EP0945842B1 - Applying a label laminate to a container - Google Patents

Applying a label laminate to a container Download PDF

Info

Publication number
EP0945842B1
EP0945842B1 EP99201674A EP99201674A EP0945842B1 EP 0945842 B1 EP0945842 B1 EP 0945842B1 EP 99201674 A EP99201674 A EP 99201674A EP 99201674 A EP99201674 A EP 99201674A EP 0945842 B1 EP0945842 B1 EP 0945842B1
Authority
EP
European Patent Office
Prior art keywords
layer
container
label
ink
bottles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99201674A
Other languages
German (de)
French (fr)
Other versions
EP0945842A3 (en
EP0945842A2 (en
Inventor
Thomas L. Brandt
Daniel N. Willkens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heineken Technical Services BV
Original Assignee
Heineken Technical Services BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heineken Technical Services BV filed Critical Heineken Technical Services BV
Publication of EP0945842A2 publication Critical patent/EP0945842A2/en
Publication of EP0945842A3 publication Critical patent/EP0945842A3/en
Application granted granted Critical
Publication of EP0945842B1 publication Critical patent/EP0945842B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/08Fastening or securing by means not forming part of the material of the label itself
    • G09F3/10Fastening or securing by means not forming part of the material of the label itself by an adhesive layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer
    • B44C1/1712Decalcomanias applied under heat and pressure, e.g. provided with a heat activable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C3/00Labelling other than flat surfaces
    • B65C3/06Affixing labels to short rigid containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C3/00Labelling other than flat surfaces
    • B65C3/06Affixing labels to short rigid containers
    • B65C3/08Affixing labels to short rigid containers to container bodies
    • B65C3/14Affixing labels to short rigid containers to container bodies the container being positioned for labelling with its centre-line vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C3/00Labelling other than flat surfaces
    • B65C3/06Affixing labels to short rigid containers
    • B65C3/08Affixing labels to short rigid containers to container bodies
    • B65C3/14Affixing labels to short rigid containers to container bodies the container being positioned for labelling with its centre-line vertical
    • B65C3/16Affixing labels to short rigid containers to container bodies the container being positioned for labelling with its centre-line vertical by rolling the labels onto cylindrical containers, e.g. bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C9/00Details of labelling machines or apparatus
    • B65C9/08Label feeding
    • B65C9/18Label feeding from strips, e.g. from rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C9/00Details of labelling machines or apparatus
    • B65C9/08Label feeding
    • B65C9/18Label feeding from strips, e.g. from rolls
    • B65C9/1865Label feeding from strips, e.g. from rolls the labels adhering on a backing strip
    • B65C9/1869Label feeding from strips, e.g. from rolls the labels adhering on a backing strip and being transferred directly from the backing strip onto the article
    • B65C9/1873Label feeding from strips, e.g. from rolls the labels adhering on a backing strip and being transferred directly from the backing strip onto the article the transfer involving heating means, e.g. for decals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C9/00Details of labelling machines or apparatus
    • B65C9/20Gluing the labels or articles
    • B65C9/24Gluing the labels or articles by heat
    • B65C9/25Gluing the labels or articles by heat by thermo-activating the glue
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C9/00Details of labelling machines or apparatus
    • B65C9/40Controls; Safety devices
    • B65C9/42Label feed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • B65D23/0807Coatings
    • B65D23/0814Coatings characterised by the composition of the material
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F3/0286Forms or constructions provided with adaptations for labelling machines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F2003/023Adhesive
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F2003/0257Multilayer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F2003/0257Multilayer
    • G09F2003/0258Multilayer without carrier
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F2003/0257Multilayer
    • G09F2003/0261Multilayer encapsulated in polymer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F2003/027Forms or constructions used to hang up an item, e.g. a perfusion bottle
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F2003/0272Labels for containers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F2003/0272Labels for containers
    • G09F2003/0273Labels for bottles, flasks
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F2003/0272Labels for containers
    • G09F2003/0275Shock absorbing labels

Definitions

  • the present invention is directed to a method of applying a transfer layer to a container, comprising the steps of:
  • Glass containers are currently labelled in three different ways.
  • the predominant method is printed paper labels glued to the container at the time of filling and sealing.
  • Such labels offer almost unlimited art potential and are commonly used on food, and both returnable and non-returnable beverage containers. This is the lowest cost technique, but offers little resistance to label damage from handling and exposure to moisture or water, and may not survive the washing procedures required of a returnable container, thereby requiring re-labelling.
  • a second, and more recently developed, container labelling technique is that of applying a thin styrofoam label to cover the container from shoulder to heel, with the decorative and/or informational material being printed on a more dense outer skin of the styrofoam label.
  • This is widely used on lighter-weight one-way bottles common in the beverage industry. It offers some impact resistance and a large surface area for printing product information and instructions, as well as company logos. It is, however, more costly than the paper label, has little durability, becomes easily soiled, and will not survive the alkali washing of a returnable beverage container, or the pasteurisation required by some beverage containers. Also, because the printing surface is relatively rough, high definition printing is not possible.
  • a third container labelling technique is that of printing ceramic ink directly on the container surface using a screen printing technology. While the label appearance is generally good, the technique is typically limited to two or three colours due to cost considerations.
  • a recent development is the pre-printing of a ceramic ink decal which is then transferred to the glass container surface. This permits high definition printing and offers greater opportunities for colour and art variety. Fired ceramic inks are extremely durable and will survive the alkali washing processes required of a returnable container.
  • both the direct printing ceramic ink and ceramic ink decal techniques require subsequent high temperature firing to fuse the ink to the glass substrate.
  • pre-printed ceramic ink label reduces the technical problems somewhat, both techniques require extreme attention to detail, a high level of maintenance and are run off-line at slow speed, with high labour costs. Due to the high cost, ceramic inks are the least commonly used labelling technique.
  • US-4292103 discloses a method of transfer printing according to the preamble of claim 1.
  • An adsorptive porous layer of activated alumina or silica or a mixture thereof is formed on the surface of an object to be coloured or printed.
  • a transfer material comprising a carrier sheet and a design layer formed thereon and containing colorants forming a coloured pattern is applied to the absorptive porous layer.
  • the carrier sheet is stripped away so that the design layer is left adhered to the adsorptive porous layer. Heat is then applied to cause the colorants in the design layer to migrate into the porous layer for exact reproduction of the coloured pattern thereon.
  • the present invention is thereto characterised in that the container is transported, after application of the transfer layer, to a packing or filling station while the adhesive layer remains attached to the container and while the ink layer remains attached to the adhesive layer.
  • a label comprising a removable backing layer reverse printed with, e.g., a vinyl, or acrylic ink which is cured and overprinted with adhesive, to the container with its adhesive surface in contact with the container.
  • the backing layer is separated from the label, e.g., by the application of heat, while concurrent the ink bonds to the container.
  • the labelled container may then be applied with a suitable coating, which is then cured.
  • the printing process provides the desired high definition printing capability, and the coating provides the required degree of impact resistance and durability.
  • Yet another aim of this invention is to foster continued further reduction in container weight. It has been demonstrated that a container entirely coated with a nominal 15.24 microns (0.6 mil) of the coating will survive a 30-40 % increase in fracture impact over an uncoated container.
  • FIG. 1 shows the glass container 1 and the label and substrate before application of the label to the container.
  • the label fabrication begins with a backing layer 10 of a suitable material, e.g., a polypropylene film, which may be provided with an acrylic coating 12 to provide a high gloss surface.
  • the backing layer 10, either with or without the acrylic coating 12, is preferably then coated on the side to be ink printed with a release material 14 activatable by heat.
  • the desired label is then printed on this coated backing layer 10 with a suitable ink, preferably vinyl or acrylic ink 20.
  • the ink 20 is then cured, e.g., by heat or by electron beam or U-V energy.
  • a transparent bonding layer 30 is applied, preferably by printing only over the ink pattern, and this is then covered with an adhesive layer 40 printed over the bonding layer 30. All of these operations are accomplished in one pass through a multiple station gravure printer. The film-ink-adhesive laminate is then rolled up and forwarded to the container labeling system.
  • the bottles will be conveyed from the forming machine through an annealing lehr.
  • the application of tin oxide before leering is not necessary, nor would it serve any useful purpose with the new system.
  • the bottles will then typically have been sprayed with a lubricant, and according to this invention it must be a lubricant which is compatible with the printed adhesives and coating, or which can be sufficiently removed to permit the subsequent labelling.
  • a suitable lubricant would be ammonium stearate applied in a one-half percent (1/2 %) water solution.
  • the bottles will then normally be subjected to a number of inspection criteria which are well known in the industry.
  • the bottles are received along a conveyor 100 from an inspection area.
  • a typical system may provide bottles at a rate of 400 per minute, and it would be preferable according to this invention to divide this into two streams of 200 per minute each. For convenience, only one container stream is shown, it being understood that the remaining one or more container streams would be processed in the same manner.
  • the bottles are passed one-at-a-time by a star wheel control device 102 to a loading station 104.
  • the bottles are then moved downwardly in Figure 2 onto an indexing table 106 by means of a suitable placement device.
  • the indexing table 106 will include container holders, e.g., suction holders or the like, which are arranged in groups of three, with each group of three being arranged rectilinearly. There may be supports at the neck of each container to absorb pressure during the container transfer.
  • container holders e.g., suction holders or the like, which are arranged in groups of three, with each group of three being arranged rectilinearly.
  • the indexing table is then rotated counterclockwise in Figure 2 from the loading station to a container orienting station generally designated at reference character 108.
  • the container may here be rotated to a particular orientation, although this will be unnecessary in many container-labelling systems.
  • the rotating of the container would preferably be performed by rotation of individual container holder suction cups on the indexing table 106 until the correct position is detected, e.g., by suitable photo-electric means, at which point the holders would be locked in their correct positions. (If locked, they will have to be unlocked prior to the label application step, as the label application step requires rotation of the bottles as will be described in more detail below).
  • the indexing table 106 is further rotated to bring the bottles to the label transfer station.
  • the web 112, formed in the manner described with reference to Figure 1 is juxtaposed with the three bottles with a respective label being adjacent each container.
  • the vinyl or acrylic ink labels are then transferred to the bottles, in a manner which will be described in more detail below, and the indexing table is then rotated to a coating station 114 where a suitable protective coating is applied.
  • a suitable coating material would be UV-curable or heat-curable acrylic, one example of which is a UV-curable acrylic identified as R796Z80, which is composed of film formers, resins, reactive diluents and additives and butyl acetate solvents, manufactured by PPG Industries, Inc. and available from Brandt Manufacturing Systems, Inc.
  • any clear acrylic coating, as well as a number of other overcoat materials could be used without departing from the scope of the invention.
  • the indexing table 106 is then further rotated to bring the labelled and coated bottles to an unloading station where the labelled and coated bottles to an unloading station where each container is off-loaded onto a container conveyor.
  • All bottles could be removed from the indexing table 106 to a single conveyor 120, taking care to ensure that the acrylic coatings are not disturbed. It may be necessary, with suitable care taken, to use an air knife. It may, however, be necessary to move the bottles by clamping them at their neck and carrying them onto the conveyor 120 in a known manner.
  • the bottles are held in groups of three on the indexing table 106.
  • the acrylic coating on the bottles is cured in a suitable manner, e.g., by heat or U-V energy.
  • a suitable manner e.g., by heat or U-V energy.
  • U-V curing it would be desirable to position U-V lamps on either side of each container. If desirable, it would also be possible to rotate each container by 90° during the curing process to provide full coverage of the container by the opposing lamps.
  • the conveyor 120 carries the bottles to a further container inspection area (if desired) and thence to a packing or filling station.
  • the label has been fabricated in the form of a film-ink-adhesive laminate which has been rolled up.
  • the web will preferably have a leader and a tail area for continuous feed through the application equipment when the leader and tail pieces of successive laminates are connected.
  • the laminate is held on a supply reel 116.
  • the adhesive has been permitted to cure to a point at which it is no longer tacky, thus permitting the label to be rolled up and subsequently unrolled.
  • the adhesive Prior to application of the label to the container, the adhesive may have to be activated, and this may be done by applying heat to the web 112 at some point prior to the warm platen 130, e.g., at the location designated by reference character 132.
  • the heat could be applied by way of infra-red lamp array and would have to be sufficient to permit the adhesive to melt, e.g., on the order of 82.22° C (180° F).
  • a preferred adhesive would be that disclosed in International Publication WO-A-90/05353 (International Application No.
  • PCT/US89/04888 identified above.
  • the heating of the bottles prior to the labelling station is sufficient that the adhesive is activated immediately upon contact with the bottle, and no preheating of the adhesive is necessary.
  • higher rates e.g., 500 per minute, it may be that additional preheating of the adhesive will be needed.
  • the labelling web will be passed across a warm platen 130 prior to the label transfer station.
  • the purpose of this warm platen is to ensure that the temperature of the label laminate, and especially the release agent 14, is such as to permit easy separation of the backing layer 10 from the ink label. This typically requires a release temperature of approximately 93.33° C (200° F) with a few degrees tolerance on either side.
  • a heated roll 134 is then used to press the label onto each container, and the backing layer 10 is then removed by a take-up reel 150.
  • the indexing table 106 holds the bottles in groups of three, and it is desirable to handle the labelling web in such a manner as to permit application of labels to three bottles substantially simultaneously. It will also be recalled that, for a rate of approximately 200 bottles per minute for each indexing table, and with the bottles being handled in groups of three, the table is indexed a little less than once per second. Accounting for table travel time, this allows approximately 1/2 second for each label transfer.
  • the present inventors have devised a novel and effective mechanism whereby, during this 1/2 second interval, the labelling web 112 in Figure 2 is advanced past the bottles by an amount corresponding to two successive labels to make ready for labelling the next three bottles.
  • the label supply reel 116 and/or first capstan 142 are provided with brake mechanisms. Beginning with three unlabeled bottles at the label transfer station, it will first be noted that the bottles are preferably held in position such that their centres are separated from one another by a distance at equal to the linear distance between leading edges of successive labels. The label web is then advanced to a position such that the beginning of each of three different labels will be in contact with the circumference of a respective container. The web is then pulled past the bottles, with the bottles being rotated by the adhesion with the web.
  • the preferred embodiment illustrated in Figure 2 includes a separate heated roll 134 for each of the three containers in a group. In addition, the rolls may preferably be implemented in the form of inflated bladders to permit accommodation of minor surface irregularities.
  • the web and bottles must be out of contact with one another, while they must obviously be in contact during the application of the label. This will require either that the web be moved toward and away from the indexing table or that the bottles be movable radially with respect to the indexing table. The latter would be preferred.
  • the slow movement of the web past the bottles is accomplished, with the brakes on the supply reel 116 and capstan 142 in Figure 2 disengaged, by moving the roller 144 in the rightward direction in Figure 3 while a brake associated with capstan 146 or take-up reel 150 is engaged.
  • the roller 144 is permitted to rotate freely during this rightward movement.
  • movement of the web 112 through a distance L will be accomplished by moving the roller 144 through a distance L/2.
  • the roller 144 is moved by a distance L equal to one-half the length of a label so that the labels may be completely applied, and then the roller 144 must continue its movement by an amount sufficient to move the used web beyond the labelling station until the leading edge of the next unused label is at the proper position for application to the container closest to the roller 144.
  • the brake on the supply reel 116 or capstan 142 is applied while that on capstan 146 or take-up reel 150 is released.
  • the roller 144 is quickly moved back to its leftward position in Figure 3 while the take-up reel 150 takes up the slack.
  • the movement of the roller 144 to move out the used label web and the subsequent movement of the roller 144 back to the left in Figure 3 may preferably be performed during rotation of the indexing table.
  • Figure 4 provides a brief diagram for explaining one technique for applying the protective coating at station 114 in Figure 2.
  • a drum 160 having apertures in its periphery would provide the acrylic (e.g., urethane) coating solution to a sponge belt 162.
  • a backing roller 164, or leading and trailing rollers if desired, would then press the sponge belt 162 against the periphery of the labelled container 166.
  • the thickness of the applied coating could be controlled by controlling the rate at which the coating material is supplied by the drum 160 depending on bottle shape and area to be coated additional belt arrangements may be necessary and the flexible belt 162 will conform to the curve in the shoulder of the container.
  • a benefit of the coating material is that it adds to the strength of the container, and may therefore permit fabrication of thinner bottles while still meeting industry standards for strength and durability.
  • the durability could be further enhanced by adding microspheres to the coating material, such as those available from Potter's Industries.
  • An additional benefit of the coating layer is that it will tend to fill in any scratches or other similar surface defects in the container, thereby substantially improving the appearance of the container.
  • the clear protective layer applied at the station 114 could be thinner, since its only purpose would be label protection.
  • a further significant advantage would be that, in recycling of the bottles, it would no longer be necessary to segregate the bottles by colour.
  • the glass would all be clear flint glass and the coating would be burned off prior to or at the time of melting down of the returned bottles.
  • a further improvement would be the inclusion in the protective overcoat layer of a light blocking agent to hinder or prevent changes in the taste or appearance of the container contents, e.g., beer.
  • the light blocking agent would block a suitable wavelength of light, e.g., U-V light at approximately 400 nanometers, and would be substantially clear so that it would not have a significant effect on the colour of the clear coating, and would be entirely compatible with a coloured coating. It would be necessary, of course, that the U-V blocking agent added to the coating material not interfere with whatever curing process was used for the coating, even if that curing process were U-V curing.
  • a first option is a single-film label which may be gravure printed on a polypropylene or suitable paper web 200 for subsequent heat release. If desired, as was the case in the preferred embodiment described above, a protective coating may be cured, by U-V, E-B or other energy, if desired. In Figure 5A, this is illustrated as layer 202 which would be applied to the web 200 first, so that it will be on the exterior of the package after label application.
  • a suitable material for the film material 202 is acrylic
  • the label ink 204 is vinyl or acrylic.
  • An adhesive 206 (e.g, comprising both of the layers 30 and 40 in Figure 1) is applied in stripes to provide escape passages for air and moisture.
  • the adhesive could be either (1) applied to the film at the time of printing of the single film on the web, cured and reactivated prior to application of the film to the container, or (2) applied to the printed web immediately before application of the film to the container. (It could, of course, alternatively be applied to the container).
  • a second option would be a two-layer label wherein the first layer would comprise the components 200 and 204, and optionally the protective antiabrade layer 202, as in the first option of Figure 5A.
  • the second layer would be a cushion layer 208 of organic material.
  • the cushion layer could be applied (1) to the web-film laminate at the time of printing or immediately prior to application of the first film to the container, or (2) to the container itself immediately prior to application of the film to the container.
  • the cushion layer would preferably be organic, and would be designed to release CO 2 micro-bubbles when energised with heat, U-V or E-B energy, either at the time of laminating or immediately prior to application to the container.
  • the cushion layer may contain glass or plastic microspheres.
  • a third option would be the same as the second option but the cushion layer would be a clear layer 210 applied during a single pass or multi-pass during the label printing. It would then be cured during the printing operation with U-V, E-B or other energy.
  • a sixth option would be to apply a clear cushion after application of the label of Figure 5A.
  • a release agent on the surface of the polypropylene web 200 on the side of the bottle, i.e., between the web 200 and the remainder of the laminate, to facilitate removal of the web 200 while the label is still hot. It may in some cases be preferable not to use a release agent, in which case the web may be peeled off after cooling of the label.
  • a further feature of the invention is that the web, e.g., 10 in Figure 1, may be reused after separation from the label.
  • the used web may be taken from the take-up reel and re-laminated with whatever layer configuration is being used for labelling. This would represent a considerable cost savings. It would be necessary to modify present label printing machines to run several webs side-by-side, as opposed to the present practice of simultaneously printing plural labels on a web which is multiple labels wide and then slitting the wide web into single label-wide webs, but this may be justified by the cost savings.
  • the present invention provides a low-cost labelling system which can be easily modified to meet various product requirements.
  • This method allows the label to be applied in-line with the container manufacture.
  • the system will operate at speeds in excess of 400 containers per minute, and can handle containers of varying size and shape with simple modular changeover. They are also advantageous in that they are designed for use between the container inspection stations and final pack.
  • the web markings allow for accurate registry of the labels during printing and application, and the re-use of the web may result in significant cost savings. Also, the printing of the labels on a continuous web wound on reels facilitates transportation and machine loading, and the ability to connect the webs end-to-end will permit continuous labelling without interruption.
  • the labelling system of this invention can be operated on demand, with nominal heat up time of the U-V or E-B cure system.
  • the end product is also improved.
  • the label is of high visual quality and is also durable, and the coated container has a high degree of impact resistance. This is especially true if microbubbles, microspheres, etc., are used to such an extent as to form an energy-absorbing network for dissipating impacts, but it is also to be noted that a high degree of impact resistance is obtained even when the outer layer is clear and the underlying label highly visible.
  • the label with overcoat will be able to withstand the water wash and pasteurisation processes associated with non-returnable containers, and with chemical modifications to the overcoat, returnable containers will be able to survive the alkali wash required prior to refilling. Nor will the label or overcoat be adversely affected by water, alcohol or organic materials used in the filling operations.
  • the labels on adjacent containers will not abrade each other during the filling and packaging operations associated with transport, store display and consumer purchasing, and the labels will also be chemically and physically stable.
  • the coating materials can be cured in-line by U-V, E-B in a few seconds in a very energy efficient manner.
  • the overcoating of a labelled glass container provides increased impact and abrasion resistance, while maintaining high gloss and visual enhancement of the label and coated portion.
  • the overcoating of a labelled glass container in accordance with the present invention also provides for surface improvement both structurally and in appearance by filling surface flaws or microfissures with the overcoat material so as to make the flaws invisible. Such flaws may be from the glass mold itself.
  • the present invention provides a method of reverse printing a film, paper or other printing web of multiple inking, eliminating a costly label process at the container filling plant and at the same time giving the glass container industry a value added product.
  • a coupling agent to promote adhesion of the overcoat material to the container surface may be necessary to meet certain container processing and use requirements, specifically, but not limited to the typical beer industry pasteurisation process.
  • a suitable coupling agent is "A-1120" available from Union-Carbide Corporation.
  • the application of the coating may be accomplished by belt or roller coating described elsewhere, or by spraying the material.
  • the materials are sprayed it is necessary to prevent any material from contacting the finish of the container.
  • This is the area including the opening, top seal surface, thread or closure cover area and protuberance immediately below.
  • This can be accomplished, for example, by using a container gripper device designed to completely cover the area described above, e.g., designed with a split housing which when closed will dovetail to form a barrier to the spray material.
  • the gripper devices may be attached to a conveyor network whose design allows for variable spacing of the glass containers to optimise the coating, drying, and U-V curing of the various materials.
  • the design may also provide for rotating the gripper and container at the spraying and U-V curing positions to insure uniform coating and processing.
  • Another feature of the invention is the use of electro-statics to compliment the protective gripper and operate in conjunction with it and described elsewhere.
  • the heat release material 14 in Figure 1 may be dispensed with and instead the ink printed directly on the acrylic layer 12, as is the case with the illustrations of Figures 5A-5C.
  • the adhesion between the container and ink will be greater than that between the ink and acrylic layer 12, and the substrate and acrylic layer can simply be peeled off.
  • heat release layer 14 of Figure 1 should be a material which either will not transfer to the container with the ink, or will be compatible with any subsequent overcoat if it does transfer, e.g., an acrylic material. It should also be a material which can be printed.

Abstract

A label for a container, comprising: a label layer carrying information thereon and having first and second sides, with said first side in use facing the container; and a composite heat-activated adhesive of first and second layers (30,40), said first layer (30) comprising a bonding material adhered to said first side of said label layer and to said second layer (40) for bonding said second layer (40) to said label layer, and said second layer (40) comprising a heat-activated adhesive material disposed on a side of said first layer (30) which in use faces the container for adhering said first layer (30), and thereby said label layer, to said container. <IMAGE>

Description

  • The present invention is directed to a method of applying a transfer layer to a container, comprising the steps of:
    • supplying a label laminate to a labeling station,
      the label laminate comprising a backing layer and a separable transfer layer comprising a patterned layer consisting of ink formed in a pattern and a heat activatable adhesive layer overlying substantially only the patterned ink layer,
    • contacting and attaching the adhesive layer with and to the container and transferring the transfer layer from the backing to the container.
  • Glass containers are currently labelled in three different ways. The predominant method is printed paper labels glued to the container at the time of filling and sealing. Such labels offer almost unlimited art potential and are commonly used on food, and both returnable and non-returnable beverage containers. This is the lowest cost technique, but offers little resistance to label damage from handling and exposure to moisture or water, and may not survive the washing procedures required of a returnable container, thereby requiring re-labelling.
  • A second, and more recently developed, container labelling technique is that of applying a thin styrofoam label to cover the container from shoulder to heel, with the decorative and/or informational material being printed on a more dense outer skin of the styrofoam label. This is widely used on lighter-weight one-way bottles common in the beverage industry. It offers some impact resistance and a large surface area for printing product information and instructions, as well as company logos. It is, however, more costly than the paper label, has little durability, becomes easily soiled, and will not survive the alkali washing of a returnable beverage container, or the pasteurisation required by some beverage containers. Also, because the printing surface is relatively rough, high definition printing is not possible.
  • A third container labelling technique is that of printing ceramic ink directly on the container surface using a screen printing technology. While the label appearance is generally good, the technique is typically limited to two or three colours due to cost considerations. A recent development is the pre-printing of a ceramic ink decal which is then transferred to the glass container surface. This permits high definition printing and offers greater opportunities for colour and art variety. Fired ceramic inks are extremely durable and will survive the alkali washing processes required of a returnable container.
  • However, both the direct printing ceramic ink and ceramic ink decal techniques require subsequent high temperature firing to fuse the ink to the glass substrate. In addition, while the pre-printed ceramic ink label reduces the technical problems somewhat, both techniques require extreme attention to detail, a high level of maintenance and are run off-line at slow speed, with high labour costs. Due to the high cost, ceramic inks are the least commonly used labelling technique.
  • US-4292103 discloses a method of transfer printing according to the preamble of claim 1. An adsorptive porous layer of activated alumina or silica or a mixture thereof is formed on the surface of an object to be coloured or printed. A transfer material comprising a carrier sheet and a design layer formed thereon and containing colorants forming a coloured pattern is applied to the absorptive porous layer. The carrier sheet is stripped away so that the design layer is left adhered to the adsorptive porous layer. Heat is then applied to cause the colorants in the design layer to migrate into the porous layer for exact reproduction of the coloured pattern thereon.
  • It is common practice in the glass container industry to treat the outer surface of the containers with materials to counteract the effects of high glass-to-glass friction experienced on freshly manufactured glass products. Glass containers are conveyed with a great deal of glass-to-glass contact and at times considerable line pressure. Without treatment there is considerable visible scratching which may result in breakage. It is common to surface treat at two locations in the operation. Immediately after forming and before lehring, the containers pass through a vapour which leaves a tin oxide film bonded to the surface. After lehring the containers are sprayed a dilute water solution of a material which after evaporation of the water leaves a film to provide surface lubricity. Of the two treatments the tin oxide film is most costly, both for materials and system maintenance. The lubricity of the second film, though needed to prevent surface damage, may cause problems in subsequent labelling of the container.
  • There is an ongoing program in the container industry to reduce the weight of the container by reducing wall thickness, but still maintain acceptable product strength for both the internal pressures of carbonated beverages and the impact strength to survive handling damage in the filling operations, in the market place and by the consumer. The benefits of reduced weight are economic: lower glass melting fuel and material costs, higher container manufacturing speeds (lower cost) and reduced product shipping costs.
  • It is an aim of the present invention, with certain variations, to overcome the above-described disadvantages of prior art labelling techniques and to offer solutions to the above-described container industry problems.
  • It is a further aim of this invention to provide an efficient labelling-equipment system for applying the improved label in line with the container manufacturing process, e.g., at line speeds of 400 containers a minute and above.
  • The present invention is thereto characterised in that the container is transported, after application of the transfer layer, to a packing or filling station while the adhesive layer remains attached to the container and while the ink layer remains attached to the adhesive layer.
  • These and other aims are achieved according to the present invention by applying a label comprising a removable backing layer reverse printed with, e.g., a vinyl, or acrylic ink which is cured and overprinted with adhesive, to the container with its adhesive surface in contact with the container. The backing layer is separated from the label, e.g., by the application of heat, while concurrent the ink bonds to the container. The labelled container may then be applied with a suitable coating, which is then cured. The printing process provides the desired high definition printing capability, and the coating provides the required degree of impact resistance and durability.
  • It is a further aim of the invention to eliminate the cost of tin oxide coating. Because the coating provides impact resistance and durability, it is no longer necessary to provide the tin oxide film prior to container leering. Instead, a token amount of lubricating film is applied after annealing. This is preferably a film compatible with the adhesion materials on the label inks and with the coating, although it could alternatively be a film readily removed by oxidising flame treatment prior to labelling. This lubricating film is sufficient to enable damage-free conveying from the lehr, through the inspection stations and into the labelling machine staging area.
  • Yet another aim of this invention is to foster continued further reduction in container weight. It has been demonstrated that a container entirely coated with a nominal 15.24 microns (0.6 mil) of the coating will survive a 30-40 % increase in fracture impact over an uncoated container.
  • It is also well known that considerable glass surface damage occurs throughout the container handling cycle including bulk and case packing at the container manufacturer. At the container filling operations the handling surface damage is severe also. Because the coating provides a much greater degree of surface protection, container failure from surface damage would be greatly reduced. The applied layer of coating is complete over the entire container surface including the label, without voids or discontinuities. Further reductions in wall thickness without compromising container strength are therefore possible. These reductions have value in increasing container manufacturing speeds, reducing fuel usage and material costs as well as reducing transportation costs.
  • The invention will be more clearly understood from the following description in conjunction with the accompanying drawings, wherein:
  • Figure 1 illustrates all of the materials and their order of layering in a label for application to a container in accordance with the present invention;
  • Figure 2 is a schematic diagram of a system for applying the label of Figure 1;
  • Figure 3 is a diagram of a novel web indexing mechanism which may be used in the system of Figure 2;
  • Figure 4 is a diagram for explaining a suitable mechanism for applying the overcoat layer in the system of Figure 2; and
  • Figures 5A-5C illustrate various alternative label configurations.
  • The preferred embodiment of the application system according to the present invention will be described first with reference to Figure 1, which shows the glass container 1 and the label and substrate before application of the label to the container. The label fabrication begins with a backing layer 10 of a suitable material, e.g., a polypropylene film, which may be provided with an acrylic coating 12 to provide a high gloss surface. The backing layer 10, either with or without the acrylic coating 12, is preferably then coated on the side to be ink printed with a release material 14 activatable by heat. The desired label is then printed on this coated backing layer 10 with a suitable ink, preferably vinyl or acrylic ink 20. After application of the ink to the backing material 10, the ink 20 is then cured, e.g., by heat or by electron beam or U-V energy. After curing of the ink, a transparent bonding layer 30 is applied, preferably by printing only over the ink pattern, and this is then covered with an adhesive layer 40 printed over the bonding layer 30. All of these operations are accomplished in one pass through a multiple station gravure printer. The film-ink-adhesive laminate is then rolled up and forwarded to the container labeling system.
  • The application of the label to a container will now be described with reference to Figure 2. For convenience, the description herein will be in the context of glass bottles, although it should be recognised that the labelling technique is applicable to all types of containers.
  • The bottles will be conveyed from the forming machine through an annealing lehr. The application of tin oxide before leering is not necessary, nor would it serve any useful purpose with the new system. The bottles will then typically have been sprayed with a lubricant, and according to this invention it must be a lubricant which is compatible with the printed adhesives and coating, or which can be sufficiently removed to permit the subsequent labelling. A suitable lubricant would be ammonium stearate applied in a one-half percent (1/2 %) water solution.
  • The bottles will then normally be subjected to a number of inspection criteria which are well known in the industry.
  • In any event, the bottles are received along a conveyor 100 from an inspection area. A typical system may provide bottles at a rate of 400 per minute, and it would be preferable according to this invention to divide this into two streams of 200 per minute each. For convenience, only one container stream is shown, it being understood that the remaining one or more container streams would be processed in the same manner. In each stream, as shown in Figure 2, the bottles are passed one-at-a-time by a star wheel control device 102 to a loading station 104. The bottles are then moved downwardly in Figure 2 onto an indexing table 106 by means of a suitable placement device. The indexing table 106 will include container holders, e.g., suction holders or the like, which are arranged in groups of three, with each group of three being arranged rectilinearly. There may be supports at the neck of each container to absorb pressure during the container transfer.
  • After loading three bottles onto the indexing table 106, the indexing table is then rotated counterclockwise in Figure 2 from the loading station to a container orienting station generally designated at reference character 108. If desired or necessary for the particular type of container and label being used, the container may here be rotated to a particular orientation, although this will be unnecessary in many container-labelling systems. The rotating of the container would preferably be performed by rotation of individual container holder suction cups on the indexing table 106 until the correct position is detected, e.g., by suitable photo-electric means, at which point the holders would be locked in their correct positions. (If locked, they will have to be unlocked prior to the label application step, as the label application step requires rotation of the bottles as will be described in more detail below).
  • If it is desirable to burn off residual lubricant, this can be done at station 108, in addition to proper orienting of the bottles, preferably by an oxidising flame but alternatively by other means such as corona treatment.
  • After processing at station 108, the indexing table 106 is further rotated to bring the bottles to the label transfer station. At this point, the web 112, formed in the manner described with reference to Figure 1, is juxtaposed with the three bottles with a respective label being adjacent each container. The vinyl or acrylic ink labels are then transferred to the bottles, in a manner which will be described in more detail below, and the indexing table is then rotated to a coating station 114 where a suitable protective coating is applied. A suitable coating material would be UV-curable or heat-curable acrylic, one example of which is a UV-curable acrylic identified as R796Z80, which is composed of film formers, resins, reactive diluents and additives and butyl acetate solvents, manufactured by PPG Industries, Inc. and available from Brandt Manufacturing Systems, Inc. However, any clear acrylic coating, as well as a number of other overcoat materials, could be used without departing from the scope of the invention.
  • The indexing table 106 is then further rotated to bring the labelled and coated bottles to an unloading station where the labelled and coated bottles to an unloading station where each container is off-loaded onto a container conveyor. There are a number of ways in which the bottles could be removed. All bottles could be removed from the indexing table 106 to a single conveyor 120, taking care to ensure that the acrylic coatings are not disturbed. It may be necessary, with suitable care taken, to use an air knife. It may, however, be necessary to move the bottles by clamping them at their neck and carrying them onto the conveyor 120 in a known manner.
  • It is also to be remembered that the bottles are held in groups of three on the indexing table 106. In the interest of speed, it would be possible to arrange three separate conveyors 120 each for receiving one of the three bottles in each group from the indexing table 106.
  • Once on the conveyor 120, the acrylic coating on the bottles is cured in a suitable manner, e.g., by heat or U-V energy. For speed in the case of U-V curing, it would be desirable to position U-V lamps on either side of each container. If desirable, it would also be possible to rotate each container by 90° during the curing process to provide full coverage of the container by the opposing lamps. After the curing process, the conveyor 120 carries the bottles to a further container inspection area (if desired) and thence to a packing or filling station.
  • The handling of the label during application of that label to the container in the system of Figure 2 will now be discussed in more detail. As will be recalled from the discussion earlier herein, the label has been fabricated in the form of a film-ink-adhesive laminate which has been rolled up. The web will preferably have a leader and a tail area for continuous feed through the application equipment when the leader and tail pieces of successive laminates are connected.
  • The laminate is held on a supply reel 116. The adhesive has been permitted to cure to a point at which it is no longer tacky, thus permitting the label to be rolled up and subsequently unrolled. Prior to application of the label to the container, the adhesive may have to be activated, and this may be done by applying heat to the web 112 at some point prior to the warm platen 130, e.g., at the location designated by reference character 132. The heat could be applied by way of infra-red lamp array and would have to be sufficient to permit the adhesive to melt, e.g., on the order of 82.22° C (180° F). A preferred adhesive would be that disclosed in International Publication WO-A-90/05353 (International Application No. PCT/US89/04888) identified above. At bottle rates of on the order of 200 per minute, the heating of the bottles prior to the labelling station is sufficient that the adhesive is activated immediately upon contact with the bottle, and no preheating of the adhesive is necessary. At higher rates, e.g., 500 per minute, it may be that additional preheating of the adhesive will be needed.
  • The labelling web will be passed across a warm platen 130 prior to the label transfer station. The purpose of this warm platen is to ensure that the temperature of the label laminate, and especially the release agent 14, is such as to permit easy separation of the backing layer 10 from the ink label. This typically requires a release temperature of approximately 93.33° C (200° F) with a few degrees tolerance on either side. A heated roll 134 is then used to press the label onto each container, and the backing layer 10 is then removed by a take-up reel 150.
  • The manner of handling the labelling web will be further described with reference to Figure 3. As will be recalled, the indexing table 106 holds the bottles in groups of three, and it is desirable to handle the labelling web in such a manner as to permit application of labels to three bottles substantially simultaneously. It will also be recalled that, for a rate of approximately 200 bottles per minute for each indexing table, and with the bottles being handled in groups of three, the table is indexed a little less than once per second. Accounting for table travel time, this allows approximately 1/2 second for each label transfer. The present inventors have devised a novel and effective mechanism whereby, during this 1/2 second interval, the labelling web 112 in Figure 2 is advanced past the bottles by an amount corresponding to two successive labels to make ready for labelling the next three bottles.
  • The label supply reel 116 and/or first capstan 142 are provided with brake mechanisms. Beginning with three unlabeled bottles at the label transfer station, it will first be noted that the bottles are preferably held in position such that their centres are separated from one another by a distance at equal to the linear distance between leading edges of successive labels. The label web is then advanced to a position such that the beginning of each of three different labels will be in contact with the circumference of a respective container. The web is then pulled past the bottles, with the bottles being rotated by the adhesion with the web. The preferred embodiment illustrated in Figure 2 includes a separate heated roll 134 for each of the three containers in a group. In addition, the rolls may preferably be implemented in the form of inflated bladders to permit accommodation of minor surface irregularities.
  • During movement of the web past the bottles between label applications, the web and bottles must be out of contact with one another, while they must obviously be in contact during the application of the label. This will require either that the web be moved toward and away from the indexing table or that the bottles be movable radially with respect to the indexing table. The latter would be preferred.
  • With reference to Figure 3, the slow movement of the web past the bottles is accomplished, with the brakes on the supply reel 116 and capstan 142 in Figure 2 disengaged, by moving the roller 144 in the rightward direction in Figure 3 while a brake associated with capstan 146 or take-up reel 150 is engaged. The roller 144 is permitted to rotate freely during this rightward movement. As will be easily understood, movement of the web 112 through a distance L will be accomplished by moving the roller 144 through a distance L/2. Thus, the roller 144 is moved by a distance L equal to one-half the length of a label so that the labels may be completely applied, and then the roller 144 must continue its movement by an amount sufficient to move the used web beyond the labelling station until the leading edge of the next unused label is at the proper position for application to the container closest to the roller 144. After this movement of the roller 144 has been completed, the brake on the supply reel 116 or capstan 142 is applied while that on capstan 146 or take-up reel 150 is released. The roller 144 is quickly moved back to its leftward position in Figure 3 while the take-up reel 150 takes up the slack.
  • The movement of the roller 144 to move out the used label web and the subsequent movement of the roller 144 back to the left in Figure 3 may preferably be performed during rotation of the indexing table.
  • Figure 4 provides a brief diagram for explaining one technique for applying the protective coating at station 114 in Figure 2. A drum 160 having apertures in its periphery would provide the acrylic (e.g., urethane) coating solution to a sponge belt 162. A backing roller 164, or leading and trailing rollers if desired, would then press the sponge belt 162 against the periphery of the labelled container 166. The thickness of the applied coating could be controlled by controlling the rate at which the coating material is supplied by the drum 160 depending on bottle shape and area to be coated additional belt arrangements may be necessary and the flexible belt 162 will conform to the curve in the shoulder of the container. In addition, it would be possible to confine the application of coating solution to a specific region in the width direction of the belt 162, either by designing the length of the drum of by controlling the opening and closing of certain apertures at different axial positions of the drum. This would allow the application of a protective coating to certain portions of the container, or would indeed permit the thickness of the coating to vary over the length of the container, e.g., a 25.4 micron (1 mil) thickness over most of the container and only a 12.7 micron (0.5 mil) thickness over the label.
  • Depending on bottle shape and area to be coated, additional belt arrangements may be necessary.
  • While it is expected that the adhesion between the belt 162 and bottle 106 will be sufficient to rotate the bottle during the coating process, it may nevertheless be desirable to actively rotate the bottle, e.g., by means of its holder on the indexing table.
  • A benefit of the coating material is that it adds to the strength of the container, and may therefore permit fabrication of thinner bottles while still meeting industry standards for strength and durability. The durability could be further enhanced by adding microspheres to the coating material, such as those available from Potter's Industries.
  • An additional benefit of the coating layer is that it will tend to fill in any scratches or other similar surface defects in the container, thereby substantially improving the appearance of the container.
  • It may be that prior to the processing shown in Figure 2 the bottles will already have been provided with a protective coating, either clear or coloured, as described in International Publications WO-A-90/05031 and WO-A-90/05667 (International Applications PCT/US89/04887 and PCT/US89/04886).
  • In view of the earlier applications of the protective layer which would enhance the strength of the container, the clear protective layer applied at the station 114 could be thinner, since its only purpose would be label protection.
  • If not already provided with a coloured overcoat prior to labelling, it may be desirable to add colour to the coating applied at station 114 in Figure 2. This would allow for some further colouring of the labels but would also permit the simulation of different colour bottles. This would allow a container manufacturer to provide a range of coloured containers on demand, while avoiding the costly down time associated with changing over from one colour to another in the melting unit and the cost of raw materials and batching equipment over the basic cost of clear glass.
  • A further significant advantage would be that, in recycling of the bottles, it would no longer be necessary to segregate the bottles by colour. The glass would all be clear flint glass and the coating would be burned off prior to or at the time of melting down of the returned bottles.
  • A further improvement would be the inclusion in the protective overcoat layer of a light blocking agent to hinder or prevent changes in the taste or appearance of the container contents, e.g., beer. The light blocking agent would block a suitable wavelength of light, e.g., U-V light at approximately 400 nanometers, and would be substantially clear so that it would not have a significant effect on the colour of the clear coating, and would be entirely compatible with a coloured coating. It would be necessary, of course, that the U-V blocking agent added to the coating material not interfere with whatever curing process was used for the coating, even if that curing process were U-V curing.
  • While the above description has indicated the use of vinyl or acrylic ink for printing the labels, it may be that other inks would suffice as long as they do not bleed into the overcoat material.
  • While the preferred embodiment of the invention has been described above, there are many alternatives which may be employed, some of which will be described hereunder.
  • A first option (Figure 5A) is a single-film label which may be gravure printed on a polypropylene or suitable paper web 200 for subsequent heat release. If desired, as was the case in the preferred embodiment described above, a protective coating may be cured, by U-V, E-B or other energy, if desired. In Figure 5A, this is illustrated as layer 202 which would be applied to the web 200 first, so that it will be on the exterior of the package after label application. A suitable material for the film material 202 is acrylic, and the label ink 204 is vinyl or acrylic. An adhesive 206 (e.g, comprising both of the layers 30 and 40 in Figure 1) is applied in stripes to provide escape passages for air and moisture. The adhesive could be either (1) applied to the film at the time of printing of the single film on the web, cured and reactivated prior to application of the film to the container, or (2) applied to the printed web immediately before application of the film to the container. (It could, of course, alternatively be applied to the container).
  • A second option (Figure 5B) would be a two-layer label wherein the first layer would comprise the components 200 and 204, and optionally the protective antiabrade layer 202, as in the first option of Figure 5A. The second layer would be a cushion layer 208 of organic material. The cushion layer could be applied (1) to the web-film laminate at the time of printing or immediately prior to application of the first film to the container, or (2) to the container itself immediately prior to application of the film to the container. The cushion layer would preferably be organic, and would be designed to release CO2 micro-bubbles when energised with heat, U-V or E-B energy, either at the time of laminating or immediately prior to application to the container. Alternatively, the cushion layer may contain glass or plastic microspheres.
  • A third option (Figure 5C) would be the same as the second option but the cushion layer would be a clear layer 210 applied during a single pass or multi-pass during the label printing. It would then be cured during the printing operation with U-V, E-B or other energy.
  • A sixth option (not shown) would be to apply a clear cushion after application of the label of Figure 5A.
  • In each of Figures 5A-5C, there could also be a release agent on the surface of the polypropylene web 200 on the side of the bottle, i.e., between the web 200 and the remainder of the laminate, to facilitate removal of the web 200 while the label is still hot. It may in some cases be preferable not to use a release agent, in which case the web may be peeled off after cooling of the label.
  • A further feature of the invention is that the web, e.g., 10 in Figure 1, may be reused after separation from the label. The used web may be taken from the take-up reel and re-laminated with whatever layer configuration is being used for labelling. This would represent a considerable cost savings. It would be necessary to modify present label printing machines to run several webs side-by-side, as opposed to the present practice of simultaneously printing plural labels on a web which is multiple labels wide and then slitting the wide web into single label-wide webs, but this may be justified by the cost savings.
  • It can be seen that a great number of significant advantages result from the invention as described above. The present invention provides a low-cost labelling system which can be easily modified to meet various product requirements. This method allows the label to be applied in-line with the container manufacture. The system will operate at speeds in excess of 400 containers per minute, and can handle containers of varying size and shape with simple modular changeover. They are also advantageous in that they are designed for use between the container inspection stations and final pack.
  • The web markings allow for accurate registry of the labels during printing and application, and the re-use of the web may result in significant cost savings. Also, the printing of the labels on a continuous web wound on reels facilitates transportation and machine loading, and the ability to connect the webs end-to-end will permit continuous labelling without interruption.
  • Indeed, the labelling system of this invention can be operated on demand, with nominal heat up time of the U-V or E-B cure system.
  • In addition to the various process advantages described above, the end product is also improved. The label is of high visual quality and is also durable, and the coated container has a high degree of impact resistance. This is especially true if microbubbles, microspheres, etc., are used to such an extent as to form an energy-absorbing network for dissipating impacts, but it is also to be noted that a high degree of impact resistance is obtained even when the outer layer is clear and the underlying label highly visible.
  • The label with overcoat will be able to withstand the water wash and pasteurisation processes associated with non-returnable containers, and with chemical modifications to the overcoat, returnable containers will be able to survive the alkali wash required prior to refilling. Nor will the label or overcoat be adversely affected by water, alcohol or organic materials used in the filling operations.
  • The labels on adjacent containers will not abrade each other during the filling and packaging operations associated with transport, store display and consumer purchasing, and the labels will also be chemically and physically stable.
  • The coating materials can be cured in-line by U-V, E-B in a few seconds in a very energy efficient manner.
  • The overcoating of a labelled glass container provides increased impact and abrasion resistance, while maintaining high gloss and visual enhancement of the label and coated portion. The overcoating of a labelled glass container in accordance with the present invention also provides for surface improvement both structurally and in appearance by filling surface flaws or microfissures with the overcoat material so as to make the flaws invisible. Such flaws may be from the glass mold itself.
  • Finally, the present invention provides a method of reverse printing a film, paper or other printing web of multiple inking, eliminating a costly label process at the container filling plant and at the same time giving the glass container industry a value added product. In addition, the use of a coupling agent to promote adhesion of the overcoat material to the container surface may be necessary to meet certain container processing and use requirements, specifically, but not limited to the typical beer industry pasteurisation process. A suitable coupling agent is "A-1120" available from Union-Carbide Corporation.
  • The application of the coating may be accomplished by belt or roller coating described elsewhere, or by spraying the material. In the event the materials are sprayed it is necessary to prevent any material from contacting the finish of the container. This is the area including the opening, top seal surface, thread or closure cover area and protuberance immediately below. This can be accomplished, for example, by using a container gripper device designed to completely cover the area described above, e.g., designed with a split housing which when closed will dovetail to form a barrier to the spray material.
  • The gripper devices may be attached to a conveyor network whose design allows for variable spacing of the glass containers to optimise the coating, drying, and U-V curing of the various materials. The design may also provide for rotating the gripper and container at the spraying and U-V curing positions to insure uniform coating and processing.
  • Another feature of the invention is the use of electro-statics to compliment the protective gripper and operate in conjunction with it and described elsewhere.
  • It will be appreciated that further modifications could be made to the embodiment disclosed above while still obtaining many of these advantages and without departing from the scope of the invention as defined in the appended claims. For example, the heat release material 14 in Figure 1 may be dispensed with and instead the ink printed directly on the acrylic layer 12, as is the case with the illustrations of Figures 5A-5C. When the label has cooled, the adhesion between the container and ink will be greater than that between the ink and acrylic layer 12, and the substrate and acrylic layer can simply be peeled off. If the heat release layer 14 of Figure 1 is to be used, or added to the labels of Figures 5A-5C, it should be a material which either will not transfer to the container with the ink, or will be compatible with any subsequent overcoat if it does transfer, e.g., an acrylic material. It should also be a material which can be printed.

Claims (7)

  1. Method of applying a transfer layer to a container, comprising the steps of:
    supplying a label laminate (112) to a labeling station (130,134), the label laminate comprising a backing layer (10,200) and a separable transfer layer comprising a patterned layer (20) consisting of ink formed in a pattern and a heat activatable adhesive layer overlying substantially only the patterned ink layer (20),
    contacting and attaching the adhesive layer with and to the container and transferring the transfer layer from the backing layer to the container,
    characterised in that, the container is transported, after application of the transfer layer, to a packing or filling station while the adhesive layer remains attached to the container and while the ink layer remains attached to the adhesive layer.
  2. Method according to claim 1, wherein said patterned layer (20) has first and second sides, with said first side in use facing the container, and said heat activatable adhesive comprises first and second layers (30,40), said first layer (30) comprising a bonding material adhered to said first side of said patterned layer (20) and to said second layer (40) for bonding said second layer (40) to said patterned layer (20), and said second layer (40) comprising a heat activatable adhesive material (40) disposed on a side of said first layer (30) which in use faces the container for adhering said first layer (30), and thereby said patterned layer (20), to said container.
  3. Method according to claim 1 or 2, wherein said backing layer comprises a laminate of polypropylene, acrylic over said polypropylene and a release agent over said acrylic and in contact with said patterned layer (20).
  4. Method according to claim 1, 2 or 3, wherein said backing layer is a film coated with a heat-activated release material.
  5. Method according to claim 1, 2, 3 or 4, wherein said patterned layer (20) comprises vinyl ink.
  6. Method according to any of the claims 1 to 4, wherein said patterned layer (20) comprises acrylic ink.
  7. Method according to any of the preceding claims, characterised in that, the adhesive layer (40) comprises a composite heat activatable adhesive layer.
EP99201674A 1988-11-07 1989-11-07 Applying a label laminate to a container Expired - Lifetime EP0945842B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US26787788A 1988-11-07 1988-11-07
US267877 1988-11-07
EP96200911A EP0737954B1 (en) 1988-11-07 1989-11-07 A label and label laminate
EP89912549A EP0441858B1 (en) 1988-11-07 1989-11-07 Method of applying a label to a container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP96200911A Division EP0737954B1 (en) 1988-11-07 1989-11-07 A label and label laminate

Publications (3)

Publication Number Publication Date
EP0945842A2 EP0945842A2 (en) 1999-09-29
EP0945842A3 EP0945842A3 (en) 2000-03-22
EP0945842B1 true EP0945842B1 (en) 2005-04-20

Family

ID=23020505

Family Applications (4)

Application Number Title Priority Date Filing Date
EP96200911A Expired - Lifetime EP0737954B1 (en) 1988-11-07 1989-11-07 A label and label laminate
EP89912549A Expired - Lifetime EP0441858B1 (en) 1988-11-07 1989-11-07 Method of applying a label to a container
EP99201674A Expired - Lifetime EP0945842B1 (en) 1988-11-07 1989-11-07 Applying a label laminate to a container
EP89912908A Expired - Lifetime EP0441879B1 (en) 1988-11-07 1989-11-07 Glass container coating process

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP96200911A Expired - Lifetime EP0737954B1 (en) 1988-11-07 1989-11-07 A label and label laminate
EP89912549A Expired - Lifetime EP0441858B1 (en) 1988-11-07 1989-11-07 Method of applying a label to a container

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP89912908A Expired - Lifetime EP0441879B1 (en) 1988-11-07 1989-11-07 Glass container coating process

Country Status (5)

Country Link
EP (4) EP0737954B1 (en)
JP (2) JPH04501694A (en)
AT (4) ATE168344T1 (en)
DE (4) DE68929237T2 (en)
WO (4) WO1990005353A1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2002288C (en) * 1988-11-07 2002-11-05 Thomas L. Brandt Glass container color coating process
US5085903A (en) * 1990-06-11 1992-02-04 Ppg Industries, Inc. Coatings for the protection of products in light-transmitting containers
EP0529399A3 (en) * 1991-08-23 1993-03-31 Eastman Kodak Company A laminator apparatus for making image proofs
DE4130682A1 (en) * 1991-09-14 1993-03-18 Herberts Gmbh METHOD, CONVEYOR AND DEVICE FOR PRODUCING COATED GLASS-WOOD BODIES
GB9200095D0 (en) * 1992-01-04 1992-02-26 Automated Transfers Limited Improved decal applying apparatus
DE4302123A1 (en) * 1993-01-27 1994-07-28 Herberts Gmbh Printing glass hollow-ware esp. bottle with ink contg. organic binder
DE29602430U1 (en) * 1996-02-12 1997-07-03 Zweckform Etikettiertechnik Transfer label
EP0824250A1 (en) 1996-08-12 1998-02-18 Heineken Technical Services B.V. Transfer label, comprising a backing layer and a transfer layer, container comprising such a transfer layer and method of removing a transfer layer from a container
US6616786B2 (en) 1996-03-20 2003-09-09 Heineken Technical Services B.V. Process for applying an ink-only label to a polymeric surface
DK0888601T3 (en) * 1996-03-20 2002-04-02 Heineken Tech Services A transfer label comprising a backing layer and a transfer layer, a container comprising such a transfer layer, and a method for removing a transfer layer from a container
SI0888600T1 (en) * 1996-03-20 2001-12-31 Heineken Tech Services Transfer label having ink containment layers, container comprising a transfer layer and method of washing such a container
CA2249339C (en) * 1996-03-20 2007-11-20 Heineken Technical Services B.V. Label, container comprising said label and method of washing such a container
ES2168608T3 (en) * 1996-03-20 2002-06-16 Heineken Tech Services RECOVERABLE PLASTIC BOX PROVIDED WITH LABEL.
EP0824251A1 (en) 1996-08-12 1998-02-18 Heineken Technical Services B.V. Transfer label having ink containment layers, container comprising a transfer layer and method of washing such a container
DE19618206A1 (en) * 1996-05-07 1997-11-13 Heye Hermann Fa Method and device for coating glass containers and coated glass containers
NL1005955C2 (en) * 1997-05-02 1998-11-03 Glastechniek Nederland V O F Bottle for e.g. wine with decorative casing around neck
US6306242B1 (en) * 1997-10-10 2001-10-23 Peter J. Dronzek Techniques for labeling of plastic, glass or metal containers or surfaces with polymeric labels
NL1009473C2 (en) 1998-06-24 1999-12-27 Heineken Tech Services Device for applying decoration to holders.
EP1046593A1 (en) 1999-04-12 2000-10-25 Heineken Technical Services B.V. Closure for container
JP2001034173A (en) * 1999-07-19 2001-02-09 Fuji Seal Inc Article with thermosensitive label
NZ517494A (en) 1999-08-27 2003-10-31 Heineken Tech Services Transfer label
DE10014466A1 (en) * 1999-12-24 2001-07-05 Gerd Stoffel Printed container manufacturing method, e.g. for aluminum aerosol can, has foil provided with raised printing of embossed areas before application to outer mantle of container
EP1124213A1 (en) 2000-02-08 2001-08-16 Heineken Technical Services B.V. Label material
DE10019355A1 (en) * 2000-04-18 2001-10-31 Schott Glas Vitreous body with increased strength
EP1193185A1 (en) 2000-10-02 2002-04-03 Heineken Technical Services B.V. Glass container with improved coating
NL1021968C2 (en) 2002-11-21 2004-05-26 Heineken Tech Services Labeling device provided with an oscillating label web positioning unit, as well as a method for applying a label.
EP1489349A1 (en) * 2003-06-20 2004-12-22 Air Products And Chemicals, Inc. A container for pressurised gas
US7091162B2 (en) 2003-07-03 2006-08-15 Johnsondiversey, Inc. Cured lubricant for container coveyors
JP2007326224A (en) * 2005-02-28 2007-12-20 Yoshino Kogyosho Co Ltd Transfer film and synthetic resin molded article
US7976947B2 (en) 2005-08-10 2011-07-12 Dupont Polymer Powders Switzerland Sarl Article of manufacture comprising surfaces of thermoplastic composites coated with a powder coating composition
US20110250346A1 (en) * 2010-04-07 2011-10-13 Remington Jr Michael P Adhesion of organic coatings on glass
EP3919457A1 (en) 2012-02-28 2021-12-08 Corning Incorporated Glass articles with low-friction coatings
US11497681B2 (en) 2012-02-28 2022-11-15 Corning Incorporated Glass articles with low-friction coatings
US10737973B2 (en) 2012-02-28 2020-08-11 Corning Incorporated Pharmaceutical glass coating for achieving particle reduction
US10273048B2 (en) 2012-06-07 2019-04-30 Corning Incorporated Delamination resistant glass containers with heat-tolerant coatings
US9034442B2 (en) 2012-11-30 2015-05-19 Corning Incorporated Strengthened borosilicate glass containers with improved damage tolerance
US10117806B2 (en) 2012-11-30 2018-11-06 Corning Incorporated Strengthened glass containers resistant to delamination and damage
KR102270650B1 (en) 2014-09-05 2021-06-30 코닝 인코포레이티드 Glass Articles and Methods for Improving the Reliability of Glass Articles
MX2017006945A (en) 2014-11-26 2017-08-16 Corning Inc Methods for producing strengthened and durable glass containers.
EP3150564B1 (en) 2015-09-30 2018-12-05 Corning Incorporated Halogenated polyimide siloxane chemical compositions and glass articles with halogenated polylmide siloxane low-friction coatings
CA3001514A1 (en) 2015-10-30 2017-05-04 Corning Incorporated Glass articles with mixed polymer and metal oxide coatings
EP3907148A1 (en) 2017-04-20 2021-11-10 Actega North America Technologies, Inc. Label application systems
EP4275909A3 (en) 2018-07-02 2023-12-20 Actega North America Technologies, Inc. Systems and method for decorating substrates
CN110379298B (en) * 2019-07-19 2021-06-01 深圳市华星光电半导体显示技术有限公司 Frame glue structure and manufacturing method of display panel

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2598524A (en) * 1948-10-11 1952-05-27 Anchor Hocking Glass Corp Method and apparatus for manufacturing glassware
US3083854A (en) * 1960-09-12 1963-04-02 Owens Illinois Glass Co Vented plastisol coated container
US3113831A (en) * 1961-01-26 1963-12-10 Phillips Petroleum Co Method of forming a double-walled container
US3661625A (en) * 1968-08-30 1972-05-09 Mers Labeler Corp Label carrying strip for use in labeling apparatus
US3859117A (en) * 1972-03-07 1975-01-07 Michael Erchak Coated glass container
US3937853A (en) * 1973-07-12 1976-02-10 Anchor Hocking Corporation Method of making a color decorated, plastic coated glass article
DE2615710A1 (en) * 1975-04-24 1976-10-28 Sato Kenkyusho LABEL STRIP CONSTRUCTION
US4053076A (en) * 1976-06-03 1977-10-11 The Dexter Corporation Coatings for shatterproofing glass bottles
FR2367668A1 (en) * 1976-10-18 1978-05-12 Lezier Gerard Plastic label moulding machine - having a roll which is fed into heated mould in steps and then fed to storage
GB1577617A (en) * 1976-11-05 1980-10-29 Letraset International Ltd Dry transfer materials
DE2746006A1 (en) * 1977-10-13 1979-04-19 Veba Chemie Ag METHOD OF COATING GLASS SURFACES
US4171056A (en) * 1977-10-25 1979-10-16 Celanese Corporation Coated bottle and method of coating
US4224365A (en) * 1978-05-15 1980-09-23 Glass Containers Corporation Method of coating glass containers and product
JPS55107493A (en) * 1979-02-13 1980-08-18 Nissha Printing Co Ltd Dyeing method of multicoloured patern on heat resisting base material
US4299644A (en) * 1979-09-06 1981-11-10 Advanced Graphic Technology Heat transfer decal
JPS56144137A (en) * 1980-04-10 1981-11-10 Sanpo Jushi Kogyo Kk Film or sheet for coating and manufacture thereof
JPS58502095A (en) * 1981-12-11 1983-12-08 デニソン・マニュファクチャリング・カンパニ− Web transport system with electro-optical label detection device
US4849043A (en) * 1982-09-15 1989-07-18 Instance David John Method of producing labels
JPS5983633A (en) * 1982-11-04 1984-05-15 Sumitomo Chem Co Ltd Preparation of multiple molded product having decorative pattern
US4526405A (en) * 1982-12-17 1985-07-02 Graphic Resources, Inc. Label structure
JPS59229324A (en) * 1983-06-10 1984-12-22 Mitsuboshi Belting Ltd Manufacture of molded piece incorporated with skin
JPS6060947A (en) * 1983-09-08 1985-04-08 Yamamura Glass Kk Manufacture of glass bottle having increased scratch resistance after washing
JPS60161122A (en) * 1984-01-31 1985-08-22 Dainippon Printing Co Ltd Simultaneous injection molding and decorating device
US4724166A (en) * 1984-03-09 1988-02-09 Grand Rapids Label Company Label assemblies and method of making same
JPS61186249A (en) * 1985-02-12 1986-08-19 Pola Chem Ind Inc Glass article having decorated surface and production thereof
JPS61209927A (en) * 1985-03-13 1986-09-18 Fujikura Kasei Kk Glass coating composition having shielding effect for ultraviolet ray
US4674771A (en) * 1986-05-09 1987-06-23 Thompson Ii Silas W Laminated pharmaceutical label
JPS63129038A (en) * 1986-11-17 1988-06-01 Koa Glass Kk Production of bottle for shielding ultraviolet rays
GB8628759D0 (en) 1986-12-02 1987-01-07 Fisons Plc Heterocyclic compounds
EP0274595A3 (en) * 1986-12-22 1989-11-29 General Electric Company Aromatic carbonate resin articles coated with a photocured acrylic coating
GB8702063D0 (en) * 1987-01-30 1987-03-04 Johnson Matthey Plc Transfer for automatic application
US4860906A (en) * 1987-09-14 1989-08-29 Bloomfield Industries, Inc. Glass container with safety coating

Also Published As

Publication number Publication date
ATE195193T1 (en) 2000-08-15
WO1990005031A1 (en) 1990-05-17
DE68929534D1 (en) 2005-05-25
ATE293825T1 (en) 2005-05-15
EP0945842A3 (en) 2000-03-22
WO1990005667A1 (en) 1990-05-31
JPH04501694A (en) 1992-03-26
DE68929534T2 (en) 2006-02-23
EP0737954A3 (en) 1996-10-23
ATE168344T1 (en) 1998-08-15
DE68928740D1 (en) 1998-08-20
JPH04503260A (en) 1992-06-11
DE68928268T2 (en) 1998-03-19
DE68929237D1 (en) 2000-09-07
EP0441858B1 (en) 1997-08-20
EP0441879A1 (en) 1991-08-21
EP0737954A2 (en) 1996-10-16
WO1990005088A1 (en) 1990-05-17
EP0737954B1 (en) 2000-08-02
EP0441879B1 (en) 1998-07-15
EP0441879A4 (en) 1992-02-26
WO1990005353A1 (en) 1990-05-17
DE68928268D1 (en) 1997-09-25
EP0441858A4 (en) 1992-05-27
ATE157059T1 (en) 1997-09-15
EP0441858A1 (en) 1991-08-21
DE68928740T2 (en) 1999-04-22
EP0945842A2 (en) 1999-09-29
DE68929237T2 (en) 2000-12-14

Similar Documents

Publication Publication Date Title
EP0945842B1 (en) Applying a label laminate to a container
US5458714A (en) Container label and system for applying same
US6607800B1 (en) Label laminate for container
AU712021B2 (en) Method of labeling containers
US5661099A (en) Self-wound direct thermal printed labels
US5183696A (en) Coating of substrates
US5520958A (en) System and method for applying a desired, protective finish to printed label stock
US8501316B2 (en) Process for printing wax release layer
US6551439B1 (en) Ultraviolet labeling apparatus and method
CN107249890A (en) For decorative element to be applied into the equipment of dress to the container
US20230052855A1 (en) Systems and methods for decorating substrates
EP0976580A1 (en) Pressure sensitive transfer label and method of applying such a label
EP1254447B1 (en) Label material
US20240025187A1 (en) Systems and methods for substrate decoration

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 737954

Country of ref document: EP

Ref document number: 441858

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB IT NL SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WILLKENS, DANIEL N.

Inventor name: BRANDT, THOMAS L.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT NL SE

RIC1 Information provided on ipc code assigned before grant

Free format text: 7G 09F 3/02 A, 7G 09F 3/10 B

17P Request for examination filed

Effective date: 20000802

17Q First examination report despatched

Effective date: 20010612

RTI1 Title (correction)

Free format text: APPLYING A LABEL LAMINATE TO A CONTAINER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 0441858

Country of ref document: EP

Kind code of ref document: P

Ref document number: 0737954

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 68929534

Country of ref document: DE

Date of ref document: 20050525

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051107

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071130

Year of fee payment: 19

Ref country code: DE

Payment date: 20071122

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20071122

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071121

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071123

Year of fee payment: 19

Ref country code: FR

Payment date: 20071116

Year of fee payment: 19

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081107

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071121

Year of fee payment: 19

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201