EP0949410B1 - Beschichteter Überströmkanal für eine Gasturbine - Google Patents

Beschichteter Überströmkanal für eine Gasturbine Download PDF

Info

Publication number
EP0949410B1
EP0949410B1 EP99103176A EP99103176A EP0949410B1 EP 0949410 B1 EP0949410 B1 EP 0949410B1 EP 99103176 A EP99103176 A EP 99103176A EP 99103176 A EP99103176 A EP 99103176A EP 0949410 B1 EP0949410 B1 EP 0949410B1
Authority
EP
European Patent Office
Prior art keywords
layer
gas
hot
coating
collecting pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99103176A
Other languages
English (en)
French (fr)
Other versions
EP0949410A2 (de
EP0949410A3 (de
Inventor
Sharad Dr.-Ing. Chandra
Berthold Dipl.-Ing. Ellermann
Heinz Dipl.-Ing. Gathmann
Werner Dipl.-Ing. Schnieders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Turbomaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Turbomaschinen AG filed Critical MAN Turbomaschinen AG
Publication of EP0949410A2 publication Critical patent/EP0949410A2/de
Publication of EP0949410A3 publication Critical patent/EP0949410A3/de
Application granted granted Critical
Publication of EP0949410B1 publication Critical patent/EP0949410B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/15Rare earth metals, i.e. Sc, Y, lanthanides

Definitions

  • the invention relates to a gas collection pipe carrying hot gas a gas turbine between the combustion chamber and the Turbine blade inlet flange from one highly warm and corrosion-resistant base metal M (Substrate) with one applied on the inside High temperature corrosion and oxidation layer.
  • the two-arm gas collection or downpipe between the combustion chamber housing and the Inlet connection of the turbine blades in hot operation extreme stress and increased wear exposed to temperature, pressure and corrosion.
  • the combustion air is high in a compressor Pressure compresses, a substantial part of which two combustion chambers for combustion, a smaller one Share used to cool the hot metal parts becomes.
  • the substantial amount of O 2 in the air is oxidized by burning a carbon carrier, nitrogen remains in the exhaust gas as ballast and is also brought to high temperatures by the combustion process at high pressure and flows out of the combustion chambers into the downpipe and from there into the turbine on the turbine inlet blades and sets them in increased rotation.
  • the gas collecting or downpipe is made of an iron-nickel base material. This is due to high pressure and especially due to an increased gas temperature attacked, oxygen affecting the metal surface oxidized.
  • the alloying elements of the Ni-based alloy like Aluminum, chromium or the like reduce one further oxidation through the formation of solid oxide layers.
  • This passive oxide layer does not prevent Penetration of nitrogen so that over time the nitrogen with the above-mentioned alloying elements Nitrides or carbon nitrides can form whose Formation thermodynamically due to the higher pressure of the gas is favored.
  • AIN nitrides
  • Cr-carbon nitrides can be formed.
  • This mechanism does not only take place in the combustion chamber of the downpipe, but also in the cooling air charged external surface, which is not always so can be cooled far that the said gas metal reaction cannot take place.
  • the HKO layer develops through the increased Cr and Al contents in connection with yttrium have a large resistance potential against oxidation and nitriding and thus an increased high temperature corrosion and -oxydationswiderstand.
  • TBC Thermal Barrier Coating
  • the thermal barrier coating is a plasma spray coating system, consisting of an adhesive layer and a ceramic top layer, which the thermal insulation of the Layer system causes.
  • the adhesive layer serves in addition to the liability of the Top layer also to avoid high temperature corrosion / oxidation of the material. To both functions To be able to optimally fulfill this adhesive layer from a two-layer MCrAlY layer, one so-called adhesive layers A and B.
  • the adhesive layer A is a ductile MCrAlY layer with lowered chrome and aluminum content to long term to ensure optimal adhesion to the substrate.
  • the adhesive layer B is a MCrAlY layer with an increased Chromium and aluminum content. This will next to the increased high temperature corrosion and oxidation resistance an embroidery of the base material prevented.
  • the top layer consists of a ZrO 2 -Y 2 -O 3 ceramic and, due to its lower thermal conductivity, provides thermal insulation for this layer.
  • WO 89/07159 describes multiple protective layers for Metal objects, in particular gas turbine blades, known. Based on the knowledge that there are two different Corrosion mechanisms exist for life such objects are important specified two superimposed protective layers, of which the inner against corrosion attacks Protects temperatures from 600 ° C to 800 ° C and the external against attacks at temperatures from 800 ° C to 900 ° C is optimized. In addition, as the extreme A thermal barrier layer is also present on the coating layer his. Preference is given to the first coating layer a diffusion layer with a chromium content greater than 50% and an iron and / or manganese content of more an MCrAlY layer as 10% and as a second coating layer with z. B. about 30% chromium, about 7% aluminum and about 0.7% yttrium by plasma spraying reduced pressure is applied.
  • WO 91/02108 is a protective coating, in particular known for gas turbine components, the good Corrosion properties in the temperature range of 600 up to about 1150 ° C.
  • the protective coating contains (in percent by weight): 25 - 40% nickel, 28 - 32% Chromium, 7 - 9% aluminum, 1 - 2% silicon, 0.3 - 1% Yttrium; Balance cobalt, at least 5%; and inevitable Impurities. Different choice components can be added. By adding rhenium the properties of the protective coating be improved. This effect already occurs low additives. A range of is preferred 4 - 10% rhenium.
  • the coatings can be by plasma spraying or Evaporations (PVD) are applied and are special suitable for gas turbine blades made of a super alloy based on nickel or cobalt. Others too Gas turbine components, in particular with gas turbines high inlet temperature of e.g. B. above 1200 ° C, can be provided with such protective coatings become.
  • WO 96/34128 is a nickel or cobalt metal alloy known to have a protective layer against increased temperature and corrosion attacks hot gases applied from the combustion chamber of a gas turbine become.
  • the three-layer protective layer consists of one first binding layer made of an MCrAlY composition compared to the base metal to be protected and one second anchoring layer opposite the outer one Oxide layer.
  • a metal substrate is based on WO 96/34129 a nickel or cobalt alloy known to the one Protection system against increased temperature, corrosion and Erosion is applied.
  • the protection system consists of an intermediate layer, consisting of a binding layer against which Ni substrate and an anchoring layer opposite the outer ceramic layer based on zirconium oxide.
  • the outer ceramic layer serves as a thermal insulation layer.
  • the object of the invention is the gas metal reaction on the hot inner surface of the mixing tube prevent or delay so far that the life of this part is considerably extended and the gas metal reaction also on the cooled to prevent the outer surface of the collecting mixing tube or delay so far that the lifespan of the Parts will be extended considerably.
  • the surfaces of the hot gas are therefore Gas collecting or downpipe between Combustion chamber housing and turbine both from the inside and also from the outside with a high temperature corrosion and -oxidation layer provided, which consists of a single layer MCrAlY layer exists, so that a gas metal reaction of nitrogen with the metal of the gas manifold is prevented or largely delayed.
  • the high temperature corrosion and oxidation layer containing 31% Cr, 11% Al, 0.6% Y and Residual nickel therefore has such high Cr and Al contents that a large resistance potential in the protective layer against oxidation and nitriding and thus an increased High temperature corrosion and oxidation resistance given is.
  • the coating of the complete downpipe - inside and outside - done manually or as program-controlled MCrAlY plasma coating in a layer thickness of 60 ⁇ 40 ⁇ m.
  • the inner cone of the gas manifold becomes at the transition the gas turbine also with a one-sided thermal insulation layer lined.
  • This insulation layer is known to consist of a two-layer MCrAlY layer - layers A and B - and one ceramic top layer.
  • the adhesive base layer A is a ductive MCrAlY layer with a reduced chromium and aluminum content by one Adhesion of this layer to the base material of the To ensure gas manifold.
  • the adhesive base layer B corresponds to the Composition of high temperature corrosion and oxidation coating.
  • the thermal insulation layer is complemented by a Ceramic top layer (top coat) based on zirconia due to their low thermal conductivity, thermal insulation causes.
  • the thermal insulation layer exposes itself a layer thickness of 60/60/250 ⁇ m together.
  • the gas manifold is also on the two Entry openings with an anti-wear coating Mistake.
  • Fig. 1 shows a multidimensional view of the Gas collecting or downpipe (1) with in the upper area arranged inlet openings (2) for the hot gas the two combustion chambers, not shown.
  • the gas collecting tube (1) is both outside and inside with a high temperature corrosion and oxidation layer (4) lined.
  • the hot gas flows out of the two Combustion chambers through the inlet openings (2) in the Gas collecting tube (1), is in the lower gas collecting space (3) collected and leaves the gas collection tube (1) direction Turbine, the gas collection tube (1) through a outer flange (5) and an inner flange (6) the counter flange of the turbine is connected.
  • Fig. 2 shows a section through the wall of the Down pipe with the high temperature corrosion and Oxidation (HKO) layer.
  • HKO high temperature corrosion and Oxidation
  • FIG 3 shows a section through the gas collecting tube (1), that between the combustion chamber housings, not shown and a downstream turbine is.
  • the hot and corrosive exhaust gas leaves the mixing tube of the Combustion chamber and flows through the inlet opening (2) into the gas collection tube (1), which is not within a illustrated housing between the flanges of the Combustion chamber housing and the flanges of the turbine is arranged.
  • Base metal (9) of the gas manifold (1) is outside cooled by a cooling medium.
  • the compressed hot gas is in the lower gas plenum (3) brought together between the flanges (5) and (6), before it flows into the turbine and the turbine runner set in rotation with the blades.
  • the inlet openings (2) of the gas collection tube (1) are with an anti-wear coating in the gas inlet area (7) provided.
  • the inner cone (13) is in the area of the flange instead of the HKO layer (4) with an additional Thermal insulation layer (8) lined.
  • thermal barrier coating (8) a two-layer (A and B) MCrAlY layer, the A-layer (10) opposite as an adhesive base layer the base metal (9) and the B layer (11) as an adhesive base layer opposite the ceramic layer (12) acts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft ein heißgasführendes Gassammelrohr einer Gasturbine zwischen der Brennkammer und dem Eintrittsflansch der Turbinenschaufeln aus einem hochwarmen und korrosionsbeständigen Basismetall M (Substrat) mit einer auf der Innenseite aufgebrachten Hochtemperaturkorrosions- und -oxydationsschicht.
Bei Gasturbinen-Anlagen wird das zweiarmige Gassammel- bzw. Hosenrohr zwischen den Brennkammergehäusen und dem Eintrittsstutzen der Turbinenschaufeln im Heißbetrieb einer extremen Beanspruchung und erhöhtem Verschleiß durch Temperatur, Druck und Korrosion ausgesetzt.
Die Verbrennungsluft wird in einem Verdichter auf hohen Druck verdichtet, wobei ein wesentlicher Teil den beiden Brennkammern zur Verbrennung, ein kleinerer Anteil zur Kühlung der heißen Metallteile verwendet wird.
In den Brennkammern wird der wesentliche O2-Anteil der Luft durch Verbrennen eines Kohlenstoffträgers zum Oxydieren gebracht, Stickstoff verbleibt im Abgas als Ballast und wird durch den Verbrennungsvorgang bei hohem Druck zusätzlich auf hohe Temperaturen gebracht und strömt aus den Brennkammern in das Hosenrohr und von dort in die Turbine auf die Turbineneintrittsschaufeln und versetzt diese in erhöhte Rotation.
Das Gassammel- bzw. Hosenrohr besteht aus einem Eisen-Nickel-Basis-Werkstoff. Dieser wird durch hohen Druck und besonders durch eine erhöhte Gastemperatur angegriffen, wobei Sauerstoff die Metalloberfläche oxydiert.
Die Legierungselemente der Ni-Basis-Legierung wie Aluminium, Chrom oder dergleichen, vermindern eine weitere Oxydation durch Bildung von festen Oxydschichten.
Diese passive Oxydschicht verhindert aber nicht ein Durchdringen von Stickstoff, so daß im Laufe der Zeit der Stickstoff mit den obengenannten Legierungselementen Nitride bzw. Carbonnitride bilden kann, deren Bildung durch den höheren Druck des Gases thermodynamisch begünstigt wird.
Die Folge ist, daß es je nach Legierungsanteilen und Löslichkeit von N2 unter der Oxydschicht zur Bildung von AIN (Nitriden) und/oder Cr-Carbonnitriden kommen kann.
Dieses führt einerseits zum Abbinden der Aluminiumkonzentration in dem Metall, so daß der Oxydationswiderstand abnimmt und es zur Bildung von AIN-Nadeln und/oder Cr-Carbonnitriden, die zu einer Versprödung des Metalles führt, kommt.
Dieser Mechanismus findet nicht nur in dem Brennraum des Hosenrohres statt, sondern auch in der mit Kühlluft beaufschlagten Außenoberfläche, welche nicht immer so weit gekühlt werden kann, daß die besagte Gasmetallreaktion nicht stattfinden kann.
Als Hochtemperaturkorrosionsschutz ist die gesamte Innenseite des Gassammelrohres mit einer einschichtigen MCrAlY-Schicht ausgekleidet, die sich durch einen erhöhten Chrom- und Al-Gehalt auszeichnet. Verwendung findet hierbei ein Spritzpulver auf Nickelbasis mit 31 % Cr, 11 % Al und 0,6 % Y.
Die HKO-Schicht entwickelt durch die erhöhten Cr- und Al-Gehalte in Verbindung mit Yttrium ein großes Widerstandspotential gegen Oxydation und Aufstickung und damit einen erhöhten Hochtemperaturkorrosions- und -oxydationswiderstand.
Als zusätzlicher Korrosions- und Wärmeschutz werden bei der heißgasbeaufschlagten Oberfläche des Innenkonus des Gassammelrohres Wärmedämmschichten (TBC = Thermal Barrier Coating) aufgebracht.
Die Wärmedämmschicht ist ein plasmagespritzes Beschichtungssystem, bestehend aus einer Haftschicht und einer keramischen Deckschicht, die die Wärmedämmung des Schichtsystems bewirkt.
Die Haftschicht (Bondcoat) dient neben der Haftung der Deckschicht auch zur Vermeidung von Hochtemperaturkorrosion/-oxydation des Werkstoffes. Um beide Funktionen optimal erfüllen zu können, besteht diese Haftschicht aus einer zweischichtigen MCrAlY-Schicht, einer sogenannten Haftschicht A und B.
Die Haftschicht A ist eine duktile MCrAlY-Schicht mit abgesenktem Chrom- und Aluminiumgehalt, um langfristig eine optimale Haftung am Substrat zu gewährleisten.
Die Haftschicht B ist eine MCrAlY-Schicht mit erhöhtem Chrom- und Aluminimgehalt. Dadurch wird neben des erhöhten Hochtemperaturkorrosions- und -oxydationswiderstandes eine Aufstickung des Grundwerkstoffes verhindert.
Die Deckschicht (Topcoat) besteht aus einer ZrO2-Y2-O3-Keramik und bewirkt aufgrund ihrer geringeren Wärmeleitfähigkeit die Wärmedämmung dieser Schicht.
Hochtemperatur- und korrosionsfeste Schutzbeschichtungen aus Legierungen für Gasturbinenbauteile, die eine hohe Korrosionsfestigkeit bei mittleren und hohen Temperaturen erfordern, die unmittelbar mit den heißen Abgasen aus der Brennkammer in Berührung stehen, und die im wesentlichen Nickel, Chrom, Kobald, Aluminium und eine Beimischung von seltenen Erden enthalten, wurden in zahlreichen Zusammensetzungen entwickelt und auf den Markt gebracht.
Aus der WO 89/07159 sind Mehrfachschutzschichten für Metallgegenstände, insbesondere Gasturbinenschaufeln, bekannt. Gemäß der Erkenntnis, daß es zwei unterschiedliche Korrosionsmechanismen gibt, die für die Lebensdauer solcher Gegenstände von Bedeutung sind, werden zwei übereinanderliegende Schutzschichten angegeben, von denen die innere gegen Korrosionsangriffe bei Temperaturen von 600 °C bis 800 °C schützt und die äußere gegen Angriffe bei Temperaturen von 800 °C bis 900 °C optimiert ist. Zusätzlich kann als äußerste Überzugsschicht noch eine Thermobarriereschicht vorhanden sein. Bevorzugt wird als erste Überzugsschicht eine Diffusionsschicht mit einem Chromgehalt größer als 50 % und einem Gehalt an Eisen und/oder Mangan von mehr als 10 % und als zweite Überzugsschicht eine MCrAlY-Schicht mit z. B. etwa 30 % Chrom, etwa 7 % Aluminium und etwa 0,7 % Yttrium, die durch Plasmaspritzen bei vermindertem Druck aufgebracht wird.
Aus der WO 91/02108 ist eine Schutzbeschichtung, insbesondere für Gasturbinenbauteile, bekannt, die gute Korrosionseigenschaften im Temperaturbereich von 600 bis etwa 1150 °C hat. Die Schutzbeschichtung enthält (in Gewichtsprozent): 25 - 40 % Nickel, 28 - 32 % Chrom, 7 - 9 % Aluminium, 1 - 2 % Silizium, 0,3 - 1 % Yttrium; Rest Kobalt, mindestens 5 %; und unvermeidbare Verunreinigungen. Verschiedene Wahlkomponenten können hinzukommen. Durch Beigabe von Rhenium können die Eigenschaften der Schutzbeschichtung weiter verbessert werden. Dieser Effekt tritt schon bei geringen Zusätzen ein. Bevorzugt wird ein Bereich von 4 - 10 % Rhenium.
Die Beschichtungen können durch Plasmaspritzen oder Aufdampfen (PVD) aufgebracht werden und sind besonders geeignet für Gasturbinenschaufeln aus einer Superlegierung auf Nickelbasis oder Kobaltbasis. Auch andere Gasturbinenbauteile, insbesondere bei Gasturbinen mit hoher Eintrittstemperatur von z. B. über 1200 °C, können mit solchen Schutzbeschichtungen versehen werden.
Aus der WO 96/34128 ist eine Nickel- bzw. Kobalt-Metallegierung bekannt, auf die eine Schutzschicht gegen erhöhte Temperatur- und Korrosionsangriffe durch heiße Gase aus der Brennkammer einer Gasturbine aufgebracht werden.
Die dreischichtige Schutzschicht besteht aus einer ersten Bindeschicht aus einer MCrAlY-Zusammensetzung gegenüber dem zu schützenden Basismetall und einer zweiten Verankerungsschicht gegenüber der äußeren Oxydschicht.
Aus der WO 96/34129 ist ein Metallsubstrat auf Basis einer Nickel- oder Kobaltlegierung bekannt, auf die ein Schutzsystem gegen erhöhte Temperatur, Korrosion und Erosion aufgebracht wird.
Das Schutzsystem setzt sich aus einer Zwischenschicht, bestehend aus einer Bindeschicht, gegenüber dem Ni-Substrat und einer Verankerungsschicht gegenüber der äußeren Keramikschicht auf Zirkon-Oxyd-Basis zusammen.
Die äußere Keramikschicht dient dabei als Wärmedämmschicht.
Eine weitere Schutzbeschichtung ist aus der US 5 223 045 A bekannt.
Aus der DE 42 42 099 ist eine Vorrichtung, insbesondere Gasturbineneinrichtung, mit einer Beschichtung von Einrichtungsteilen, bekannt.
Dort werden Komponenten in Gasturbinensystemen und ähnlichen Vorrichtungen, die betriebsmäßig mit heißen Gasen in Kontakt kommen, mit einer Beschichtung versehen, die sowohl eine Korrosionsschutzwirkung als auch eine katalytische Wirkung haben. Dabei sind Komponenten im Temperaturbereich über 600 °C mit einer Beschichtung versehen, die oxidationskatalytisch wirkt und Komponenten in einem Temperaturbereich zwischen 350 °C bis 600 °C mit einer reduktionskatalytisch wirkenden Schicht. Es werden für die Beschichtung erster Art Mischoxyde mit Perowskit- oder Spinellstruktur auf LaMn-Basis, für die Beschichtung zweiter Art Mischoxyde gleicher Struktur auf LaCu-Basis verwendet.
Die Aufgabe der Erfindung besteht darin, die Gasmetallreaktion an der heißen inneren Oberfläche des Sammelmischrohres zu unterbinden oder so weit zu verzögern, daß die Lebensdauer dieses Teiles beachtlich verlängert wird und die Gasmetallreaktion auch an der gekühlten äußeren Oberfläche des Sammelmischrohres zu unterbinden oder so weit zu verzögern, daß die Lebensdauer der Teile beachtlich verlängert wird.
Die Lösung der Aufgabe erfolgt entsprechend Anspruch 1. Die,abhängigen Unteransprüche beziehen sich auf vorteilhafte Ausgestaltungen des heißgasführenden Gassammelrohres. Erfindungsgemäß werden daher die Oberflächen des heißgasführenden Gassammel- bzw. Hosenrohres zwischen Brennkammergehäuse und Turbine sowohl von innen als auch von außen mit einer Hochtemperaturkorrosions- und -oxydationsschicht versehen, die aus einer einschichtigen MCrAlY-Schicht besteht, so daß eine Gasmetallreaktion von Stickstoff mit dem Metall des Gassammelrohres unterbunden oder weitgehend verzögert wird. Das Basismetall M kann dabei aus einer Eisen-Nickeloder Eisen-Chrom-Legierung (M = Ni oder Cr) bestehen.
Die Hochtemperaturkorrosions- und -oxydationsschicht mit einem Gehalt von 31 % Cr, 11 % Al, 0,6 % Y und Restnickel hat daher so hohe Cr- und Al-Gehalte, daß ein großes Widerstandspotential in der Schutzschicht gegen Oxydation und Aufstickung und damit ein erhöhter Hochtemperaturkorrosions- und oxydationswiderstand gegeben ist.
Die Beschichtung des kompletten Hosenrohres - innen und außen - erfolgt manuell oder als programmgesteuerte MCrAlY-Plasmabeschichtung in einer Schichtstärke von 60 ± 40 µm.
Der Innenkonus des Gassammelrohres wird am Übergang zu der Gasturbine zusätzlich mit einer einseitigen Wärmedämmschicht ausgekleidet. Diese Wärmedämmschicht besteht bekannterweise aus einer zweischichtigen MCrAlY-Schicht - Schicht A und B - und einer keramischen Deckschicht.
Die Haftgrundschicht A ist eine duktive MCrAlY-Schicht mit abgesenktem Chrom- und Aliminiumgehalt, um eine Haftung dieser Schicht am Grundwerkstoff des Gassammelrohres zu gewährleisten.
Die Haftgrundschicht B entspricht in der Zusammensetzung der Hochtemperaturkorrosions- und -oxydationsschicht.
Komplementiert wird die Wärmedämmschicht durch eine keramische Deckschicht (Topcoat) auf Zirkonbasis, die aufgrund ihrer geringen Wärmeleitfähigkeit die Wärmedämmung bewirkt. Die Wärmedämmschicht setzt sich aus einer Schichtdicke von 60/60/250 µm zusammen.
Das Gassammelrohr wird zusätzlich an den beiden Eintrittsöffnungen mit einer Antiverschleißbeschichtung versehen.
Ausführungsbeispiele der Erfindungen werden anhand von schematischen Zeichnungen erläutert.
Es zeigen:
Fig. 1
eine mehrdimensionale Ansicht des Gassammelrohres,
Fig. 2
einen Schnitt durch das Hosenrohr mit der beidseitigen HKO-Schicht,
Fig. 3
einen Schnitt durch das Gassammelrohr im Bereich eines der beiden Eintrittsöffnungen und
Fig. 4
einen Schnitt durch die Wärmedämmschicht.
Fig. 1 zeigt eine mehrdimensionale Ansicht des Gassammel- bzw. Hosenrohres (1) mit im oberen Bereich angeordneten Eintrittsöffnungen (2) für das Heißgas aus den beiden nicht dargestellten Brennkammern.
Das Gassammelrohr (1) ist sowohl außen als auch innen mit einer Hochtemperaturkorrosions- und -oxydationsschicht (4) ausgekleidet.
Das Heißgas (s. Pfeile) strömt aus den beiden Brennkammern durch die Eintrittsöffnungen (2) in das Gassammelrohr (1), wird im unteren Gassammelraum (3) gesammelt und verläßt das Gassammelrohr (1) Richtung Turbine, wobei das Gassammelrohr (1) durch einen äußeren Flansch (5) und einen inneren Flansch (6) an die Gegenflansche der Turbine angeschlossen wird.
Fig. 2 zeigt einen Schnitt durch die Wand des Hosenrohres mit der Hochtemperaturkorrosions- und -oxydations- (HKO)-Schicht. Auf beiden Seiten des Basismetalles (9) ist eine 60 µm starke HKO-Schicht (4) aufgebracht.
Fig. 3 zeigt einen Schnitt durch das Gassammelrohr (1), das zwischen den nicht dargestellten Brennkammergehäusen und einer nachgeschalteten Turbine angeordnet ist.
Das heiße und korrosive Abgas verläßt das Mischrohr der Brennkammer und strömt durch die Eintrittsöffnung (2) in das Gassammelrohr (1), das innerhalb eines nicht dargestellten Gehäuses zwischen den Flanschen des Brennkammergehäuses und den Flanschen der Turbine angeordnet ist.
Das beidseitig mit einer HKO-Schicht (4) beschichtete Basismetall (9) des Gassammelrohres (1) wird außen durch ein Kühlmedium gekühlt.
Das komprimierte Heißgas wird in dem unteren Gassammelraum (3) zwischen den Flanschen (5) und (6) zusammengeführt, bevor es in die Turbine strömt und den Turbinenläufer mit den Laufschaufeln in Rotation versetzt.
Die Eintrittsöffnungen (2) des Gassammelrohres (1) sind im Gaseintrittsbereich zusätzlich mit einer Antiverschleißbeschichtung (7) versehen.
Der Innenkonus (13) ist im Bereich des Flansches anstelle der HKO-Schicht (4) zusätzlich mit einer Wärmedämmschicht (8) ausgekleidet.
Entsprechend Fig. 4 besteht die Wärmedämmschicht (8) aus einer zweischichtigen (A und B) MCrAlY-Schicht, wobei die A-Schicht (10) als Haftgrundschicht gegenüber dem Basismetall (9) und die B-Schicht (11) als Haftgrundschicht gegenüber der keramischen Schicht (12) wirkt.
In diesem Bereich des Innenkonus wird das Substrat/ Basismetall (9) auf einer Seite durch die HKO-Schicht (4), auf der anderen Seite durch die Wärmedämmschicht (8) geschützt.
Bezugsziffernliste:
1
Gassammel- oder Hosenrohr
2
Eintrittsöffnungen zu 1
3
Unterer Gassammelraum
4
Hochtemperaturkorrosions- und -oxydationsschicht
5
Äußerer Flansch
6
Innerer Flansch
7
Antiverschleißbeschichtung an 2
8
einseitige Wärmedämmschicht
9
Substrat/Basismetall
10
MCrAlY-A-Schicht
11
MCrAlY-B-Schicht
12
Keramische Schicht
13
Innenkonus

Claims (6)

  1. Heißgasführendes Gassammelrohr einer Gasturbine zwischen der Brennkammer und dem Eintrittsflansch der Turbinenschaufeln aus einem hochwarmen und korrosionsbeständigen Basismetall M mit einer auf der Innenseite aufgebrachten Hochtemperaturkorrosions- und -oxydationsschicht,
    dadurch gekennzeichnet, daß sowohl an der Innen- als auch an der Außenseite des Basismetalles (9) des Gassammelrohres (1) eine Hochtemperaturkorrosions- und -oxydationsschicht (4) aufgebracht wird.
  2. Heißgasführendes Gassammelrohr nach Anspruch 1,
    dadurch gekennzeichnet, daß das Basismetall M aus einer Nickel-Basis-Legierung besteht.
  3. Heißgasführendes Gassammelrohr nach Anspruch 1 und 2,
    dadurch gekennzeichnet, daß die Hochtemperaturkorrosions- und -oxydations- bzw. MCrAlY-Schicht (4) aus einem Anteil von 31 % Cr, 11 % Al und 0,6 % Y besteht.
  4. Heißgasführendes Gassammelrohr nach den Ansprüchen 1 - 3,
    dadurch gekennzeichnet, daß das Basismetall (9) des Innenkonus (13) zusätzlich mit einer einseitigen Wärmedämmschicht (8) ausgekleidet ist.
  5. Heißgasführendes Gassammelrohr nach Anspruch 4,
    dadurch gekennzeichnet, daß die Wärmedämmschicht (8) aus einer zweischichtigen (A und B) MCrAlY-Schicht (10, 11) und einer keramischen Deckschicht (12) besteht.
  6. Heißgasführendes Gassammelrohr nach Anspruch 5,
    dadurch gekennzeichnet,
    daß die A-Schicht (10) eine duktile MCrAlY-Schicht mit abgesenktem Cr- und Al-Gehalt ist und
    daß die B-Schicht (11) eine MCrAlY-Schicht mit erhöhtem Cr- und Al-Gehalt ist.
EP99103176A 1998-04-07 1999-02-18 Beschichteter Überströmkanal für eine Gasturbine Expired - Lifetime EP0949410B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19815473A DE19815473A1 (de) 1998-04-07 1998-04-07 Heißgasführendes Gassammelrohr einer Gasturbine
DE19815473 1998-04-07

Publications (3)

Publication Number Publication Date
EP0949410A2 EP0949410A2 (de) 1999-10-13
EP0949410A3 EP0949410A3 (de) 2000-11-02
EP0949410B1 true EP0949410B1 (de) 2003-07-16

Family

ID=7863824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99103176A Expired - Lifetime EP0949410B1 (de) 1998-04-07 1999-02-18 Beschichteter Überströmkanal für eine Gasturbine

Country Status (6)

Country Link
US (1) US6226978B1 (de)
EP (1) EP0949410B1 (de)
JP (1) JP3823282B2 (de)
CN (1) CN1143056C (de)
CA (1) CA2263834C (de)
DE (2) DE19815473A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19934418A1 (de) * 1999-07-22 2001-01-25 Abb Alstom Power Ch Ag Verfahren zum Beschichten einer lokal unterschiedlich beanspruchten Komponente
DE10032454A1 (de) 2000-07-04 2002-01-17 Man Turbomasch Ag Ghh Borsig Vorrichtung zum Kühlen eines ungleichmäßig stark temperaturbelasteten Bauteiles
US6673467B2 (en) 2001-10-01 2004-01-06 Alstom (Switzerland) Ltd Metallic component with protective coating
DE10163171A1 (de) * 2001-12-21 2003-07-03 Solvay Fluor & Derivate Neue Verwendung für Legierungen
DE10239534A1 (de) * 2002-08-23 2004-04-22 Man Turbomaschinen Ag Heißgas führendes Gassammelrohr
US6983599B2 (en) * 2004-02-12 2006-01-10 General Electric Company Combustor member and method for making a combustor assembly
DE102005060243A1 (de) * 2005-12-14 2007-06-21 Man Turbo Ag Verfahren zum Beschichten einer Schaufel und Schaufel einer Gasturbine
EP1798300A1 (de) * 2005-12-16 2007-06-20 Siemens Aktiengesellschaft Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und/oder Oxidation bei hohen Temperaturen und Bauteil
DE102007048484A1 (de) * 2007-10-09 2009-04-16 Man Turbo Ag Heißgasgeführte Komponente einer Strömungsmaschine
MX2011002502A (es) * 2008-09-05 2011-05-27 Intercat Equipment Inc Aparato y metodos para el retiro de material para la regulacion de inventario de material en una o mas unidades.
EP2224167A1 (de) * 2009-02-25 2010-09-01 Siemens Aktiengesellschaft Gehäuse einer Gasturbine
US9506140B2 (en) 2013-03-15 2016-11-29 United Technologies Corporation Spallation-resistant thermal barrier coating
US10054008B2 (en) * 2015-02-09 2018-08-21 United Technologies Corporation Turbomachine accessory gearbox bracket
USD818502S1 (en) 2015-12-17 2018-05-22 General Electric Company Turbocharger transition section
USD814522S1 (en) * 2016-06-21 2018-04-03 General Electric Company Transition section for a turbocharged engine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248940A (en) * 1977-06-30 1981-02-03 United Technologies Corporation Thermal barrier coating for nickel and cobalt base super alloys
DE2842848C2 (de) * 1977-10-17 1987-02-26 United Technologies Corp., Hartford, Conn. Werkstoff zum Überziehen von Gegenständen
US4585481A (en) * 1981-08-05 1986-04-29 United Technologies Corporation Overlays coating for superalloys
CA1212020A (en) * 1981-09-14 1986-09-30 David N. Duhl Minor element additions to single crystals for improved oxidation resistance
DE3246507C2 (de) * 1982-12-16 1987-04-09 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Hochtemperaturschutzschicht
US4942732A (en) * 1987-08-17 1990-07-24 Barson Corporation Refractory metal composite coated article
US5223045A (en) * 1987-08-17 1993-06-29 Barson Corporation Refractory metal composite coated article
DE58904084D1 (de) * 1988-02-05 1993-05-19 Siemens Ag Metallgegenstand, insbesondere gasturbinenschaufel mit schutzbeschichtung.
DE58908611D1 (de) * 1989-08-10 1994-12-08 Siemens Ag Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile.
DE3926479A1 (de) * 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
US5116690A (en) * 1991-04-01 1992-05-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Oxidation resistant coating for titanium alloys and titanium alloy matrix composites
DE4226272C1 (de) * 1992-08-08 1994-02-10 Mtu Muenchen Gmbh Verfahren zur Behandlung von MCrAlZ-Schichten und mit dem Verfahren hergestellte Bauteile
DE4242099A1 (de) * 1992-12-14 1994-06-16 Abb Patent Gmbh Vorrichtung, insbesondere Gasturbineneinrichtung, mit einer Beschichtung von Einrichtungsteilen
DE4303135C2 (de) * 1993-02-04 1997-06-05 Mtu Muenchen Gmbh Wärmedämmschicht aus Keramik auf Metallbauteilen und Verfahren zu ihrer Herstellung
WO1996034128A1 (en) * 1995-04-25 1996-10-31 Siemens Aktiengesellschaft Metal substrate with an oxide layer and an anchoring layer
RU2165478C2 (ru) * 1995-04-25 2001-04-20 Сименс Акциенгезелльшафт Деталь, изготовленная из суперсплава с системой защитного покрытия
US5749229A (en) * 1995-10-13 1998-05-12 General Electric Company Thermal spreading combustor liner

Also Published As

Publication number Publication date
JPH11336563A (ja) 1999-12-07
DE19815473A1 (de) 1999-10-14
CN1143056C (zh) 2004-03-24
DE59906280D1 (de) 2003-08-21
CN1231384A (zh) 1999-10-13
EP0949410A2 (de) 1999-10-13
EP0949410A3 (de) 2000-11-02
CA2263834C (en) 2004-10-19
US6226978B1 (en) 2001-05-08
JP3823282B2 (ja) 2006-09-20
CA2263834A1 (en) 1999-10-07

Similar Documents

Publication Publication Date Title
EP0949410B1 (de) Beschichteter Überströmkanal für eine Gasturbine
EP1306454B1 (de) Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
DE60305329T2 (de) Hochoxidationsbeständige komponente
EP0786017B1 (de) Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
DE69916149T2 (de) Verbesserte Aluminid-Diffusionsverbundschicht für thermische Sperrschichtsysteme und Verfahren dazu
EP1673490B1 (de) Bauteil mit einer schutzschicht zum schutz des bauteils gegen korrosion und oxidation bei hohen temperaturen
EP0486489B1 (de) Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
DE69615517T2 (de) Körper mit Hochtemperatur-Schutzschicht und Verfahren zum Beschichten
EP0412397B1 (de) Rheniumhaltige Schutzbeschichtung mit grosser Korrosions- und/oder Oxidationsbeständigkeit
EP1373685B1 (de) Gasturbinenschaufel
DE10056617C2 (de) Werkstoff für temperaturbelastete Substrate
DE60021722T2 (de) Wärmedämmschicht
CH639426A5 (de) Korrosionsbestaendige superlegierung auf nickelbasis und damit hergestellte verbundschaufel.
EP0840809B1 (de) Erzeugnis mit einem metallischen grundkörper mit kühlkanälen und dessen herstellung
WO2007006681A1 (de) Keramische wärmedämmschicht
EP2845926A1 (de) Wärmedämmschichtsystem mit Korrosions- und Erosionsschutz
EP1463845B1 (de) Herstellung eines keramischen werkstoffes für eine wärmedämmschicht sowie eine den werkstoff enthaltende wärmedämmschicht
EP1466037A1 (de) Hochtemperatur-schutzschicht
EP0397731B1 (de) Metallgegenstand, insbesondere gasturbinenschaufel mit schutzbeschichtung
WO2007051755A1 (de) Legierung, schutzschicht zum schutz eines bauteils gegen korrosion und/oder oxidation bei hohen temperaturen und bauteil
DE69803426T2 (de) Legierung mit niedrigem wärmeausdehnungskoeffizient
DE4215194C2 (de) Hochwarmfester Werkstoff
EP0845050B1 (de) Erzeugnis zur führung eines heissen, oxidierenden gases
EP1060284B1 (de) Schutzschicht
EP1002141B1 (de) Hochtemperaturbeständiges bauteil und verfahren zur herstellung eines oxidationsschutzes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG GHH BORSIG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000929

AKX Designation fees paid

Free format text: CH DE FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHNIEDERS, WERNER DIPL.-ING.

Inventor name: GATHMANN, HEINZ DIPL.-ING.

Inventor name: ELLERMANN, BERTHOLD DIPL.-ING.

Inventor name: CHANDRA, SHARAD DR.-ING.

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59906280

Country of ref document: DE

Date of ref document: 20030821

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59906280

Country of ref document: DE

Owner name: MAN DIESEL & TURBO SE, DE

Free format text: FORMER OWNER: MAN TURBO AG, 46145 OBERHAUSEN, DE

Effective date: 20110325

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170217

Year of fee payment: 19

Ref country code: FR

Payment date: 20170217

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170216

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180219

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20181031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59906280

Country of ref document: DE

Owner name: MAN ENERGY SOLUTIONS SE, DE

Free format text: FORMER OWNER: MAN DIESEL & TURBO SE, 86153 AUGSBURG, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59906280

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180218

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180218

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228