefers a total of 4 turns of two different winding layers.
  • 3 or 4 turns per layer are detected, whereby the Expense slightly increases but also improves the accuracy can be.
  • the flange area should, if possible recognize an approach to the flange at an early stage expediently detected at least two turns of the lower layer become.
  • FIG. 5 three image sheets BD21, BD22 are analogous to FIG and BD23 of three illuminated turns WD21 to WD23 of one outer layer shown.
  • another is bright picture sheet BD15 and a part of a picture sheet BD14 of the Windings WD15 and WD14 of the underlying layer can be seen.
  • the ordinate of the diagram shown corresponds to the radial direction y with respect to the axis AX of Cable drum, while the x-direction parallel to Cable drum axis runs, d. H. in the direction in which the individual turns are strung together.
  • a disturbance ST3 occurs, e.g.
  • the intensity curve i of the pixels in the y direction, i. depending on the height h, which from the samples the video chamber is obtained is shown in FIG and for the position x3 according to the line in Maximum range (peak area) P23 of the winding WD23.
  • Intensity values HPS of the disturbance ST3 according to FIG greater height or distance h3 occurs the distribution of Intensity values HP23 on. That is, for the evaluation will be in the y-direction a column-wise viewing of the x-scan obtained intensity values.
  • the lines of the video camera correspond to the y direction according to FIG. 5, the columns correspond to the x-direction. Thereby Simplifies line by line scanning of the cable turns and the column-by-column evaluation of the intensity values FIG. 5.
  • the two intensity distributions HPS and HP23 differ distinct in their amplitudes, because the ST3 disorder is not from the light band, but is illuminated by the ambient light and thus weaker than the actual of the cable contour corresponding light reflexes BD21 to BD23 according to FIG Using a threshold iS can be ensured that Errors corresponding to HPS are hidden while the caused by the reflective cable surfaces Amplitude values corresponding to HP23 for further evaluation be available.
  • Figure 7 shows the adjusted (i.e., no interference) only the maxima e.g. HP23M of the respective pixels of the Arc cut off contour, with the height h here 5 shows the ordinate and the abscissa the respective distance values across the cable longitudinal axis.
  • the Point P23 with the height h3 has the distance x3 and was analyzed as described above by column analysis P23 obtained at the vertex of BD23.
  • FIGS. 5 to 7 thus show overall how disturbances are suppressed can and as shown in Figure 5 an adjusted, more precise (indicated by the thinner contour lines in FIG. 7) Contour curve is obtained according to Figure 7, the in largely trouble-free and thus clearer and clearer Make the outer contour lines of the detected Windungslagen reproduces.
  • the image or brightness sheets BD21 to BD23 in FIG. 5 do not spread over the course of the respective bow uniform, but at certain points, e.g. also due to printing or the like a stronger Reflection behavior and result in brighter light reflections. These are due to the widening on the right end of the Pictorial sheet indicated. These are undesirable Picture components can be advantageous through the use of a High pass filters are largely eliminated and before the further evaluation of the recorded height profile lines is carried out. By this prefiltering becomes an approximately obtain uniform image history, i. the broadening disappear in Figure 5. is shown, d. H. the additional disturbing shares such. B. BD23R are largely eliminated.
  • FIG. 8 shows the same distribution as FIG. 7, d. H. on the ordinate is the height h and the abscissa the distance x applied. Any remaining disturbances, d. H. those which by the measures according to Figure 6 still could not be completely eliminated, are schematic labeled ST81 and ST82. It is believed that that Sampling window, which continuously or stepwise over the contour is moved according to Figure 8, in Instant on which contour KT21 of the winding WD21 lies.
  • the Evaluation window AF1 is narrower (preferably approx. 0.3 - 0.7 D, advantageous 0.5 D) than the cable diameter D in the Contour course an evaluation related to the single turn to ensure.
  • the histogram HD15 is entered, which has a lower value of h, because it is the underlying position WL1 is assigned. This will become the Crest value x5 of the winding WD15 determined.
  • the maximum of the winding WD21 is designated PD21M and corresponds to FIG. 8, which has the same abscissa (x1).
  • ⁇ x12 and ⁇ x23 correspond to the cable diameter D, which is also advantageously stored in the central arithmetic and control unit CU and can be used for the evaluation.
  • the smaller value of PD14 is not relevant as the remainder of the contour KT14 of the winding WD14.
  • the values of the lower layer WL1 are clearly distinguishable from those of the layer WL2 by the different height values h1 and h2 (see Fig. 13). For determining the distance during the check on the winding nip, only the turns of the current winding layer, ie peak values of approximately the same height (h 2 ), are used.
  • this will be new histogram corresponding to Figure 9 from the last calculated histogram. This is the new Height value of the pixel at the end of the window in the histogram entered and the height value of the pixel at the beginning of the window removed from the histogram.
  • the storage of the amplitude values according to FIG. 9 takes place in a maximum list, ie the respective sum value n max and the associated height value h are stored together with the x values x1 to x5 or written into a register.
  • the positions of the individual turns can be separated from one another and determined precisely by comparing the maximum curve with an adjustable threshold nS in FIG.
  • the influence of the disturbances ST81 and ST82 (FIG. 8) or the resulting distributions ST82 * and ST81 * (FIG. 9) are suppressed by a threshold, for example, since their sum values n max are significantly smaller than the n max values of the turns.
  • n-values which exceed this threshold SW11 exceed, as for example by the height h1 indicated rectangle of the distribution HDH1 is the case.
  • n outgoing threshold (Plus threshold) is provided in the distribution HDH2 and denoted SW21. Accordingly, only this exceeds at the height h2 occurring rectangle of the distribution HDH2 this threshold SW21.
  • a minus threshold is provided, which in the Distribution HDH1 is labeled SW12.
  • the following Value n of the histogram must be below this threshold SW12 lie.
  • the same minus threshold SW22 occurs in the Distribution HDH2 and leaves only values for the others Evaluation to, in which the subsequent n-value is smaller as the predetermined threshold distance SW22. Because of the engagement said thresholds will thus be an exact separation of Height distributions and an accurate determination of Maximas ensured.
  • FIG. 14 shows the contour curve h as a function of x (ie after the processing of the steps according to FIGS. 5 and 6) when the outer layer approaches the flange FL1 of the take-up drum. It is assumed that in the outer layer over the preceding examples, a further winding has been applied, whose contour is designated KT24. In the lower layer, the previous turn WD15 is only partially visible (KT15) and therefore the adjacent, abutting the flange FL1 turn is detected with the contour KT16. The flange FL1 appears as an oblique line because of the projection under the observation angle. To increase the accuracy, the positions of all points of the contour curve are expediently transformed as a function of their height position.
  • the equation dx -m ⁇ h x is used, wherein the slope m of the flange contour in the image, based on the coordinate system (h, x) and h x is the height of the contour pixel at the position x represents.
  • the traversing process itself to stop. This stopping of the traversing process can already done at the last turn of the last layer and beyond reaching the flange led to the Completing the first turn will be continued. So it will be Advantageously, the traversing process in the vicinity of the approach to the flange and after a while afterwards stopped.
  • FIG. 17 shows the contour curve KT23 to KT26, wherein it is assumed that compared to Figure 14, a further turn (KT26) was applied in the outer layer. It is thus such a close approach to the flange has been achieved the gap is smaller than half the cable diameter. It must Thus, a new Windungslage be started what, as already described by stopping and then reversing the Travers réellesvorganges is initiated.
  • the "discontinuity point” marks the beginning of a new one Meander, during which the next following "Discontinuity” indicates the completion of a turn.
  • the "discontinuity point” marks the beginning of a new one Meander, during which the next following "Discontinuity” indicates the completion of a turn.
  • the exact, needed for a turn It is a good idea to be able to determine the time period as precisely as possible on, the number of pictures taken by the TV camera from such a "point of discontinuity” to to count the following next “discontinuity” and hold. Because within a situation the number of the pictures ever Rotation is practically constant, is a measured variable for Available, which allows to specify relatively precisely how each long takes the application of a turn.
  • This Period for applying a winding is special Advantage in reversing the traverse direction applicable, because here the "upgrade” is allowed and just the Traversing process is stopped for a certain time. This time, which varies from location to location according to the Change layer extent is, from the above winding time determined depending on the situation and as long as the traversing process stopped.
  • FIG 19 shows a schematic representation of the basic structure a cable installation device according to the invention.
  • the cable drum SP can be traversed between two Stops AS1 and AS2 are moved, where they simultaneously rotated about the axis AX (the corresponding Drive and adjustment as well as the control are here not shown).
  • AX the corresponding Drive and adjustment as well as the control are here not shown.
  • This type of installation has the advantage that with a largely in space fixed casserole of respective cable can be worked.
  • the regulation of Transverse displacement of the cable drum SP is from a central Control device CU performed from.
  • the mechanical Preload of the incoming cable, not shown here, is set by means of a dancer DSC whose tension also from the central controller CU ago can be influenced.
  • One or more video cameras VC will be over Control electronics CTE driven and they deliver her Video signal to the central control unit CU, in which the Evaluation carried out according to the figures of 5 to 19 becomes.
  • the control unit CU continues to control the various servo drives, z. B. for focusing the Laser / camera axis FCA and for the fine adjustment of the Guide device FE of the respective winding turn WM, to a uniform installation process or the departure from the Coil wall to perform on reaching the side flange.
  • This fine shift takes place for example by means of a Guide fork or a sleeve ("cable hand") in which the respective cable with its winding turn WM guided is, here only small, but very fast Shifts are to be carried out.
  • z. A video screen the respective state of the auf securedden Windungslage and / or the contour curves, according to FIGS. 5 to 18, shown.
  • the coil SP is in the form of a cable drum a frame RAA held slowly in accordance with the Winding direction is continuously shifted and that parallel to the drum axis AX.
  • the guide device is used FE, which in this case contains two roles RL1 and RL2, which the winding material WM finger-like between them Include and guide this exactly.
  • RL1 and RL2 which the winding material WM finger-like between them Include and guide this exactly.
  • the winding WM passes over various Umlenkrollen UR1 to UR3 and finally passes through the Guide device FE for take-up reel or reel SP.
  • the different pulleys UR1 to UR3 are on one Support SUP attached, which is essentially vertical Direction runs.
  • the guide arm is FAR provided, at its lower end via a boom AFE and a transverse arm FEA held the guide device FE is.
  • This guide FE causes the related 20 with the fine adjustment described by FIG Double arrow is indicated.
  • the boom AFE is over one Guide sleeve HLS2 held on the guide arm FAR and so can along its axis with increasing winding height upwards be moved so that the lead correction possible can be done quickly and accurately.
  • a boom ALA provided in a greater distance from the coil SP is arranged.
  • This Boom arm ALA is also in the longitudinal direction of the guide FAR slidably held by a guide sleeve HLS1 and carries the light source LS (laser light), which is its beam directed to the outer winding layer.
  • this cantilever ALA the video camera VC attached, whose Detection area on the reflex zones of not here directed visible light band.

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Winding Of Webs (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)

Claims (17)

  1. Procédé pour enrouler sur une bobine (SP) un produit (WM) à enrouler sous forme de toron, le produit (WM) à enrouler étant alimenté en continu, et la position du produit (WM) à enrouler étant observée et enregistrée par au moins une caméra (VC) vidéo et les données ainsi obtenues sur l'opération d'enroulement étant apportées à une unité (CU) de calcul qui déclenche un réajustement correspondant de l'alimentation du produit à enrouler,
    caractérisé en ce qu'on détermine, considéré en direction radiale relativement à l'axe (AX) de la bobine, la position des sommets des spires pour respectivement au moins deux spires (WD22, WD23) de la nouvelle couche (WL2) d'enroulement, et en ce que, dans le cas d'un écart de ces sommets par rapport à une valeur de consigne, on effectue un réajustement de l'alimentation du produit à enrouler qui réduit l'écart (ΔX ; Δy).
  2. Procédé suivant la revendication 1, caractérisé en ce que, sur la base d'un écart obtenu - en direction radiale relativement à l'axe (AX) de la bobine - lors de l'élévation de la dernière spire, à savoir un écart du montant de la valeur de sommet de la dernière spire (WD23), en direction radiale relativement à l'axe (AX) de la bobine, par rapport au montant correspondant de la valeur de sommet d'une spire précédente (WD22), on effectue un réajustement de l'alimentation au sens d'une augmentation de la distance latérale par rapport à l'avant-dernière spire (WD22).
  3. Procédé suivant la revendication 1 ou 2, caractérisé en ce qu'on détermine, considéré en direction parallèle à l'axe (AX) de la bobine, la distance entre les sommets des spires dans la région du point (AP) d'incidence du produit à enrouler pour respectivement au moins deux spires (WD22, WD23) de la nouvelle couche (WL2) d'enroulement, et en ce que, sur la base d'une augmentation de la distance entre les valeurs de sommet voisines qui est obtenue lors de l'apparition d'un espacement (ΔX) entre l'avant-dernière spire (WD22) et la dernière spire (WD23), on effectue un réajustement de l'alimentation au sens d'une diminution de la distance latérale de la dernière spire (WD23) par rapport à l'avant-dernière spire (WD22).
  4. Procédé suivant l'une des revendications précédentes, caractérisé en ce que la caméra (VC) vidéo servant à l'observation détermine l'état de la position du produit à enrouler dans la région du point (AP) d'incidence où le produit (WM) à enrouler arrive sur la couche (WL1) d'enroulement sous-jacente.
  5. Procédé suivant l'une des revendications précédentes, caractérisé en ce qu'une plage angulaire inférieure à 20 degrés, de préférence inférieure à 5 degrés, a été parcourue par le produit (WM) à enrouler entre l'apparition d'une erreur et sa correction par le réajustement.
  6. Procédé suivant l'une des revendications précédentes, caractérisé en ce que le réajustement est effectué au moyen d'un équipement (FE) de guidage embrassant le produit à enrouler.
  7. Procédé suivant l'une des revendications précédentes, caractérisé en ce que le produit (WM) à enrouler est, dans la région du point (AP) d'incidence, éclairé par une bande (LB) de lumière s'étendant de préférence transversalement à la direction d'enroulement.
  8. Procédé suivant l'une des revendications précédentes, caractérisé en ce que des perturbations dans la région de surface des spires sont supprimées par des filtres et/ou des seuils lors de l'interprétation des signaux.
  9. Procédé suivant l'une des revendications précédentes, caractérisé en ce que, par un traitement par colonnes des valeurs de balayage obtenues par lignes, on obtient une allure de contour épurée, correspondant à l'allure de la surface des spires (figure 7).
  10. Procédé suivant l'une des revendications précédentes, caractérisé en ce qu'on détermine également le sommet d'au moins une des spires de la couche (WL1) sous-jacente.
  11. Procédé suivant l'une des revendications précédentes, caractérisé en ce qu'on détermine la position des sommets de plusieurs spires (WD21, WD22, WD23) voisines, et on en forme une valeur moyenne qui est utilisée comme valeur de consigne.
  12. Procédé suivant l'une des revendications précédentes, caractérisé en ce que, dans le cas d'un écart du sommet de la dernière spire (WD23), en direction radiale (direction y), de plus d'une valeur de tolérance, de préférence de plus de D/20, par rapport à la valeur de consigne, on produit au moyen de l'équipement (CU) central de commande un signal de réajustement qui s'oppose à l'écart mesuré par rapport à la valeur de consigne.
  13. Procédé suivant l'une des revendications précédentes, caractérisé en ce que, dans le cas d'un écart de la distance latérale entre le sommet de la dernière spire (WD23) et le sommet de la spire précédente (direction x) de plus d'une valeur de tolérance, de préférence de plus de D/50, par rapport à la valeur D de consigne du diamètre du câble, on produit au moyen de l'équipement (CU) central de commande un signal de réajustement qui s'oppose à l'écart mesuré par rapport à la valeur de consigne.
  14. Procédé suivant l'une des revendications précédentes, caractérisé en ce que l'observation est effectuée également dans la région de la joue (FL).
  15. Procédé suivant la revendication 14, caractérisé en ce que, lorsqu'on se rapproche de la joue (FL), on détermine en continu la distance (ΔXF) entre la dernière spire (WD24) et la joue (FL).
  16. Dispositif pour enrouler sur une bobine (SP) un produit (WM) à enrouler sous forme de toron, selon lequel le produit (WM) à enrouler est alimenté au moyen d'un équipement (FE) de guidage, qui modifie la couche d'enroulement du produit (WM) à enrouler sur la bobine (SP) de façon que s'effectue un enroulement le plus uniforme possible, en utilisant une caméra (VC) vidéo pour l'observation de la couche d'enroulement, caméra qui apporte les données qu'elles déterminent sur la position de l'enroulement à une unité (CU) de calcul qui déclenche un réajustement correspondant de l'équipement (FE) de guidage,
    caractérisé en ce qu'il est prévu une source (LS) lumineuse qui produit une bande de lumière sur au moins des parties de la dernière couche (WL2) d'enroulement, et en ce que la caméra NC) vidéo servant à l'observation est disposée de telle sorte qu'elle détermine l'état de la couche d'enroulement éclairée environ dans la région du point (AP) d'incidence où le produit (WM) à enrouler arrive sur la couche (WL1) d'enroulement sous-jacente, et l'unité (CU) de calcul est conçue de telle sorte que, par l'unité de calcul, on effectue pour respectivement au moins deux spires (WD22, WD23) de la nouvelle couche (WL2) d'enroulement une évaluation de la position des sommets de ces spires, considéré dans la direction radiale de la bobine, et dans fe cas d'un écart de ces sommets par rapport à une valeur de consigne, on déclenche un réajustement de l'équipement (FE) de guidage qui réduit l'écart (ΔX ;Δy).
  17. Dispositif suivant la revendication 16, caractérisé en ce qu'un axe de rayons de la caméra (VC) vidéo est disposé sous un premier angle (β), disposé dans la direction du pourtour de la bobine, par rapport à une direction radiale (y) de la bobine, et un axe de rayons de la source (LS) lumineuse est disposé sous un deuxième angle (α), disposé dans la direction du pourtour de la bobine, par rapport à la direction radiale (y) de la bobine, et le premier et le deuxième angles forment un angle (α + β) cumulé qui prend des valeurs allant de 10° à 60°.
EP98936175A 1997-06-20 1998-06-16 Procede et dispositif pour l'enroulement sur une bobine d'une matiere a enrouler en forme de fil Expired - Lifetime EP0989950B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19726285A DE19726285A1 (de) 1997-06-20 1997-06-20 Verfahren und Einrichtung zum Aufwickeln von strangförmigen Wickelgut auf eine Spule
DE19726285 1997-06-20
PCT/DE1998/001630 WO1998058865A1 (fr) 1997-06-20 1998-06-16 Procede et dispositif pour l'enroulement sur une bobine d'une matiere a enrouler en forme de fil

Publications (2)

Publication Number Publication Date
EP0989950A1 EP0989950A1 (fr) 2000-04-05
EP0989950B1 true EP0989950B1 (fr) 2005-03-16

Family

ID=7833179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98936175A Expired - Lifetime EP0989950B1 (fr) 1997-06-20 1998-06-16 Procede et dispositif pour l'enroulement sur une bobine d'une matiere a enrouler en forme de fil

Country Status (8)

Country Link
US (1) US6443385B1 (fr)
EP (1) EP0989950B1 (fr)
JP (1) JP2002508731A (fr)
CN (1) CN1261323A (fr)
AT (1) ATE290986T1 (fr)
CA (1) CA2295041A1 (fr)
DE (2) DE19726285A1 (fr)
WO (1) WO1998058865A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018117687A1 (de) * 2018-07-21 2020-01-23 Dr. Brandt Gmbh Vorrichtung und Verfahren zum optischen Überwachen der Anordnung wenigstens eines Zugmittels sowie Verwendung

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7290476B1 (en) 1998-10-20 2007-11-06 Control Products, Inc. Precision sensor for a hydraulic cylinder
DE19950285A1 (de) * 1999-10-19 2001-04-26 Rieter Ag Maschf Verfahren und Vorrichtung zum Aufwickeln eines Fadens auf eine Spule
DE19954072A1 (de) * 1999-11-10 2001-05-17 Siemens Ag Verfahren und Vorrichtung zum Aufwickeln von Kabeln auf eine Kabeltrommel
US7093361B2 (en) * 2002-01-23 2006-08-22 Control Products, Inc. Method of assembling an actuator with an internal sensor
US7197974B2 (en) * 2004-01-15 2007-04-03 Control Products Inc. Position sensor
US7609055B2 (en) * 2004-07-21 2009-10-27 Control Products, Inc. Position sensing device and method
DE102005028231A1 (de) * 2005-06-17 2006-12-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Konzept zum Überwachen der Herstellung von aus mehreren Materiallagen bestehenden Objekten
DE102006018428B8 (de) * 2006-04-20 2015-12-17 Maschinenfabrik Niehoff Gmbh & Co. Kg Verfahren und Vorrichtung zum Verlegen von langgestrecktem Wickelgut
WO2009047719A2 (fr) * 2007-10-11 2009-04-16 Herbert Schmitz Procédé, appareil et système pour contrôler l'enroulement d'une corde autour d'un tambour
DE102008038316A1 (de) 2008-08-19 2010-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Bestimmen eines Abstandsmaßes an aufgewickelten Materialien
US8147163B2 (en) * 2009-01-15 2012-04-03 Exponent, Inc. Tire rapid entanglement and arresting device
ITTO20110550A1 (it) * 2011-06-23 2012-12-24 Cometo S N C Stratificatore per macchina bobinatrice
NO339902B1 (no) * 2012-11-02 2017-02-13 Rolls Royce Marine As System for å regulere av- eller pålessing av en kabel eller lignende på en trommel
US9302872B2 (en) 2013-07-30 2016-04-05 Kimberly-Clark Worldwide, Inc. Diameter measurement of a roll of material in a winding system
DE102014001058B4 (de) * 2014-01-28 2021-01-07 Gabo Systemtechnik Gmbh Vorrichtung und Verfahren zum Wickeln eines strangförmigen Wickelguts
ITUB20154968A1 (it) * 2015-10-16 2017-04-16 Danieli Automation Spa Dispositivo di gestione per apparato bobinatore e relativo metodo
CN106348091A (zh) * 2016-09-22 2017-01-25 苏州赛历新材料科技股份有限公司 一种快速镀锡收料用自动排线及补偿装置
CN108328416A (zh) * 2018-04-11 2018-07-27 成都九系机器人科技有限公司 自动排线装置
BE1026139B1 (de) * 2018-07-25 2019-10-18 Dr Brandt Gmbh Vorrichtung und Verfahren zum optischen Überwachen der Anordnung wenigstens eines Zugmittels sowie Verwendung
DE102019126699A1 (de) * 2019-08-02 2021-02-04 Liebherr-Components Biberach Gmbh Seilwinde sowie Hubvorrichtung mit einer solchen Seilwinde
CN112938629A (zh) * 2021-03-19 2021-06-11 福建迈可博电子科技集团股份有限公司 一种电缆盘线机
CN113800320A (zh) * 2021-09-23 2021-12-17 山东兰海新材料科技有限公司 金属微细线精密排线方法及装置
CN113932716B (zh) * 2021-11-11 2023-04-28 四川九洲电器集团有限责任公司 一种大型电机线圈检测装置及检测方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3319070A (en) * 1964-04-02 1967-05-09 Western Electric Co Photoelectric device for distributing strands on a reel
DE3024094A1 (de) * 1980-06-27 1982-01-21 Rosendahl Industrie-Handels AG, Schönenwerd Wickelmaschine zum aufwickeln von strangfoermigem wickelgut auf eine spule
DE3024095A1 (de) * 1980-06-27 1982-01-21 Rosendahl Industrie-Handels AG, Schönenwerd Wickelmaschine zum aufwickeln von strangfoermigem wickelgut auf eine spule
CH653654A5 (fr) * 1983-06-24 1986-01-15 Maillefer Sa Dispositif de commande automatique d'une operation de trancanage.
JPH01203174A (ja) * 1987-10-20 1989-08-15 Furukawa Electric Co Ltd:The 線状体の巻取方法
IT1219381B (it) * 1988-06-16 1990-05-11 Ceat Cavi Spa Macchina bobinatrice automatica per cavi elettrici e simili comprendente un sistema di visione artificiale per il controllo della stratificazione delle spire e procedimento di controllo per tale macchina
US4928904A (en) * 1988-10-05 1990-05-29 The Boeing Company Gap, overwind, and lead angle sensor for fiber optic bobbins
JPH0416464A (ja) * 1990-05-11 1992-01-21 Fujikura Ltd ケーブルの整列巻き方法
DE4036370A1 (de) * 1990-11-15 1992-05-21 Rheinmetall Gmbh Verfahren und vorrichtung zur kontrolle des wicklungsverlaufes orthozyklisch gewickelter spulen
IT1257931B (it) * 1992-12-14 1996-02-19 Ceat Cavi Ind Srl Sistema di controllo per una macchina bobinatrice per cavi elettrici e simili, comprendente un sistema di visione artificiale per il controllo della stratificazione delle spire, e procedimento di controllo di tale macchina
DE19507020A1 (de) * 1995-03-01 1996-09-05 Peter Dr Boll Optische Verlegeeinheit zum Bewickeln von Flanschspulen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018117687A1 (de) * 2018-07-21 2020-01-23 Dr. Brandt Gmbh Vorrichtung und Verfahren zum optischen Überwachen der Anordnung wenigstens eines Zugmittels sowie Verwendung

Also Published As

Publication number Publication date
EP0989950A1 (fr) 2000-04-05
US6443385B1 (en) 2002-09-03
DE19726285A1 (de) 1998-12-24
WO1998058865A1 (fr) 1998-12-30
DE59812661D1 (de) 2005-04-21
JP2002508731A (ja) 2002-03-19
ATE290986T1 (de) 2005-04-15
CA2295041A1 (fr) 1998-12-30
CN1261323A (zh) 2000-07-26

Similar Documents

Publication Publication Date Title
EP0989950B1 (fr) Procede et dispositif pour l'enroulement sur une bobine d'une matiere a enrouler en forme de fil
DE3614981C2 (fr)
DE2902643C2 (de) Verfahren und Vorrichtung zur automatischen fotoelektrischen Lichtbogenschweißregelung
EP0043368B1 (fr) Dispositif pour le bobinage de matériaux filamenteux sur une bobine
EP0043366B1 (fr) Dispositif pour le bobinage de matériaux filamenteux sur une bobine
DE3538822C2 (fr)
DE3430750C2 (fr)
EP0607167A1 (fr) Procede et dispositif pour la detection et le comptage de defauts du fil
CH678196A5 (fr)
DE69109472T2 (de) Führungsvorrichtung für eine maschine zum aufwickeln drahtförmiger güter.
EP0555853B1 (fr) Méthode pour ajuster un capteur détectant sans contact le bord d'une bande courante de matériau
DE3411395C2 (de) Vorrichtung zum Aufwickeln von strangförmigem Gut
DE19731530A1 (de) Optische Präzisionsabtastung von Filmperforationslöchern
WO1996038370A1 (fr) Procede de surveillance en direct de bordures de bandes au moyen de cameras de ligne
WO1992015033A1 (fr) Procede et installation pour le reglage de la nettete d'un systeme de representation optique
EP0521816A1 (fr) Procédé pour transferer le fil d'une bobine pleine à une bobine vide et un bobinoir
EP1251347B1 (fr) Dispositif pour le balayage optique d'une bande de matériau défilante et méthode pour sa mise au point
EP1245705A2 (fr) Procédé et dispositif d'optimisation de la vitesse de déroulage sur un cantre
DE3941008A1 (de) Vorrichtung und verfahren zum erkennen von spannfaeden an einer garnspule
DE68904221T2 (de) Verfahren und vorrichtung zur positionierung von eisenbloecken.
EP0498204A1 (fr) Procédé et dispositif pour bobiner un fil à un métier à filer et bobinoir
DE2612482A1 (de) Verfahren und einrichtung zur optischen beobachtung der oberflaeche von schnell bewegtem walzmaterial
DE102019217712A1 (de) Verfahren zur Vermessung einer offenen oder einer überlappenden Verbindungsstelle einer Materiallage bei der Fertigung eines Reifenrohlings
EP1736429A2 (fr) Procédé et bobineuse pour l'enroulement d'un fil alimenté en continu sur un tube pour former une bobine
EP3181743B1 (fr) Ourdissoir

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FI FR GB IT LI SE

17Q First examination report despatched

Effective date: 20000630

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CCS TECHNOLOGY, INC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FI FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050316

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59812661

Country of ref document: DE

Date of ref document: 20050421

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
26N No opposition filed

Effective date: 20051219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060731

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050616

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070702