EP0939995A1 - Centre d'energie eolienne - Google Patents

Centre d'energie eolienne

Info

Publication number
EP0939995A1
EP0939995A1 EP97925849A EP97925849A EP0939995A1 EP 0939995 A1 EP0939995 A1 EP 0939995A1 EP 97925849 A EP97925849 A EP 97925849A EP 97925849 A EP97925849 A EP 97925849A EP 0939995 A1 EP0939995 A1 EP 0939995A1
Authority
EP
European Patent Office
Prior art keywords
setpoint
power
control
wmdenergiepark
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97925849A
Other languages
German (de)
English (en)
Inventor
Franz Karlecik-Maier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0939995A1 publication Critical patent/EP0939995A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to a wind energy park.
  • Feeding the electrical energy generated with the stochastic primary energy carrier wind into a regional supply network is not without problems.
  • the technical requirements for wind result from the essay "Conditions for the connection of wind energy plants to a regional electrical energy supply network", printed in the DE magazine “ELEKTRIE”, Berlin 49 (1995) 5/6/7, pages 249 to 253 - energy parks.
  • the requirements placed on the wind turbines in this essay relate to changes in output or voltage, fluctuations in output, network flicker and provide information on the network short-circuit criteria of a Wmd energy park.
  • the voltage increase at the Wmdenergypark feed-in point in the regional supply network must not exceed 4% in accordance with a standard. This requirement results in a maximum possible energy output depending on the distance to the feeding substation of the regional supply network.
  • the energy of the individual wind energy plants belonging to a wind energy park is transferred via a three-phase line or a three-phase cable to the substation of the regional network. This can result in the already mentioned limitation of the connected load of the wind energy park, even though the total available heat energy output of the wind energy park is greater.
  • the wind turbine power fluctuations are according to
  • harmonics which occur primarily in the feed-in current of the grid-side inverters. These are to be compensated with suitable filters. In the case of long cable lines, resonances between the cable capacity and the short-circuit reactance of the system can occur in the medium-voltage network. No harmonics can occur with asynchronous generators.
  • FIG. 1 shows a known concept of a wind energy park 2 with N wind turbines 4.
  • Each wind turbine 4 has a rotor 6, a gear 8, an asynchronous generator 10 and a matching transformer 12.
  • Each thermal energy system 4 is electrically conductively connected to a busbar 16 by means of a circuit breaker 14, which is connected by means of a Three-phase line 18 is linked to a substation 20 of a regional supply network 22, for example a medium-voltage network. This three-phase line 18 can also be disconnected via circuit breaker 14.
  • This concept is inexpensive, it is not technically very reliable since, for example, an additional transmission 8 is used.
  • the advantage of the asynchronous generator 10 is that it produces no harmonics. However, the voltage change plays an important role in the asynchronous generator 10. It can happen that wind turbines 4 may be connected to the grid with a lower than planned output or that the power to be fed in must be limited.
  • FIG. 2 also shows a known concept of a wind energy park 2 with N wind energy installations 4.
  • Each wind energy installation 4 has a rotor 6, a synchronous generator 24, a converter 26, a matching transformer 12 and a filter 28.
  • each thermal energy installation 4 is connected by means of a circuit breaker 14 to a busbar 16 which is connected via a three-phase line 18 to a substation 20 of a regional supply network 22.
  • the converter 26 has a multi-pulse, for example 12-pulse, rectifier 30 on the input side and a multi-pulse, for example 12-pulse, pulse inverter 32 on the output side, the rectifier 30 and the pulse inverter 32 being connected by means of a DC voltage intermediate circuit 34 is.
  • Synchronous generator 24 connected and the rotor blades of this rotor 6 are adjustable. This adjustability of the rotor blades of the rotor 6 is indicated by arrows.
  • the synchronous generator 24 has two stator windings which are electrically offset from one another by 30 ° and are each linked to a partial rectifier of the rectifier 30.
  • appropriate filters 28 are provided, since in these wind energy plants 4 a DC voltage intermediate circuit 34 and a slow power regulation by the adjustable ones between the unit consisting of rotor 6 and synchronous generator 24 and the regional supply network 22 Rotor blade is present, the flicker problem can be reduced. However, the interference of the Emzel flicker in the regional supply network can only be predicted or suppressed with great difficulty.
  • the invention is based on the object of specifying a wind energy park with a plurality of wind energy plants in which the existing disadvantages of the known concepts for wind energy parks no longer occur.
  • This proposed direct current concept is based on the knowledge that all requirements for wind farms with regard to changes in output or voltage, output fluctuations, network flicker and network short-circuit criteria depend on the network short-circuit power available at the energy park connection point. The higher the net short-circuit power at the connection point, the easier the requirements of Wmdenergypark are met.
  • the energy is transmitted via a DC line to the inverter of the grid-side converter station, the location of which can in turn be determined in such a way that the entire available heat energy output can be transferred to a regional supply network at the same time results in an optimum price.
  • each thermal energy system has a power control that is fast because it acts via the control angle of the rectifier.
  • the interference of the Emzel flicker will take place in the DC circuit and not in the regional supply network.
  • the inverter of the grid-side converter station has a central energy transfer represents the point of supply to the regional supply network and has a three-phase voltage regulation, the flicker is practically corrected.
  • the direct current concept of a wind energy park according to the invention can be operated with a lower short-circuit line at the feed location than the comparable three-phase concepts.
  • the inventive concept for a wind energy park combines the central three-phase voltage regulation of the wind energy park with the fast decentralized wind energy plant power regulations, as a result of which the energy supply companies are offered a considerable improvement in the quality of the energy feed from wind energy parks.
  • a direct current transmission device is connected between the wind power plants connected in parallel on the direct current side and the converter station on the mains side.
  • the network-side converter station can be set up directly on a substation of a regional supply network, so that the entire wind energy output available can be fed into the regional supply network. In this way, the efficiency of a wind energy park increases significantly.
  • each wind energy installation has a rotor with adjustable rotor blades and a speed control.
  • This speed control ensures that the rotor-generator unit works at the highest permitted power limit (maximum voltage), which means that the power control range of each thermal energy system can be optimally used.
  • the speed control works via the rotor blade adjustment, whereby a speed setpoint is generated from the wind speed.
  • FIG. 2 shows a second known concept of a wind energy park
  • FIG. 3 shows an advantageous embodiment of the inventive concept of a wind energy park, in
  • FIG. 4 shows the maximum heat energy output as a function of the distance from the heat energy park to the substation of a regional supply network.
  • FIG. 5 shows a block diagram of a device for power control and a speed control of a
  • FIG. 6 a block diagram of a control arrangement of the network-side converter station
  • FIG. 7 shows a diagram of the power control range of a heat energy system
  • FIG 8 shows the multi-terminal operation of the energy park in a diagram.
  • FIG. 3 shows an advantageous embodiment of the inventive concept of a wind energy park 2.
  • This wind energy park 2 has N wind turbines 4.
  • Each thermal energy system 4 has a rotor 6, the rotor blades of which are adjustable, a synchronous generator 24, a rectifier 30 and a smoothing choke 36.
  • the synchronous generator 24 is directly coupled to the rotor 6 and has two stator windings which are electrically offset from one another by 30 °, each of which is connected to a partial rectifier of the rectifier.
  • rectters 30 electrically connected smd
  • the rotor 6 of the synchronous generator 24 can have a permanent excitation or a voltage-controlled excitation.
  • the rectifier 30 is multi-pulse, for example 12-pulse.
  • the smoothing choke 36 is arranged, for example, in the positive output line 38.
  • This positive output line 38 and a negative output line 40 can be separated from a positive and negative busbar 42 and 44 by means of circuit breakers 14.
  • the N wind turbines 4 of the wind energy park 2 are connected in parallel on the DC side by means of these two busbars 42 and 44.
  • a network-side converter station 46 is arranged directly at the substation 20 of the regional supply network 22.
  • This line-side converter station 46 has a smoothing choke 48, an inverter 50, a matching transformer 52 and a filter 28.
  • the inverter 50 like the rectifier 30 of each thermal energy system 4, consists of two partial inverters.
  • the pulse of the inverter 50 also corresponds to the pulse of the rectifier 30.
  • Each partial inverter is electrically conductively connected to a secondary winding of the matching transformer 52, the primary winding of which is connected to a busbar 54 Umspannwerke ⁇ 20 is connected.
  • the filter 28 is also connected to this busbar 54.
  • the smoothing choke 48 is arranged, for example, in the positive input line 56 of the inverter 50.
  • This positive input line 56 and a negative input line 58 are electrically conductively connected to the positive and negative busbars 42 and 44 of the wind energy plants 4 connected in parallel by means of a direct current transmission device 60.
  • the direct current transmission device 60 which can be two direct current lines or a direct current cable, can be enabled by means of circuit breakers 14, which are not shown in detail.
  • the illustration of devices 62 for power control of the wind energy plants 4 and a control arrangement 102 of the grid-side converter station 46 is omitted for reasons of clarity.
  • the associated block diagrams of this device 62 for power control and this control arrangement 102 are shown in FIGS. 5 and 6.
  • the known concept according to FIG. 2 and the concept according to the invention according to FIG. 3 of a wind energy park 2 are compared with regard to the maximum wind energy output.
  • the energy to be fed into the regional supply network 22 depends on the distance between the wind energy plants 4 and the feed point.
  • the well-known three-phase concept is illustrated in the upper part of this illustration. It can be seen from this illustration that the energy to be fed in is approximately 1.5 MW, the wind energy plants 4 of the wind energy park 2 being 8 km away from the feed-in point.
  • the direct current concept according to the invention is illustrated in the lower part of this illustration. There are two
  • the network-side converter station 46 of the wind energy park 2 is arranged centrally between the wind energy plants 4 and the feed point.
  • the line-side converter station 46 is connected on the DC side by means of a DC transmission device 60 to the DC power plants 4 connected in parallel on the DC side and on the AC side by means of a three-phase line 18 to the feed point.
  • the converter converter 46 of the wind energy park 2 on the network side is arranged directly at the feed point.
  • the energy to be fed in is approximately 2.86 MW in the first variant and 6 MW in the second variant.
  • FIG. 5 shows the equivalent circuit diagram with a wind energy installation 4 of the wind energy park 2 according to FIG. 3 with its associated device 62 for power control and a speed control arrangement 64.
  • This device 62 for power control has a setpoint generator 66 with an upstream Power setpoint generator 68 and a downstream vector regulator arrangement 70, which is followed by a control device 72.
  • the setpoint generator 66 receives as input signal a power setpoint Po_r of the upstream power setpoint generator 68 and an actual DC voltage value Ud_r. From these values Po_r and Ud_r, the setpoint generator 66 is used to determine a set of setpoints Io_r and Uo_r for the current and voltage of the rectifier 30 of the thermal energy system 4.
  • the setpoint generator 66 has two characteristic transmitters 74 and 76.
  • the curve of the first sensor 74 selected for the voltage setpoint Uo_r shows the VDVOC characteristic (Voltage-Dependent-Voltage-Order-
  • the characteristic curve of the second characteristic transmitter 76 for the current setpoint value Io_r essentially has a VDCOL characteristic (Voltage-Depended-Current-Order-Limitation), ie voltage-dependent current limitation.
  • the vector controller arrangement 70 has two comparators 78 and 80, an adder 82 and a control element 84.
  • the setpoint pair Uo_r, Io_r that is formed is fed to this vector controller arrangement 70 and compared there with a determined pair of actual values Ud_r, Id_r by means of the two comparators 78 and 80.
  • the control deviations formed for current and voltage are added up by means of the adder 82.
  • This sum signal is fed to the control element 84, at the output of which a control signal for the control device 72 of the rectifier 30 of the wind turbine 4 is present.
  • the power setpoint generator 68 which generates a power setpoint Po_r as a function of the wind speed V, has a function generator 86 and a ramp generator 88 on the input side.
  • a function setpoint Po_r is generated from the wind speed V by means of the function generator 86.
  • the gradient of the power setpoint change is determined by a ramp of the ramp generator 88.
  • the speed controller arrangement 64 has a function generator 90 with downstream ramp transmitters 92 and a speed control device 94.
  • This speed control device 94 consists of a comparator 96 and a speed controller 98 with a downstream rotor blade control 100.
  • the comparator 96 compares a determined actual rotor speed value n with a generated rotor speed setpoint value n_o.
  • This speed setpoint n_o is supplied by the function generator 90 depending on the wind speed.
  • the gradient of the speed setpoint change is determined by a ramp of the ramp generator 92.
  • a set signal for the rotor blade control 100 is present at the output of the speed controller 98.
  • this rotor blade control 100 there is a control signal for the adjustment mechanism of the rotor blades, whereby the rotor blades are adjusted in such a way that the rotor speed control deviation determined by means of the comparator 96 becomes zero.
  • FIG. 6 shows the replacement circuit diagram of the power converter station 46 of the wind energy park 2 according to FIG. 3 with its associated control arrangement 102.
  • This control arrangement 102 has a device 104 for determining a power setpoint Po_ ⁇ , a device 106 for determining an extinguishing angle additive Setpoint ⁇ o_add, a setpoint generator 108, a vector controller arrangement 110 and a control device 72.
  • This control arrangement 102 is analog W
  • Differences lie in the number of values supplied to the setpoint generator 108, the characteristics of the two characteristic generators 112 and 114 and the device 104 for determining a power setpoint Po_ ⁇ . Because of the variance of the input variables (actual voltage value Ud_ ⁇ , actual power value Pd_ ⁇ , power setpoint Po_ ⁇ , setpoint angle ⁇ o, setpoint angle ⁇ o, control angle ⁇ ), the characteristic curve, in particular the VDVOC characteristic of the characteristic transmitter 112, must be in its Height in the end area and its inclination can be specified. The VDCOL characteristic of the encoder 114 can also be set.
  • the generated setpoint pair Uo_ ⁇ , Io_ ⁇ is compared by means of two comparators 78 and 80 with a determined actual value pair Ud_ ⁇ , Id__ ⁇ .
  • the control deviations formed are subtracted from one another by means of the adder 82, since the voltage setpoint Uo_ ⁇ of the setpoint pair Uo_ ⁇ , Io_ ⁇ am inverting
  • Input of the comparator 78 is pending.
  • the difference signal is fed to the downstream control element 84, at the output of which an angle signal for the control device 72 is present on the line-side converter station 46.
  • the difference in the control deviation for current and voltage is regulated to zero by means of this angle signal.
  • the device 104 for determining a desired power value Po_ ⁇ has a delay element 116 of the first order with an upper and a lower limit.
  • a determined actual power value Pd_ ⁇ and an upper and lower power limit value Pgo_ ⁇ and Pgu_ ⁇ are fed to this device 104.
  • a power setpoint Po_ ⁇ is present at the output of this device 104.
  • This control arrangement 102 has a device 106 for determining an additional setpoint angle ⁇ o_add.
  • This device 106 has a comparator 118 on the input side and a PI controller 120 on the output side.
  • a three-phase voltage control deviation is determined as a function of a three-phase voltage setpoint Uo_ac and a determined three-phase voltage actual value Uac, which is fed to the downstream PI controller 120.
  • This PI controller 120 At the output of this PI controller 120 there is an additional setpoint angle ⁇ o_add.
  • the PI controller 120 is provided with a lower limit value zero and an upper limit value max ⁇ o_add so that the erasing angle ⁇ o can only be changed within a predetermined range by the setpoint generator 108.
  • the setpoint angle ⁇ o is composed of a minimum setpoint value ⁇ o_m ⁇ n and the determined additional setpoint value ⁇ o_add, an adder 122 being provided.
  • the device 62 for power control and the control arrangement 102 and their mode of operation are described in detail, so that it can be dispensed with here.
  • FIG. 7 shows the power control range of a thermal energy system 4 of a thermal energy park 2 according to FIG.
  • the unit consisting of rotor 6 and generator 24, a thermal energy system 4 has a performance-dependent "upper” and “lower” power limitation.
  • the upper power limitation is determined by the maximum voltage the unit can be made available at the generator terminal.
  • the lower power limit is determined by the maximum current.
  • Power limitations are shown "rectified” as DC values in the Ud / Id diagram. They determine the power control range of the thermal energy system 4.
  • the characteristic of the power controller in the Ud / Id diagram is a hyperbola, which is limited by the upper power limit (maximum voltage) for high voltages and by the lower power limit (maximum current) for low voltages .
  • the power control reads a combined voltage / current control and acts via the control angle of the rectifier.
  • the characteristic curve generator 74 and 76 of the setpoint generator 66 of the device 62 for power control are matched so that the downstream control element 84 follows the power hyperbola in the normal operating range and, with reduced voltage, the lower power limitation in the Ud / Id diagram.
  • the power control range of the thermal energy system 4 can be optimally used if the unit - rotor 6, generator 24 - works on the upper allowed power limitation (maximum voltage). The maximum voltage is reached with the speed control 64, which acts via the rotor blade adjustment.
  • the control arrangement 102 according to FIG. 6 is a resistance control with a superimposed three-phase voltage control for the grid-side converter station 46 of the energy energy park 2 according to FIG. 3, which acts via the control angle of the inverter 50.
  • the superimposed three-phase voltage control changes the setpoint angle ⁇ o so that the subordinate resistance control controls the operating point on the power hyperbola, for which the three-phase voltage is also regulated.
  • the fast three-phase voltage The voltage regulation can be supplemented with a slow tap changer regulation for the adapter transformer 52, which carries out a rough three-phase voltage regulation. It is an ideal open circuit DC voltage regulation.
  • the setpoint of the tap changer control is changed by means of an additional value so that the control acting via the control angle can always work as indefinitely as possible and in the middle of the control range ⁇ max_ ⁇ and ctm ⁇ n_ ⁇ .
  • FIG. 8 shows an example of a multi-thermal energy park operation.
  • the resistance regulator with the superimposed three-phase voltage regulation determines the working point AW for the inverter 50 of the grid-side converter station 46, for which the power P_wr to be transmitted and the three-phase voltage are observed.
  • the working points AG1, AG2 and AG3 of the rectifiers 30 of the wind energy plants 4 result from the topology of the direct current system (Kirch ⁇ hoff see law, Ma ⁇ chen equation and energy conservation law) and the action of the Wmdenergynlagen power control automatically , AG2 and AG3 on their performance hyperbels which comply with the above-mentioned laws.
  • This inventive direct current concept for a Wmd energy park 2 not only reduces the number of components (instead of N inverters only one inverter), it can lead to further savings if the three-phase lines 18 between the output of the line-side converter station 46 and one Network feed point is replaced by a direct current transmission device 60. For such a 4 power transmission, it would be advisable to change the voltage of the generators 24 of the wind turbines 4 from. 690 V to their voltage values of 6-10 kV, which are otherwise common in energy generation. If the earth may be used as a return conductor, only a direct current line is used
  • Direct current transmission device 60 is required, as a result of which the price advantage increases.
  • the central three-phase voltage regulation of the heat energy park 2 combined with the fast decentralized wind power plant power regulations offer the energy supply companies a significant improvement in the quality of the energy feed from the heat energy park 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

L'invention concerne un centre d'énergie éolienne (2) qui comprend au moins deux installations d'énergie éolienne (4) et une station de convertisseur de source (46). Chaque installation d'énergie éolienne (4) comprend un rotor (6), un générateur (24), un redresseur (30), un self de lissage (36) et un dispositif (62) de régulation de puissance. La station de convertisseur de source (46) comprend quant à elle un self de lissage (48), un onduleur (50), un transformateur d'adaptation (52), un filtre (28) et un système de régulation (102). Les installations d'énergie éolienne (4) sont connectées électriquement en parallèle côté courant continu et la station de convertisseur de source (46) est connectée électriquement en série côté courant continu avec les installations d'énergie éolienne (4) connectées en parallèle côté courant continu. On obtient ainsi un centre d'énergie éolienne (2) dont la puissance totale en énergie éolienne disponible peut être transférée dans un réseau d'alimentation régional.
EP97925849A 1996-05-24 1997-05-20 Centre d'energie eolienne Withdrawn EP0939995A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19620906A DE19620906C2 (de) 1996-05-24 1996-05-24 Windenergiepark
DE19620906 1996-05-24
PCT/DE1997/001008 WO1997045908A1 (fr) 1996-05-24 1997-05-20 Centre d'energie eolienne

Publications (1)

Publication Number Publication Date
EP0939995A1 true EP0939995A1 (fr) 1999-09-08

Family

ID=7795189

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97925849A Withdrawn EP0939995A1 (fr) 1996-05-24 1997-05-20 Centre d'energie eolienne

Country Status (3)

Country Link
EP (1) EP0939995A1 (fr)
DE (1) DE19620906C2 (fr)
WO (1) WO1997045908A1 (fr)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ333600A (en) 1996-05-29 2000-09-29 Abb Ab A dc transformer/reactor having insulated and screened winding conductors
US6376775B1 (en) 1996-05-29 2002-04-23 Abb Ab Conductor for high-voltage windings and a rotating electric machine comprising a winding including the conductor
WO1997045918A1 (fr) 1996-05-29 1997-12-04 Asea Brown Boveri Ab Conducteur isole pour enroulements a haute tension et son procede de production
SE9602079D0 (sv) 1996-05-29 1996-05-29 Asea Brown Boveri Roterande elektriska maskiner med magnetkrets för hög spänning och ett förfarande för tillverkning av densamma
SE510422C2 (sv) 1996-11-04 1999-05-25 Asea Brown Boveri Magnetplåtkärna för elektriska maskiner
SE515843C2 (sv) 1996-11-04 2001-10-15 Abb Ab Axiell kylning av rotor
SE512917C2 (sv) 1996-11-04 2000-06-05 Abb Ab Förfarande, anordning och kabelförare för lindning av en elektrisk maskin
SE509072C2 (sv) 1996-11-04 1998-11-30 Asea Brown Boveri Anod, anodiseringsprocess, anodiserad tråd och användning av sådan tråd i en elektrisk anordning
SE9704423D0 (sv) 1997-02-03 1997-11-28 Asea Brown Boveri Roterande elektrisk maskin med spolstöd
SE9704422D0 (sv) 1997-02-03 1997-11-28 Asea Brown Boveri Ändplatta
SE9704421D0 (sv) 1997-02-03 1997-11-28 Asea Brown Boveri Seriekompensering av elektrisk växelströmsmaskin
SE9704427D0 (sv) 1997-02-03 1997-11-28 Asea Brown Boveri Infästningsanordning för elektriska roterande maskiner
SE508543C2 (sv) 1997-02-03 1998-10-12 Asea Brown Boveri Hasplingsanordning
SE508544C2 (sv) 1997-02-03 1998-10-12 Asea Brown Boveri Förfarande och anordning för montering av en stator -lindning bestående av en kabel.
WO1999029015A2 (fr) 1997-11-28 1999-06-10 Asea Brown Boveri Ab Procede et dispositif de commande du flux magnetique avec en enroulement auxiliaire dans une machine rotative electrique a courant alternatif haute tension
SE9802889A0 (sv) * 1998-08-28 2000-02-29 Daimler Chrysler Ag Anläggning för överföring av elektrisk effekt
US6801421B1 (en) 1998-09-29 2004-10-05 Abb Ab Switchable flux control for high power static electromagnetic devices
DE19845903A1 (de) * 1998-10-05 2000-04-06 Aloys Wobben Elektrische Energieübertragungsanlage
DE19853464C1 (de) * 1998-11-19 2000-04-13 Siemens Ag Windenergieanlage
RU2221165C2 (ru) * 1999-05-28 2004-01-10 Абб Аб Ветроэлектрическая станция
SE514934C2 (sv) 1999-09-06 2001-05-21 Abb Ab Anläggning för generering av elektrisk effekt med hjälp av vindkraftspark samt förfarande för drift av en sådan anlägning.
DE19948196A1 (de) * 1999-10-06 2001-05-17 Aloys Wobben Verfahren zum Betrieb eines Windparks
DE19948194C2 (de) 1999-10-06 2001-11-08 Aloys Wobben Verfahren zur Überwachung von Windenergieanlagen
DK199901436A (da) 1999-10-07 2001-04-08 Vestas Wind System As Vindenergianlæg
NL1013568C2 (nl) * 1999-11-12 2001-05-15 Egbert Age Johannes Bouwhuis Stelsel voor het gecertificeerd gebruiken van op een eerste wijze opgewekte elektrische energie.
SE518121C2 (sv) * 1999-12-23 2002-08-27 Abb Ab Elkraftsystem baserat på förnyelsebara energikällor
DE10014642A1 (de) * 2000-03-24 2001-10-18 Siemens Ag Vorrichtung und Verfahren zur Energieversorgung eines autonomen Netzes
US7167260B2 (en) 2000-04-07 2007-01-23 Seiko Epson Corporation Control of distributed printers using virtual printer driver execute module
SE0001611L (sv) * 2000-05-03 2001-11-04 Abb Ab Kraftanläggning samt förfarande för drift därav
ES2165324B2 (es) * 2000-06-02 2004-01-16 Internat Electronics S A Sistema de potencia y control para mejorar el rendimiento y calidad de energia producida en aerogeneradores.
DK200000912A (da) * 2000-06-14 2001-12-15 Ulrik Krabbe Anordning til udjævning af effektvariationer fra vindmøllegrupper
US6946750B2 (en) 2000-08-14 2005-09-20 Aloys Wobben Wind power plant having a power generation redundancy system
DE10040273A1 (de) * 2000-08-14 2002-02-28 Aloys Wobben Windenergieanlage
DE10044262A1 (de) * 2000-09-07 2002-03-21 Stephan Joeckel Getriebelose Windkraftanlage mit Blattwinkelverstellung zur aktiven Schwingungsdämpfung im Antriebsstrang
CA2364416A1 (fr) * 2000-12-18 2002-06-18 Abb Industrie Ag Systeme convertisseur elevateur de tension c.c.
US10135253B2 (en) 2000-12-29 2018-11-20 Abb Schweiz Ag System, method and computer program product for enhancing commercial value of electrical power produced from a renewable energy power production facility
WO2002054561A2 (fr) * 2000-12-29 2002-07-11 Abb Ab Systeme, procede et produit de programme informatique pour ameliorer la valeur commerciale d'energie electrique produite a partir d'une installation de production d'electricite utilisant une energie renouvelable
DE10115267C2 (de) 2001-03-28 2003-06-18 Aloys Wobben Verfahren zur Überwachung einer Windenergieanlage
DE10119624A1 (de) * 2001-04-20 2002-11-21 Aloys Wobben Verfahren zum Betreiben einer Windenergieanlage
EP1276224A1 (fr) * 2001-07-10 2003-01-15 ABB Schweiz AG Convertisseur de fréquence pour centre d'énergie éolienne et methode de fonctionnement d'un tel convertisseur
DE10134883A1 (de) * 2001-07-18 2003-01-30 Abb Research Ltd Verfahren und Vorrichtung zur drehzahlstellbaren leistungselektronischen Regelung einer getriebelosen Windkraftanlage
DE10136147B4 (de) * 2001-07-25 2004-11-04 Kolm, Hendrik, Dipl.-Ing. Photovoltaischer Wechselstromerzeuger
DE10145347A1 (de) * 2001-09-14 2003-04-03 Abb Research Ltd Windparkanlage
DE10145346A1 (de) * 2001-09-14 2003-04-03 Abb Research Ltd Windparkanlage
JP5216181B2 (ja) * 2001-09-28 2013-06-19 アロイス・ヴォベン ウインドパークの運転方法
EP1318589B1 (fr) * 2001-12-10 2013-02-13 ABB Schweiz AG Système à énergie éolienne et procédé de fonctionnement d'un tel système
DK175645B1 (da) * 2002-10-31 2005-01-03 Bonus Energy As Elektrisk kredslöb til drevet generator med segmenteret stator
EP1467463B1 (fr) * 2003-04-09 2016-12-21 General Electric Company Parc d'éoliennes et méthode correspondante
US7119452B2 (en) * 2003-09-03 2006-10-10 General Electric Company Voltage control for wind generators
EP1571746B1 (fr) * 2004-03-05 2018-09-12 Gamesa Innovation & Technology, S.L. Système de régulation de la puissance active d'un parc éolien
WO2005114830A1 (fr) * 2004-05-21 2005-12-01 Abb Research Ltd Dispositif convertisseur de frequence pour parc a energie eolienne et procede pour exploiter un tel dispositif
DE102004046701A1 (de) 2004-09-24 2006-04-06 Aloys Wobben Regeneratives Energiesystem
CN100395935C (zh) * 2005-12-20 2008-06-18 北京交通大学 大功率风力发电的并网系统
DE102007018683A1 (de) * 2006-09-23 2008-04-24 Kerber, Georg, Dipl.-Ing. Autonomes Regelkonzept zur Unterstützung des Energieversorgungsnetzes durch Anlagen mit Wechselrichtern (PV-Anlagen)
EP2082132B1 (fr) * 2006-11-08 2013-09-25 Vestas Wind Systems A/S Procédé de commande d'un groupe d'éoliennes reliées à un réseau électrique et groupe d'éoliennes
DE102006054870A1 (de) 2006-11-20 2008-06-12 Repower Systems Ag Windenergieanlage mit Gegensystemregelung und Betriebsverfahren
DE102007039726A1 (de) * 2007-01-19 2008-07-24 Inensus Gmbh Einspeiseumrichteranlage
KR101726988B1 (ko) 2008-04-23 2017-04-14 프린시플 파워, 인코포레이티드 해안 풍력 터빈의 지지를 위한 워터-엔트랩먼트 플레이트 및 비대칭 무링 시스템을 가진 칼럼-안정화된 해안 플랫폼
ITTO20080324A1 (it) 2008-04-30 2009-11-01 Trevi Energy S P A Convertitore modulare della potenza elettrica prodotta da generatori eolici e centrale eolica impiegante lo stesso.
DE102008022617A1 (de) * 2008-05-07 2009-11-19 Siemens Aktiengesellschaft Windenergiepark mit einer Vielzahl von Windenergieanlagen
IT1391397B1 (it) * 2008-09-02 2011-12-23 Sottocorno Sistema e metodo per fornire energia elettrica ad un carico
DE102008047667A1 (de) 2008-09-15 2010-03-25 Siemens Aktiengesellschaft Leistungsregelung für einen Windpark
DE102008048258B4 (de) * 2008-09-22 2016-12-08 Senvion Gmbh Windpark und Verfahren zum Betreiben eines Windparks
GB0819561D0 (en) * 2008-10-27 2008-12-03 Rolls Royce Plc A distributed electrical generation system
CN101749183B (zh) * 2008-12-12 2011-12-14 财团法人工业技术研究院 风电场控制系统及风电场
US8283803B2 (en) 2009-11-04 2012-10-09 Repower Systems Ag Wind farm and method for operation of a wind farm
CN102074969B (zh) * 2009-11-23 2014-03-12 瑞能系统股份公司 风力发电站与风力发电站的运行方法
CN101902052B (zh) * 2010-08-10 2012-11-21 龙源电力集团股份有限公司 一种风电场整体低电压穿越系统
WO2012032196A1 (fr) * 2010-09-06 2012-03-15 Ingeteam Energy, S. A. Système de conversion de puissance de ca en ca à circuit cc intermédiaire et convertisseurs redondants
AT510677B1 (de) * 2011-03-04 2016-07-15 Austro Engine Gmbh Stromversorgungseinrichtung mit zumindest zwei energiequellen
RU2485346C1 (ru) * 2011-12-30 2013-06-20 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ МЭИ") Автономная ветроэнергетическая станция
DE202012012848U1 (de) * 2012-07-18 2014-02-17 Norbert Hennchen Vorrichtung mit mehreren Windkraftanlagen
DE102012212777A1 (de) 2012-07-20 2014-01-23 Wobben Properties Gmbh Verfahren zum Steuern eines Windparks
DE102012215422A1 (de) * 2012-08-30 2014-03-06 Wobben Properties Gmbh Windpark
US9371821B2 (en) 2012-08-31 2016-06-21 General Electric Company Voltage control for wind turbine generators
WO2014055333A2 (fr) 2012-10-01 2014-04-10 Abb Research Ltd Système de collecte à courant continu (cc) moyenne tension avec électronique de puissance
US8860237B2 (en) 2012-10-15 2014-10-14 General Electric Company System and method of selecting wind turbine generators in a wind park for curtailment of output power to provide a wind reserve
US8912674B2 (en) 2012-10-15 2014-12-16 General Electric Company System and method of selecting wind turbine generators in a wind park for change of output power
US8994206B2 (en) 2013-01-14 2015-03-31 Abb Technology Ag Turbine-based energy generation system with DC output
WO2014189978A2 (fr) 2013-05-20 2014-11-27 Principle Power, Inc. Système et procédé pour commander des plateformes d'éoliennes flottantes au large
EP2940297A1 (fr) * 2014-04-29 2015-11-04 Siemens Aktiengesellschaft Transfert d'énergie électrique produite d'une éolienne vers un réseau électrique
US9800054B2 (en) 2014-07-31 2017-10-24 Abb Schweiz Ag DC connection system for renewable power generators
DK3212496T3 (da) 2014-10-27 2019-10-28 Principle Power Inc Forbindelsessystem til kabelrækker til frakoblelige offshore-energianordninger
CN104319813B (zh) * 2014-11-08 2016-08-31 天津工业大学 离网型风电系统两发电机级联运行控制系统及方法
DE102014226252A1 (de) * 2014-12-17 2016-06-23 Siemens Aktiengesellschaft Leistungskombinationsvorrichtung zur Anbindung von Windpark-Anlagen an Mittel- und Hochspannungsnetze
CN107709152B (zh) 2015-06-19 2019-04-16 原理动力有限公司 具有波浪载荷和风载荷的优化传递的浮式风力涡轮机平台结构
EP3743623A1 (fr) * 2018-01-22 2020-12-02 Vestas Wind Systems A/S Parc éolien comprenant des systèmes d'énergie éolienne aéroportés et un réseau interne à courant continu (dc)
CN110544580A (zh) * 2018-10-31 2019-12-06 中国能源建设集团广东省电力设计研究院有限公司 海上风电场升压站主变压器和升压系统
US11225945B2 (en) 2019-05-30 2022-01-18 Principle Power, Inc. Floating wind turbine platform controlled to optimize power production and reduce loading

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4232356C2 (de) * 1992-09-26 1997-01-09 Inst Solare Energieversorgungstechnik Iset Stromversorgungseinrichtung mit mindestens zwei Stromquellen
DE19544777C1 (de) * 1995-11-30 1996-12-05 Siemens Ag Verfahren und Vorrichtung zur Regelung von Stromrichterstationen eines HGÜ-Mehrpunktnetzes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9745908A1 *

Also Published As

Publication number Publication date
DE19620906C2 (de) 2000-02-10
WO1997045908A1 (fr) 1997-12-04
DE19620906A1 (de) 1998-01-08

Similar Documents

Publication Publication Date Title
EP0939995A1 (fr) Centre d'energie eolienne
DE4232356C2 (de) Stromversorgungseinrichtung mit mindestens zwei Stromquellen
EP1433238B1 (fr) Procédé de fonctionnement d'un parc d'éoliennes
EP1337754B1 (fr) Installation d'energie eolienne ou parc eolien constitue de plusieurs installations d'energie eolienne
DE3305225C2 (fr)
EP1407141A1 (fr) Procede et dispositif pour reguler la vitesse de rotation d'une eolienne sans multiplicateur, au moyen de dispositifs electroniques de puissance
EP3039764B1 (fr) Installation permettant le transfert d'une puissance électrique
DE102008034532A1 (de) Windkraftanlage mit Umrichterregelung
EP1540811A1 (fr) Procede d'utilisation d'une installation eolienne comportant une cascade hypersynchrone
EP1164691A1 (fr) Procédé de commande d'une centrale éolienne et centrale éolienne
EP3602722A1 (fr) Procédé de démarrage d'un réseau de production d'énergie
DE3225285A1 (de) Verfahren zum betrieb einer hochspannungs-gleichstromuebertragungsanlage mit beliebig vielen umformerstationen
WO2014033073A1 (fr) Parc éolien à réseau de tension continue
DE2605793C2 (de) Verfahren zur Inbetriebnahme einer Station einer Hochspannungs-Gleichstrom-Übertragungsanlage (HGÜ)
DE19853464C1 (de) Windenergieanlage
DE19651364A1 (de) Vorrichtung zur Verbesserung der Netzverträglichkeit von Windkraftanlagen mit Asynchrongeneratoren
EP3688860B1 (fr) Procédé pour alimenter en énergie des composants d'éolienne, dispositif d'alimentation en énergie et éolienne comprenant ce dispositif
WO2012104333A1 (fr) Procédé de fourniture de courant réactif au moyen d'un convertisseur et ensemble convertisseur et installation d'alimentation en énergie
EP3780305A1 (fr) Agencement d'onduleurs pour éoliennes et installations photovoltaïques
EP3413422B1 (fr) Station de réseau local pourvue de sorties basse tension variables
DE3342210C2 (fr)
EP2689462A2 (fr) Système photovoltaïque
WO2024002797A1 (fr) Combinaison de systèmes comprenant au moins deux systèmes d'électrolyse et une source d'alimentation électrique
DE3430188A1 (de) Konstantspannungs-asynchrongenerator
DE102011014469A1 (de) VAr Zuleitung nach Wechselrichterkapazität

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 20010607

18W Application withdrawn

Withdrawal date: 20010615