EP0971778A1 - Stoffaustauschverfahren zwischen zwei flüssigen phasen - Google Patents

Stoffaustauschverfahren zwischen zwei flüssigen phasen

Info

Publication number
EP0971778A1
EP0971778A1 EP98924084A EP98924084A EP0971778A1 EP 0971778 A1 EP0971778 A1 EP 0971778A1 EP 98924084 A EP98924084 A EP 98924084A EP 98924084 A EP98924084 A EP 98924084A EP 0971778 A1 EP0971778 A1 EP 0971778A1
Authority
EP
European Patent Office
Prior art keywords
phase
exchange medium
chambers
chamber
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98924084A
Other languages
English (en)
French (fr)
Inventor
Artak Eranosovich Kostanian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU97105096/25A external-priority patent/RU97105096A/ru
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0971778A1 publication Critical patent/EP0971778A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/10Ion-exchange processes in general; Apparatus therefor with moving ion-exchange material; with ion-exchange material in suspension or in fluidised-bed form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0426Counter-current multistage extraction towers in a vertical or sloping position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0488Flow sheets

Definitions

  • the invention is based on a mass transfer process between two liquid phases via an exchange medium in one or in a series of separation stages connected in series.
  • a separation stage comprises two interconnected contact chambers. In the first chamber, a dispensing phase is brought into contact with the exchange medium and in the second chamber, the loaded exchange medium is contacted with an absorption phase. In this way, a substance is separated from the donor phase and transferred to the receiver phase.
  • Mass transfer processes of this type can be used in chemical, hydrometallurgical, microbiological, and other industries for the separation, concentration and purification of substances.
  • a separation stage comprises two contact chambers connected to each other. These chambers are filled with an exchange medium.
  • the dispersing dispenser or receiver phase which are not soluble in the continuous exchange medium, are passed through chambers as droplets of drops.
  • the exchange medium comes into contact in succession in the first chamber with the dispenser phase and in the second chamber with the receiver phase.
  • the substance to be separated is moved from the first to the second chamber and from the
  • the exchange medium is an extractant.
  • This known multi-stage mass transfer process can also be improved with regard to its application potential, for example expansion to processes between gas and liquid or solid and liquid, and the efficiency in the separation.
  • the object of the invention is to open up further possible applications by modifying the known mass transfer process. These include processes with exchange media in different physical states and a coupling of absorption, adsorption and desorption processes in order to increase the separation efficiency of the mass transfer between two liquid phases.
  • the dispensing phase is in the first chamber of a stage and the transducer phase is in the second chamber of a stage.
  • the mass exchange takes place with an exchange medium, which is first distributed into a chamber with the dispensing phase and then into a chamber with the receiver phase.
  • the exchange medium can circulate between the first and second chambers within the same stage.
  • the exchange medium can be replaced by several or all separation stages in the
  • Cycle are carried out, wherein it is fed from the second chamber in a Smfe the first chamber in the next stage.
  • the dispenser and receiver phases can be passed through a number of separation stages in cocurrent or countercurrent.
  • Fig. 1 shows a process diagram for the series connection of the separation stages with a circulation of the exchange medium within the stages and with a countercurrent flow of the liquid phases through all separation stages.
  • Fig. 2 shows a process diagram for the series connection of the separation stages with a circulation of the exchange medium within the stages and with one
  • Fig. 3 shows a process diagram for the series connection of the separation stages with a circulation of the exchange medium through all stages and with countercurrent flow of the liquid phases through the separation stages
  • Fig. 4 is a process diagram for the series connection of the separation stages with a circulation of the exchange medium through all separation stages and with direct current flow of the liquid phases through the stages.
  • the first and second chambers forming a separation stage are accommodated in separate housings.
  • the first and second chambers forming a separation stage are arranged one above the other in a housing, and the separation stages are accommodated in a housing.
  • the contact chambers of the separation stages are filled with the corresponding liquid phases.
  • the first chamber 1 is filled with the dispensing phase, the second chamber 2 with the pickup phase.
  • the exchange medium then begins to circulate between the chambers within the separation stages
  • the exchange medium can be liquid, gaseous or solid.
  • the dispenser phase is fed via line 3 into chamber 1 of the first separation stage and discharged via line 4 from the last separation stage.
  • the pickup phase is supplied via line 5 and discharged via line 6.
  • the dispensing phase is conducted from stage to stage via connecting lines 7 and the receiver phase is conducted from stage to stage via connecting lines 8.
  • the exchange medium is circulated via the connecting lines 9.
  • the substance to be separated is transferred from the dispenser phase into the exchange medium, and in the chamber 2, the substance from the exchange medium passes into the receiver phase.
  • the dispenser phase is enriched when flowing through the chambers 1
  • the pickup phase is enriched with the substance when flowing through the chambers 2.
  • the dispenser and receiver phases are conducted in cocurrent (Fig. 2, 4) or in countercurrent (Fig. 1, 3) to each other through the separation stages.
  • the direct current routing is technically simpler. However, it only achieves maximum effectiveness if the substance to be separated reacts very quickly with the pick-up phase or a component contained in it.
  • the dispenser and the receiver phase in the contact chambers form the continuous phase and fill most of the chambers. This makes the two phases in the mass transfer process according to the invention.
  • the longer residence time is advantageous because the mass transfer takes longer and is therefore more complete. This is particularly important if chemical reactions that do not take place very quickly are coupled with the mass transfer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

Stoffaustauschverfahren zwischen zwei flüssigen Phasen über ein Austauschmedium in zwei miteinander verbundene Kontaktkammern, bei dem das Austauschmedium in der ersten Kammer mit der flüssigen Abgeberphase und in der zweiten Kammer mit der flüssigen Aufnehmerphase in Kontakt gebracht wird und der abzutrennende Stoff durch das Austauschmedium aus der Abgeberphase in die Aufnehmerphase übertragen wird, dadurch gekennzeichnet, dass das Austauschmedium in die Abgeber- und Aufnehmerphase, die die Kammern füllen, durch eine Verteilungsvorrichtung hinein verteilt wird.

Description

Sto faustauschverfahren zwischen zwei flüssigen Phasen
Die Erfindung geht aus von einem Stoffaustauschverfahren zwischen zwei flüssigen Phasen über ein Austauschmedium in einer oder in einer Reihe von hintereinander geschalteten Trennstufen. Eine Trennstufe umfaßt jeweils zwei miteinander verbundene Kontaktkammern. In der ersten Kammer wird eine Abgeberphase mit dem Austauschmedium in Kontakt gebracht und in der zweiten Kammer wird das beladene Austauschmedium mit einer Aufhehmerphase kontaktiert. Auf diese Weise wird ein Stoff von der Abgeberphase abgetrennt und in die Aufhehmerphase übertragen.
Stoffaustauschverfahren dieser Art können in chemischen, hydrometallurgischen, mikrobiologischen, und anderen Industriezweigen zur Trennung, Konzentrierung und Reinigung von Stoffen eingesetzt werden.
Einstufige Stoffaustauschverfahren zwischen zwei flüssigen Phasen über ein Austauschmedium, bei denen ein System mit zwei Kammern benutzt wird, sind bekannt. Beide Kammern werden dabei mit einem flüssigen Austauschmedium gefüllt, das die kontinuierliche Phase bildet. In jeder Kammer wird eine dispergierende Phase, die nicht löslich in dem Austauschmedium ist, als Tropfen durch das Austauschmedium hindurchgeleitet. Hierbei erfolgt in der einen Kammer der Übergang von Stoffen aus der einen dispergierten Phase, der Abgeberphase, in das Austauschmedium. Das Austauschmedium wird in die andere Kammer gebracht. Dort wird die andere dispergierte Phase, die Aufhehmerphase, durch das Austauschmedium geleitet und der Stoff geht vom Austauschmedium auf die Aufhehmerphase über. Solche Verfahren werden z.B. in Journal „Theoretische Grundlagen der chemischen Technologie „ (Moskau) 1984, B. 18; Nr. 6, S. 736 - 738 beschrieben.
Die beschriebenen einstufigen Stoffaustauchverfahren sind hinsichtlich ihrer Leistungsfähigkeit bei der Trennung verbesserungsbedürftig. Eine Verbesserung besteht in der Erweiterung auf mehrstufige Prozesse. Aus den Russischen Patentanmeldungen Nr. 95117738 und 95117767 vom 19.10.95 ist ein mehrstufiges Stoffaustauschverfahren zwischen zwei flüssigen Phasen über ein Austauschmedium in einer Reihe von hintereinander geschalteten Trennstufen bekannt. Dabei umfaßt eine Trennstufe jeweils zwei mit einander verbundene Kontakt- kammern. Diese Kammern sind mit einem Austauschmedium gefüllt. Durch die
Kammern werden die dispergierende Abgeber- bzw. Aufnehmerphase, die nicht löslich in dem kontinuierlichen Austauschmedium sind, als Tropfenschwärme hindurchgeführt. Das Austauschmedium kommt nacheinander in der ersten Kammer mit der Abgeberphase und in der zweiten Kammer mit der Aufnehmerphase in Kontakt. Hier- bei wird der abzutrennende Stoff aus der ersten in die zweite Kammer und aus der
Abgeberphase in die Aufhehmerphase übertragen. Zur Verbesserung des Stoffaustausches werden mehrere solcher Trennstufen hintereinander geschaltet. Dieses Verfahren ist ein gekoppeltes Extraktions - Reextraktions - Verfahren. Das Austauschmedium ist ein Extraktionsmittel.
Auch dieses bekannte mehrstufige Stoffaustauschverfahren kann hinsichtlich seines Anwendungspotentials, zum Beispiel Erweiterung auf Prozesse zwischen Gas und Flüssigkeit oder Feststoff und Flüssigkeit, und der Leistungsfähigkeit bei der Trennung noch verbessert werden.
Der Erfindung liegt die Aufgabe zugrunde, durch eine Modifikation der bekannten Stoffaustauschverfahrens weitere Anwendungsmöglichkeiten zu erschließen. Diese umfassen Prozesse mit Austauschmedien in unterschiedlichen Aggregatzuständen und eine Kopplung von Absorptions-, Adsorptions- und Dersorptionsprozessen um die Trennwirksamkeit des Stoffaustausches zwischen zwei flüssigen Phasen zu erhöhen .
Diese Aufgabe wird ausgehend von dem oben beschriebenen einstufigen und mehrstufigen Verfahren, erfindungsgemäß dadurch gelöst, daß sich in der ersten Kammer einer Stufe die Abgeberphase und in der zweiten Kammer einer Stufe die Aufnehmer- phase befindet. Der Stoffaustausch erfolgt mit einem Austauschmedium, das erst in eine Kammer mit der Abgeberphase hinein verteilt wird und anschließend in eine Kammer mit der Aufhehmerphase. Das Austauschmedium kann jeweils innerhalb derselben Stufe zwischen der ersten und zweiten Kammern zirkulieren.
Alternativ kann das Austauschmedium auch durch mehrere oder alle Trennstufe im
Kreislauf geführt werden, wobei es aus der zweiten Kammer in einer Smfe der ersten Kammer in der nächsten Stufe zugeführt wird.
Die Abgeber- und Aufhehmerphase können im Gleich- oder im Gegenstrom durch eine Reihe der Trennstufen geführt werden.
Es war überraschend, daß das erfindungsgemäße Verfahren eine Erhöhung der Trennwirksamkeit durch eine Steigerung der Zirkulationsgeschwindigkeit des Austauschmediums zwischen den Kammern in den Stufen bzw. durch mehrere Trennstufen hin- durch ermöglicht.
Im folgenden wird die Erfindung an Hand von Ausführungsbeispielen und Zeichnungen näher erläutert. Es zeigen:
Fig. 1 ein Verfahrensschema für die Hintereinanderschaltung der Trennstufen mit einer Zirkulation des Austauschmediums innerhalb der Stufen und mit einer Gegenstromführung der flüssigen Phasen durch alle Trennstufen.
Fig. 2 ein Verfahrensschema für die Hintereinanderschaltung der Trennstufen mit einer Zirkulation des Austauschmediums innerhalb der Stufen und mit einer
Gleichstromführung der flüssigen Phasen durch alle Trennstufen.
Fig. 3 ein Verfahrensschema für die Hintereinanderschaltung der Trennstufen mit einer Zirkulation des Austauschmedium durch alle Stufen und mit Gegen- Stromführung der flüssigen Phasen durch die Trennstufen Fig. 4 ein Verfahrensschema für die Hintereinanderschaltung der Trennstufen mit einer Zirkulation des Austauschmedium durch alle Trennstufen und mit Gleichstromführung der flüssigen Phasen durch die Stufen.
Bei den Verfahren gemäß Fig. 1 und Fig. 3 sind die eine Trennstufe bildende erste und zweite Kammer in separaten Gehäusen untergebracht.
Bei den Verfahren gemäß Fig. 2 und Fig. 4 sind die eine Trennstufe bildende erste und zweite Kammern übereinander in einem Gehäuse angeordnet, und die Trennstufen sind in einem Gehäuse untergebracht.
Bei allen Verfahrensführungen werden die Kontaktkammern der Trennstufen mit den entsprechenden flüssigen Phasen gefüllt. Die jeweils erste Kammer 1 wird mit der Abgeberphase gefüllt, die zweite Kammer 2 mit der Aufnehmerphase. Dann beginnt die Zirkulation des Austauschmediums zwischen den Kammern innerhalb der Trennstufen
(Fig. 1 bis 2) oder durch eine Reihe von Trennstufen (Fig. 3 bis 4). Dabei wird ein ausreichender Kontakt zwischen dem Austauschmedium und der Abgeber- bzw. Abnehmerphase durch eine Verteilung des Austauschmediums in diesen Phasen innerhalb der Kammern 1 und 2 hergestellt. Diese Verteilung des Austauschmediums in den Phasenvolumina kann in Form von Tropfen, Blasen, Partikeln, wie in Fig. 2 dargestellt ist, oder aber auch in Form von Strahlen und Filmen, wie in Fig. 4 schematisch gezeigt ist, realisiert werden. Das Austauschmedium kann flüssig, gasförmig oder fest sein.
Die Abgeberpase wird über die Leitung 3 in die Kammer 1 der ersten Trennstufe zu- geführt und über die Leitung 4 aus der letzten Trennstufe abgeführt. Die Aufnehmerphase wird über die Leitung 5 zugeführt und über die Leitung 6 abgeführt. Die Abgeberphase wird über Verbindungsleitungen 7 von Stufe zu Stufe geleitet und die Aufhehmerphase wird über die Verbindungsleitungen 8 von Stufe zu Stufe geleitet. Das Austauschmedium wird über die Verbindungsleitungen 9 zirkuliert.
Die Bewegung des Austauschmediums innerhalb der Kontaktkammern, das zu einem Abscheiden im oberen oder unteren Teil der Kammern führt, erfolgt durch die Schwerkraft. Zwischen der Abgeber- und Aufnehmerphase und dem Austauschmedium besteht eine Dichtedifferenzen. In Abhängigkeit von dieser Dichtedifferenz sammelt sich das Austauschmedium bei Verteilung in die entsprechende flüssige Phase unten (Fig. 1, 4) oder oben (Fig. 2, 3) in den Kammern 1 und 2 und bildet die Phasengrenze 10. Das Austauschmedium wird in die flüssigen Phasen innerhalb der Kontaktkammern 1 und 2 durch die Verteilungsvorrichtungen 11 verteilt. Abhängig von den physikalischen Eigenschaften des Austauschmediums können verschiedene Arten der Verteilung wie Tropfen, Blasen, Partikel oder Strahlen und Strähnen realisiert werden.
In der Kammer 1 erfolgt der Übergang des abzutrennenden Stoffes aus Abgeberphase in das Austauschmedium, und in der Kammer 2 geht der Stoff aus dem Austauschmedium in die Aufhehmerphase über. Auf diese Weise reichert sich die Abgeberphase beim Durchströmen der Kammern 1 ab, und die Aufnehmerphase reichert sich beim Durchströmen der Kammern 2 mit dem Stoff an.
Die Abgeber- und Aufhehmerphasen werden im Gleichstrom (Fig. 2, 4) oder im Gegenstrom (Fig. 1, 3) zueinander durch die Trennstufen geführt. Die Gleichstromführung ist technisch einfacher auszuführen. Sie erreicht aber nur eine maximale Effektivität, wenn der abzutrennende Stoff sehr schnell mit der Aufnehmerphase bzw. einer in ihr enthaltenen Komponente reagiert.
Beim erfindungsgemäßen Stoffaustauschverfahren bilden die Abgeber- und die Aufnehmerphase in den Kontaktkammern die kontinuierliche Phase und füllen den größten Teil der Kammern aus. Dadurch ist die Verweilzeit der beiden Phasen in den
Kammern größer, als im Fall des bekannten Verfahrens, bei dem das Austauschmedium die Kammern weitesgehend ausfüllt. Die höhere Verweilzeit ist vorteilhaft, da der Stoffaustausch länger stattfindet und damit vollständiger ist. Dies ist insbesondere dann wichtig, wenn mit dem Stoffaustausch chemischen Umsetzungen gekoppelt sind, die nicht sehr schnell ablaufen.

Claims

Patentansprüche
1. Stoffaustauschverfahren zwischen zwei flüssigen Phasen über ein Austauschmedium in zwei miteinander verbundene Kontaktkammern (1) und (2) bei dem das Austauschmedium in der ersten Kammer (1) mit der flüssigen Abgeberphase und in der zweiten Kammer (2) mit der flüssigen Aufnehmerphase in Kontakt gebracht wird und der abzutrennende Stoff durch das Austauschmedium aus der Abgeberphase in die Aufnehmerphase übertragen wird, dadurch gekennzeichnet, daß das Austauschmedium in die Abgeber- und Auf- nehmerphase, die die Kammern (1) und (2) füllen, durch eine Verteilungsvorrichtung (11) hinein verteilt wird.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß mehrere Trennstufen, bestehend aus zwei miteinander verbundenen Kammern hintereinander geschaltet sind.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Austauschmedium jeweils innerhalb derselben Stufe zwischen der ersten und zweiten Kammern zirkuliert.
Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Austauschmedium durch mehrere oder alle Trennstufen im Kreislauf geführt wird, wobei es aus der zweiten Kammer in einer Stufe der ersten Kammer in der nächsten Stufe zugeführt wird.
Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Abgeberphase und die Aufhehmerphase im Gleichstrom durch mehrere Trennstufen geführt werden.
6. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die
Abgeberphase und die Aufhehmerphase im Gegenstrom durch mehrere Trennstufen geführt werden.
EP98924084A 1997-04-02 1998-03-27 Stoffaustauschverfahren zwischen zwei flüssigen phasen Withdrawn EP0971778A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU97105096 1997-04-02
RU97105096/25A RU97105096A (ru) 1997-04-02 Способ ступенчатого массообмена между двумя жидкими фазами
PCT/EP1998/001811 WO1998043718A1 (de) 1997-04-02 1998-03-27 Stoffaustauschverfahren zwischen zwei flüssigen phasen

Publications (1)

Publication Number Publication Date
EP0971778A1 true EP0971778A1 (de) 2000-01-19

Family

ID=20191435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98924084A Withdrawn EP0971778A1 (de) 1997-04-02 1998-03-27 Stoffaustauschverfahren zwischen zwei flüssigen phasen

Country Status (5)

Country Link
EP (1) EP0971778A1 (de)
JP (1) JP2001517148A (de)
CN (1) CN1251053A (de)
CA (1) CA2285361A1 (de)
WO (1) WO1998043718A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP790698A0 (en) 1998-12-23 1999-01-28 Life Therapeutics Limited Separation of microorganisms
AUPP790898A0 (en) 1998-12-23 1999-01-28 Life Therapeutics Limited Renal dialysis
AUPP971399A0 (en) 1999-04-12 1999-05-06 Life Therapeutics Limited Separation of plasma components
US7077942B1 (en) 1999-12-23 2006-07-18 Gradipore Limited Removal of biological contaminants
AUPQ691400A0 (en) 2000-04-14 2000-05-11 Life Therapeutics Limited Separation of micromolecules
AUPQ697300A0 (en) 2000-04-18 2000-05-11 Life Therapeutics Limited Separation apparatus
DE60140537D1 (de) 2000-04-18 2009-12-31 Gradipore Ltd Trennung und behandlung von proben durch elektrophorese
US6923896B2 (en) 2000-09-22 2005-08-02 The Texas A&M University System Electrophoresis apparatus and method
CN102847339B (zh) * 2012-09-07 2014-11-05 福州大学 一种液相挥发性物质的气相萃取与富集方法及其系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2573415B1 (fr) * 1984-11-16 1986-12-12 Pechiney Uranium Procede de recuperation sous forme de fluorure tetravalent de l'uranium extrait de solutions phosphatees
FR2680980A1 (fr) * 1991-09-09 1993-03-12 Commissariat Energie Atomique Procede de traitement d'une solution contenant de l'acide acetique en presence d'halogenes.
FR2707416B1 (fr) * 1993-07-08 1995-08-18 Cogema Procédé et installation de décontamination d'effluents nitriques radioactifs contenant du strontium et du sodium.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9843718A1 *

Also Published As

Publication number Publication date
JP2001517148A (ja) 2001-10-02
CN1251053A (zh) 2000-04-19
CA2285361A1 (en) 1998-10-08
WO1998043718A1 (de) 1998-10-08

Similar Documents

Publication Publication Date Title
DE69308026T2 (de) Eine Fluidum Verteilungsvorrichtung, ein similiertes bewegendes Bett und eine kontinuierliche Adsorptionsmethode
EP0971778A1 (de) Stoffaustauschverfahren zwischen zwei flüssigen phasen
EP0073415A2 (de) Vorrichtung zum Dispergieren einer zweiten Phase in einer ersten Phase
EP0858363B1 (de) Mehrstufiges extraktionsverfahren
EP0030697A1 (de) Gegenstrom-Verfahren zur Behandlung von Flüssigkeiten mit einem Ionenaustauscher und Ionenaustauschfilter zur Durchführung des Verfahrens
EP0858362A1 (de) Mehrphasen-extraktor
CH671344A5 (de)
DE8111288U1 (de) "einrichtung zur durchfuehrung verfahrenstechnischer prozesse"
DE2129727A1 (de) Platten-Anordnung zur Entfernung von fluechtigen Bestandteilen
EP0968038B1 (de) Verfahren und anlage für die adsorptive stofftrennung
DE19935162A1 (de) System zum abwechselnden In-Verbindungbringen von wenigstens vier Fluiden und seine Anwendung bei einem Verfahren zur Trennung im beweglichen simulierten Bett
EP0063236B1 (de) Vorrichtung zur Spülwasserbehandlung mittels Ionenaustauscher
DE8811041U1 (de) Mehrstufige Trinkwasser-Filtervorrichtung
EP0862487B1 (de) Mehrstufiger dreiphasen-extraktor
WO1998026850A1 (de) Mehrphasen-extraktionsapparat
DE2828549C2 (de)
DE3104324A1 (de) Ionenaustauschapparat fuer die labormaessige oder kleintechnische wasserdeionisierung
DE3327184A1 (de) Rueckspuelbare filtervorrichtung
WO2010136336A2 (de) Mikrofluidischer reaktor mit einem ringförmigen reaktionsraum
WO1998037939A2 (de) Dreiphasen-extraktionskolonne
DE4337081A1 (de) Vorrichtung und Verfahren zur elektrostatischen und/oder magnetischen Voraufbereitung von Substanzen vor ihrer Verbindung
DE3303910A1 (de) Membranstapeleinheit fuer mehrkammerprozesse
DE1432762B2 (de) Misch und Trennverfahren mit Gegenstromzentrifugen
DE3837081C2 (de) Verfahren zur Entnahme von Destillat genügend heißen Zustands in mehrstufigen Destillationsvorrichtungen
AT335613B (de) Verfahren und vorrichtung zur behandlung von blut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20010622

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20010727