EP0936321B1 - Insulating element - Google Patents
Insulating element Download PDFInfo
- Publication number
- EP0936321B1 EP0936321B1 EP99100766A EP99100766A EP0936321B1 EP 0936321 B1 EP0936321 B1 EP 0936321B1 EP 99100766 A EP99100766 A EP 99100766A EP 99100766 A EP99100766 A EP 99100766A EP 0936321 B1 EP0936321 B1 EP 0936321B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- insulating
- board
- element according
- mineral wool
- insulating element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 238000009413 insulation Methods 0.000 claims abstract description 101
- 238000000576 coating method Methods 0.000 claims abstract description 23
- 239000011248 coating agent Substances 0.000 claims abstract description 21
- 239000011810 insulating material Substances 0.000 claims abstract 2
- 239000011490 mineral wool Substances 0.000 claims description 49
- 239000006260 foam Substances 0.000 claims description 18
- 239000000853 adhesive Substances 0.000 claims description 11
- 230000001070 adhesive effect Effects 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004744 fabric Substances 0.000 claims description 6
- 239000004570 mortar (masonry) Substances 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 5
- 125000006850 spacer group Chemical group 0.000 claims description 5
- 239000004568 cement Substances 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 claims description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 3
- 239000011707 mineral Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 235000019353 potassium silicate Nutrition 0.000 claims description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 3
- 229920003043 Cellulose fiber Polymers 0.000 claims description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical class [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical class O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 239000003365 glass fiber Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims 3
- 229920002994 synthetic fiber Polymers 0.000 claims 2
- 241000531908 Aramides Species 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 claims 1
- 229920003235 aromatic polyamide Polymers 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000004576 sand Substances 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 239000004567 concrete Substances 0.000 abstract description 13
- 239000011148 porous material Substances 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 22
- 239000004793 Polystyrene Substances 0.000 description 11
- 229920002223 polystyrene Polymers 0.000 description 11
- 239000010410 layer Substances 0.000 description 9
- 238000010276 construction Methods 0.000 description 4
- 239000011505 plaster Substances 0.000 description 4
- 239000002557 mineral fiber Substances 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011381 foam concrete Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/762—Exterior insulation of exterior walls
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/049—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres completely or partially of insulating material, e.g. cellular concrete or foamed plaster
Definitions
- the invention relates to an insulation element, in particular for thermal insulation of building facades and for use in composite thermal insulation systems, consisting of a plate-shaped element made of aerated concrete.
- Insulation elements are known in a variety of designs. You can out Mineral fibers, rigid foams consist and single-layer or multi-layer Have structure. Such insulation elements are, for example used for thermal insulation of building facades. in this connection the insulation elements are part of thermal insulation composite systems. As part of the composite thermal insulation systems, the Insulation elements glued to a supporting surface and if necessary additionally secured by insulation holder with inserted dowel. Here, systems are known which are made exclusively by insulation holders are fixed. In other thermal insulation composite systems, the insulation layer held by rails which cut into the side surfaces Grip grooves. The rails are screwed in and into the load-bearing surface recessed dowels held.
- a two-layer coating is applied to the surface of the insulation elements
- Plaster applied which consists of a base plaster, in the one Reinforcing fabric is embedded.
- There is a finishing coat on the base coat applied which represents the outer surface of the facade insulation.
- the fabric can be installed in the base plaster throughout.
- polystyrene rigid foam panels are used as insulation elements. These rigid foam panels have a low bulk density between 15 and 30 kg / m 3 , so that this results in a low weight, which simplifies the processing of these insulation elements.
- these polystyrene rigid foam panels have mechanical strength properties that provide the necessary transverse tensile strength and the necessary shear modulus in sufficient size for thermal insulation composite systems.
- the polystyrene rigid foam sheets are stable and essentially unchangeable even when exposed to moisture.
- the low thermal conductivities of the polystyrene rigid foam panels result in very high thermal resistance, which enables such rigid foams to be classified in the thermal conductivity groups WLG 035 and 040 according to DIN 4108 and DIN 18165, Part 1. Furthermore, there is the possibility to fix the polystyrene rigid foam panels of the thermal insulation composite system with only partial gluing to the building exterior facade by means of appropriate elasticization of the rigid foams and due to the good mechanical properties, so that positive properties of such a thermal insulation composite system with regard to what can be achieved Soundproofing are possible.
- thermal insulation systems with polystyrene rigid foam panels are combustible, so that they are only classified as flame-retardant in building material class B1 according to DIN 4102, Part 1.
- Thermal insulation composite systems based on polystyrene hard foam panels can burn relatively easily with the insulation thicknesses common today, especially more than 8 cm, from the normally unsecured openings (windows, doors) in the insulated wall surfaces or from the base. Nevertheless, approximately 90% of the thermal insulation composite systems produced annually are based on polystyrene rigid foam.
- Non-combustible mineral wool insulation boards have proven to be an alternative to polystyrene rigid foam boards.
- the mineral wool insulation panels In comparison to the polystyrene rigid foam panels, however, the mineral wool insulation panels have lower strength properties, so that the mineral wool insulation panels must be processed and reinforced accordingly. To compensate for the weakening of the surface hardness associated with this, plates made of calcium silicate, fiber cement or aerated concrete are glued to the mineral wool insulation layer or fastened with insulation holders.
- Aerated concrete is admittedly an insulating layer suitable for composite thermal insulation systems, since, for example, the thermal coefficient of linear expansion is low and therefore cannot cause cracking in the plaster, the usual bulk densities of more than 400 kg / m 3 and the thermal conductivity of more than essentially 0.10 W / mK make the processing of such aerated concrete slabs cumbersome, since extremely thick insulation layers have to be applied in order to achieve adequate thermal insulation.
- these thick layers of insulation lead to a high weight of the thermal insulation composite system, which is disadvantageous on the one hand during processing and on the other hand causes high stress on the connecting means between the facade and the thermal insulation panels (cf. WO 95/11 357 A or DE 2 854 228 A).
- the aerated concrete slabs have the disadvantage that they have only one have low breaking strength, so that edges break off easily and the surfaces are not resistant to abrasion. At the construction sites prevailing working conditions are therefore large quantities of cellular concrete insulation panels damaged, which is then disadvantageous for the thermal insulation composite system impact if these damaged insulation boards installed become.
- the invention has for its object to develop an insulating element of the generic type such that the disadvantages described above can be avoided.
- the solution to this problem provides for an insulation element of the generic type that the plate-shaped element made of aerated concrete with a bulk density of 75 to 250 kg / m 3 and a thermal conductivity between 0.030 to 0.050 W / mK, whose at least one large surface with a strength-increasing and adhesive coating is provided.
- Such an insulation element is particularly suitable for composite thermal insulation systems suitable, the relatively low bulk density a simplification the processing of the insulation elements and the requirements the adherence of the lanyard to be applied to the facade reduced. Furthermore, the strength-increasing and adhesion-promoting Coating on at least a large surface of the plate Elementes the insulation element so strengthened that a higher abrasion resistance and a higher breaking strength of the edges of the insulation element be achieved.
- the plate-shaped element made of aerated concrete has a bulk density of 100 to 150 kg / m 3 .
- Suitable coatings can be made from plastic-containing construction adhesives, for example on the basis of hydraulically setting cements consist. Resin plasters are also suitable.
- the surfaces of the plate-shaped element are included Deep reasons based on acrylates, butadiene-styrene copolymers and similar saponification-resistant plastic dispersions or solutions stabilized. Because these substances are negative They may have an impact on the building material class covered with layers of adhesive and mortar.
- the thickness of the coating is kept as low as possible for reasons of weight. It has proven advantageous to coat with a thickness of less than 5 mm.
- the coating can consist of silica, the so-called Ormocere is applied via nanotechnology and essentially solidifying in the areas below the surface acts. Furthermore, they are coated with silica sol, water or aluminum phosphates bound mixtures of minerals doped with plastics such as quartz sand, aluminum hydroxide and the like. Here is just to ensure that minerals are excluded that are under Swell up moisture.
- Lattice fabric for example made of glass fibers, aramid or Carbon fibers, cellulose fibers or the like on one or both large surfaces of the plate-shaped element embedded in the coating or glued on with their help.
- the insulation element has recesses, in particular Holes for the insulation holder.
- These holes are, for example according to one in the admission requirements for the Thermal insulation composite system or dowel pattern matched to the board size arranged.
- Usual insulation holders are in the transition from the shaft extended to the flat holding plate frustoconical, so that it turns out to be advantageous has proven that the bores are also frustoconically enlarged, so that notch stresses when inserting the insulation holder be avoided.
- the holes also serve as a drilling aid, so that When drilling on the construction site, the holes are widened by inclined Starting and subsequent correction can be avoided.
- the plate-shaped elements made of aerated concrete are indeed high Dimensional accuracy can be produced, but cannot necessarily avoid laying joints.
- Such installation joints are usually according to the state the technology for polystyrene rigid foam panels with polyurethane foam closed near the surface.
- this procedure represents an additional one Step that is time-consuming and therefore costly.
- Around Avoiding disadvantages is with the insulation elements according to the invention provided that on at least one narrow side of the plate-shaped Element of a mineral wool strip is arranged.
- the mineral wool strip preferably consists of binders bound with binders Individual fibers that are essentially parallel to the surface normal of the large surfaces of the plate-shaped element, so that the Mineral wool stripes in a direction perpendicular to the surface normal of the large surfaces is compressible and seal the corresponding joints can.
- a material thickness between 5 and 50 mm, preferably less than 15 mm has proven to be advantageous for mineral wool strips.
- Thermal insulation composite systems with the insulation elements according to the invention can also have a rail system, which the insulation elements hold on the facade.
- a rail system which the insulation elements hold on the facade.
- at least two, in particular parallel narrow sides of the have plate-shaped elements grooves, which are preferably sawing in the plate-shaped element are introduced. These grooves can then be used accordingly trained elements of the rail system intervene to the To hold insulation elements on the facade.
- the grooves are preferably 1 to 3 mm high and 5 to 20 mm wide.
- a compressible mineral wool insulation board or a mineral wool insulation felt is arranged.
- This configuration has been particularly useful when using the invention Insulation boards in composite thermal insulation systems with rail systems reinforced.
- the insulation boards are fastened with rails in usually on uneven surfaces, whereby these unevenness through the Rails or washers are balanced under the rails. With such conditions, the insulation boards are within a certain range Distance from the facade, so that between the facade and the Insulation boards form a cavity. Such a cavity or several such cavities allow air to circulate so that a clear one Reduction in the thermal resistance is recorded.
- the mineral wool insulation board has proven advantageous for this or the mineral wool insulation felt with a material thickness of 10 to 50 mm train.
- the cavities are then maximally closed, if the mineral wool insulation board or the mineral wool insulation felt the Cover the entire surface of the plate-shaped element. It exists but also the possibility that on the surface of the plate-shaped element the mineral wool insulation board or the mineral wool insulation felt over part of the surface is applied, with a strip-like configuration of this Has proven beneficial.
- These are preferably mineral wool strips all around or parallel to the long sides or as a single Sealing strips arranged.
- the mineral wool insulation board or the mineral wool insulation felt with cutouts for receiving an adhesive element train preferably forms in the hardened state a spacer.
- This spacer can withstand pressure and prevents that the insulation board breaks through under external pressure. Farther the spacer increases in conjunction with an insulation holder Stability of the thermal composite system.
- FIG 1 is an insulation element 1 for thermal insulation of building facades and shown for use in composite thermal insulation systems.
- the insulation element 1 consists of a plate-shaped element 2 made of aerated concrete with a bulk density of 100 kg / m 3 and a thermal conductivity of 0.040 W / mK.
- a strength-increasing and adhesion-promoting coating 3 is arranged on the two large surfaces of the element 2.
- the coating can consist of plastic-containing construction adhesives, mortars, for example on the basis of hydraulically setting cements and / or synthetic resin plasters.
- the insulation element 1 has four bores 4, which are arranged in the corner areas of the insulation element 1. This Bores 4 are used to hold insulation holders around the insulation element 1 to attach to the facade of the building.
- the holes 4 are arranged in a dowel pattern matched to the plate size.
- mineral wool strips 6 consisting of mineral fibers attached on three of the four narrow sides 5 of element 2 there are mineral wool strips 6, consisting of mineral fibers attached.
- the mineral wool stripes have here one on each narrow side 5 different material thickness and serve the joint compensation when laying several insulation elements 1 side by side.
- the mineral fibers of the mineral wool strips 6 are parallel to the narrow sides 5 or parallel to the surface normal of the element 2 aligned so that the mineral wool strip 6 in the direction of the insulation element 1 compressible are trained.
- Insulating element 1 also consists of plate-shaped element 2 made of aerated concrete with the characteristics specified above. Farther it can be seen that also in the embodiment according to FIG. 2 the element 2 has a coating 3 on both large surfaces.
- Insulation holder provided, which are not shown in detail and in holes 4 can be used.
- the holes 4 are frustoconical at one end expanding trained so that appropriately trained Insulation holder can be used.
- the surface 7 of the element 2 facing the facade is full-surface a mineral wool plate 8 glued on.
- the mineral wool plate 8 is in Direction to the surface 7 designed compressible.
- FIG. 3 shows a further embodiment of an insulation element 1, which in turn consists of a plate-shaped element 2 with coatings arranged on both sides of the large surfaces 3 exists.
- an insulation element 1 which in turn consists of a plate-shaped element 2 with coatings arranged on both sides of the large surfaces 3 exists.
- the longitudinal edges of the element 2 are continuous running grooves 11 sawn, the inclusion of a leg one Fastening rail serve which fastening rail is not shown in detail and is screwed to the facade of the building to be insulated becomes.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Building Environments (AREA)
- Bipolar Transistors (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Die Erfindung betrifft ein Dämmstoffelement, insbesondere zur Wärmedämmung von Gebäudefassaden und zur Verwendung in Wärmedämmverbund-Systemen, bestehend aus einem plattenförmigen Element aus Porenbeton.The invention relates to an insulation element, in particular for thermal insulation of building facades and for use in composite thermal insulation systems, consisting of a plate-shaped element made of aerated concrete.
Dämmstoffelemente sind in vielfältiger Ausführung bekannt. Sie können aus Mineralfasern, Hartschäumen bestehen und einschichtigen oder mehrschichtigen Aufbau aufweisen. Derartige Dämmstoffelemente werden beispielsweise zur Wärmedämmung von Gebäudefassaden verwendet. Hierbei sind die Dämmstoffelemente Bestandteil von Wärmedämmverbund-Systemen. Als Bestandteil der Wärmedämmverbund-Systeme werden die Dämmstoffelemente auf eine tragende Fläche aufgeklebt und gegebenenfalls zusätzlich durch Dämmstoffhalter mit eingesetztem Dübel gesichert. Hierbei sind Systeme bekannt, die ausschließlich durch Dämmstoffhalter fixiert sind. Bei anderen Wärmedämmverbund-Systemen wird die Dämmschicht durch Schienen gehalten, welche in in die Seitenflächen eingeschnittene Nuten greifen. Die Schienen werden durch Schrauben und in die tragende Fläche eingelassene Spreizdübel gehalten.Insulation elements are known in a variety of designs. You can out Mineral fibers, rigid foams consist and single-layer or multi-layer Have structure. Such insulation elements are, for example used for thermal insulation of building facades. in this connection the insulation elements are part of thermal insulation composite systems. As part of the composite thermal insulation systems, the Insulation elements glued to a supporting surface and if necessary additionally secured by insulation holder with inserted dowel. Here, systems are known which are made exclusively by insulation holders are fixed. In other thermal insulation composite systems, the insulation layer held by rails which cut into the side surfaces Grip grooves. The rails are screwed in and into the load-bearing surface recessed dowels held.
Auf die Oberfläche der Dämmstoffelemente wird in der Regel ein zweischichtiger Putz aufgebracht, der aus einem Grundputz besteht, in den ein Verstärkungsgewebe eingebettet wird. Auf den Grundputz ist ein Oberputz aufgebracht, der die Außenfläche der Fassadendämmung darstellt. Um die Zahl der Dämmstoffhalter zu reduzieren bzw. die Standsicherheit des Wärmedämmverbund-Systems zu erhöhen, können die Dämmstoffhalter durch das Gewebe im Grundputz hindurchgehend eingebaut werden.As a rule, a two-layer coating is applied to the surface of the insulation elements Plaster applied, which consists of a base plaster, in the one Reinforcing fabric is embedded. There is a finishing coat on the base coat applied, which represents the outer surface of the facade insulation. To the To reduce the number of insulation holders or the stability of the thermal insulation composite system to increase the insulation holder the fabric can be installed in the base plaster throughout.
Als Dämmstoffelemente werden bei den voranstehend beschriebenen Wärmedämmverbund-Systemen im wesentlichen Polystyrol-Hartschaumplatten verwendet. Diese Hartschaumplatten haben eine geringe Rohdichte zwischen 15 und 30 kg/m3, so daß hieraus ein geringes Eigengewicht resultiert, das die Verarbeitung dieser Dämmstoffelemente vereinfacht. Darüber hinaus weisen diese Polystyrol-Hartschaumplatten mechanische Festigkeitseigenschaften auf, die die notwendige Querzugfestigkeit und den notwendigen Schubmodul in ausreichender Größe für Wärmedämmverbundsysteme bereitstellen. Schließlich sind die Polystyrol-Hartschaumplatten auch bei Feuchteinwirkung stabil und im wesentlichen unveränderbar. Durch die niedrigen Wärmeleitfähigkeiten der Polystyrol-Hartschaumplatten werden sehr hohe Wärmedurchlaßwiderstände erreicht, die eine Einstufung derartiger Hartschäume in die Wärmeleitfähigkeitsgruppen WLG 035 und 040 nach DIN 4108 bzw. DIN 18165, Teil 1 ermöglichen. Weiterhin besteht die Möglichkeit, durch eine entsprechende Elastifizierung der Hartschäume und aufgrund der guten mechanischen Eigenschaften die Polystyrol-Hartschaumplatten des Wärmedämmverbund-Systems mit nur partieller Verklebung an der Gebäudeaußenfassade zu befestigen, so daß auch positive Eigenschaften eines derartigen Wärmedämmverbund-Systems im Hinblick auf das erreichbare Schalldämmaß möglich sind.In the thermal insulation composite systems described above, essentially polystyrene rigid foam panels are used as insulation elements. These rigid foam panels have a low bulk density between 15 and 30 kg / m 3 , so that this results in a low weight, which simplifies the processing of these insulation elements. In addition, these polystyrene rigid foam panels have mechanical strength properties that provide the necessary transverse tensile strength and the necessary shear modulus in sufficient size for thermal insulation composite systems. Finally, the polystyrene rigid foam sheets are stable and essentially unchangeable even when exposed to moisture. The low thermal conductivities of the polystyrene rigid foam panels result in very high thermal resistance, which enables such rigid foams to be classified in the thermal conductivity groups WLG 035 and 040 according to DIN 4108 and DIN 18165, Part 1. Furthermore, there is the possibility to fix the polystyrene rigid foam panels of the thermal insulation composite system with only partial gluing to the building exterior facade by means of appropriate elasticization of the rigid foams and due to the good mechanical properties, so that positive properties of such a thermal insulation composite system with regard to what can be achieved Soundproofing are possible.
Nachteil der Wärmedämmverbund-Systeme mit Polystyrol-Hartschaumplatten
ist, daß diese Hartschaumplatten brennbar sind, so daß
sie nur in die Baustoffklasse B1 gemäß DIN 4102, Teil 1 als schwerentflammbar
eingestuft werden. Wärmedämmverbund-Systeme auf der Basis
von Polystyrol-Hartschaumplatten können bei den heute üblichen Dämmdikken,
insbesondere von mehr als 8 cm, von den normalerweise nicht gesicherten
Öffnungen (Fenster, Türen) in den gedämmten Wandflächen oder
von dem Sockel her relativ leicht abbrennen. Dennoch werden zur Zeit ca.
90 % der jährlich erstellten Wärmedämmverbund-Systeme auf Polystyrol-Hartschaumbasis
hergestellt. Als Alternative zu den Polystyrol-Hartschaumplatten
haben sich nichtbrennbare Mineralwolle-Dämmstoffplatten
bewährt. Im Vergleich zu den Polystyrol-Hartschaumplatten
weisen die Mineralwolle-Dämmstoffplatten jedoch geringere
Festigkeitseigenschaften auf, so daß die Mineralwolle-Dämmstoffplatten
entsprechend bearbeitet und verstärkt werden müssen.
Um die damit verbundene Schwächung der Oberflächenhärte zu kompensieren,
werden beispielsweise Platten aus Kalziumsilikat, Faserzement oder
Porenbeton auf die Mineralwolle-Dämmschicht geklebt bzw. mit Dämmstoffhaltern
befestigt. Zwar ist Porenbeton eine für Wärmedämmverbund-Systeme
geeignete Dämmschicht, da beispielsweise der thermische Längenausdehnungskoeffizient
niedrig ist und somit keine Rißbildung in den
Putzen auslösen kann, die üblichen Rohdichten von mehr als 400 kg/m3 und
die Wärmeleitfähigkeit von mehr als im wesentlichen 0,10 W/mK machen die
Verarbeitung derartiger Porenbetonplatten umständlich, da extrem dicke
Dämmschichten aufgebracht werden müssen, um einen angemessenen
Wärmeschutz zu erreichen. Diese dicken Dämmschichten führen aber zu
einem hohen Gewicht des Wärmedämmverbundsystems, das einerseits bei
der Verarbeitung nachteilig ist und andererseits eine hohe Beanspruchung
der Verbindungsmittel zwischen der Fassade und den Wärmedämmplatten
hervorruft (vgl. WO 95/11 357 A oder DE 2 854 228 A).The disadvantage of composite thermal insulation systems with polystyrene rigid foam panels is that these rigid foam panels are combustible, so that they are only classified as flame-retardant in building material class B1 according to DIN 4102, Part 1. Thermal insulation composite systems based on polystyrene hard foam panels can burn relatively easily with the insulation thicknesses common today, especially more than 8 cm, from the normally unsecured openings (windows, doors) in the insulated wall surfaces or from the base. Nevertheless, approximately 90% of the thermal insulation composite systems produced annually are based on polystyrene rigid foam. Non-combustible mineral wool insulation boards have proven to be an alternative to polystyrene rigid foam boards. In comparison to the polystyrene rigid foam panels, however, the mineral wool insulation panels have lower strength properties, so that the mineral wool insulation panels must be processed and reinforced accordingly. To compensate for the weakening of the surface hardness associated with this, plates made of calcium silicate, fiber cement or aerated concrete are glued to the mineral wool insulation layer or fastened with insulation holders. Aerated concrete is admittedly an insulating layer suitable for composite thermal insulation systems, since, for example, the thermal coefficient of linear expansion is low and therefore cannot cause cracking in the plaster, the usual bulk densities of more than 400 kg / m 3 and the thermal conductivity of more than essentially 0.10 W / mK make the processing of such aerated concrete slabs cumbersome, since extremely thick insulation layers have to be applied in order to achieve adequate thermal insulation. However, these thick layers of insulation lead to a high weight of the thermal insulation composite system, which is disadvantageous on the one hand during processing and on the other hand causes high stress on the connecting means between the facade and the thermal insulation panels (cf. WO 95/11 357 A or
Darüber hinaus haben die Porenbetonplatten den Nachteil, daß sie nur eine geringe Bruchfestigkeit aufweisen, so daß insbesondere Kanten leicht abbrechen und die Oberflächen nicht abriebfest sind. Bei den auf Baustellen herrschenden Arbeitsbedingungen werden daher große Mengen Porenbetondämmplatten beschädigt, die sich dann nachteilig für das Wärmedämmverbund-System auswirken, sofern diese beschädigten Dämmplatten eingebaut werden.In addition, the aerated concrete slabs have the disadvantage that they have only one have low breaking strength, so that edges break off easily and the surfaces are not resistant to abrasion. At the construction sites prevailing working conditions are therefore large quantities of cellular concrete insulation panels damaged, which is then disadvantageous for the thermal insulation composite system impact if these damaged insulation boards installed become.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein Dämmstoffelement der gattungsgemäßen Art derart weiterzubilden, daß die voranstehend beschriebenen Nachteile vermieden werden können.Based on this prior art, the invention has for its object to develop an insulating element of the generic type such that the disadvantages described above can be avoided.
Die Lösung dieser Aufgabenstellung sieht bei einem Dämmstoffelement der gattungsgemäßen Art vor, daß das plattenförmige Element aus Porenbeton mit einer Rohdichte von 75 bis 250 kg/m3 und einer Wärmeleitfähigkeit zwischen 0,030 bis 0,050 W/mK besteht, dessen zumindest eine große Oberfläche mit einer festigkeitserhöhenden und haftvermittelnden Beschichtung versehen ist.The solution to this problem provides for an insulation element of the generic type that the plate-shaped element made of aerated concrete with a bulk density of 75 to 250 kg / m 3 and a thermal conductivity between 0.030 to 0.050 W / mK, whose at least one large surface with a strength-increasing and adhesive coating is provided.
Ein derartiges Dämmstoffelement ist insbesondere für Wärmedämmverbund-Systeme geeignet, wobei die relativ geringe Rohdichte eine Vereinfachung der Verarbeitung der Dämmstoffelemente ermöglicht und die Anforderungen an die Haftfähigkeit des auf die Fassade aufzutragenden Verbindungsmittels verringert. Weiterhin wird durch die festigkeitserhöhende und haftvermittelnde Beschichtung auf zumindest einer großen Oberfläche des plattenförmigen Elementes das Dämmstoffelement derart gestärkt, daß eine höhere Abriebfestigkeit und eine höhere Bruchfestigkeit der Kanten des Dämmstoffelementes erzielt werden.Such an insulation element is particularly suitable for composite thermal insulation systems suitable, the relatively low bulk density a simplification the processing of the insulation elements and the requirements the adherence of the lanyard to be applied to the facade reduced. Furthermore, the strength-increasing and adhesion-promoting Coating on at least a large surface of the plate Elementes the insulation element so strengthened that a higher abrasion resistance and a higher breaking strength of the edges of the insulation element be achieved.
Nach einem weiteren Merkmal der Erfindung ist vorgesehen, daß das plattenförmige Element aus Porenbeton eine Rohdichte von 100 bis 150 kg/m3 aufweist.According to a further feature of the invention it is provided that the plate-shaped element made of aerated concrete has a bulk density of 100 to 150 kg / m 3 .
Geeignete Beschichtungen können aus kunststoffhaltigen Bauklebern Mörteln, beispielsweise auf der Basis von hydraulisch abbindenden Zementen bestehen. Ebenso sind Kunstharzputze geeignet.Suitable coatings can be made from plastic-containing construction adhesives, for example on the basis of hydraulically setting cements consist. Resin plasters are also suitable.
Erfindungsgemäß sind die Oberflächen des plattenförmigen Elementes mit Tiefengründen auf der Basis von Acrylaten, Butadien-Styrol-Copolymerisaten und ähnlichen verseifungsbeständigen Kunststoff-Dispersionen oder -Lösungen stabilisiert. Da diese Substanzen negative Auswirkungen auf die Baustoffklasse haben können, werden sie vorzugsweise mit Kleber- und Mörtelschichten abgedeckt.According to the invention, the surfaces of the plate-shaped element are included Deep reasons based on acrylates, butadiene-styrene copolymers and similar saponification-resistant plastic dispersions or solutions stabilized. Because these substances are negative They may have an impact on the building material class covered with layers of adhesive and mortar.
Die Dicke der Beschichtung wird aus Gewichtsgründen möglichst gering gehalten. Es hat sich als vorteilhaft erwiesen, die Beschichtung mit einer Dicke von weniger als 5 mm aufzutragen.The thickness of the coating is kept as low as possible for reasons of weight. It has proven advantageous to coat with a thickness of less than 5 mm.
Alternativ kann die Beschichtung aus Kieselsäure bestehen, die als sogenannte Ormocere über die Nanotechnik aufgebracht wird und im wesentlichen in den unterhalb der Oberfläche liegenden Bereichen verfestigend wirkt. Weiterhin sind als Beschichtung mit Kieselsol, Wasser oder Aluminiumphosphaten gebundene, mit Kunststoffen dotierte Gemische von Mineralien wie Quarzsand, Aluminiumhydroxyd und ähnlichen geeignet. Hierbei ist lediglich sicherzustellen, daß Mineralien ausgeschlossen werden, die unter Feuchteinwirkung aufquellen.Alternatively, the coating can consist of silica, the so-called Ormocere is applied via nanotechnology and essentially solidifying in the areas below the surface acts. Furthermore, they are coated with silica sol, water or aluminum phosphates bound mixtures of minerals doped with plastics such as quartz sand, aluminum hydroxide and the like. Here is just to ensure that minerals are excluded that are under Swell up moisture.
Um die Biegezugfestigkeit des plattenförmigen Elementes aus Porenbeton zu erhöhen und eine gleichmäßige Krafteinleitung zu erreichen, werden erfindungsgemäß Gittergewebe, beispielsweise aus Glasfasern, Aramid- oder Kohlenstoff-Fasern, Zellulosefasern oder dergleichen auf einer oder beiden großen Oberflächen des plattenförmigen Elements in die Beschichtung eingebettet bzw. mit ihrer Hilfe aufgeklebt.The bending tensile strength of the plate-shaped element made of aerated concrete to increase and to achieve a uniform introduction of force are inventively Lattice fabric, for example made of glass fibers, aramid or Carbon fibers, cellulose fibers or the like on one or both large surfaces of the plate-shaped element embedded in the coating or glued on with their help.
Erfindungsgemäß weist das Dämmstoffelement Ausnehmungen, insbesondere Bohrungen für die Dämmstoffhalter auf. Diese Bohrungen werden beispielsweise entsprechend einem in den Zulassungsbedingungen für das Wärmedämmverbund-System bzw. auf die Plattengröße abgestimmten Dübelbild angeordnet. Übliche Dämmstoffhalter sind im Übergang vom Schaft zum flachen Halteteller kegelstumpfförmig erweitert, so daß es sich als vorteilhaft erwiesen hat, auch die Bohrungen kegelstumpfförmig erweitert auszubilden, so daß Kerbspannungen beim Einsetzen der Dämmstoffhalter vermieden werden. Die Bohrungen dienen gleichzeitig als Bohrhilfe, so daß beim Bohren auf der Baustelle ein Ausweiten der Bohrlöcher durch schräges Ansetzen und nachfolgender Korrektur vermieden werden kann.According to the invention, the insulation element has recesses, in particular Holes for the insulation holder. These holes are, for example according to one in the admission requirements for the Thermal insulation composite system or dowel pattern matched to the board size arranged. Usual insulation holders are in the transition from the shaft extended to the flat holding plate frustoconical, so that it turns out to be advantageous has proven that the bores are also frustoconically enlarged, so that notch stresses when inserting the insulation holder be avoided. The holes also serve as a drilling aid, so that When drilling on the construction site, the holes are widened by inclined Starting and subsequent correction can be avoided.
Die plattenförmigen Elemente aus Porenbeton sind zwar mit einer hohen Maßgenauigkeit herstellbar, können aber Verlegefugen nicht unbedingt vermeiden. Üblicherweise werden derartige Verlegefugen gemäß dem Stand der Technik bei Polystyrol-Hartschaumplatten mit Polyurethan-Ortschaum oberlächennah geschlossen. Diese Vorgehensweise stellt aber einen zusätzlichen Arbeitsschritt dar, der zeit- und damit kostenintensiv ist. Um diese Nachteile zu vermeiden, ist bei dem erfindungsgemäßen Dämmstoffelemente vorgesehen, daß an zumindest einer Schmalseite des plattenförmigen Elementes ein Mineralwollestreifen angeordnet ist.The plate-shaped elements made of aerated concrete are indeed high Dimensional accuracy can be produced, but cannot necessarily avoid laying joints. Such installation joints are usually according to the state the technology for polystyrene rigid foam panels with polyurethane foam closed near the surface. However, this procedure represents an additional one Step that is time-consuming and therefore costly. Around Avoiding disadvantages is with the insulation elements according to the invention provided that on at least one narrow side of the plate-shaped Element of a mineral wool strip is arranged.
Der Mineralwollestreifen besteht vorzugsweise aus mit Bindemitteln gebundene Einzelfasern, die im wesentlichen parallel zu der Flächennormalen der großen Oberflächen des plattenförmigen Elementes verlaufen, so daß der Mineralwollestreifen in einer Richtung rechtwinklig zur Flächennormalen der großen Oberflächen kompressibel ist und entsprechende Fugen verschließen kann.The mineral wool strip preferably consists of binders bound with binders Individual fibers that are essentially parallel to the surface normal of the large surfaces of the plate-shaped element, so that the Mineral wool stripes in a direction perpendicular to the surface normal of the large surfaces is compressible and seal the corresponding joints can.
Vorzugsweise sind an mehreren Schmalseiten des plattenförmigen Elementes Mineralwollestreifen angeordnet. Die eine einheitliche Materialstärke aufweisen. Es besteht aber auch die Möglichkeit, an den unterschiedlichen Schmalseiten des plattenförmigen Elementes Mineralwollestreifen mit unterschiedlichen Materialstärken anzuordnen, um das Dämmelement in Abhängigkeit der Fugenbreite entweder mit einem schmaleren Mineralwollestreifen oder mit einem breiterem Mineralwollestreifen im Wärmedämmverbundsystem anzuordnen.Are preferably on several narrow sides of the plate-shaped element Mineral wool stripes arranged. The one uniform material thickness exhibit. But there is also the possibility of working on the different Narrow sides of the plate-shaped element mineral wool stripes with different Arrange material thicknesses depending on the insulation element the joint width either with a narrower strip of mineral wool or with a wider mineral wool strip in the thermal insulation composite system to arrange.
Eine Materialstärke zwischen 5 und 50 mm, vorzugsweise kleiner als 15 mm hat sich bei den Mineralwollestreifen als vorteilhaft erwiesen.A material thickness between 5 and 50 mm, preferably less than 15 mm has proven to be advantageous for mineral wool strips.
Wärmedämmverbund-Systeme mit den erfindungsgemäßen Dämmstoffelementen können auch ein Schienensystem aufweisen, welches die Dämmstoffelemente an der Fassade halten. Zu diesem Zweck ist vorgesehen, daß zumindest zwei, insbesondere parallel ausgerichtete Schmalseiten des plattenförmigen Elements Nuten aufweisen, die vorzugsweise sägend in das plattenförmige Element eingebracht sind. In diese Nuten können dann entsprechend ausgebildete Elemente des Schienensystems eingreifen, um die Dämmstoffelemente an der Fassade zu haltern.Thermal insulation composite systems with the insulation elements according to the invention can also have a rail system, which the insulation elements hold on the facade. For this purpose it is provided that at least two, in particular parallel narrow sides of the have plate-shaped elements grooves, which are preferably sawing in the plate-shaped element are introduced. These grooves can then be used accordingly trained elements of the rail system intervene to the To hold insulation elements on the facade.
Die Nuten sind vorzugsweise 1 bis 3 mm hoch und 5 bis 20 mm breit ausgebildet.The grooves are preferably 1 to 3 mm high and 5 to 20 mm wide.
Zur Stabilisierung der Schmalseiten bzw. Kanten des plattenförmigen Elementes bzw. um gegebenenfalls die Eingrifftiefe der Schienen zu reduzieren, sind die die Nuten aufweisenden Seitenflächen mit in die Seitenflächen eindringenden Kunststoffdispersionen, Kieselsol und/oder Wasserglas verfestigt.To stabilize the narrow sides or edges of the plate-shaped element or to reduce the depth of engagement of the rails if necessary, are the side surfaces with the grooves that penetrate into the side surfaces Plastic dispersions, silica sol and / or water glass solidified.
Nach einem weiteren Merkmal der Erfindung ist vorgesehen, daß auf zumindest einer großen Oberfläche des plattenförmigen Elements, insbesondere der der Fassade des Gebäudes zuzuwendenden Oberfläche, vorzugsweise unter Zwischenlage der Beschichtung, eine kompressible Mineralwolle-Dämmplatte oder ein Mineralwolle-Dämmfilz angeordnet ist. Diese Ausgestaltung hat sich insbesondere bei einer Verwendung der erfindungsgemäßen Dämmstoffplatten in Wärmedämmverbundsystemen mit Schienensystemen bewehrt. Die Befestigung der Dämmplatten mit Schienen erfolgt in der Regel bei unebenen Untergründen, wobei diese Unebenheiten durch die Schienen bzw. Unterlegscheiben unter den Schienen ausgeglichen werden. Die Dämmplatten liegen bei derartigen Verhältnissen in einem bestimmten Abstand von der Fassade, so daß sich zwischen der Fassade und den Dämmplatten ein Hohlraum bildet. Ein derartiger Hohlraum bzw. mehrere derartige Hohlräume ermöglicht eine Zirkulation der Luft, so daß eine deutliche Abminderung des Wärmedurchlaßwiderstandes zu verzeichnen ist. Diese Abminderung des Wärmedurchlaßwiderstandes führt darüber hinaus bei durchgehenden Hohlräumen mit einer Verbindung zur Außenluft zu einer fast vollständigen Aufhebung der Dämmwirkung. Um diese Problematik zu vermeiden, ist die kompressible Mineralwolle-Dämmplatte bzw. der Mineralwolle-Dämmfilz vorgesehen, mit dem aufgrund der Kompressibilität entsprechende Hohlräume verschlossen werden können.According to a further feature of the invention it is provided that at least a large surface of the plate-shaped element, in particular the surface facing the facade of the building, preferably with a layer of the coating, a compressible mineral wool insulation board or a mineral wool insulation felt is arranged. This configuration has been particularly useful when using the invention Insulation boards in composite thermal insulation systems with rail systems reinforced. The insulation boards are fastened with rails in usually on uneven surfaces, whereby these unevenness through the Rails or washers are balanced under the rails. With such conditions, the insulation boards are within a certain range Distance from the facade, so that between the facade and the Insulation boards form a cavity. Such a cavity or several such cavities allow air to circulate so that a clear one Reduction in the thermal resistance is recorded. This Reduction of the thermal resistance also leads to continuous cavities with a connection to the outside air to a almost complete cancellation of the insulation effect. To address this issue avoid, is the compressible mineral wool insulation board or mineral wool insulation felt provided with the corresponding due to the compressibility Cavities can be closed.
Hierzu hat es sich als vorteilhaft erwiesen, die Mineralwolle-Dämmplatte bzw. den Mineralwolle-Dämmfilz mit einer Materialstärke von 10 bis 50 mm auszubilden. Ein maximales Verschließen der Hohlräume ergibt sich dann, wenn die Mineralwolle-Dämmplatte bzw. der Mineralwolle-Dämmfilz die Oberfläche des plattenförmigen Elementes vollflächig abdeckt. Es besteht aber auch die Möglichkeit, daß auf die Oberfläche des plattenförmigen Elementes die Mineralwolle-Dämmplatte bzw. der Mineralwolle-Dämmfilz teilflächig aufgebracht ist, wobei sich eine streifenförmige Ausgestaltung dieser Elemente als vorteilhaft erwiesen hat. Vorzugsweise sind diese Mineralwolle-Streifen umlaufend oder parallel zu den Längsseiten oder als einzelner Dichtstreifen angeordnet.The mineral wool insulation board has proven advantageous for this or the mineral wool insulation felt with a material thickness of 10 to 50 mm train. The cavities are then maximally closed, if the mineral wool insulation board or the mineral wool insulation felt the Cover the entire surface of the plate-shaped element. It exists but also the possibility that on the surface of the plate-shaped element the mineral wool insulation board or the mineral wool insulation felt over part of the surface is applied, with a strip-like configuration of this Has proven beneficial. These are preferably mineral wool strips all around or parallel to the long sides or as a single Sealing strips arranged.
Bei einer vollflächigen Überdeckung des plattenförmigen Elementes hat es sich als vorteilhaft erwiesen, die Mineralwolle-Dämmplatte bzw. den Mineralwolle-Dämmfilz mit Aussparungen zur Aufnahme eines Kleberelementes auszubilden. Vorzugsweise bildet das Kleberelement im ausgehärteten Zustand einen Distanzhalter. Dieser Distanzhalter ist druckbelastbar und verhindert, daß die Dämmplatte bei äußerer Druckbelastung durchbricht. Weiterhin erhöht der Distanzhalter in Verbindung mit einem Dämmstoffhalter die Standsicherheit des Wärmeverbund-Systems.With a full coverage of the plate-shaped element, it has proved to be advantageous, the mineral wool insulation board or the mineral wool insulation felt with cutouts for receiving an adhesive element train. The adhesive element preferably forms in the hardened state a spacer. This spacer can withstand pressure and prevents that the insulation board breaks through under external pressure. Farther the spacer increases in conjunction with an insulation holder Stability of the thermal composite system.
Weitere Vorteile und Nachteile ergeben sich aus der nachfolgenden Beschreibung der zugehörigen Zeichnung. In der Zeichnung zeigen:
- Figur 1
- eine erste Ausführungsform eines Dämmstoffelementes in perspektivischer Ansicht;
Figur 2- eine zweite Ausführungsform eines Dämmstoffelementes in Seitenansicht und
Figur 3- eine dritte Ausführungsform eines Dämmstoffelementes in perspektivischer Ansicht.
- Figure 1
- a first embodiment of an insulation element in a perspective view;
- Figure 2
- a second embodiment of an insulating element in side view and
- Figure 3
- a third embodiment of an insulation element in a perspective view.
In der Figur 1 ist ein Dämmstoffelement 1 zur Wärmedämmung von Gebäudefassaden und zur Verwendung in Wärmedämmverbund-Systemen dargestellt.In the figure 1 is an insulation element 1 for thermal insulation of building facades and shown for use in composite thermal insulation systems.
Das Dämmstoffelement 1 besteht aus einem plattenförmigen Element 2 aus
Porenbeton mit einer Rohdichte von 100 kg/m3 und einer Wärmeleitfähigkeit
von 0,040 W/mK. Auf den beiden großen Oberflächen des Elementes 2 ist
eine festigkeitserhöhende und haftvermittelnde Beschichtung 3 angeordnet.
Die Beschichtung kann aus kunststoffhaltigen Bauklebern, Mörteln, beispielsweise
auf der Basis von hydraulisch abbindenden Zementen und/oder
Kunstharzputzen bestehen. The insulation element 1 consists of a plate-shaped
Es ist zu erkennen, daß das Dämmstoffelement 1 vier Bohrungen 4 aufweist,
die in den Eckbereichen des Dämmstoffelementes 1 angeordnet sind. Diese
Bohrungen 4 dienen der Aufnahme von Dämmstoffhaltern, um das Dämmstoffelement
1 an der Fassade des Gebäudes zu befestigen. Die Bohrungen
4 sind hierbei in einem auf die Plattengröße abgestimmten Dübelbild angeordnet.It can be seen that the insulation element 1 has four
An drei der vier Schmalseiten 5 des Elementes 2 sind Mineralwollestreifen 6,
bestehend aus Mineralfasem befestigt. Die Mineralwollestreifen haben hierbei
eine an jeder Schmalseite 5 unterschiedliche Materialstärke und dienen
dem Fugenausgleich bei der Verlegung mehrerer Dämmstoffelemente 1 nebeneinander.
Die Mineralfasern der Mineralwollestreifen 6 sind parallel zu
den Schmalseiten 5 bzw. parallel zur Flächennormalen des Elementes 2
ausgerichtet, so daß die Mineralwollestreifen 6 in Richtung auf das Dämmstoffelement
1 kompressible ausgebildet sind.On three of the four
Die in Figur 2 dargestellte zweite Ausführungsform des erfindungsgemäßen
Dämmstoffelementes 1 besteht ebenfalls aus dem plattenförmigen Element 2
aus Porenbeton mit den voranstehend angegebenen Charakteristiken. Weiterhin
ist zu erkennen, daß auch bei der Ausführungsform gemäß Figur 2
das Element 2 an beiden großen Oberflächen eine Beschichtung 3 aufweist.The second embodiment of the invention shown in Figure 2
Insulating element 1 also consists of plate-shaped
Zur Befestigung des Dämmstoffelementes 1 gemäß Figur 2 sind wiederum
Dämmstoffhalter vorgesehen, die nicht näher dargestellt sind und in Bohrungen
4 einsetzbar sind. Die Bohrungen 4 sind hierbei an einem Ende kegelstumpfförmig
erweiternd ausgebildet, so daß entsprechend ausgebildete
Dämmstoffhalter eingesetzt werden können. To fix the insulation element 1 according to Figure 2 are again
Insulation holder provided, which are not shown in detail and in
An der der Fassade zugewandten Oberfläche 7 des Elementes 2 ist vollflächig
eine Mineralwolleplatte 8 aufgeklebt. Die Mineralwolleplatte 8 ist in
Richtung auf die Oberfläche 7 kompressibel ausgebildet.The surface 7 of the
Darüber hinaus ist zu erkennen, daß die Mineralwolleplatte 8 Ausnehmungen
9 aufweist, in die Kleberelemente 10 eingesetzt sind. Diese Kleberelemente
bilden im ausgehärteten Zustand Distanzhalter, die ein Brechen des
Elementes 2 verhindern.In addition, it can be seen that the mineral wool plate 8
Schließlich ist in Figur 3 eine weitere Ausführungsform eines Dämmstoffelementes
1 dargestellt, welches wiederum aus einem plattenförmigen Element
2 mit beidseitig an den großen Oberflächen angeordneten Beschichtungen
3 besteht. In den Längskanten des Elementes 2 sind durchgehend
verlaufende Nuten 11 eingesägt, die der Aufnahme eines Schenkels einer
Befestigungsschiene dienen, welche Befestigungsschiene nicht näher dargestellt
ist und mit der Fassade des zu dämmenden Gebäudes verschraubt
wird.Finally, FIG. 3 shows a further embodiment of an insulation element
1, which in turn consists of a plate-shaped
Claims (29)
- Insulating element, particularly for thermal insulation of façades of buildings and for use in thermal insulation compound systems, said insulating element consisting of a board-like element made of foam mortar having a bulk density of 75 kg to 250 kg/m3 and a thermal conductivity between 0.030 to 0.050 W/mK, of which at least one large surface is provided with a coating which increases the strength and mediates adhesion.
- Insulating element according to claim 1,
characterized in that said board-like element made of foam mortar has a bulk density of 100 to 150 kg/m3. - Insulating element according to claim 1,
characterized in that said coating consists of synthetic material-containing structural adhesives, mortars, for example on the basis of hydraulically setting cements and/or artificial resin plasters. - Insulating element according to claim 1,
characterized in that the surfaces of the board-like element are coated in a stabilizing fashion with a penetrating stopper on the basis of acrylates, butadiene-styrene-copolymers and/or similar non-saponifying plastic dispersions or solutions. - Insulating element according to claim 4,
characterized in that said penetrating stopper on the surfaces of said board-like element is covered by a layer of adhesive or mortar. - Insulating element according to claim 1,
characterized in that the thickness of the coating is smaller than 5 mm. - Insulating element according to claim 1,
characterized in that said coating consists of silicic acid which is applied as ormocere through nanotechnics and which has a solidifying effect in the regions arranged under the surfaces of the board-like element. - Insulating element according to claim 1,
characterized in that said coating consists of mixtures of minerals like silica sand, aluminium hydroxides or the like, which mixtures are combined with silica sol, water glass or aluminium phosphates and are doped with synthetic materials. - Insulating element according to claim 1,
characterized in that at least the coating on one large surface of said board-like element includes a lattice fabric which particularly consists of glass fibres, aramide or carbon fibres, cellulose fibres or the like. - Insulating element according to claim 9,
characterized in that said lattice fabric is embedded in said coating. - Insulating element according to claim 9,
characterized in that said lattice fabric is arranged between said coating and the surface of the board-like element. - Insulating element according to claim 1,
characterized in that said board-like element and the coating include plural receiving means, particularly bores, for insulating material holders. - Insulating element according to claim 12,
characterized in that said bores are arranged according to a dowel image adapted to the board size. - Insulating element according to 12,
characterized in that said bores are enlarged in the form of a truncated cone. - Insulating element according to claim 1,
characterized in that a strip of mineral wool is arranged at least on one narrow side of said board-like element. - Insulating element according to claim 15,
characterized in that said strip of mineral wool consists of single fibres which extend substantially parallel to the surface normal of the large surfaces of said board-like element. - Insulating element according to claim 15,
characterized in that strips of mineral wool having a uniform material thickness are arranged on plural narrow sides of said board-like element. - Insulating element according to claim 15,
characterized in that strips of mineral wool having a different material thickness on different narrow sides are arranged on plural narrow sides of said board-like element. - Insulating element according to claims 15 to 18,
characterized in that said strips of mineral wool have a material thickness between 5 and 50 mm, preferably smaller than 15 mm. - insulating element according to claim 1,
characterized in that at least two narrow sides of said board-like element, which are particularly adjusted in parallel, include grooves that a preferably formed by sawing. - Insulating element according to claim 20,
characterized in that said grooves have a height of 1 to 3 mm and a width of 5 to 20 mm. - Insulating element according to claim 20,
characterized in that said the lateral surfaces which have said grooves are solidified by means of synthetic dispersions, silica sol and/or water glass penetrating into said lateral surfaces. - Insulating element according to claim 1,
characterized in that a compressible mineral wool insulating board or a mineral wool insulating felt is arranged on at least one large surface of said board-like element, particularly on the surface to be turned to the façade of the building and preferably under the interposition of the coating. - Insulating element according to claim 23,
characterized in that said mineral wool insulating board or mineral wool insulating felt have a material thickness of 10 to 50 mm. - Insulating element according to claim 23,
characterized in that said mineral wool insulating board or mineral wool insulating felt cover the surface of said board-like element all over. - Insulating element according to claim 23,
characterized in that said mineral wool insulating board or mineral wool insulating felt have recesses for receiving an adhesive element. - Insulating element according to claim 26,
characterized in that said adhesive element in its cured state forms a spacer. - Insulating element according to claim 23,
characterized in that said mineral wool insulating board or mineral wool insulating felt cover the surface of said board-like element partially, particularly in the form of strips. - Insulating element according to claims 23 to 28,
characterized in that said mineral wool insulating board or mineral wool insulating felt is bonded to said board-like element.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19806454 | 1998-02-17 | ||
DE1998106454 DE19806454C2 (en) | 1998-02-17 | 1998-02-17 | Insulation element |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0936321A2 EP0936321A2 (en) | 1999-08-18 |
EP0936321A3 EP0936321A3 (en) | 2001-07-11 |
EP0936321B1 true EP0936321B1 (en) | 2003-12-17 |
Family
ID=7857961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99100766A Revoked EP0936321B1 (en) | 1998-02-17 | 1999-01-16 | Insulating element |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0936321B1 (en) |
AT (1) | ATE256801T1 (en) |
DE (2) | DE19860993C2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE20303405U1 (en) * | 2003-03-03 | 2003-07-17 | Josef Hain GmbH & Co. KG, 83561 Ramerberg | thermal insulation element |
DE102005034037A1 (en) * | 2004-09-25 | 2006-04-06 | Deutsche Rockwool Mineralwoll Gmbh + Co Ohg | Mineral fiber insulating element and process for its production |
DE102006028841B4 (en) * | 2005-06-21 | 2014-05-15 | Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg | Insulating arrangement and method for producing an insulating strip |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1950946A1 (en) * | 1969-10-09 | 1971-04-29 | Dargie Robert George | Contruction elements for walls partictions - or similar |
DE2854228C2 (en) * | 1978-12-15 | 1983-11-24 | Ytong AG, 8000 München | Multi-layer sheet made of aerated concrete, as well as process for their manufacture |
DE3035242A1 (en) * | 1980-09-18 | 1982-03-25 | Karl Heinz 3353 Bad Gandersheim Vahlbrauk | Building panel or wall element with foamed ceramic core - which is partly or completely coated with hydrosol colloidal cement to increase strength |
DE3415581A1 (en) * | 1984-04-26 | 1985-11-07 | Rheinhold & Mahla GmbH, 8000 München | Partition for a false floor |
DE3611835A1 (en) * | 1985-04-12 | 1986-10-30 | Dipl.-Ing. Fr. Bartram GmbH & Co KG, 2354 Hohenwestedt | Process for producing a wall element, and rain-tight wall element |
IT232275Y1 (en) * | 1993-10-19 | 1999-12-17 | Seal Costruzioni S R L | CONCRETE PANEL. |
-
1998
- 1998-02-17 DE DE19860993A patent/DE19860993C2/en not_active Expired - Fee Related
-
1999
- 1999-01-16 EP EP99100766A patent/EP0936321B1/en not_active Revoked
- 1999-01-16 DE DE59908046T patent/DE59908046D1/en not_active Revoked
- 1999-01-16 AT AT99100766T patent/ATE256801T1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE19860993C2 (en) | 2002-01-17 |
DE59908046D1 (en) | 2004-01-29 |
EP0936321A2 (en) | 1999-08-18 |
ATE256801T1 (en) | 2004-01-15 |
EP0936321A3 (en) | 2001-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007040938B4 (en) | Wall structure and thermal insulation board | |
EP1088945B1 (en) | Insulating element for a facade | |
EP2295660B1 (en) | Method for mounting insulation panels | |
EP1408168B1 (en) | Thermal insulation system and building fitted with same | |
DE10333299B4 (en) | thermal insulation system | |
EP2143849A2 (en) | Wall cladding and method for drying a wall surface | |
DE19951105C2 (en) | Heat and / or sound insulation element | |
EP0936321B1 (en) | Insulating element | |
DE3444881A1 (en) | Sound-insulating building-wall and/or building-floor erection | |
DE8532239U1 (en) | Inorganic multilayer lightweight panel | |
DE19913496C5 (en) | Floor insulation element | |
DE202012100418U1 (en) | Building facade with locking element and locking element | |
DE19806454C2 (en) | Insulation element | |
EP0088284B1 (en) | Prefabricated composite panel | |
EP0939173B1 (en) | Process for making an insulation board from mineral fibres and insulation board | |
AT399004B (en) | THERMAL INSULATION PANEL | |
EP0278584A1 (en) | Ceramic plate to form a floor-covering | |
EP2826928B1 (en) | Building facade or roof with natural stone panels or ceramic tiles and method for manufacture | |
DE29811386U1 (en) | Facade cladding element | |
AT409986B (en) | A multilayer front shell | |
DE102004038447A1 (en) | Roof insulation plate consists of mineral fibers and, within a zone adjacent to the plate surface facing the building structure, is provided with a first impregnation impeding water vapor diffusion | |
DE10227736A1 (en) | Heat and/or sound insulation for buildings uses mineral fibre panels adjoining socket strips placed flush with insulation on surface of window reveal or other wall opening | |
EP1295998B1 (en) | Heat and sound insulation; Insulating element and mineral fibre lamella | |
DE4101133C2 (en) | Process for fastening sheets to lightweight wood wool panels | |
DE29802056U1 (en) | Thermally insulating composite component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE Kind code of ref document: A2 Designated state(s): AT DE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010620 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DEUTSCHE ROCKWOOL MINERALWOLL GMBH & CO. OHG |
|
AKX | Designation fees paid |
Free format text: AT BE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT DE |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE |
|
REF | Corresponds to: |
Ref document number: 59908046 Country of ref document: DE Date of ref document: 20040129 Kind code of ref document: P |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: XELLA BAUSTOFFE,TECHNOLOGIE- UND FORSCHUNGSGESELLS Effective date: 20040915 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20060111 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060112 Year of fee payment: 8 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: XELLA BAUSTOFFE, TECHNOLOGIE- UND FORSCHUNGSGESELL Effective date: 20040915 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20061106 |