EP0943180A1 - Multichannel radio device, a radio communication system, and a fractional division frequency synthesizer - Google Patents

Multichannel radio device, a radio communication system, and a fractional division frequency synthesizer

Info

Publication number
EP0943180A1
EP0943180A1 EP98929594A EP98929594A EP0943180A1 EP 0943180 A1 EP0943180 A1 EP 0943180A1 EP 98929594 A EP98929594 A EP 98929594A EP 98929594 A EP98929594 A EP 98929594A EP 0943180 A1 EP0943180 A1 EP 0943180A1
Authority
EP
European Patent Office
Prior art keywords
frequency
phase detector
input
output
synthesizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98929594A
Other languages
German (de)
French (fr)
Inventor
Zhenhua Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Priority to EP98929594A priority Critical patent/EP0943180A1/en
Publication of EP0943180A1 publication Critical patent/EP0943180A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/22Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop
    • H03L7/23Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop with pulse counters or frequency dividers
    • H03L7/235Nested phase locked loops
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/183Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between fixed numbers or the frequency divider dividing by a fixed number
    • H03L7/193Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between fixed numbers or the frequency divider dividing by a fixed number the frequency divider/counter comprising a commutable pre-divider, e.g. a two modulus divider

Definitions

  • Multichannel radio device a radio communication system, and a fractional division frequency synthesizer
  • the present invention relates to a multichannel radio device.
  • a multichannel radio device can be a radio communication device such as a cellular or a cordless telephone, a pager, or any other suitable multichannel radio device.
  • the present invention further relates to a radio communication system and a fractional division frequency synthesizer.
  • RF (Radio Frequency) frequency synthesizers are used in multichannel radio devices used in radio communication systems, for instance.
  • multichannel receivers or transceivers including rf frequency synthesizers, are used which can tune to a multiple of frequency channels.
  • Such a tuning should be fast because the radio device should be able to switch quickly from one radio channel to another.
  • the radio devices should cause as little adjacent channel interference as possible.
  • high demands should be posed upon the frequency synthesizer used in such radio device as to spectrum purity of its output signal and as to its settling time.
  • Frequency synthesizers are known having a structure of a frequency multiplier such as described in the handbook "The Art of Electronics", P. Horowitz et al.
  • an output signal from a VCO Voltage Controlled Oscillator
  • a integer division ratio divider divides the output signal and an output of the divider is fed back to a phase detector to which also the reference signal is fed.
  • a loop filter filters the output of the phase detector and the low pass filtered signal controls the VCO.
  • Such a loop is basically a PLL with an integer divider in the feedback path.
  • the reference frequency is chosen equal to the channel spacing.
  • a pulse remover removes pulses fed back from the VCO to the frequency divider at regular intervals when the output of the phase detector has reached a given value.
  • division by N is alternated with division by N+ l.
  • Such an alternate division causes undesired sidebands in the output signal of the synthesizer.
  • a signal is generated which is subtracted from the output signal of the phase detector it is tried to cancel the undesired sidebands.
  • the undesired phase noise is still considerably higher than with ordinary integer division frequency synthesizers. Furthermore, usually external adjustments are needed so as to compensate for residual effects. Because high-speed circuits are required in both types of fractional-N synthesizers, power consumption is considerable, notably in the digital circuits such as the digital-to-analog converter and the Sigma-Delta modulator. Such a relatively high power consumption is particularly undesired in portable phones where it is desired to have as long as possible standby and call times before the battery is exhausted. High complexity also leads to a larger chip area which is undesired from a cost point of view and the desire to have a high degree of integration. It is an object of the present invention to provide a radio communication device including a fractional division frequency synthesizer having a high performance without the drawbacks of the known fractional-N frequency synthesizer while having a simple structure.
  • a fractional division frequency synthesizer particularly when included in a multichannel radio device, which synthesizer has an output signal at an output of the synthesizer having a frequency being a fractional multiple of a reference frequency generated by a reference frequency generator, which synthesizer comprises a forward path between the reference and said output including a cascade of a first phase detector, a first loop filter and a first voltage controlled oscillator, whereby a first input of the first phase detector is coupled to the reference, which synthesizer further composes a feedback path between said output and a second input of the first phase detector including a cascade of a first frequency divider, a second phase detector, a second loop filter and a second voltage controlled oscillator, whereby an output of second voltage controlled oscillator is coupled to the second input of the first phase detector and an output of the first frequency divider is coupled to a first input of the second phase detector, and which synthesizer comp ⁇ ses a second frequency divider of which an input is coupled to the
  • the present mvenuon is based upon the insight that despite applying an extremely simple structure still solely integer dividers could be used to obtain a fractional-N synthesizer.
  • Such a surprisingly totally different concept of a fractional-N frequency synthesizer has the advantage that the phase noise is as low as the phase noise of an ordinarv integer divide by N synthesizer.
  • the auxiliary PLL is exactly dividing by M/N, M being the integer divisor of the first frequency divider and N being the integer divisor of the second frequency divider, no undesired spu ⁇ ous frequencies are generated.
  • the second voltage controlled oscillator can easily be integrated on an IC (Integrated Circuit). Because of the extremely simple structure, low power consumption is obtained, and further a small chip area and a low cost design and development When using BiCMOS or short-channel CMOS technologies, the complete synthesizer can be easily be integrated on an integrated circuit
  • any output frequency can be synthesized which is a fractional multiple of the input reference frequency
  • Fig. 1 schematically shows a radio communication system with multichannel radio devices according to the present invention
  • Fig. 2 shows a block diagram of a fractional division frequenc ⁇ 99/08384
  • Fig. 1 schematically shows a radio communication system 1 with multichannel radio devices 2 and 3 according to the present invention.
  • a system can be a cellular radio system such as a GSM (FD/TDMA system), a CDMA system with frequency channels in conjunction to code division, a cordless telephone system like a DECT system, a paging system like a FLEXTM system, or any other suitable multichannel radio system.
  • the system further comprises a radio base station 4 which can communicate with the radio device 2 and 3.
  • a radio base station 4 can be a radio base station in a GSM network, for instance.
  • the radio device 2 comprises an rf-receiver branch 5 and an rf-transmit branch 6 both coupled to an antenna 7 via a duplexer or transmit/receive switch 8.
  • the receive branch 5 comprises frequency down conversion means in the form of a mixer 9 and a frequency synthesizer 10, which can be a fractional division frequency synthesizer according to the present invention.
  • the receive path 5 further comprises a low noise rf-amplifier 11 coupled to a receive filter 12.
  • the synthesizer 10 provides a local oscillator frequency f L0 to an input of the mixer 9. An output of the mixer 9 is fed to a further mixer stage or to a modulator (not shown in detail here).
  • the transmit path 6 comprises a mixer 13 out which an input is coupled to an rf-power amplifier 14 which is coupled to the duplexer 8 via a transmit filter 15.
  • a frequency synthesizer 16 provides a carrier frequency f c to the mixer 16.
  • Data to be transmitted is supplied to an input of the mixer 13.
  • the radio device 2 comprises a microcontroller 17 which is programmed to submit adjustment data to the synthesizers 10 and 16 so as to adjust their frequencies.
  • the radio device 3 comprises a mixer 20, a power amplifier 21, a transmit filter 22, a duplexer 23, an antenna 24, a low noise amplifier 25, a receive filter 26, a mixer 27 and a synthesizer 28.
  • Fig. 2 shows a block diagram of the fractional division frequency synthesizer 10 according to the present invention.
  • the synthesizer 10 has an output 30 at which an output signal having an output frequency f 0 arises and an input 31 to which a reference signal is fed having a reference frequency f ref .
  • the reference f ref is generated by a reference generator (not shown in detail) such as a crystal or quartz oscillator.
  • the output frequency f 0 is a fractional multiple of the reference frequency f ref .
  • the fractional division frequency synthesizer 10 comprises a forward path between the input 31 and the output 32 including a cascade of a first phase detector PD, , a first loop filter LF, , usually a low pass filter, and a first voltage controlled oscillator VCO, .
  • a first input 32 of the first phase detector PD is coupled to the input 31.
  • the synthesizer 10 further a feedback path between the output 30 and a second input 33 of the first phase detector PD 2 including a cascade of a first frequency divider 34 having an integer division ratio M, a second phase detector PD 2 , a second loop filter 2 , usually a low pass filter, and a second voltage controlled oscillator VCO 2 .
  • the oscillator VCO 2 is coupled to the second input 33 of the first phase detector PD j .
  • An output 35 of the first frequency divider 34 is coupled to a first input 36 of the second phase detector PD 2 .
  • the synthesizer 10 further comprises a second frequency divider 37 having an integer division ratio N, of which an input 38 is coupled to the second input 33 of the first phase detector PD j and of which an output 39 is coupled to a second input 40 of the second phase detector PD 2 .
  • the frequency dividers 34 and 37 are so-called dual-modulus prescalers, well-known in the art.
  • the divider 34 comprises counter P/P+ l whose division ratio can be switched from P to P+ l and vice versa by a control signal ctl, a programmable down counter Q, and a programmable down counter R.
  • the programmable down counters Q and R are presentable. If a down counter has counted down from its preset value to zero, the output of the counter changes from one logic value to another logic value, e.g, from logic HIGH to logic LOW while at the same time the counter is loaded with its preset value.
  • the microcontroller 17 can change the preset values so that any value for Q and R can be set.
  • the frequency divider or prescaler 37 comprises a counter S/S + l, a programmable down counter T, and a programmable down counter U.
  • the frequency dividers can also be implemented as a 4-modulus prescaler, or any other suitable type of frequency divider.
  • f 0 (Q.P + R)/(T.S + U).f ref .

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Transceivers (AREA)

Abstract

Known are fractional division synthesizers for multichannel radio devices. A new architecture for such a type of synthesizer is proposed not having the drawbacks of such known synthesizers and having the same phase noise properties as ordinary integer divide by N synthesizers. The novel architecture has a main PLL with a first integer frequency divider in its feedback loop and further an auxiliary PLL having a second integer frequency divider in its feedback loop.

Description

"Multichannel radio device, a radio communication system, and a fractional division frequency synthesizer"
The present invention relates to a multichannel radio device. Such a multichannel radio device can be a radio communication device such as a cellular or a cordless telephone, a pager, or any other suitable multichannel radio device.
The present invention further relates to a radio communication system and a fractional division frequency synthesizer.
RF (Radio Frequency) frequency synthesizers are used in multichannel radio devices used in radio communication systems, for instance. In such systems, multichannel receivers or transceivers, including rf frequency synthesizers, are used which can tune to a multiple of frequency channels. Such a tuning should be fast because the radio device should be able to switch quickly from one radio channel to another. Furthermore, the radio devices should cause as little adjacent channel interference as possible. For these reasons, high demands should be posed upon the frequency synthesizer used in such radio device as to spectrum purity of its output signal and as to its settling time. Frequency synthesizers are known having a structure of a frequency multiplier such as described in the handbook "The Art of Electronics", P. Horowitz et al. , Cambridge University Press, page 432, 1980. In such a synthesizer, an output signal from a VCO (Voltage Controlled Oscillator) is a multiple of a stable reference frequency generated by a crystal oscillator, for instance. A integer division ratio divider divides the output signal and an output of the divider is fed back to a phase detector to which also the reference signal is fed. A loop filter filters the output of the phase detector and the low pass filtered signal controls the VCO. Such a loop is basically a PLL with an integer divider in the feedback path. In communication devices, the reference frequency is chosen equal to the channel spacing. Because of the usually small band width of the loop filter, however, the settling time of such a synthesizer is relatively long so that the synthesizer is slow. To overcome this problem, fractional division frequency synthesizers have been proposed. In the handbook "Digital PLL Frequency Synthesizers", U.L. Rohde, pp. 124-141 , Prentice-Hall, 1983, such a fractional N synthesizer, N being a fractional, is described. Because then a higher reference frequency can be used thus in principle a better performance can be achieved than with an ordinary integer division frequency synthesizer, such a fractional N frequency synthesizer still has considerable drawbacks. In order to achieve fractional division, a pulse remover removes pulses fed back from the VCO to the frequency divider at regular intervals when the output of the phase detector has reached a given value. The result is that division by N is alternated with division by N+ l. Such an alternate division causes undesired sidebands in the output signal of the synthesizer. At the cost of a highly complicated structure, whereby with the help of a digital-to-analog converter coupled to an accumulator, a signal is generated which is subtracted from the output signal of the phase detector it is tried to cancel the undesired sidebands. For a more detailed description of such a fractional-N frequency synthesizer referred is to the Application note AN1891, "SA8025 Fractional-N synthesizer for 2GHz band applications", Philips Semiconductors 18 Sep 1994. In the article "Delta-Sigma Modulation in Fractional-N Frequency Synthesis", T.A.D. Riley et al., IEEE Journal of Solid State Circuits, Vol. 28, No. 5, pp. 553-559, in which a Sigma-Delta modulator is used to noise-shape the phase jitter in a fractional-N frequency synthesizer. Such a structure is complicated. Both fractional-N frequency synthesizers still have drawbacks. The undesired phase noise is still considerably higher than with ordinary integer division frequency synthesizers. Furthermore, usually external adjustments are needed so as to compensate for residual effects. Because high-speed circuits are required in both types of fractional-N synthesizers, power consumption is considerable, notably in the digital circuits such as the digital-to-analog converter and the Sigma-Delta modulator. Such a relatively high power consumption is particularly undesired in portable phones where it is desired to have as long as possible standby and call times before the battery is exhausted. High complexity also leads to a larger chip area which is undesired from a cost point of view and the desire to have a high degree of integration. It is an object of the present invention to provide a radio communication device including a fractional division frequency synthesizer having a high performance without the drawbacks of the known fractional-N frequency synthesizer while having a simple structure.
To this end there is provided a fractional division frequency synthesizer, particularly when included in a multichannel radio device, which synthesizer has an output signal at an output of the synthesizer having a frequency being a fractional multiple of a reference frequency generated by a reference frequency generator, which synthesizer comprises a forward path between the reference and said output including a cascade of a first phase detector, a first loop filter and a first voltage controlled oscillator, whereby a first input of the first phase detector is coupled to the reference, which synthesizer further composes a feedback path between said output and a second input of the first phase detector including a cascade of a first frequency divider, a second phase detector, a second loop filter and a second voltage controlled oscillator, whereby an output of second voltage controlled oscillator is coupled to the second input of the first phase detector and an output of the first frequency divider is coupled to a first input of the second phase detector, and which synthesizer compπses a second frequency divider of which an input is coupled to the second input of the first phase detector and an output is coupled to a second input of the second phase detector, whereby division ratios of the first and second frequency dividers are integers. The present mvenuon is based upon the insight that despite applying an extremely simple structure still solely integer dividers could be used to obtain a fractional-N synthesizer. Such a surprisingly totally different concept of a fractional-N frequency synthesizer has the advantage that the phase noise is as low as the phase noise of an ordinarv integer divide by N synthesizer. Furthermore, because the auxiliary PLL is exactly dividing by M/N, M being the integer divisor of the first frequency divider and N being the integer divisor of the second frequency divider, no undesired spuπous frequencies are generated. In addition thereto, because the phase noise of the second voltage controlled oscillator is rejected by the first loop filter of the mam PLL, the second voltage controlled oscillator can easily be integrated on an IC (Integrated Circuit). Because of the extremely simple structure, low power consumption is obtained, and further a small chip area and a low cost design and development When using BiCMOS or short-channel CMOS technologies, the complete synthesizer can be easily be integrated on an integrated circuit
In claims 2-4, various embodiments of the fractional division frequency synthesizer in the multichannel radio device are claimed. In claim 2 it is claimed that the dividers are prescalers. Such prescalers are preferably s-called dual-modulus prescalers, well- known in the art, having two programmable parameters. In claim 3 such an adjustability is claimed. Herewith, any output frequency can be synthesized which is a fractional multiple of the input reference frequency
The present invention will now be descnbed, by way of example, with reference to the accompanying drawings, wherein
Fig. 1 schematically shows a radio communication system with multichannel radio devices according to the present invention, and
Fig. 2 shows a block diagram of a fractional division frequenc\ 99/08384
synthesizer according to the present invention.
Throughout the figures the same reference numerals are used for the same features.
Fig. 1 schematically shows a radio communication system 1 with multichannel radio devices 2 and 3 according to the present invention. Such a system can be a cellular radio system such as a GSM (FD/TDMA system), a CDMA system with frequency channels in conjunction to code division, a cordless telephone system like a DECT system, a paging system like a FLEX™ system, or any other suitable multichannel radio system. The system further comprises a radio base station 4 which can communicate with the radio device 2 and 3. Such a radio base station 4, can be a radio base station in a GSM network, for instance. The radio device 2 comprises an rf-receiver branch 5 and an rf-transmit branch 6 both coupled to an antenna 7 via a duplexer or transmit/receive switch 8. The receive branch 5 comprises frequency down conversion means in the form of a mixer 9 and a frequency synthesizer 10, which can be a fractional division frequency synthesizer according to the present invention. The receive path 5 further comprises a low noise rf-amplifier 11 coupled to a receive filter 12. The synthesizer 10 provides a local oscillator frequency fL0 to an input of the mixer 9. An output of the mixer 9 is fed to a further mixer stage or to a modulator (not shown in detail here). The transmit path 6 comprises a mixer 13 out which an input is coupled to an rf-power amplifier 14 which is coupled to the duplexer 8 via a transmit filter 15. A frequency synthesizer 16 provides a carrier frequency fc to the mixer 16. Data to be transmitted is supplied to an input of the mixer 13. The radio device 2 comprises a microcontroller 17 which is programmed to submit adjustment data to the synthesizers 10 and 16 so as to adjust their frequencies. Similarly, the radio device 3 comprises a mixer 20, a power amplifier 21, a transmit filter 22, a duplexer 23, an antenna 24, a low noise amplifier 25, a receive filter 26, a mixer 27 and a synthesizer 28.
Fig. 2 shows a block diagram of the fractional division frequency synthesizer 10 according to the present invention. The synthesizer 10 has an output 30 at which an output signal having an output frequency f0 arises and an input 31 to which a reference signal is fed having a reference frequency fref. The reference fref is generated by a reference generator (not shown in detail) such as a crystal or quartz oscillator. The output frequency f0 is a fractional multiple of the reference frequency fref. The fractional division frequency synthesizer 10 comprises a forward path between the input 31 and the output 32 including a cascade of a first phase detector PD, , a first loop filter LF, , usually a low pass filter, and a first voltage controlled oscillator VCO, . A first input 32 of the first phase detector PD: is coupled to the input 31. The synthesizer 10 further a feedback path between the output 30 and a second input 33 of the first phase detector PD2 including a cascade of a first frequency divider 34 having an integer division ratio M, a second phase detector PD2, a second loop filter 2, usually a low pass filter, and a second voltage controlled oscillator VCO2. At output side, the oscillator VCO2 is coupled to the second input 33 of the first phase detector PDj. An output 35 of the first frequency divider 34 is coupled to a first input 36 of the second phase detector PD2. The synthesizer 10 further comprises a second frequency divider 37 having an integer division ratio N, of which an input 38 is coupled to the second input 33 of the first phase detector PDj and of which an output 39 is coupled to a second input 40 of the second phase detector PD2. In an embodiment, the frequency dividers 34 and 37 are so-called dual-modulus prescalers, well-known in the art. In this embodiment, the divider 34 comprises counter P/P+ l whose division ratio can be switched from P to P+ l and vice versa by a control signal ctl, a programmable down counter Q, and a programmable down counter R. The programmable down counters Q and R are presentable. If a down counter has counted down from its preset value to zero, the output of the counter changes from one logic value to another logic value, e.g, from logic HIGH to logic LOW while at the same time the counter is loaded with its preset value. The microcontroller 17 can change the preset values so that any value for Q and R can be set. Such a prescaler has an overall division ratio of M = Q.P +R. Similarly, the frequency divider or prescaler 37 comprises a counter S/S + l, a programmable down counter T, and a programmable down counter U. The frequency divider 37 has an overall division ratio of N = T.S + U. For the principles of such a dual-modulus prescaler referred is to the handbook "Phase-Locked Loops", R.E. Best, McGraw-Hill, pp. 139 and 143-145, 1993, 2nd edition. On page 139, in Fig. 3.22 (d) a block diagram of such a dual- modulus prescaler is given. In the fractional division frequency divider according to the present invention, the frequency dividers can also be implemented as a 4-modulus prescaler, or any other suitable type of frequency divider. In the embodiment given, thus as an input/output relationship of the fractional division synthesizer 10 the following relationship holds: f0 = (Q.P + R)/(T.S + U).fref.
In view of the foregoing it will be evident to a person skilled in the art that various modifications may be made within the spirit and the scope of the present invention as hereinafter defined by the appended claims and that the present invention is thus not limited to the examples provided.

Claims

CLAIMS:
1. A multichannel radio device comprising at least an rf-receiver branch coupled to an antenna for receiving radio signals, the receiver branch comprising frequency down conversion means for down converting a received radio signal and a fractional division frequency synthesizer included in the frequency down conversion means, which synthesizer has an output signal at an output of the synthesizer, which is used for the down conversion of the received radio signal, the output signal having a frequency being a fractional multiple of a reference frequency generated by a reference frequency generator, which synthesizer comprises a forward path between the reference and said output including a cascade of a first phase detector, a first loop filter and a first voltage controlled oscillator, whereby a first input of the first phase detector is coupled to the reference, which synthesizer further comprises a feedback path between said output and a second input of the first phase detector including a cascade of a first frequency divider, a second phase detector, a second loop filter and a second voltage controlled oscillator, whereby an output of second voltage controlled oscillator is coupled to the second input of the first phase detector and an output of the first frequency divider is coupled to a first input of the second phase detector, and which synthesizer comprises a second frequency divider of which an input is coupled to the second input of the first phase detector and an output is coupled to a second input of the second phase detector, whereby division ratios of the first and second frequency dividers are integers.
2. A radio device as claimed in claim 1, wherein at least one of the frequency dividers is a prescaler.
3. A radio device as claimed in claims 1 and 2, wherein the division ratios are adjustable.
4. A radio device as claimed in claims 1, 2 or 3, further comprising an rf- transmit branch coupled to the antenna.
5. A radio communication system comprising at least one multichannel radio device which comprises at least an rf-receiver branch coupled to an antenna for receiving radio signals, the receiver branch comprising frequency down conversion means for down converting a received radio signal and a fractional division frequency synthesizer included in the frequency down conversion means, which synthesizer has an output signal at an output of the synthesizer, which is used for the down conversion of the received radio signal, the output signal having a frequency being a fractional multiple of a reference frequency generated by a reference frequency generator, which synthesizer comprises a forward path between the reference and said output including a cascade of a first phase detector, a first loop filter and a first voltage controlled oscillator, whereby a first input of the first phase detector is coupled to the reference, which synthesizer further comprises a feedback path between said output and a second input of the first phase detector including a cascade of a first frequency divider, a second phase detector, a second loop filter and a second voltage controlled oscillator, whereby an output of second voltage controlled oscillator is coupled to the second input of the first phase detector and an output of the first frequency divider is coupled to a first input of the second phase detector, and which synthesizer comprises a second frequency divider of which an input is coupled to the second input of the first phase detector and an output is coupled to a second input of the second phase detector, whereby division ratios of the first and second frequency dividers are integers.
6. A fractional division frequency synthesizer, which synthesizer has an output signal at an output of the synthesizer having a frequency being a fractional multiple of a reference frequency generated by a reference frequency generator, which synthesizer comprises a forward path between the reference and said output including a cascade of a first phase detector, a first loop filter and a first voltage controlled oscillator, whereby a first input of the first phase detector is coupled to the reference, which synthesizer further comprises a feedback path between said output and a second input of the first phase detector including a cascade of a first frequency divider, a second phase detector, a second loop filter and a second voltage controlled oscillator, whereby an output of second voltage controlled oscillator is coupled to the second input of the first phase detector and an output of the first frequency divider is coupled to a first input of the second phase detector, and which synthesizer comprises a second frequency divider of which an input is coupled to the second input of the first phase detector and an output is coupled to a second input of the second phase detector, whereby division ratios of the first and second frequency dividers are integers.
EP98929594A 1997-08-12 1998-07-16 Multichannel radio device, a radio communication system, and a fractional division frequency synthesizer Withdrawn EP0943180A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98929594A EP0943180A1 (en) 1997-08-12 1998-07-16 Multichannel radio device, a radio communication system, and a fractional division frequency synthesizer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP97202491 1997-08-12
EP97202491 1997-08-12
EP98929594A EP0943180A1 (en) 1997-08-12 1998-07-16 Multichannel radio device, a radio communication system, and a fractional division frequency synthesizer
PCT/IB1998/001081 WO1999008384A2 (en) 1997-08-12 1998-07-16 Multichannel radio device, a radio communication system, and a fractional division frequency synthesizer

Publications (1)

Publication Number Publication Date
EP0943180A1 true EP0943180A1 (en) 1999-09-22

Family

ID=8228637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98929594A Withdrawn EP0943180A1 (en) 1997-08-12 1998-07-16 Multichannel radio device, a radio communication system, and a fractional division frequency synthesizer

Country Status (5)

Country Link
EP (1) EP0943180A1 (en)
JP (1) JP2001502157A (en)
KR (1) KR20000068744A (en)
CN (1) CN1241325A (en)
WO (1) WO1999008384A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ507555A (en) * 1999-04-14 2002-10-25 Tait Electronics Ltd Phase lock loop frequency synthesis with extended range of fractional divisors
US6198354B1 (en) * 1999-12-07 2001-03-06 Hughes Electronics Corporation System for limiting if variation in phase locked loops
JP4071464B2 (en) * 2001-07-17 2008-04-02 株式会社東芝 Audio clock recovery apparatus and audio clock recovery method
KR100837115B1 (en) * 2007-02-28 2008-06-11 지씨티 세미컨덕터 인코포레이티드 Dual radio frequency receiver circuit and method for controlling the same
WO2009101811A1 (en) * 2008-02-14 2009-08-20 Panasonic Corporation Receiver and electronic device using the same
CN102158227B (en) * 2010-02-11 2013-04-17 奇景光电股份有限公司 Non-integer N type phase-locked loop
KR102435034B1 (en) * 2017-06-21 2022-08-23 삼성전자주식회사 Digital phase locked loop and operating method of digital phase locked loop

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677823A (en) * 1992-08-24 1994-03-18 Oki Electric Ind Co Ltd Frequency synthesizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9908384A2 *

Also Published As

Publication number Publication date
WO1999008384A2 (en) 1999-02-18
CN1241325A (en) 2000-01-12
KR20000068744A (en) 2000-11-25
JP2001502157A (en) 2001-02-13
WO1999008384A3 (en) 1999-04-29

Similar Documents

Publication Publication Date Title
US6094569A (en) Multichannel radio device, a radio communication system, and a fractional division frequency synthesizer
JP4242559B2 (en) Simplified reference frequency distribution in mobile phones
US7499689B2 (en) Communication semiconductor integrated circuit device and a wireless communication system
EP1320189B1 (en) Multi-band frequency synthesiser for mobile terminals
US6085075A (en) Communication system, a communication device and a frequency synthesizer
US20110148484A1 (en) Phase-locked loop frequency synthesizer
US7792510B2 (en) Multi-band frequency synthesizer
JPH06334559A (en) Digital radio telephone set
EP1277286B1 (en) Personal communications device with gps receiver and comon clock source
EP1098433B1 (en) Frequency synthesizer and oscillation frequency control method
EP1294100A2 (en) Method and apparatus for providing resampling function in a modulus prescaler of a frequency source
JP3516590B2 (en) Frequency divider with prescaler followed by a programmable counter, and corresponding prescaler and frequency synthesizer
EP0943180A1 (en) Multichannel radio device, a radio communication system, and a fractional division frequency synthesizer
EP1085657A1 (en) Dual loop phase-locked loop
US6297703B1 (en) Method and apparatus for producing an offset frequency
KR101757445B1 (en) Frequency synthesizing apparatus and frequency synthesizing method of the same
Fox Ask the Applications Engineer—30
Wu et al. A CMOS triple-band fractional-N frequency synthesizer for GSM/GPRS/EDGE applications
JPH0559614B2 (en)
Nakamura et al. An 800 mhz low power consumption frequency synthesizer using intermittent operation of a modified pll circuit with dual loops
KR100293442B1 (en) Frequency synthesizer of digital trunked radio system
JPH1188164A (en) Frequency synthesizer
CN115065361A (en) Frequency synthesizer architecture for optimizing phase noise
Moghavvemi et al. Design a stable 14-to-20-GHz source
Ritzberger et al. Concepts for complete integration of synthesizers for GHz frequencies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20021219

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030429