EP0970298B1 - Electromagnetic valve drive mechanism - Google Patents

Electromagnetic valve drive mechanism Download PDF

Info

Publication number
EP0970298B1
EP0970298B1 EP98919136A EP98919136A EP0970298B1 EP 0970298 B1 EP0970298 B1 EP 0970298B1 EP 98919136 A EP98919136 A EP 98919136A EP 98919136 A EP98919136 A EP 98919136A EP 0970298 B1 EP0970298 B1 EP 0970298B1
Authority
EP
European Patent Office
Prior art keywords
mechanism according
spring
electromagnetic mechanism
anchor
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98919136A
Other languages
German (de)
French (fr)
Other versions
EP0970298A1 (en
Inventor
Heinz Karl Leiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LSP Innovative Automotive Systems GmbH
Original Assignee
LSP Innovative Automotive Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19712063A external-priority patent/DE19712063A1/en
Priority claimed from DE19714412A external-priority patent/DE19714412A1/en
Priority claimed from DE19717405A external-priority patent/DE19717405A1/en
Priority claimed from DE19730191A external-priority patent/DE19730191A1/en
Application filed by LSP Innovative Automotive Systems GmbH filed Critical LSP Innovative Automotive Systems GmbH
Publication of EP0970298A1 publication Critical patent/EP0970298A1/en
Application granted granted Critical
Publication of EP0970298B1 publication Critical patent/EP0970298B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2105Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids comprising two or more coils
    • F01L2009/2109The armature being articulated perpendicularly to the coils axes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1692Electromagnets or actuators with two coils

Definitions

  • the invention relates to an electromagnetic drive the features of the preamble of claim 1.
  • Such an electromagnetic drive is from DE 3616540 A1 known. There is one indirectly from an anchor driven lever directly with a valve to be driven coupled. Between the articulation point of the lever, which by a torsion spring is given, and the lever end that the Valve stem operated, is an operating rod with side play coupled with the anchor of the electromagnetic drive is connected and by this is driven. The actuation rod and thus the anchor are stored separately using a roller bearing.
  • the invention is based on the object electromagnetic drive of the type mentioned create that has a very low bearing friction and moreover due to a reduction in the moving masses as well as optimal power transmission with lower performance can be operated.
  • This task is characterized by the characteristics of the Claim 1 solved.
  • the solution according to the invention creates a simplified one low-wear bearing with little friction. So that is no permanent oil lubrication required either.
  • the lever is direct, i.e. without an intermediate part that carries electromagnetically movable part, become the acting Forces forwarded directly without fasteners, from where a mass reduction results, a smaller one Control power entails.
  • the drive is formed by two electromagnets, between whose poles turn on by alternately switching the excitation currents Anchor as an electromagnetically movable part back and forth is movable.
  • the construction is characterized in that the Anchor, without power consumption of the drive by spring forces is held in an intermediate position.
  • a special weight reduction also results from the exclusive storage of the lever by means of the torsion bar according to claim 5, resulting from a weight saving improved efficiency of the drive results.
  • the ratio is reduced accordingly required force and also the effective moving mass for Movement of a valve so that the drive is correspondingly smaller and can be dimensioned more easily.
  • Drives also have advantageous effects with the features of claim 1, where to reduce the Movable masses actuator and element to be driven are directly coupled to one another or according to claim 9, because then e.g. by an elastic element, e.g. on Spring element valve and drive mass effectively from each other can be decoupled what is due to the acting Shock forces are advantageous.
  • the spring element can e.g. as Abhubhubfeder be designed with a stop that the stroke of for example controlled valve or the armature limited. By having a high magnetic force corresponding to the gas forces, can e.g. with an exhaust valve higher gas forces to be dealt with.
  • Fig. 1 a torsion spring (torsion bar or rotary tube) storage shown in principle. At this Storage, the masses to be accelerated are very small. It a double magnetic drive is shown, which consists of magnetic cores 1 and 2 with magnetic poles 3 and 4 out on the cores wound windings 5 and 6 and an armature 7, that moves in the field of magnets.
  • the anchor 7 When one of the electromagnets (1, 3, 5) or (2, 4,6) the anchor 7 is moved from the intermediate position shown (e.g. Middle position) towards the magnetic poles 3 or 4.
  • the intermediate position shown e.g. Middle position
  • the magnetic poles 3 and 4 are formed obliquely to the Adapted to the course of the armature 1 rotated about the axis 10 his.
  • the detailed structure of the torsion bar is shown in FIG. 3 removable.
  • a torsion bar 30 is rigidly clamped here at 31.
  • At the free end there is one that allows twisting Support bearing 32, for example, a needle bearing or plain bearing is provided.
  • With the torsion bar 30 is a bearing lever in the form of a cage 33 connected, which in turn receives the anchor 37.
  • At this Cage 33 is also an operating rod by means of a bearing 29 rotatably mounted.
  • the shaft 34 of the bearing is e.g. about a screw connection or rivets connected to the cage 33.
  • the axis 10 is the axis of rotation of the torsion bar.
  • the Cage 33 of Fig. 3 can also in Fig. 1, the bearing lever 11 of the Anchor 7 be.
  • the anchor 37 is e.g. in the cage 33 riveted. In Figure 3 are to the right and left of the Bearing shaft 34 to recognize the rivet pins.
  • Figure 1 is with the armature 7 or the bearing lever 11 Actuating rod 12 rotatably connected via a bearing 13, the in turn via a coupling member 15 with e.g. a valve lifter 16 is connected.
  • a coupling member 15 with e.g. a valve lifter 16 is connected.
  • the lateral forces at Low stroke movement In the example of FIG. 1, it is assumed that the torsion bar (in axis 10) the zero position of the armature causes itself, i.e. applies the entire spring force.
  • Fig. 2 corresponds to Fig. 1 with the difference that here the Restoring forces from the spring bar 20 and one Valve return spring 32 are formed and at a certain deflection in each direction Spring force increased. 2 this is additional Restoring force by a clamped at the right end Leaf spring pair 23/24 and an extension 25 of the armature 21 realized that an additional a certain deflection the leaf springs 23 or 24 must bend. This is also shown in Fig. 3 in a different view.
  • This two-stage spring has the advantage that the spring characteristic is better adapted to the magnetic force curve FM. Therefore, it can System already from the rest position without the usual Start-up process to be moved to the end position. About that In addition, the steep spring characteristic of the second one Spring a correspondingly high deceleration of the opposite end position arriving anchor, which is significant contributes to damping and position control. Continue wearing the possible high final force of the spring to a high Initial acceleration and thus quick valve opening.
  • FIG. 5 is for storing a Anchor 50 a torsion bar 52 is provided which the torsion bar 20 Fig. 2 corresponds.
  • the torsion bar 52 is by means of a Bearing lever 51 connected to the armature 50 so that the armature by two electromagnets (magnetic circuit 53 and 55 and Windings 54 and 56) can be moved up or down.
  • the torsion bar generates both spring forces.
  • An actuating rod 57 is articulated on the bearing lever 51, by means of an overtravel spring 58 with a valve tappet 59 connected is. By means of this overtravel spring 58, the valve is closed moved with an anchor movement.
  • overtravel spring 58 is compared to the direct coupling e.g. 1 a large one Load on the valve seat due to the mass force of the valve and avoided anchors.
  • the armature 50 during their control in the hold the corresponding end position.
  • FIG. 6 differs from FIG. 5 in particular in that that the armature 70 in its end positions by a locking roller 71 and is not held by a holding current.
  • the Locking roller 71 which in Fig. 6 under one with the armature 70th connected locking plate 72 is engaged to trigger the armature movement down by a locking magnet 73 and an associated rocker 75 rotatable about an axis 74 the locking roller is mounted, out of the latch emotional.
  • the torsion springs now accelerate the armature 70 down and a current pulse on the lower coil brings the armature finally to the other end position.
  • the Locking magnet 73 and the holder 75 are against by one Force of the locking magnet directed spring not shown in the position shown.
  • the actuating rod 57 is not hinged directly to the armature 50 but to the bearing lever 51. This is the way of the armature and the valve differently.
  • the end of the operating rod 57 is in the middle position on the valve stem head.
  • Fig. 7b a Side view and Fig. 7a a view seen from the right shows.
  • the operating rod is at 87, the valve stem at Designated 89.
  • the overtravel spring 88 is with the Actuator rod 87 connected and engages in a fork shape Groove of the valve lifter 89.
  • Fig. 7b is in the upper part e.g. welded stop (85.86) can be seen. Parts 85, 86, 87 can consist of one piece.
  • Fig. 9 is a spring 98 with an envelope 99 shown, which acts as a catch plate and causes that at a break in the overtravel spring 93 over the stop can be moved into the closing end position without hitting on the piston.
  • the overtravel spring can, as shown in FIG. 10, also between the Actuating rod 107 and the connecting part 101 arranged his.
  • the stop is here by a pin 103 and a Elongated hole 102 causes.
  • 10 shows another Adjustment screw 104, with which the distance, i.e. the Valve play between the operating rod and valve lifter, the Coupling is stiff here, can be adjusted.
  • Fig. 11 shows an example in which the Actuating rod 117 via a spring 118 with the bearing lever 111 is connected.
  • the spring 118 is one here Leaf / spiral spring. This is a wear-free joint possible, with a kink protection for the spiral spring 118 can be provided.
  • the actuating rod 117 could be by means of of a leaf spring joint to be articulated on the bearing lever 111.
  • the aim of this is the driving force of the electromagnetic Drive increase to either this higher force or to use the magnets while maintaining the same force out.
  • This design is particularly advantageous for the reduction the moving masses, where the anchor is a relative has a large share. Here it decreases linearly with increasing Leverage ratio the effective mass.
  • This Training is particularly important when using the electromagnetic actuator for valve control of Internal combustion engines are an advantage because of the great power in them the end positions and the air gap of the armature is not is dominant.
  • the torsion bar is shown schematically at 120.
  • the bearing lever 121 is shown as a line; the anchor bears the reference numeral 122, the actuating rod the reference numeral 123.
  • the actuating rod 123 is now connected at a distance 11 from the bearing point 120 to the bearing lever 121, while the center of the armature is 12 away therefrom.
  • the magnetic force FM is shown as arrow 124.
  • the electromagnetic drive described above can Driving a gas exchange valve or another comparable valve can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Description

Die Erfindung betrifft einen elektromagnetischen Antrieb mit den Merkmalen des Oberbegriffs des Anspruchs 1.The invention relates to an electromagnetic drive the features of the preamble of claim 1.

Ein derartiger elektromagnetischer Antrieb ist aus der DE 3616540 A1 bekannt. Dort ist ein von einem Anker indirekt angetriebener Hebel direkt mit einem anzutreibenden Ventil gekoppelt. Zwischen der Anlenkstelle des Hebels, die durch eine Drehfeder gegeben ist, und dem Hebelende, das den Ventilschaft betätigt, ist eine Betätigungsstange mit seitlichem Spiel angekoppelt, die mit dem Anker des elektromagnetischen Antriebs verbunden ist und von diesem angetrieben wird. Die Betätigunqsstange und damit der Anker sind mit Hilfe eines Wälzlagers getrennt gelagert.Such an electromagnetic drive is from DE 3616540 A1 known. There is one indirectly from an anchor driven lever directly with a valve to be driven coupled. Between the articulation point of the lever, which by a torsion spring is given, and the lever end that the Valve stem operated, is an operating rod with side play coupled with the anchor of the electromagnetic drive is connected and by this is driven. The actuation rod and thus the anchor are stored separately using a roller bearing.

Aus dem Gebrauchsmuster 66 06 789.8 und aus der GB-PS-1524322 sind elektromagnetische Vibrationsantriebe mit einer Federlagerung des Ankers bekannt. In der zuerst genannten Schrift ist der Anker an einer einseitig eingespannten Blattfeder gelagert, in der anderen Schrift ist zur Lagerung eine Drehfeder vorgesehen, an deren nicht eingespannten Ende ein Drehanker befestigt ist.From utility model 66 06 789.8 and from GB-PS-1524322 are electromagnetic vibration drives with a Spring bearing of the anchor is known. In the first Writing is the anchor on a one-sided clamp Leaf spring stored, in the other script is for storage a torsion spring is provided at the non-clamped end a rotating anchor is attached.

Aus der GB-A-1471537 ist ein elektromagnetischer Antrieb für ein Ventil eines Verbrennungsmotors bekannt, bei dem zwei Paare von Elektromagneten zwei Anker abwechselnd in zwei Endstellungen bringen. Die Anker sind als einseitig angelenkte Hebel ausgebildet. Sie wirken gemeinsam auf den Schaft eines Ventils ein. Ohne Erregung eines Magneten stellt eine Spiralfeder den Antrieb in die eine Endstellung, bei der das Ventil geschlossen ist. Jeder Hebel besitzt je Endstellung nur einen Arbeitspol. Hierdurch ist die Kraftausbeute des Magnetsystems für jeden Hebel nur sehr gering. Nachteilig bei diesem Antrieb ist ferner, daß der gesamte Magnetfluß über die Lagerung jedes Hebels fließt, wodurch sich eine erhöhte Lagerreibung und damit ein schneller Verschleiß ergibt.From GB-A-1471537 is an electromagnetic drive for a valve of an internal combustion engine is known, in which two Pairs of electromagnets two anchors alternating in two Bring end positions. The anchors are hinged on one side Lever trained. They work together on the shaft of one Valve. Without excitation a magnet represents one Spiral spring the drive in the one end position, in which the Valve is closed. Each lever only has one per end position a working pole. As a result, the power of the Magnet system for each lever only very low. A disadvantage of this drive is also that the entire magnetic flux over the Storage of each lever flows, which increases Bearing friction and thus a quick wear results.

Der Erfindung liegt die Aufgabe zu Grunde, einen elektromagnetischen Antrieb der eingangs genannten Art zu schaffen, der eine sehr geringe Lagerreibung aufweist und darüber hinaus aufgrund einer Reduzierung der bewegten Massen sowie einer optimalen Kraftübertragung mit geringerer Leistung betrieben werden kann.The invention is based on the object electromagnetic drive of the type mentioned create that has a very low bearing friction and moreover due to a reduction in the moving masses as well as optimal power transmission with lower performance can be operated.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.This task is characterized by the characteristics of the Claim 1 solved.

Die erfindungsgemäße Lösung schafft eine vereinfachte verschleißarme Lagerung mit nur geringer Reibung. Damit ist auch keine permanente Ölschmierung erforderlich. Insbesondere dadurch, daß der Hebel direkt, d.h. ohne ein Zwischenteil, das elektromagnetisch bewegbare Teil trägt, werden die wirkenden Kräfte direkt ohne Verbindungselemente weitergeleitet, woraus eine Massenreduktion resultiert, die eine geringere Ansteuerleistung nach sich zieht. The solution according to the invention creates a simplified one low-wear bearing with little friction. So that is no permanent oil lubrication required either. In particular in that the lever is direct, i.e. without an intermediate part that carries electromagnetically movable part, become the acting Forces forwarded directly without fasteners, from where a mass reduction results, a smaller one Control power entails.

Der Antrieb wird von zwei Elektromagneten gebildet, zwischen deren Polen durch abwechselndes Schalten der Erregerströme ein Anker als elektromagnetisch bewegbares Teil hin- und herbewegbar ist.The drive is formed by two electromagnets, between whose poles turn on by alternately switching the excitation currents Anchor as an electromagnetically movable part back and forth is movable.

Die Konstruktion zeichnet sich dabei dadurch aus, daß der Anker, ohne Leistungsaufnahme des Antriebs durch Federkräfte in einer Zwischenstellung gehalten wird.The construction is characterized in that the Anchor, without power consumption of the drive by spring forces is held in an intermediate position.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen erwähnt, die im Zusammenhang mit der Zeichnungsbeschreibung herausgestellt werden.Further advantageous embodiments of the invention are in the Subclaims mentioned in connection with the Drawing description are highlighted.

Eine besondere Gewichtsreduktion ergibt sich auch durch die ausschließliche Lagerung des Hebels mittels des Drehstabes nach Anspruch 5, woraus aufgrund einer Gewichtseinsparung ein verbesserter Wirkungsgrad des Antriebs resultiert.A special weight reduction also results from the exclusive storage of the lever by means of the torsion bar according to claim 5, resulting from a weight saving improved efficiency of the drive results.

Eine optimale Ausnutzung der wirkenden Kräfte ergibt sich bei einer Konstruktion entsprechend Anspruch 6. Insbesondere wenn das auf das anzutreibende Element, also z.B. ein Ventil einwirkende Betätigungsglied zwischen dem Hebellager und dem elektromagnetisch bewegbaren Teil befestigt ist, liegt infolge der Hebelverhältnisse eine Untersetzung des Hubes z.B. des Ankers vor.An optimal utilization of the acting forces results in a construction according to claim 6. In particular if this applies to the element to be driven, e.g. a valve acting actuator between the lever bearing and the is attached electromagnetically movable part, is due the lever ratios a reduction of the stroke e.g. of Anchor before.

Im gleichen Verhältnis reduziert sich dementsprechend die benötigte Kraft und auch die effektive bewegliche Masse zur Bewegung eines Ventil, so daß der Antrieb entsprechend kleiner und leichter dimensioniert werden kann.The ratio is reduced accordingly required force and also the effective moving mass for Movement of a valve so that the drive is correspondingly smaller and can be dimensioned more easily.

Wegen der geringeren Magnetvolumina ist es möglich, den Magnetkreis im Bereich des Magnetjochs etwas größer zu dimensionieren, woraus vorteilhafterweise geringere Eisenverluste resultieren.Because of the smaller magnet volume, it is possible Magnetic circuit in the area of the magnetic yoke slightly larger dimension, from which advantageously less Iron losses result.

Ebenfalls vorteilhafte Wirkungen ergeben sich bei Antrieben mit den Merkmalen des Anspruchs 1, wo zur Reduzierung der beweglichen Massen Betätigungsglied und anzutreibendes Element direkt miteinander gekoppelt sind oder nach dem Anspruch 9, da dann z.B. durch ein elastisches Element, z.B. ein Federelement Ventil und Antriebsmasse wirkungsvoll voneinander entkoppelt werden können, was aufgrund der wirkenden Stoßkräfte vorteilhaft ist. Das Federelement kann z.B. als Überhubfeder mit Anschlag ausgestaltet sein, die den Hub des beispielsweise angesteuerten Ventils bzw. des Ankers begrenzt. Indem eine entsprechend der Gaskräfte hohe Magnetkraft wirkt, können hierdurch z.B. bei einem Auslaßventil höhere Gaskräfte bewältigt werden.Drives also have advantageous effects with the features of claim 1, where to reduce the Movable masses actuator and element to be driven are directly coupled to one another or according to claim 9, because then e.g. by an elastic element, e.g. on Spring element valve and drive mass effectively from each other can be decoupled what is due to the acting Shock forces are advantageous. The spring element can e.g. as Abhubhubfeder be designed with a stop that the stroke of for example controlled valve or the armature limited. By having a high magnetic force corresponding to the gas forces, can e.g. with an exhaust valve higher gas forces to be dealt with.

Bei Systemen mit einer Ventilrückstellfeder muß deren Federkraft im geschlossenen Zustand so bemessen sein, daß die Kraft größer ist, als die Gaskraft des Abgasgegendruckes. Diese Forderung bedeutet ein erhebliches Zusatzgewicht. Bei einer starren Kopplung zwischen Anker und Ventilbetätigung kann diese kurzzeitig wirkende Gaskraft durch die Magnetkraft ausgeglichen werden. Dies bedeutet eine erhebliche Gewichtsersparnis.In systems with a valve return spring, their Spring force in the closed state should be such that the Force is greater than the gas force of the exhaust back pressure. This requirement means a considerable additional weight. at a rigid coupling between armature and valve actuation can this momentarily acting gas force by the magnetic force be balanced. This means a significant one Weight savings.

Eine besondere Variabilität und Einsatzmöglichkeit ergibt sich durch die Merkmale der weiteren Unteransprüche.There is a particular variability and possible application by the features of the further subclaims.

Anhand der Zeichnung werden Ausführungsbeispiele der Erfindung näher erläutert.Exemplary embodiments of the invention are shown in the drawing explained in more detail.

Es zeigen

Fig. 1
eine Drehstablagerung eines Ankers in einem Antrieb mit zwei Elektromagneten;
Fig. 2, 3
eine Drehstablagerung in zwei Ansichten mit einer Zwei-Stufen-Rückstellfederkraft;
Fig. 4
ein Diagramm zur Darstellung der Zwei-Stufen-Rückstellfederkraft gemäß den Fig. 2 und 3;
Fig. 5 und 6
zwei Ausführungsbeispiele mit einer Überhubfeder;
Fig. 7,8 und 9
Details der Überhubfeder;
Fig. 10
unterschiedliche Anordnungen einer Überhubfeder;
Fig. 11
den Einsatz einer Biegefeder statt Überhubfeder;
Fig. 12
die gegebenen Hebelverhältnisse zur Kraftoptimierung.
Show it
Fig. 1
a torsion bearing of an armature in a drive with two electromagnets;
2, 3
a torsion bar bearing in two views with a two-stage return spring force;
Fig. 4
a diagram showing the two-stage return spring force according to FIGS. 2 and 3;
5 and 6
two embodiments with an overtravel spring;
7,8 and 9
Details of the spring;
Fig. 10
different arrangements of an overtravel spring;
Fig. 11
the use of a spiral spring instead of an overstroke spring;
Fig. 12
the given leverage ratios for power optimization.

In Fig. 1 wird eine erfindungsgemäße Torsionsfeder-(Drehstab oder Drehrohr-) Lagerung im Prinzip gezeigt. Bei dieser Lagerung sind die zu beschleunigenden Massen sehr klein. Es wird ein Doppelmagnetantrieb gezeigt, der aus Magnetkernen 1 und 2 mit Magnetpolen 3 und 4 aus auf den Kernen aufgewickelten Wicklungen 5 und 6 und einem Anker 7 besteht, der sich im Feld der Magneten bewegt.In Fig. 1 a torsion spring (torsion bar or rotary tube) storage shown in principle. At this Storage, the masses to be accelerated are very small. It a double magnetic drive is shown, which consists of magnetic cores 1 and 2 with magnetic poles 3 and 4 out on the cores wound windings 5 and 6 and an armature 7, that moves in the field of magnets.

Bei Betätigung eines der Elektromagnete (1, 3, 5) oder (2, 4,6) wird der Anker 7 aus der gezeigten Zwischenstellung (z.B. Mittelstellung) zu den Magnetpolen 3 oder 4 hingezogen.When one of the electromagnets (1, 3, 5) or (2, 4,6) the anchor 7 is moved from the intermediate position shown (e.g. Middle position) towards the magnetic poles 3 or 4.

Die Magnetpole 3 und 4 sind schräg ausgebildet, um an den Verlauf des um die Achse 10 gedrehten Ankers 1 angepaßt zu sein. Der nähere Aufbau der Drehstablagerung ist der Fig. 3 entnehmbar. Ein Drehstab 30 ist hier bei 31 starr eingespannt. Am an sich freien Ende ist ein die Verdrehung zulassendes Stützlager 32 z B. ein Nadellager oder Gleitlager vorgesehen. Mit dem Drehstab 30 ist ein Lagerhebel in Form eines Käfigs 33 verbunden, der seinerseits den Anker 37 aufnimmt. An diesem Käfig 33 ist auch eine Betätigungsstange mittels eines Lagers 29 drehbar gelagert. Die Welle 34 des Lagers ist z.B. über eine Schraubverbindung oder Nieten mit dem Käfig 33 verbunden.The magnetic poles 3 and 4 are formed obliquely to the Adapted to the course of the armature 1 rotated about the axis 10 his. The detailed structure of the torsion bar is shown in FIG. 3 removable. A torsion bar 30 is rigidly clamped here at 31. At the free end, there is one that allows twisting Support bearing 32, for example, a needle bearing or plain bearing is provided. With the torsion bar 30 is a bearing lever in the form of a cage 33 connected, which in turn receives the anchor 37. At this Cage 33 is also an operating rod by means of a bearing 29 rotatably mounted. The shaft 34 of the bearing is e.g. about a screw connection or rivets connected to the cage 33.

In Fig. 1 ist die Achse 10 die Drehachse des Drehstabs. Der Käfig 33 der Fig. 3 kann auch in Fig. 1 der Lagerhebel 11 des Ankers 7 sein. Der Anker 37 ist z.B. in den Käfig 33 eingenietet. In der Figur 3 sind rechts und links neben der Lagerwelle 34 die Nietzapfen zu erkennen.In Fig. 1, the axis 10 is the axis of rotation of the torsion bar. The Cage 33 of Fig. 3 can also in Fig. 1, the bearing lever 11 of the Anchor 7 be. The anchor 37 is e.g. in the cage 33 riveted. In Figure 3 are to the right and left of the Bearing shaft 34 to recognize the rivet pins.

In der Figur 1 ist mit den Anker 7 oder dem Lagerhebel 11 eine Betätigungsstange 12 über ein Lager 13 drehbar verbunden, die ihrerseits über ein Koppelglied 15 mit z.B. einem Ventilstößel 16 verbunden ist. Hierdurch sind die Querkräfte bei der Hubbewegung gering. Beim Beispiel der Fig. 1 ist unterstellt, daß der Drehstab (in Achse 10) die Nullstellung des Ankers selbst bewirkt, d.h. die gesamten Federkräfte aufbringt.In Figure 1 is with the armature 7 or the bearing lever 11 Actuating rod 12 rotatably connected via a bearing 13, the in turn via a coupling member 15 with e.g. a valve lifter 16 is connected. As a result, the lateral forces at Low stroke movement. In the example of FIG. 1, it is assumed that the torsion bar (in axis 10) the zero position of the armature causes itself, i.e. applies the entire spring force.

Fig. 2 entspricht Fig. 1 mit dem Unterschied, daß hier die Rückstellkräfte von dem Federstab 20 und einer Ventilrückstellfeder 32 gebildet werden und bei einer bestimmten Auslenkung in jeder Richtung eine weitere Federkraft erhöht. In Fig. 2 ist diese zusätzliche Rückstellkraft durch ein am rechten Ende eingespanntes Blattfederpaar 23/24 und eine Verlängerung 25 des Ankers 21 realisiert, die ab einer bestimmten Auslenkung zusätzlich eine der Blattfedern 23 oder 24 verbiegen muß. Dies zeigt auch Fig. 3 in anderer Ansicht.Fig. 2 corresponds to Fig. 1 with the difference that here the Restoring forces from the spring bar 20 and one Valve return spring 32 are formed and at a certain deflection in each direction Spring force increased. 2 this is additional Restoring force by a clamped at the right end Leaf spring pair 23/24 and an extension 25 of the armature 21 realized that an additional a certain deflection the leaf springs 23 or 24 must bend. This is also shown in Fig. 3 in a different view.

Die Fig. 4 zeigt ausgezogen den Verlauf der Summe der in Fig. 2 und 3 gezeigten Zwei-Stufen-Rückstellfeder. Diese Zwei-Stufen-Feder hat den Vorteil, daß die Federcharakteristik besser dem Magnetkraftverlauf FM angepaßt ist. Daher kann das System bereits aus der Ruhelage ohne den üblichen Anschwingvorgang in die Endlage gefahren werden. Darüber hinaus bewirkt die steile Federcharakteristik der zweiten Feder eine entsprechend hohe Abbremsung des von der gegenüberliegenden Endlage ankommenden Ankers, was erheblich zur Dämpfung und Stellungsregelung beiträgt. Weiterhin trägt die mögliche hohe Endkraft der Feder zu einer hohen Anfangsbeschleunigung und damit schnellen Ventilöffnung bei. 4 shows the course of the sum of the 2 and 3 shown two-stage return spring. This two-stage spring has the advantage that the spring characteristic is better adapted to the magnetic force curve FM. Therefore, it can System already from the rest position without the usual Start-up process to be moved to the end position. About that In addition, the steep spring characteristic of the second one Spring a correspondingly high deceleration of the opposite end position arriving anchor, which is significant contributes to damping and position control. Continue wearing the possible high final force of the spring to a high Initial acceleration and thus quick valve opening.

Beim Ausführungsbeispiel der Fig. 5 ist zur Lagerung eines Ankers 50 ein Drehstab 52 vorgesehen, der dem Drehstab 20 der Fig. 2 entspricht. Der Drehstab 52 ist mittels eines Lagerhebels 51 mit dem Anker 50 verbunden, so daß der Anker durch zwei Elektromagnete (Magnetkreis 53 und 55 und Wicklungen 54 und 56) nach oben oder unten bewegt werden kann. Auch hier erzeugt der Drehstab beide Federkräfte.5 is for storing a Anchor 50 a torsion bar 52 is provided which the torsion bar 20 Fig. 2 corresponds. The torsion bar 52 is by means of a Bearing lever 51 connected to the armature 50 so that the armature by two electromagnets (magnetic circuit 53 and 55 and Windings 54 and 56) can be moved up or down. Here, too, the torsion bar generates both spring forces.

An dem Lagerhebel 51 ist eine Betätigungsstange 57 angelenkt, die mittels einer Überhubfeder 58 mit einem Ventilstößel 59 verbunden ist. Durch diese Überhubfeder 58 wird das Ventil bei einer Ankerbewegung mitbewegt.An actuating rod 57 is articulated on the bearing lever 51, by means of an overtravel spring 58 with a valve tappet 59 connected is. By means of this overtravel spring 58, the valve is closed moved with an anchor movement.

Durch die Verwendung der Überhubfeder 58 wird gegenüber der direkten Ankopplung z.B. entsprechend Fig. 1 eine große Belastung des Ventilsitzes durch die Massenkraft von Ventil und Anker vermieden.By using the overtravel spring 58 is compared to the direct coupling e.g. 1 a large one Load on the valve seat due to the mass force of the valve and avoided anchors.

Auch wird hierdurch eine bessere Endlagenregelung ermöglicht. Auch werden hier kurzzeitige Ventilöffnungen durch eine Regelung am Anschlag vermieden.This also enables better end position control. Here too, brief valve openings are caused by a Avoid regulation at the stop.

Auf dem Magnetkreis 53 und dem Magnetkreis 55 sind außer den Wicklungen 54 und 56 noch weitere Haltewicklungen 60 und 61 angeordnet, die den Anker 50 während ihrer Ansteuerung in der entsprechenden Endstellung halten.On the magnetic circuit 53 and the magnetic circuit 55 are in addition to the Windings 54 and 56 still further holding windings 60 and 61 arranged, the armature 50 during their control in the hold the corresponding end position.

Die Fig. 6 unterscheidet sich von Fig. 5 insbesondere dadurch, daß der Anker 70 in seinen Endstellungen durch eine Rastrolle 71 und nicht durch einen Haltestrom gehalten wird. Die Rastrolle 71, die in Fig. 6 unter einer mit dem Anker 70 verbundenen Rastplatte 72 eingerastet ist, wird zum Auslösen der Ankerbewegung nach unten durch einen Rastmagneten 73 und eine damit verbundene um eine Achse 74 drehbare Wippe 75, an der die Rastrolle gelagert ist, aus der Einrastung heraus bewegt. 6 differs from FIG. 5 in particular in that that the armature 70 in its end positions by a locking roller 71 and is not held by a holding current. The Locking roller 71, which in Fig. 6 under one with the armature 70th connected locking plate 72 is engaged to trigger the armature movement down by a locking magnet 73 and an associated rocker 75 rotatable about an axis 74 the locking roller is mounted, out of the latch emotional.

Die Drehfedern beschleunigen nun den Anker 70 nach unten und ein Stromimpuls auf die untere Spule bringt den Anker schließlich in die andere Endstellung. Dabei rollt die an der Halterung 74 gelagerte Rastrolle entlang der Rastplatte 72 bis sie in der anderen Endstellung wieder einrastet. Der Rastmagnet 73 und die Halterung 75 werden durch eine gegen die Kraft des Rastmagneten gerichtete nicht gezeichnete Feder in der gezeichneten Stellung gehalten.The torsion springs now accelerate the armature 70 down and a current pulse on the lower coil brings the armature finally to the other end position. The rolls on the Bracket 74 mounted locking roller along the locking plate 72 to it engages again in the other end position. The Locking magnet 73 and the holder 75 are against by one Force of the locking magnet directed spring not shown in the position shown.

In den beiden Fig. 5 und 6 ist die Betätigungsstange 57 nicht direkt an dem Anker 50 sondern an dem Lagerhebel 51 angelenkt. Hierdurch sind die Wege des Ankers und des Ventils unterschiedlich. Das Ende der Betätigungsstange 57 liegt in der Mittelstellung auf dem Ventilschaftkopf auf.5 and 6, the actuating rod 57 is not hinged directly to the armature 50 but to the bearing lever 51. This is the way of the armature and the valve differently. The end of the operating rod 57 is in the middle position on the valve stem head.

In der Fig. 6 ist unterstellt, daß der Motor warm ist. Der Restluftspalt 76 ist hier klein, weil die Überhubfeder ohne Anschlag eine entsprechende Ankerbewegung unabhängig von der Ventilausdehnung zuläßt, so daß die Rastrolle 71 einrastet.In Fig. 6 it is assumed that the engine is warm. The Residual air gap 76 is small here because the overtravel spring without Stop a corresponding anchor movement regardless of the Allows valve expansion, so that the locking roller 71 engages.

In Fig. 5 ist dagegen ein kalter Motor unterstellt. Hier wird die Überhubfeder 58 wirksam, die nach dem Schließen des Ventils 59 aufgebogen wird und bei großen Gaskräften infolge der Magnetkraft auf den Anschlag gedrückt wird. Hier verbleibt ein größerer Restluftspalt 67, der abhängig ist von Ventilausdehnung und Ventilverschleiß.5, however, a cold engine is assumed. Here will the overtravel spring 58 effective after the closing of the Valve 59 is bent and as a result of large gas forces the magnetic force is pressed onto the stop. Remains here a larger residual air gap 67, which is dependent on Valve expansion and valve wear.

In den Figuren 7 ist die Überhubfeder, ihre Befestigung und der Anschlag detailliert herausgezeichnet, wobei Fig. 7b eine Seitenansicht und Fig. 7a eine Ansicht von rechts gesehen zeigt. Die Betätigungsstange ist mit 87, der Ventilschaft mit 89 bezeichnet. Die Überhubfeder 88 ist mit der Betätigunqsstange 87 verbunden und greift gabelförmig in eine Nut des Ventilstößels 89. In Fig.-7b ist im oberen Teil der z.B. eingeschweißte Anschlag (85,86) zu sehen. Die Teile 85, 86, 87 können aus einem Stück bestehen. In Figures 7, the over-travel spring, its attachment and the stop drawn out in detail, Fig. 7b a Side view and Fig. 7a a view seen from the right shows. The operating rod is at 87, the valve stem at Designated 89. The overtravel spring 88 is with the Actuator rod 87 connected and engages in a fork shape Groove of the valve lifter 89. In Fig. 7b is in the upper part e.g. welded stop (85.86) can be seen. Parts 85, 86, 87 can consist of one piece.

Beim Aufbiegen der Überhubfeder 88 kommt die Gabel der Überhubfeder mit den unteren Enden der Teile 85 und 86 auf Anschlag, so daß ein weiteres Aufbiegen nicht mehr möglich ist.When the overtravel spring 88 is bent open, the fork comes Lift spring with the lower ends of parts 85 and 86 Stop, so that further bending is no longer possible is.

Mit eingezeichnet ist ein federndes gabelförmiges Zentrierglied 84, das die Betätigungsstange 87 auf den Ventilschaft 89 zentriert.Drawn in is a resilient fork-shaped Centering element 84, which the actuating rod 87 on the Valve stem 89 centered.

In Fig. 8 ist angedeutet, daß man die Überhubfeder redundant aus zwei Federn 90 herstellen kann.In Fig. 8 it is indicated that the overtravel spring is redundant can produce 90 from two springs.

Schließlich ist in Fig. 9 eine Feder 98 mit einer Umhüllenden 99 dargestellt, die als Fangblech wirkt und bewirkt, daß bei einem Bruch der Überhubfeder 93 das Ventil über den Anschlag in die Schließendstellung gefahren werden kann ohne Auftreffen auf den Kolben.Finally, in Fig. 9 is a spring 98 with an envelope 99 shown, which acts as a catch plate and causes that at a break in the overtravel spring 93 over the stop can be moved into the closing end position without hitting on the piston.

Die Verwendung einer redundanten Feder 90 bringt hohe Zuverlässigkeit. Die Verwendung der umhüllenden Feder ermöglicht in einem Notbetrieb das Schließen und Stillegen das Ventils.The use of a redundant spring 90 brings high Reliability. The use of the enveloping spring enables closing and shutdown in an emergency Valve.

Die Überhubfeder kann wie in Fig. 10 gezeigt auch zwischen der Betätigungsstange 107 und dem Verbindungsteil 101 angeordnet sein. Der Anschlag wird hier durch einen Stift 103 und ein Langloch 102 bewirkt. Die Fig. 10 zeigt noch eine Verstellschraube 104, mit der der Abstand, d.h. das Ventilspiel zwischen Betätigungsstange und Ventilstößel, deren Kopplung hier steif ist, eingestellt werden kann.The overtravel spring can, as shown in FIG. 10, also between the Actuating rod 107 and the connecting part 101 arranged his. The stop is here by a pin 103 and a Elongated hole 102 causes. 10 shows another Adjustment screw 104, with which the distance, i.e. the Valve play between the operating rod and valve lifter, the Coupling is stiff here, can be adjusted.

Fig. 11 zeigt ein Beispiel, bei dem wieder die Betätigungsstange 117 über eine Feder 118 mit dem Lagerhebel 111 verbunden ist. Die Feder 118 ist hier eine Blatt/Biegefeder. Dadurch ist ein verschleißloses Gelenk möglich, wobei für die Biegefeder 118 ein Knickschutz vorgesehen werden kann. Fig. 11 shows an example in which the Actuating rod 117 via a spring 118 with the bearing lever 111 is connected. The spring 118 is one here Leaf / spiral spring. This is a wear-free joint possible, with a kink protection for the spiral spring 118 can be provided.

Alternativ zu Fig. 11 könnte die Betätigungsstange 117 mittels eines Blattfedergelenks am Lagerhebel 111 angelenkt sein.As an alternative to FIG. 11, the actuating rod 117 could be by means of of a leaf spring joint to be articulated on the bearing lever 111.

Anhand der Fig. 5, 6, 10 und 11 wurde aufgezeigt, daß man die Betätigungsstange zwischen Drehzentrum und Ankerzentrum anlenken kann.5, 6, 10 and 11 it was shown that the Operating rod between the turning center and the anchor center can articulate.

Dies hat zum Ziel, die Antriebskraft des elektromagnetischen Antriebs zu erhöhen, um entweder diese höhere Kraft auszunutzen oder um bei gleichbleibender Kraft die Magnete zu verkleinern.The aim of this is the driving force of the electromagnetic Drive increase to either this higher force or to use the magnets while maintaining the same force out.

Diese Auslegung ist von besonderem Vorteil für die Reduzierung der beweglichen Massen, bei denen der Anker einen relativ großen Anteil hat. Hier reduziert sich linear mit steigenden Hebelverhältnis die effektive Masse.This design is particularly advantageous for the reduction the moving masses, where the anchor is a relative has a large share. Here it decreases linearly with increasing Leverage ratio the effective mass.

Hierbei wird das Übersetzungsverhältnis ausgenutzt. Diese Ausbildung ist insbesondere bei Anwendung des elektromagnetischen Antriebs zur Ventilsteuerung von Verbrennungsmotoren von Vorteil, weil dort die große Kraft in den Endlagen gebraucht wird und der Luftspalt des Ankers nicht dominant ist.The gear ratio is used here. This Training is particularly important when using the electromagnetic actuator for valve control of Internal combustion engines are an advantage because of the great power in them the end positions and the air gap of the armature is not is dominant.

In Fig. 12 ist der Drehstab schematisch bei 120 gezeigt. Der Lagerhebel 121 ist als eine Linie dargestellt; der Anker trägt das Bezugszeichen 122, die Betätigungsstange das Bezugszeichen 123. Die Betätigungsstange 123 ist nunmehr im Abstand 11 vom Lagerpunkt 120 mit dem Lagerhebel 121 verbunden, während das Zentrum des Ankers hiervon um 12 entfernt ist. Die Magnetkraft FM ist als Pfeil 124 eingezeichnet. Die auf die Betätigungsstange 123 einwirkende Kraft FR errechnet sich zu: FR = FM 12 / 11 Sie ist um das Übersetzungsverhältnis 12 /11 bei gleichbleibender Magnetgröße vergrößert. 12, the torsion bar is shown schematically at 120. The bearing lever 121 is shown as a line; the anchor bears the reference numeral 122, the actuating rod the reference numeral 123. The actuating rod 123 is now connected at a distance 11 from the bearing point 120 to the bearing lever 121, while the center of the armature is 12 away therefrom. The magnetic force FM is shown as arrow 124. The force FR acting on the actuating rod 123 is calculated as: FR = FM 12/11 It is increased by the gear ratio 12/11 while the magnet size remains the same.

In Fig. 2 wurden die auf den Anker wirkenden Federkräfte durch die Drehstabfeder 20 und die Feder 22 erzeugt. Es ist jedoch auch möglich, den Drehstabfederkräften zwei gegeneinander gerichtete Drehfederkräfte zu überlagern, um höhere Rückstellkräfte zu erzeugen.In Fig. 2, the spring forces acting on the armature were by the torsion bar spring 20 and the spring 22 are generated. However, it is also possible the torsion bar spring forces two against each other directional torsional forces to superimpose higher To generate restoring forces.

Der oben beschriebene elektromagnetische Antrieb kann zum Antreiben eines Gaswechsel-Ventils oder eines anderen vergleichbaren Ventils eingesetzt werden. Auch kann damit eine Pumpe angetrieben werden, wobei der Ventilstößel durch einen Pumpenkolben ersetzt wird.The electromagnetic drive described above can Driving a gas exchange valve or another comparable valve can be used. One can also use it Pump driven, the valve lifter by a Pump piston is replaced.

Aber auch sein Einsatz bei Getrieben ist möglich, weil auch dort eine schnelle Umschaltung von der einen in die andere Stellung mit hoher Kraft erwünscht ist. Auch bei sonstigen Anwendungen mit ähnlichen Voraussetzungen ist die Erfindung einsetzbar.But it can also be used in gearboxes because it is there a quick switch from one to the other Position with high strength is desired. Also with others Applications with similar requirements is the invention used.

Claims (21)

  1. Electromagnetic valve mechanism with two electromagnets (1, 2) and with an anchor running on bearings, able to move to and fro between the pole faces which when one of the electromagnets is switched on is brought to one of the two end positions, whereby a valve of a combustion engine is operated as a result of the movement of the electro-magnetically controllable anchor (7, 27, 37, 50, 70) and whereby a lever (11, 21, 33, 51) linked at one end directly supports the anchor (7, 27, 37, 50) without any intermediate part, characterized in that the anchor (7, 27, 37, 50) when the electromagnets (1, 2) are switched off is brought by spring force into an intermediate position and held there, and that the lever (11, 21, 33, 51) is connected with a torque rod or tube (10, 20, 30) and the link of an operating element (12, 22, 57) allows it to turn on the anchor (7, 27, 37, 50, 70) or on the lever (11, 21, 33, 51) and that this operating element (12, 22, 57) acts on the valve and that the two poles in each case of one electromagnet (1, 2) in each case form an end position for the anchor or lever.
  2. Electromagnetic mechanism according to claim 1, characterized in that the lever forms a frame or cage (33) which surrounds the electro-magnetically controllable anchor.
  3. Electromagnetic mechanism according to one of the above claims, characterized in that the torque (30) is held in a support bearing (32).
  4. Electromagnetic mechanism according to one of the above claims, characterized in that the torque rod axis is arranged vertically to the movement direction of the driven part (59).
  5. Electromagnetic mechanism according to one of the above claims, characterized in that the rotary rod (10, 20) is the only bearing for the lever (11, 21).
  6. Electromagnetic mechanism according to claim 5, characterized in that the operating element (12) is fastened to the anchor (7).
  7. Electromagnetic mechanism according to claim 6, characterized in that the operating element (57) is fastened to the lever (51) between the lever bearing (52) and the anchor (50).
  8. Electromagnetic mechanism according to one of the above claims, characterized in that the link of the operating element (12, 22, 57) allows it to turn by means of a roller bearing (29) on the anchor (7, 27, 37, 50, 70) or on the lever (11, 21, 33, 51).
  9. Electromagnetic mechanism according to one of the above claims, characterized in that a spring element (88) is provided to connect the operating element (87) and the element to be driven (89).
  10. Electromagnetic mechanism according to claim 9, characterized in that at least one other spring lies parallel to the spring element (90).
  11. Electromagnetic mechanism according to claim 9, characterized in that to the spring element (90) is an over lifting spring.
  12. Electromagnetic mechanism according to claim 11, characterized in that the over lifting spring (98) comprises a sheathe spring (99).
  13. Electromagnetic mechanism according to one of claims 11 or 12, characterized in that a stop (85, 86) is provided for maximum compression of the over lifting spring (88).
  14. Electromagnetic mechanism according to one of the above claims, characterized in that a centering element (84) is provided for aligning the operating element (87) to the valve shaft (89).
  15. Electromagnetic mechanism according to one of the above claims, characterized in that a spring element (108) is arranged between the lever (101) and the operating element (107).
  16. Electromagnetic mechanism according to claim 15, characterized in that the spring element (108) is designed as over lifting spring.
  17. Electromagnetic mechanism according to claim 15, characterized in that the spring element is designed as spiral spring (118).
  18. Electromagnetic mechanism according to one of the above claims, characterized in that at least one additional spring force pair (24, 25) reinforcing the reset action is effective after a certain excursion of the electro-magnetically controllable part (27) out from the intermediate position.
  19. Electromagnetic mechanism according to one of the above claims, characterized in that the operating element (107) comprises an adjustment screw (104) to adjust its length.
  20. Electromagnetic mechanism according to one of the above claims, characterized in that the anchor (70) is held firm in the end positions by mechanical locking (71 to 75) which is electro-magnetically controllable.
  21. Electromagnetic mechanism according to one of the above claims, characterized in that the anchor (50) can be held firm in the end positions by electromagnetic retaining excitation (60, 61)
EP98919136A 1997-03-24 1998-03-24 Electromagnetic valve drive mechanism Expired - Lifetime EP0970298B1 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
DE19712063A DE19712063A1 (en) 1997-03-24 1997-03-24 Electro-magnetic drive for activating valve of combustion engine
DE19712063 1997-03-24
DE19714412 1997-04-08
DE19714412A DE19714412A1 (en) 1997-04-08 1997-04-08 Electromagnetic drive e.g for valve of IC engine
DE19717405 1997-04-24
DE19717405A DE19717405A1 (en) 1997-04-24 1997-04-24 Electromagnetic drive
DE19730191 1997-07-15
DE19730191A DE19730191A1 (en) 1997-07-15 1997-07-15 Electromagnetic drive mechanism
PCT/EP1998/001719 WO1998042960A1 (en) 1997-03-24 1998-03-24 Electromagnetic drive mechanism

Publications (2)

Publication Number Publication Date
EP0970298A1 EP0970298A1 (en) 2000-01-12
EP0970298B1 true EP0970298B1 (en) 2002-06-19

Family

ID=27438581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98919136A Expired - Lifetime EP0970298B1 (en) 1997-03-24 1998-03-24 Electromagnetic valve drive mechanism

Country Status (3)

Country Link
EP (1) EP0970298B1 (en)
DE (1) DE59804515D1 (en)
WO (1) WO1998042960A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19860451A1 (en) 1998-12-28 2000-06-29 Heinz Leiber Actuator for a valve of an internal combustion engine
DE19923902A1 (en) 1999-05-25 2000-11-30 Heinz Leiber Internal combustion engine
DE19948207A1 (en) * 1999-10-07 2001-04-12 Heinz Leiber Electromagnetic actuator has armature with at least some magnetic lamellas and at least some that engage armature tube and are connected to it in a shape- and/or force-locking manner
EP1215370A1 (en) * 2000-12-15 2002-06-19 Renault Linear valve driving device with movable magnets
FR2818431B1 (en) * 2000-12-15 2003-04-18 Renault LINEAR DRIVE OF A VALVE USING MOBILE MAGNETS
DE20305920U1 (en) 2003-04-11 2003-08-14 TRW Deutschland GmbH, 30890 Barsinghausen Device for the camshaft-less actuation of a gas exchange valve
FR2854489B1 (en) * 2003-04-30 2007-01-12 Jacques Clausin ENERGY EFFICIENT ELECTROMAGNETIC ACTUATION WITH A POWERFUL AND RAPID PALETTE WHERE THE MOVEMENTS AND EFFORTS ARE PERFECTLY CONTROLLED BY ACTUATOR-SPECIFIC CONTROL MEANS
US20050076866A1 (en) * 2003-10-14 2005-04-14 Hopper Mark L. Electromechanical valve actuator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6606789U (en) 1968-02-22 1970-12-03 Dynamit Nobel Ag ELECTROMAGNETIC VIBRATION DRIVE.
DE2334211A1 (en) * 1973-07-05 1974-11-21 Schneider Co Optische Werke Servomotor
GB1471537A (en) * 1974-12-06 1977-04-27 Venard R Engine valve control
GB1524322A (en) 1976-01-23 1978-09-13 British Internal Combust Eng Electromagnetic vibration exciter
GB2088137A (en) * 1980-11-21 1982-06-03 Veisz Gyoergy Magnetomechanical converter
JPS57173914A (en) * 1981-04-20 1982-10-26 Ricoh Co Ltd Position selecting mechanism
US5314164A (en) * 1992-07-17 1994-05-24 Mks Instruments, Inc. Pivotal diaphragm, flow control valve
DE69517335T2 (en) * 1994-11-09 2001-01-04 Aura Systems Inc., El Segundo ELECTROMAGNETICALLY STEERED VALVE WITH STEERED ARMATURE

Also Published As

Publication number Publication date
DE59804515D1 (en) 2002-07-25
EP0970298A1 (en) 2000-01-12
WO1998042960A1 (en) 1998-10-01

Similar Documents

Publication Publication Date Title
DE60117320T2 (en) Electromagnetic actuator with laminated armature for actuating the valves of an internal combustion engine
DE19955079A1 (en) Electromagnetic drive for operation of i.c. engine valve has armature and cooperating electromagnets each provided with depth to width ratio of greater than 1.5
EP0970298B1 (en) Electromagnetic valve drive mechanism
DE19628860A1 (en) Electromagnetic actuating device for IC engine upper valve e.g. for motor vehicle
DE102020113219A1 (en) Rocker arm arrangement for a valve train of an internal combustion engine
DE102009058165A1 (en) magnetic drive
DE19955054A1 (en) Electromagnetic actuator with torsion spring connected to lever by tube and extending partly into tube
DE19860451A1 (en) Actuator for a valve of an internal combustion engine
DE102006025397B4 (en) Electromagnetically driven valve
DE19824537A1 (en) Electromagnetic drive for actuating valve in internal combustion engine
DE19835402C1 (en) Electromagnetic operating device for i.c. engine gas changing valve uses crank mechanism between magnetic armature and sahft of gas changing valve incorporated in oscillating spring system allowing use of single electromagnet
DE19607019A1 (en) Electromagnetic operating device for IC engine gas changing valve
DE19955067A1 (en) Electromagnetic actuator for driving valve in internal combustion engine incorporates lever with swivel bearings and two counter-opposed spring forces for supporting rotor
EP1063660B1 (en) Longitudinally laminated yoke body for an electromagnet
DE112007001110T5 (en) Electromagnetically driven valve
WO2001059267A1 (en) Method for producing an electromagnetic actuator, and electromagnetic actuator
DE19730191A1 (en) Electromagnetic drive mechanism
DE60121991T2 (en) EMISSION CONTROL UNIT ACTUATED BY ELECTROMAGNETIC ADJUSTABLE VALVE
DE69618551T2 (en) Electromagnetic actuator with a low aspect ratio core
EP1214721B1 (en) Electromagnetic actuator
DE102018119267A1 (en) Device for actuating sliding locking means
DE19714412A1 (en) Electromagnetic drive e.g for valve of IC engine
EP1131539B1 (en) Electromagnetic actuator (actuating drive for a valve of an internal combustion engine)
DE10003930C1 (en) Device, for operating gas exchange valve, has electromagnetic unit with elements acting on anchor elements of anchor unit
DE19714410A1 (en) Electromagnetic control device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20000403

RTI1 Title (correction)

Free format text: ELECTROMAGNETIC VALVE DRIVE MECHANISM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20020619

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020619

REF Corresponds to:

Ref document number: 59804515

Country of ref document: DE

Date of ref document: 20020725

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030325

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030320

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040413

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040421

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050324

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140325

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59804515

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001