EP0964958B1 - Verfahren zum Abfräsen von Verkehrsflächen - Google Patents
Verfahren zum Abfräsen von Verkehrsflächen Download PDFInfo
- Publication number
- EP0964958B1 EP0964958B1 EP98959818A EP98959818A EP0964958B1 EP 0964958 B1 EP0964958 B1 EP 0964958B1 EP 98959818 A EP98959818 A EP 98959818A EP 98959818 A EP98959818 A EP 98959818A EP 0964958 B1 EP0964958 B1 EP 0964958B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- milling
- data
- traffic area
- profile data
- profile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/004—Devices for guiding or controlling the machines along a predetermined path
Definitions
- the invention relates to a method for milling Traffic areas with a milling drum, a milling machine or a device for milling traffic areas according to the preamble of claim 20.
- Such milling machines are needed to manufacture a new road surface first the old road surface a traffic area.
- US-A-4473319 describes a generic method for milling Traffic surfaces with a milling drum of a milling machine by detecting the Longitudinal ripple of the traffic area and creation of profile data by assignment the measured profile values to position data of a position determination device.
- nominal profile data are generated from the measured profile values, wherein the target profile data corrected with respect to the longitudinal ripple of the traffic area should be.
- the measured relative profile values which are the To represent longitudinal ripple, smoothed by filters, where initially the short wavelengths are filtered out.
- the measured profile value is filtered again until a simulated Vehicle crossing a certain ride comfort standard is achieved. It It is understood that the result of the simulation only for a particular vehicle and for a certain speed.
- the smoothing can be for different Spring mass systems and different vehicle speeds repeated become.
- a measuring method according to US-A-4473319 can not between a dome, which should be preserved in the road surface profile, and an undesirable Lekswellmaschine the traffic area can be distinguished, since the Measurement takes place with respect to an imaginary plane, which may also be an inclined surface may be in the region of a slope or a slope.
- a vehicle in particular a bulldozer, to be provided with a GPS position determining device.
- the GPS positioning device can also be used to the three-dimensional To detect terrain condition.
- the GPS receiver can also do this be arranged on a tool of the bulldozer.
- the used GPS system has the task, the work progress in the change of the terrain structure to document and display.
- the invention is the Object to provide a method for milling traffic areas, in a simple way, a correction of the longitudinal ripple of a traffic area allows.
- the actual profile of the traffic area can be in on-line procedure with the help of a Profilabtast issued measured, the measured actual profile data corresponding position data associated with a relative or absolute position-determining device become.
- the target profile data unless provided by one on the Milling machine installed calculator can be calculated using data carriers or transmitted by radio to the machine control.
- the height coordinate z is determined using the position data of the absolute Position determining device based on the profile scanning device or the milling machine determined. This z-coordinate is then using a Depth gauge additionally specified, both on the Profilabtast worn as well as arranged on the milling machine. This z coordinate value of Actual profile data provides an exact position value in the space for the actual profile data.
- the z-coordinates can be combined with absolute or relative Position data in the plane (x, y coordinates) and or with a route information about the distance traveled relative to a reference point Distance.
- a significant advantage of the method according to the invention therefore also in that an elaborate position determination with respect to the milling machine may be omitted if the assignment of the desired profile data, e.g. over a Route information is possible.
- the use of an absolute coordinate system has the advantage that the longitudinal ripple of a road profile against terrain contours, for example a slope or a slope, can be distinguished.
- the actual value forms the set depth of cut, the disturbance variable, the setpoint value from the target profile data, the reference variable, and the Control signal for the milling depth of the milling drum the controlled variable.
- profile data may possibly also be archived previous data will be used.
- the desired profile data may be location vectors for controlling the Milling machine, specifically the position of the milling machine in the plane (x, y, z or x, z coordinates), the Corrected milling depth (z-coordinate) with respect to the longitudinal ripple the inclination and the direction of travel of the milling machine contain.
- the traffic area After processing the traffic area again measured the actual profile and the actual profile data with stored the assigned position data for documentation. With the help of this documentation can be compared to the Clients are shown how exactly the target profile the traffic area has been respected.
- the actual profile is first in a first Part of the traffic area added.
- This section serves as base length for the recorded actual profile data stored in the initial base record become.
- the actual profile data contained in the initial baseline record serve to generate the desired profile data for the first section.
- the actual profile becomes continue beyond the first section continuously sampled, with the basic data set continuously through the newly recorded actual profile data is updated.
- the basic data record refers to this to a predetermined base length of the traffic area. These Base length moves along with the work progress, so that according to the inclusion of new actual profile data, the most recent actual profile data from the basic data set be removed.
- the milling of further sections the traffic area is then dependent of continuously updated target profile data on the Base of the constantly updated basic data record.
- the length of the first section corresponds the traffic area of the base length of the continuous updated basic dataset.
- the basic data record contains the actual profile data of a subsection the traffic area whose length is greater than the largest still to be compensated longitudinal wave of the traffic area.
- the basic data set for example the actual profile data of a subsection of the Traffic area of approx. 50 to 300 m in length; preferably of about 100 to 200 m in length, contains.
- the recording of the actual profile of the traffic area in the first sectionabites can also advantageously by the Milling machine done.
- the milling drum is not in the process Intervention with the traffic area.
- the milling machine is a profile scanning device and a position determination device arranged.
- the base length of the traffic area detected by the basic data record for generating the desired profile data be changeable during the work progress. On This way, during the milling process on specifics the structure of the terrain.
- the separate profile scanner can be pre-selected Distance to the milling machine the actual profile before the Scan the milling machine.
- the continuously generated nominal profile data are generated from a basic data record, for example, on a relative to the milling machine ahead Part of the traffic area and z.T. on one already passed by the milling machine section refers. In this case, therefore always has a separate profile scanning relative to the milling machine go ahead.
- This method has the advantage that the base length to which the base dataset relates always a preceding section of the traffic area taken into account during online on-line profile data collection on the milling machine the base length in essential in retrospect, i. on an already overrun Part of the traffic area refers.
- the method for milling traffic areas 2 is in Fig. 1 explained in more detail. Basically, the procedure exists from three process steps, namely first the actual profile recording with the creation of the actual profile data, then the creation of a desired target profile and finally the milling process. Following the milling process can be a recent actual profile recording for documentation of the Milling result done.
- the actual profile recording can be done in advance, with a Profilabtast issued 8 the later to be processed traffic area 2 leaves and thereby the actual profile of the traffic area 2 detected at least two-dimensionally.
- expedient is the use of an absolute position determining device 16a, 16c, with the help of which the actual profile can be created with high accuracy.
- the Profile scanner 8 is with a relative depth gauge provided so that the depth values (z-coordinate) the absolute position determining device 16a, 16b by the relative depth values of the profile scanner 8 can be corrected. It will be so at least two-dimensional actual profile data by assignment the measured depth values to position data of the relative or absolute position determining means 16a, 16b created.
- the milling process now consists of the current one Position of the milling machine at least in terms of Wegkoordinate to determine. This is done with, for example a position determining device 16b, which on the Machine frame 12 of the milling machine 6 is arranged.
- Relative height coordinate between the chassis of a Milling machine 6 or a Profilabtast prepared 8 measured with this relative z-value used to correct the Absolute z-coordinate is used.
- Position determining device 16b of the milling machine 6 again generates absolute position data.
- the machine control 10 can with the help of the position determination device 16b directly the depth of the Milling roller 4 depending on the current position data the milling machine 6 and the difference of the actual value and that resulting from the target profile data Control target value for the milling depth.
- Fig. 2 illustrates the formation of the reference variable z-target for the control circuit of the milling depth control. This will be done first with the aid of the position-determining device 16b the absolute machine position in the plane or on the Straights determined. At the same time the currently set Milling depth z-is the relative distance value of the Machine frame 12 to the removed traffic area. 3 determined, so that then the current position data with the current depth of cut actual value. By comparison with the desired profile data can be in dependence from the machine position, the target value z target for the Take the milling depth from the nominal profile data. The difference of the value z-nominal minus z-actual represents the control deviation representing a height adjustment signal for the landing gear 14,15 is generated, so that a regulation of the desired value the depth of cut takes place.
- Fig. 3 shows the milling machine 6, the front suspension rests on the still unprocessed traffic area 2, while the rear suspension 15 already worked on the traffic area 3 rests.
- both suspensions 14,15 are adjusted.
- a height adjustment of the milling drum 4 itself provided.
- the old traffic area 2 a considerable longitudinal ripple, with Help of the milling depth control of the machine control 10 can be eliminated.
- the cleared traffic area 3 can be manufactured with an accuracy in the millimeter range become.
- the Profilabtast prepared 8 moves to create the Is-profile data before the milling machine 6 on the renewed Traffic Area 2.
- the same profile scanner 8 can, as shown on the right side of Fig. 3 can be seen is, even over the cleared traffic area 3 drive, a new actual profile data acquisition for the purpose of documentation to enable.
- FIG 4 shows the milling machine with an absolute position-determining device 16b, 16c (differential GPS).
- This consists of a stationary Global Positioning System (GPS) 16c, which in addition to the appropriate location editing traffic area 2 is installed and also is needed for the Profilabtast issued 8.
- GPS Global Positioning System
- the milling machine 6 has another on the machine frame 12 arranged GPS system 16b.
- the measured values of the position-determining device 16b, 16c are supplied to the machine controller 10 and can be displayed there by means of a monitor 20 become.
- the desired profile data for example, as in FIG. 4, created externally to a computer 22 and then with the help a data carrier reading device 24 of the machine control 10 fed.
- the desired profile data to be transmitted by radio to the machine control 10.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Road Repair (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Description
Hierbei wird einem Sensor die Änderung des Abstandes zwischen dem das Straßenprofil abtastenden Kantenschutz der Fräsmaschine und einem Fixpunkt am Maschinenrahmen gemessen. Die Abstandsänderung ist das Maß, um das sich der Kantenschutz dem Straßenprofil folgend entsprechend hebt oder senkt, so daß um diesen Betrag die Frästiefe automatisch erhöht bzw. verringert werden kann. Die Länge des Kantenschutzes wird hierbei als Abtastbasis bezeichnet. Längswellen mit einer Wellenlänge kleiner als die Kantenschutzlänge (ca. 1 bis 2 m) werden hierbei ausgeglichen. Trotzdem erfolgt immer noch ein Kopierfräsen des ursprünglichen Istprofils, da der Kantenschutz auf dem bestehenden Profil läuft und Unebenheiten größerer Wellenlänge dennoch in das neue Straßenprofil einkopiert werden.
Bei diesem Verfahren gleitet bzw. rollt ein Meßski bzw. Meßrad über die Straßenoberfläche. Der Ski bzw. das Rad ist über einen Schwenkhebel vertikal beweglich an einem Drehwinkelgeber befestigt, der die Änderung des Abstandes zwischen Meßrad bzw. Gleitski und dem Befestigungspunkt des Drehwinkelgebers am Maschinenrahmen mißt. Um diesen Betrag wird die Frästiefe anschließend angehoben oder verringert. Abtastbasis ist hierbei die Länge des Gleitskis bzw. der Meßlatte. Längsunebenheiten mit einer Wellenlänge größer als die Länge des Skis bzw. der Meßlatte werden kopiert, kleinere Längswellen können ausgeglichen werden. Durch Verlängerung der Meßlatte oder des Gleitskis lassen sich auch Längswellen mit einer Wellenlänge im Bereich von 5 bis 10 m ausgleichen.
Bei diesem aus der EP-A-0 547 378 bekannten Verfahren werden auf einer Maschinenseite drei UltraschallSensoren in Längsrichtung der Maschine fest am Maschinenrahmen montiert, d.h. ein Sensor am vorderen Maschinenende, ein Sensor über der Drehachse der Fräswalze und ein Sensor am hinteren Maschinenende. Die Sensoren messen die Abstandsänderung zwischen dem Maschinenrahmen und dem Straßenprofil. Aus diesen Meßwerten wird unter Berücksichtigung der in den Meßwerten des vorderen und hinteren Sensors enthaltenen Längsneigung der Maschine ein Mittelwert berechnet, um dessen Betrag die Frästiefe angehoben oder verringert wird. Durch diese Maßnahme vergrößert sich die Abtastbasis auf die Länge der Fräsmaschine, was einen Ausgleich von Längswellen mit einer Wellenlänge kleiner als die Maschinenlänge ermöglicht. Auch diese Vorgehensweise verbessert die Ebenheit des Straßenprofils, wobei allerdings immer noch ein Kopierfräsen stattfindet, bei dem langwellige Unebenheiten mit einer Wellenlänge über 5 bis 10 m weiterhin auf das neu erstellte Profil übertragen werden.
Bei der Höhenabtastung an einem Nivellierdraht besteht das Problem, daß der Nivellierdraht entsprechend dem zuvor bestimmten Soll-Profil aufgespannt und eingemessen werden muß. Dies erfordert einen hohen Zeitaufwand und ist daher aus Kostengründen nachteilig.
Diese Vorgehensweise beruht darauf, daß ein stationärer Rotationslaser mit seinem Strahl eine künstliche, scheibenförmige Ebene aufspannt. Ein Laserempfänger, der fest auf dem Maschinenrahmen installiert ist, mißt ständig die Entfernungsänderung zwischen dem Maschinenrahmen und der künstlich aufgespannten Ebene. Hierbei muß ebenfalls zuvor eine Vermessung des Straßenprofils erfolgen. Mit diesem Verfahren läßt sich theoretisch eine ebene Fläche ggf. auch eine geneigte Fläche erstellen, allerdings können nicht beliebige Profile erzeugt werden, da der Rotationslaser immer nur eine scheibenförmige Ebene erzeugt.
Dementsprechend ist auch die Anwendungsmöglichkeit des Lasers beschränkt. Außerdem muß der Laser ebenfalls exakt positioniert und eingerichtet werden, was ebenfalls zeit- und kostenintensiv ist. Ein weiterer Nachteil besteht in der Meßgenauigkeit, die nicht so hoch ist, wie die eines mechanischen Sensors.
- das Aufnehmen des Ist-Profils durch Überfahren eines ersten Teilabschnitts der Verkehrsfläche, dessen Länge größer ist als die größte Länge einer noch auszugleichenden Längswelle.
- das Erzeugen der Soll-Profildaten aus einem Anfangsbasisdatensatz, der die Ist-Profildaten des ersten. Teilabschnitts der Verkehrsfläche enthält,
- das Abfräsen des ersten Teilabschnitts der Verkehrsfläche mit einer Frästiefenregelung auf der Basis der sich aus dem Anfangsbasisdatensatz ergebenden Soll-Profildaten des ersten Teilabschnitts,
- das kontinuierliche Aktualisieren des sich auf eine vorbestimmte Basislänge der Verkehrsfläche beziehenden Basisdatensatzes nach dem Abfräsen des ersten Teilabschnittes entsprechend dem weiteren Arbeitsfortschritt, indem die Ist-Profildaten inkremental aktualisiert werden, und
- das Abfräsen weiterer Teilabschnitte der Verkehrsfläche in Abhängigkeit von kontinuierlich aktualisierter Soll-Profildaten auf der Basis des ständig aktualisierten Basisdatensatzes.
- Fig. 1
- das erfindungsgemäße Verfahren zum Abfräsen von Verkehrsflächen,
- Fig. 2
- die Regelung der Frästiefe während des Fräsprozesses,
- Fig. 3
- die Glättung der Längswelligkeit der Verkehrsfläche mit Hilfe des erfindungsgemäßen Fräsverfahrens, und
- Fig. 4
- eine schematische Darstellung der erfindungsgemäßen Vorrichtung zum Abfräsen von Verkehrsflächen.
Bei dem GPS-System erfolgt die Positionsbestimmung mit Hilfe von Satelliten, wobei zur Positionsbestimmung die Laufzeitunterschiede von Signalen zwischen unterschiedlich positionierten Satelliten und dem Gegenstand verwendet werden. Höhere Genauigkeiten werden mittels des DGPS-Systems erreicht (Differential-GPS), bei dem zusätzlich zu dem mit der Fräsmaschine 6 bewegten GPS-Empfänger 16b ein stationärer GPS-Empfänger 16c im näheren Umfeld aufgestellt wird. Durch die Differenzbildung der Signale beider GPS-Empfänger erhält man eine höhere Genauigkeit. Zur Erzielung noch höherer Genauigkeiten kann die Positionsinformation zusätzlich über Kreiselkompaß, Wegimpuls und Lenkinformationen korrigiert werden (gestütztes DGPS-System).
Claims (15)
- Verfahren zum Abfräsen von Verkehrsflächen (2) mit einer Fräswalze (4) einer Fräsmaschine (6) durchErfassen der Längswelligkeit der Verkehrsfläche (2) durch Messung des Ist-Profils mit einer fahrbaren Profilabtasteinrichtung (8) unter Verwendung der Höhenkoordinate der Positionsdaten einer Positionsbestimmungseinrichtung (16a, 16c), wobei die Höhenkoordinate der Positionsdaten der Positionsbestimmungseinrichtung (16a, 16c) mit Hilfe einer Tiefenmesseinrichtung durch relative Tiefenmesswerte zwischen der Positionsbestimmungseinrichtung (16a, 16c) und der Verkehrsfläche (2) zur Erstellung zumindest zweidimensionaler Ist-Profildaten korrigiert wird,Erstellen der Ist-Profildaten durch Zuordnen der gemessenen Höhenkoordinate der Positionsdaten zu Lagepositionsdaten der Positionsbestimmungseinrichtung (16a, 16c) in der Ebene,Erzeugen von Soll-Profildaten aus den gemessenen Ist-Profildaten, wobei die Soll-Profildaten hinsichtlich der Längswelligkeit der Verkehrsflächen korrigiert sind,Bestimmen der aktuellen Lageposition der Fräsmaschine (6), undRegeln der Frästiefe der Fräswalze (4) in Abhängigkeit von der Differenz zwischen den gemessenen Ist-Profildaten und den Soll-Profildaten,dass die Höhenkoordinate der Ist-Profildaten sowie die Lagepositionsdaten der Positionsbestimmungseinrichtung (16a, 16c) in einem absoluten Koordinatensystem bestimmt wird,die Soll-Profildaten im gleichen absoluten Koordinatensystem ermittelt werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Fräsmaschine lenkbar ist, wobei die Lenkung und/oder die Querneigung der höhenverstellbaren Fräsmaschine (6) in Abhängigkeit der Soll-Profildaten und der aktuellen Positionsdaten gesteuert wird.
- Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch das Messen des Ist-Profils der Verkehrsfläche (2) im Online-Verfahren mit Hilfe einer der Fräsmaschine (6) vorausfahrenden Profilabtasteinrichtung (8).
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass nach der Bearbeitung der Verkehrsfläche (2) erneut das Ist-Profil gemessen wird und die Ist-Profildaten gemeinsam mit den zugeordneten Positionsdaten zur Dokumentation gespeichert werden.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Position der Fräsmaschine in Form von Maschinenkoordinaten im Raum (x, y, z) oder in der Ebene (x, y) mittels einer Laser-Tracking-Station mit automatischer Zielverfolgung ermittelt werden.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Position der Fräsmaschine in Form von Maschinenkoordinaten im Raum (x, y, z) oder in der Ebene (x, y) mittels eines gestützten DGPS-Systems ermittelt werden.
- Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Maschinensteuerung (10) die Verkehrsfläche, einen Führungsdraht oder eine künstliche, mit Laserlicht aufgespannte Ebene als Referenzebene für die Frästiefenregelung verwendet.
- Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Soll-Profildaten mit Hilfe von Datenträgern oder per Funk an die Maschinensteuern (10) übertagen werden.
- Verfahren nach Anspruch 1, gekennzeichnet durchdas Aufnehmen des Ist-Profils durch Überfahren eines ersten Teilabschnitts der Verkehrsfläche (2), dessen Länge größer ist als die größte Länge einer noch auszugleichenden Längswelle der Verkehrsfläche (2),das Erzeugen der Soll-Profildaten aus einem Anfangsbasisdatensatz, der die Ist-Profildaten des ersten Teilabschnitts der Verkehrsfläche (2) enthält,das Abfräsen des ersten Teilabschnitts der Verkehrsfläche (2) mit einer Frästiefenregelung auf der Basis der sich aus dem Anfangsbasisdatensatz ergebenden Soll-Profildaten des ersten Teilabschnitts,das kontinuierliche Aktualisieren des sich auf eine vorbestimmte Basislänge der Verkehrsfläche (2) beziehenden Basisdatensatzes nach dem Abfräsen des ersten Teilabschnittes entsprechend dem weiteren Arbeitsfortschritt, indem die Ist-Profildaten inkremental aktualisiert werden, unddas Abfragen weitere Teilabschnitte der Verkehrsfläche (2) in Abhängigkeit von kontinuierlich aktualisierten Soll-Profildaten auf der Basis des ständig aktualisierten Basisdatensatzes.
- Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Basisdatensatz die Ist-Profildaten eines Teilabschnitts von ca. 50 bis 300 m, vorzugsweise von ca. 100 bis 200 m Länge enthält.
- Verfahren nach einem der Ansprüche 9 bis 10, gekennzeichnet durch das Aufnehmen des Ist-Profils der Verkehrsfläche (2) im ersten Teilabschnitt mit einer separaten Profilabtasteinrichtung (8).
- Verfahren nach einem der Ansprüche 9 bis 10, gekennzeichnet durch das Aufnehmen des Ist-Profils der Verkehrsfläche (2) im ersten Teilabschnitt durch die Fräsmaschine (6) ohne Eingriff der Fräswalze (4).
- Verfahren nach Anspruch 12, gekennzeichnet durch das kontinuierliche Aufnehmen des Ist-Profils der Verkehrsfläche (2) nach dem ersten Teilabschnitt mit einer an der Fräsmaschine (6) im vorderen Bereich angeordneten Profilabtasteinrichtung (8).
- Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass die durch den Basisdatensatz erfasste Basislänge der Verkehrsfläche (2) für die Berechnung der Soll-Profildaten während des Arbeitsfortschritts veränderbar ist.
- Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die separat verfahrbare Profilabtasteinrichtung (8) mit einem vorwählbaren Abstand zur Fräsmaschine (6) das Ist-Profil vor der Fräsmaschine abtastet und dass die kontinuierlich erzeugten Soll-Profildaten aus einem Basisdatensatz erzeugt werden, der sich zum Teil auf einen relativ zur Fräsmaschine (6) vorausliegenden Teilabschnitt der Verkehrsfläche und zum Teil auf einen von der Fräsmaschine (6) bereits überfahrenen Teilabschnitt bezieht.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19756676 | 1997-12-19 | ||
DE19756676A DE19756676C1 (de) | 1997-12-19 | 1997-12-19 | Verfahren und Vorrichtung zum Abfräsen von Verkehrsflächen |
PCT/EP1998/006899 WO1999032726A1 (de) | 1997-12-19 | 1998-10-31 | Verfahren und vorrichtung zum abfräsen von verkehrsflächen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0964958A1 EP0964958A1 (de) | 1999-12-22 |
EP0964958B1 true EP0964958B1 (de) | 2005-12-28 |
Family
ID=7852611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98959818A Expired - Lifetime EP0964958B1 (de) | 1997-12-19 | 1998-10-31 | Verfahren zum Abfräsen von Verkehrsflächen |
Country Status (5)
Country | Link |
---|---|
US (1) | US6371566B1 (de) |
EP (1) | EP0964958B1 (de) |
JP (1) | JP2001512543A (de) |
DE (2) | DE19756676C1 (de) |
WO (1) | WO1999032726A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019135225A1 (de) * | 2019-12-19 | 2021-06-24 | Wirtgen Gmbh | Verfahren zum Abfräsen von Verkehrsflächen mit einer Fräswalze, sowie Fräsmaschine zur Durchführung des Verfahrens zum Abfräsen von Verkehrsflächen |
WO2023151729A1 (en) | 2022-02-09 | 2023-08-17 | Exact Control System a.s. | Method and device for milling the surface of a traffic area in at least two layers |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10060903C2 (de) * | 2000-12-07 | 2002-10-31 | Moba Mobile Automation Gmbh | Laser-Höhenregeleinrichtung für eine Baumaschine |
AUPR396501A0 (en) * | 2001-03-26 | 2001-04-26 | Edgeroi Pty Ltd | Ground marking apparatus |
JP4430270B2 (ja) * | 2001-08-06 | 2010-03-10 | 本田技研工業株式会社 | プラントの制御装置及び内燃機関の空燃比制御装置 |
DE10203732A1 (de) * | 2002-01-30 | 2003-08-21 | Wirtgen Gmbh | Baumaschine |
DE102004040136B4 (de) * | 2004-08-19 | 2008-05-08 | Abg Allgemeine Baumaschinen-Gesellschaft Mbh | Gerät zum Abfräsen von Verkehrsflächen |
US7178606B2 (en) | 2004-08-27 | 2007-02-20 | Caterpillar Inc | Work implement side shift control and method |
US20060198700A1 (en) * | 2005-03-04 | 2006-09-07 | Jurgen Maier | Method and system for controlling construction machine |
DE102005044211A1 (de) | 2005-09-12 | 2007-03-22 | Wirtgen Gmbh | Selbstfahrende Baumaschine, sowie Hubsäule für eine Baumaschine |
US20110121633A1 (en) * | 2006-02-10 | 2011-05-26 | Hall David R | Billing System Integrated into a Milling Machine |
DE102006019841B3 (de) * | 2006-04-28 | 2007-12-20 | Moba-Mobile Automation Ag | Vorrichtung und Verfahren zur Ermittlung der Position einer Straßenwalze relativ zu einem Straßenfertiger |
US7475949B2 (en) | 2006-11-13 | 2009-01-13 | Kennametal Inc. | Edge cutter assembly for use with a rotatable drum |
US20080153402A1 (en) * | 2006-12-20 | 2008-06-26 | Christopher Arcona | Roadway grinding/cutting apparatus and monitoring system |
DE102006062129B4 (de) * | 2006-12-22 | 2010-08-05 | Wirtgen Gmbh | Straßenbaumaschine sowie Verfahren zur Messung der Frästiefe |
EP2650443B1 (de) * | 2006-12-22 | 2021-06-30 | Wirtgen GmbH | Strassenfräsmaschine mit Steuerung zur Herstellung der Parallelität des Maschinenrahmens zum Boden |
US8465105B2 (en) * | 2007-01-18 | 2013-06-18 | Cmi Terex Corporation | Control system for cutter drum |
DE102007007970B4 (de) * | 2007-02-17 | 2009-11-26 | Wirtgen Gmbh | Baumaschine, insbesondere Straßenbaumaschine |
US8068962B2 (en) | 2007-04-05 | 2011-11-29 | Power Curbers, Inc. | 3D control system for construction machines |
DE102007018352A1 (de) * | 2007-04-18 | 2008-10-30 | Wacker Construction Equipment Ag | Bodenschneidvorrichtung mit automatischer Zielführung |
US7762013B2 (en) * | 2007-06-29 | 2010-07-27 | Vermeer Manufacturing Company | Trencher with auto-plunge and boom depth control |
US7930843B2 (en) | 2007-06-29 | 2011-04-26 | Vermeer Manufacturing Company | Track trencher propulsion system with component feedback |
US7778756B2 (en) * | 2007-06-29 | 2010-08-17 | Vermeer Manufacturing Company | Track trencher propulsion system with load control |
DE102008023743A1 (de) * | 2008-05-15 | 2009-11-19 | Dynapac Gmbh | Verfahren zum Betrieb einer selbstfahrenden Straßenfräse |
US20100129152A1 (en) * | 2008-11-25 | 2010-05-27 | Trimble Navigation Limited | Method of covering an area with a layer of compressible material |
US8220806B2 (en) | 2009-01-13 | 2012-07-17 | Roger Hartel Neudeck | Surface milling system |
US8347529B2 (en) | 2009-04-09 | 2013-01-08 | Vermeer Manufacturing Company | Machine attachment based speed control system |
DE102009059106A1 (de) | 2009-12-18 | 2011-06-22 | Wirtgen GmbH, 53578 | Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine |
US8128177B2 (en) | 2010-02-08 | 2012-03-06 | Wirtgen Gmbh | Adaptive advance drive control for milling machine |
DE102010022467B4 (de) * | 2010-06-02 | 2014-12-04 | Wirtgen Gmbh | Straßenbaumaschine, sowie Verfahren zum Steuern des Abstandes einer auf einer Bodenoberfläche bewegten Straßenbaumaschine |
US8314608B2 (en) | 2010-06-30 | 2012-11-20 | Hall David R | Method of determining distance to a ferrous material |
US8794867B2 (en) | 2011-05-26 | 2014-08-05 | Trimble Navigation Limited | Asphalt milling machine control and method |
DE102011106139B4 (de) * | 2011-06-10 | 2015-04-02 | Wirtgen Gmbh | Verfahren und Vorrichtung zum Bestimmen einer von mindestens einer Baumaschine oder Abbaumaschine mit einer Fräswalze gefrästen Fläche |
US8757729B2 (en) * | 2011-12-22 | 2014-06-24 | Caterpillar Paving Proudcts Inc. | Automatic rear leg control for cold planers |
DE102012001289A1 (de) | 2012-01-25 | 2013-07-25 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine |
DE102012017337B4 (de) * | 2012-08-31 | 2020-09-17 | Bomag Gmbh | Baumaschine mit einer Geschwindigkeitsmesseinrichtung, Verfahren zur Bestimmung der Fortbewegungsgeschwindigkeit einer Baumaschine und Verfahren zur Bestimmung des Bodenbearbeitungsvolumens einer Baumaschine |
US9121146B2 (en) | 2012-10-08 | 2015-09-01 | Wirtgen Gmbh | Determining milled volume or milled area of a milled surface |
US8989968B2 (en) | 2012-10-12 | 2015-03-24 | Wirtgen Gmbh | Self-propelled civil engineering machine system with field rover |
DE102012020655A1 (de) | 2012-10-19 | 2014-04-24 | Wirtgen Gmbh | Selbstfahrende Baumaschine |
US9096977B2 (en) | 2013-05-23 | 2015-08-04 | Wirtgen Gmbh | Milling machine with location indicator system |
US9103079B2 (en) * | 2013-10-25 | 2015-08-11 | Caterpillar Paving Products Inc. | Ground characteristic milling machine control |
DE102014005077A1 (de) | 2014-04-04 | 2015-10-08 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine |
DE102014012825A1 (de) | 2014-08-28 | 2016-03-03 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine |
DE102014012831B4 (de) | 2014-08-28 | 2018-10-04 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine |
DE102014012836B4 (de) | 2014-08-28 | 2018-09-13 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zur Visualisierung des Bearbeitungsumfeldes einer sich im Gelände bewegenden Baumaschine |
US20160326701A1 (en) * | 2015-05-07 | 2016-11-10 | Caterpillar Paving Products Inc. | Rotary Mixer with Automated Control Functions |
US10066346B2 (en) * | 2015-08-12 | 2018-09-04 | Topcon Positioning Systems, Inc. | Point cloud based surface construction |
US11414820B2 (en) * | 2016-02-16 | 2022-08-16 | Wirtgen Gmbh | Self-propelled construction machine and method for operating a self-propelled construction machine |
US11351649B2 (en) | 2018-04-05 | 2022-06-07 | Levelgrind, Inc. | Method and apparatus for leveling and grinding surfaces |
US11397416B2 (en) * | 2018-04-25 | 2022-07-26 | Precision Building Group | Intelligent motion control through surface scan comparison and feature recognition |
CN108570912A (zh) * | 2018-05-15 | 2018-09-25 | 徐州徐工筑路机械有限公司 | 一种基于rtk的铣刨机产量计算系统与方法 |
DE102018119962A1 (de) | 2018-08-16 | 2020-02-20 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine |
DE102019104850A1 (de) | 2019-02-26 | 2020-08-27 | Wirtgen Gmbh | Fertiger |
US10844557B2 (en) * | 2019-03-27 | 2020-11-24 | Caterpillar Paving Products Inc. | Tool depth setting |
DE102019118059A1 (de) | 2019-07-04 | 2021-01-07 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine |
US11091887B1 (en) | 2020-02-04 | 2021-08-17 | Caterpillar Paving Products Inc. | Machine for milling pavement and method of operation |
CZ310153B6 (cs) * | 2022-02-09 | 2024-10-09 | Exact Control System a.s | Způsob a zařízení k diferenciální výškové úpravě povrchu dopravní plochy |
CN114717923B (zh) * | 2022-03-22 | 2023-01-20 | 湖南三一中益机械有限公司 | 铣刨机尾门控制方法、铣刨工作装置和铣刨机 |
US20230340736A1 (en) * | 2022-04-21 | 2023-10-26 | Wirtgen Gmbh | Differential milling and paving |
DE102022113273A1 (de) * | 2022-05-25 | 2023-11-30 | Wirtgen Gmbh | Selbstfahrende Bodenbearbeitungsmaschine und Verfahren zum Steuern einer selbstfahrenden Bodenbearbeitungsmaschine sowie Verfahren zum Bearbeiten des Bodens mit einer oder mehreren selbstfahrenden Bodenbearbeitungsmaschinen |
DE102022124484A1 (de) | 2022-09-23 | 2024-03-28 | Wirtgen Gmbh | Positionsbestimmungssystem und Verfahren zur Bestimmung der Position eines Referenzpunktes auf einer selbstfahrenden Baumaschine sowie Verfahren zur Initialisierung einer im Umkreis einer selbstfahrenden Baumaschine aufgestellten Referenzstation |
DE102022133913A1 (de) | 2022-12-19 | 2024-06-20 | Wirtgen Gmbh | Selbstfahrende Baumaschine, insbesondere Straßenfräsmaschine oder Straßenfertiger, zur Bearbeitung des Bodens oder Errichtung eines Bauwerks auf dem Boden und Verfahren zur Bearbeitung des Bodens oder Errichtung eines Bauwerks auf dem Boden mit einer selbstfahrenden Baumaschine |
DE102023203188A1 (de) | 2023-04-05 | 2024-10-10 | Bomag Gmbh | Verfahren zum steuern der frästiefe einer bodenfräsmaschine und bodenfräsmaschine |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3414327A (en) * | 1966-06-13 | 1968-12-03 | Christensen Diamond Prod Co | Apparatus and methods for cutting concrete surfaces |
BE789133A (fr) * | 1971-09-22 | 1973-01-15 | Klarcrete Ltd | Machine a niveler les routes |
US4140420A (en) * | 1978-03-16 | 1979-02-20 | Cmi Corporation | Portable grade averaging apparatus |
US4213719A (en) * | 1978-09-28 | 1980-07-22 | Cmi Corporation | Grade averaging apparatus |
US4270801A (en) * | 1979-08-14 | 1981-06-02 | Cmi Corporation | Steering and cutter drum positioning in a paved roadway planing machine |
US4473319A (en) * | 1982-04-27 | 1984-09-25 | Surface Dynamics Inc. | Controlled resurfacing of roads and the like |
SE442675B (sv) * | 1984-05-30 | 1986-01-20 | Peter Arnberg | Anordning for beroringsfri metning av trafikerade ytors beskaffenhet |
DE4038860A1 (de) * | 1990-11-30 | 1992-06-04 | Verkehrswesen Hochschule | Steuersystem fuer baumaschinen |
DE4293518T1 (de) * | 1991-10-22 | 1996-04-25 | Weiland Pamela | Verbesserungen an oder bezogen auf Bodenfräsmaschinen |
DE59201413D1 (de) * | 1991-11-15 | 1995-03-23 | Moba Electronic Mobil Automat | Ultraschall-Regeleinrichtung für ein fahrbares Fräsegerät. |
ZA948824B (en) * | 1993-12-08 | 1995-07-11 | Caterpillar Inc | Method and apparatus for operating geography altering machinery relative to a work site |
US5549412A (en) * | 1995-05-24 | 1996-08-27 | Blaw-Knox Construction Equipment Corporation | Position referencing, measuring and paving method and apparatus for a profiler and paver |
US5607205A (en) * | 1995-06-06 | 1997-03-04 | Caterpillar Inc. | Object responsive implement control system |
-
1997
- 1997-12-19 DE DE19756676A patent/DE19756676C1/de not_active Expired - Fee Related
-
1998
- 1998-10-31 US US09/367,042 patent/US6371566B1/en not_active Expired - Lifetime
- 1998-10-31 EP EP98959818A patent/EP0964958B1/de not_active Expired - Lifetime
- 1998-10-31 WO PCT/EP1998/006899 patent/WO1999032726A1/de active IP Right Grant
- 1998-10-31 DE DE59813317T patent/DE59813317D1/de not_active Expired - Lifetime
- 1998-10-31 JP JP53321099A patent/JP2001512543A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019135225A1 (de) * | 2019-12-19 | 2021-06-24 | Wirtgen Gmbh | Verfahren zum Abfräsen von Verkehrsflächen mit einer Fräswalze, sowie Fräsmaschine zur Durchführung des Verfahrens zum Abfräsen von Verkehrsflächen |
DE102019135225B4 (de) | 2019-12-19 | 2023-07-20 | Wirtgen Gmbh | Verfahren zum Abfräsen von Verkehrsflächen mit einer Fräswalze, sowie Fräsmaschine zur Durchführung des Verfahrens zum Abfräsen von Verkehrsflächen |
WO2023151729A1 (en) | 2022-02-09 | 2023-08-17 | Exact Control System a.s. | Method and device for milling the surface of a traffic area in at least two layers |
Also Published As
Publication number | Publication date |
---|---|
US6371566B1 (en) | 2002-04-16 |
EP0964958A1 (de) | 1999-12-22 |
WO1999032726A1 (de) | 1999-07-01 |
DE59813317D1 (de) | 2006-02-02 |
JP2001512543A (ja) | 2001-08-21 |
DE19756676C1 (de) | 1999-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0964958B1 (de) | Verfahren zum Abfräsen von Verkehrsflächen | |
AT403066B (de) | Verfahren zum ermitteln der abweichungen der ist-lage eines gleisabschnittes | |
EP1825064B1 (de) | Verfahren und vorrichtung zum kontrollieren einer strassenbearbeitungsmaschine | |
EP3502821B1 (de) | Selbstfahrende baumaschine und verfahren zum steuern einer selbstfahrenden baumaschine | |
EP1028325B1 (de) | Verfahren zum Aufmessen eines Gleises | |
EP1339920B1 (de) | Laser-höhenregeleinrichtung für eine baumaschine | |
DE69733428T2 (de) | Fahrzeugnavigationsvorrichtung | |
DE69616421T2 (de) | Verfahren zur Lagebestimmung, Messung und zum Einbauen von Strassenbelag und Gerät für einen Ebenheitsmesser und Strassenfertiger | |
DE69126017T2 (de) | Vorrichtung zur Regelung der Fahrbahnbelagsdicke | |
EP2155968B1 (de) | Einbauzug zum erstellen einer beton- oder asphalt-belagschicht | |
DE102019135225B4 (de) | Verfahren zum Abfräsen von Verkehrsflächen mit einer Fräswalze, sowie Fräsmaschine zur Durchführung des Verfahrens zum Abfräsen von Verkehrsflächen | |
EP1118713B1 (de) | Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger | |
DE19940404C2 (de) | Verfahren und Vorrichtung zum dreidimensionalen Steuern einer Baumaschine | |
EP2718500A1 (de) | Verfahren und vorrichtung zum bestimmen einer von mindestens einer baumaschine oder abbaumaschine mit einer fräswalze gefrästen fläche | |
EP4056758B1 (de) | Verfahren zum fertigen eines strassenbelags und asphaltiersystem | |
EP1856329A1 (de) | Verfahren und system zur steuerung einer baumaschine | |
DE3913988A1 (de) | Verfahren und vorrichtung zum vermessen von strassen bezueglich achsenlaenge, breite und hoehe bzw. steigung | |
DE3404496A1 (de) | Verfahren und einrichtung zur ueberwachung und/oder steuerung einer vortriebsmaschine, insbesondere einer teilschnittmaschine | |
EP0668988A1 (de) | Verfahren und vorrichtung zum gewinnen von profil- und gleisdaten | |
EP0806523A1 (de) | Maschine zur Herstellung einer Soll-Geleiseanlage | |
AT524435B1 (de) | Verfahren und System zur Ermittlung von Korrekturwerten für eine Lagekorrektur eines Gleises | |
DE29918747U1 (de) | Vorrichtung zum Steuern eines Straßenfertigers | |
DE10019011A1 (de) | Verfahren zum Steuern einer Maschine auf einem vorgegebenen Fahrweg und Vorrichtung zu dessen Durchführung | |
EP4249680A1 (de) | Selbstfahrende bodenfräsmaschine und verfahren zum steuern einer selbstfahrenden bodenfräsmaschine | |
EP4056760B1 (de) | Strassenfertiger mit nivellierkaskadenregelung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE IT NL SE |
|
17P | Request for examination filed |
Effective date: 19991104 |
|
17Q | First examination report despatched |
Effective date: 20021021 |
|
RTI1 | Title (correction) |
Free format text: METHOD AND DEVICE FOR MILLING ROAD TRAFFIC SURFACES |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: METHOD FOR MILLING ROAD TRAFFIC SURFACES |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE IT NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051228 |
|
REF | Corresponds to: |
Ref document number: 59813317 Country of ref document: DE Date of ref document: 20060202 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060328 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060929 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20161025 Year of fee payment: 19 Ref country code: DE Payment date: 20161028 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20161025 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59813317 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20171101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180501 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 |