EP0935504A1 - Procede de fabrication par extrusion d'une barre profilee en metal - Google Patents

Procede de fabrication par extrusion d'une barre profilee en metal

Info

Publication number
EP0935504A1
EP0935504A1 EP97943712A EP97943712A EP0935504A1 EP 0935504 A1 EP0935504 A1 EP 0935504A1 EP 97943712 A EP97943712 A EP 97943712A EP 97943712 A EP97943712 A EP 97943712A EP 0935504 A1 EP0935504 A1 EP 0935504A1
Authority
EP
European Patent Office
Prior art keywords
preform
profile strand
mold
chamber
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97943712A
Other languages
German (de)
English (en)
Other versions
EP0935504B1 (fr
Inventor
Miroslaw Plata
Martin Bolliger
Grégoire Arnold
Pius Schwellinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alusuisse Lonza Services Ltd
Alusuisse Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Lonza Services Ltd, Alusuisse Technology and Management Ltd filed Critical Alusuisse Lonza Services Ltd
Priority to EP97943712A priority Critical patent/EP0935504B1/fr
Publication of EP0935504A1 publication Critical patent/EP0935504A1/fr
Application granted granted Critical
Publication of EP0935504B1 publication Critical patent/EP0935504B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase

Definitions

  • the invention relates to a method for producing a profile strand from a preform made of an at least partially metallic material, the preform being pressed into the profile strand by a shaping opening.
  • the scope of the invention also includes a device suitable for carrying out the method and an application of the method or use of the device.
  • a known method for producing metal profiles is extrusion. With today's pressing technology, however, it is hardly possible to produce large profiles from aluminum alloys with a width of more than about 700 mm. Another disadvantage is that profile wall thicknesses of less than about 2 mm can hardly be achieved. In terms of weight and cost savings, however, it would be highly desirable to reduce the wall thickness of profiles, i.e. to achieve wall thicknesses of less than 1 mm while observing the usual geometric profile tolerances.
  • the limited pressing force, the limited possibilities of a uniform metal distribution with regard to temperature and flow speed are the essential factors that stand in the way of the production of extremely thin-walled profiles when using today's pressing technology.
  • the invention is therefore based on the object of providing a method of the type mentioned at the outset and a device which is suitable for carrying out the method and can also be used to process hard alloys and composite materials of all types cost-effectively to produce high-quality products.
  • Another goal is the economical production of extremely thin-walled large profiles and / or large profiles with extreme width.
  • the preform deforms to the profile strand in the partially solid / partially liquid state and the profile strand in the partially solid / partially liquid state for solidification is passed through a chilled mold.
  • the preform is usually inserted in the form of a bolt into a preform chamber described in more detail below.
  • the preform and preform chamber thus correspond to the press bolt or the recipient during extrusion.
  • the inventive deformation of the preform in the partially solid / partially liquid state allows materials to be processed into profiles with a constant pressing force, which can hardly be produced or can only be produced very economically using conventional extrusion.
  • a constant pressing force which can hardly be produced or can only be produced very economically using conventional extrusion.
  • comparable profile dimensions can be pressed on smaller systems compared to conventional manufacturing, which has a favorable effect on the manufacturing costs.
  • a major advantage of the method according to the invention is that hard alloys and composite materials can be processed into profiles with metallurgical properties that cannot be achieved using conventional extrusion.
  • the central idea on which the method according to the invention is based is to bring the preform so close to the final cross section with the lowest possible pressing force that final shaping of the profile strand cross section can also be carried out using a die with a low pressing force. This is achieved by the deformation according to the invention in the partially solid / partially liquid state.
  • the use of preforms in the partially solid / partially liquid state has the advantage over the use of conventional, completely solidified press bolts that the forming can be carried out with a significantly lower pressing force. If the proportion of liquid phase is kept low compared to the solid phase proportion, solidification can be achieved quickly enough even in thick-walled profile areas.
  • the pressure on the preform i.e. the pressing force
  • the pressing force for example as a result of the high recipient temperature of up to 600 ° C. required for special additives, can be increased in an advantageous development of the method according to the invention, the pressing of the preform into the profile strand by a tensile force acting on the profile strand support.
  • the degree of deformation during the transition from the preform to the profile strand in the partially solid / partially liquid state is preferably at least 50%, preferably at least 80%.
  • the degree of deformation here means the decrease in the cross section during the deformation of the preform to form the extruded profile.
  • the profile strand can be passed through a die immediately after exiting the mold for final shaping of the profile strand cross-section.
  • This final shaping of the profile strand cross section is expediently carried out with a degree of deformation of at most 15%, preferably at most 10%.
  • the profile strand is preferably cooled by complete evaporation of a coolant sprayed onto the profile strand. Cooling with complete evaporation of the coolant prevents liquid coolant from being able to feed back in the direction of the hot metal, which may still be in a partially liquid state.
  • the cooling device can be arranged as close as possible to the location of the desired cooling, ie as close as possible to the mold or the die.
  • the proportion of liquid phase in the preform during its deformation depends on the type of material to be processed. In general, this proportion is at most 70% and is preferably about 20 to 50%. In principle, all materials can be used for the preforms in which a partially solid / partially liquid state can be set within a temperature interval that is sufficiently wide for practical use. Suitable materials are, for example
  • Proportions solid / liquid e.g. Hard alloys of the type AlMg or MgAl
  • Aluminum and magnesium alloys are particularly suitable as the metal matrix. Their basic properties such as mechanical strength and elongation can be achieved in a known manner via the different types of alloy. The hardness, rigidity and other properties can be favorably influenced with the non-metallic additives.
  • Preferred non-metallic additives are ceramic materials such as metal oxides, metal nitrides and metal carbides. Examples of such materials are silicon carbide, aluminum oxide, boron carbide, silicon nitride and boron nitride.
  • profiles can be made from composite materials so that the preform already contains all the materials in the desired shape. With the method according to the invention, however, it is also possible to add an additional material to the preform in the partially solid / partially liquid state before it enters the mold.
  • This additional material can be added in different forms and also in different aggregate states.
  • the additional material can be fed continuously to the preform in solid form as wire, fibers or powder.
  • wires can remain in the profile, for example in the form of reinforcements.
  • a material can also be added that melts in the partially liquid / partially solid area and alloys there or triggers a chemical reaction.
  • the additional material can also be added in a liquid or gaseous state.
  • preforms can be composed of different material areas with different cross sections. For example, it is possible to equip the edge zone or even inner parts of a profile with mechanical properties that are different from the matrix, such as greater hardness, rigidity, abrasion resistance and the like.
  • preforms with cross-sectionally different material areas are made possible by leading the preform through a heating zone prior to forming the profile strand and setting it in the heating zone to a uniform solid / liquid ratio over the entire cross section of the profile strand.
  • a cross-sectionally different temperature profile can be set in the heating zone depending on cross-sectionally different material areas.
  • a suitable device comprises an optionally heatable preform chamber for receiving the preform, an optionally heatable mold chamber adjoining the preform chamber for shaping the preform into a profile strand, and a cooled mold adjoining the mold chamber for solidification of the profile strand, optionally for the final shaping of the profile strand cross section immediately after the mold can also be arranged as a die.
  • the device according to the invention can be followed by a pull-out device for applying a tensile force to the profile strand and thus for supporting the entire pressing process.
  • the pull-out device can comprise grippers and / or drive rollers.
  • the mold chamber wall preferably merges into the mold wall with a constant curvature, i.e. the cross-section of the preform deforming to the profile strand is continuously decreasing.
  • Heating lines are arranged in the preform chamber and / or in the molding chamber to generate or maintain the partially solid / partially liquid state of the preform.
  • a heating device is expediently arranged between the preform chamber and the molding chamber. This preferably has individually heatable flow channels for the preform.
  • the heating device consists of at least two disk-shaped heating elements with integrated heating conductors, which are individually adjustable.
  • a device for direct cooling is provided for further cooling of the profile strand emerging from the mold or from the die. For the reasons mentioned above, a cooling device with complete evaporation of the coolant applied to the profile strand is preferred.
  • a particularly preferred area of application of the method according to the invention and of the device is seen in the production of profiles with cross-sectionally different material areas.
  • Fig. 2-4 the longitudinal and cross-section through different preforms with cross-sectionally different material areas
  • FIG. 5 shows a plan view of a disk-shaped heating element
  • FIG. 6 shows a partial cross section through the heating element of Figure 5 along the line I-I;
  • FIG. 7 shows a longitudinal section through a heating device with heating elements
  • FIG. 8 shows a temperature profile over the length of the heating device from FIG. 7; 9 shows another embodiment of a heating device with heating elements.
  • an extrusion system for producing metal profiles which is not shown in the drawing for the sake of a better overview, has a recipient 10 with a preform chamber 12 for receiving preforms 36.
  • the preform chamber 12 is followed - in the pressing direction x - in sequence by a heating device 42, a molding chamber 14, a mold 16 and a die 18.
  • the preform chamber 12 and the mold chamber 14 are equipped with heating lines 20, 21 for heating the two chambers 12, 14.
  • the heating device 42 has a multiplicity of individually heatable flow channels 44 arranged parallel to the pressing direction x for heating the preform 36 to an equilibrium state with respect to the desired solid / liquid ratio.
  • An intermediate layer 15 made of a heat-insulating material is arranged between the molding chamber 14 and the mold 16.
  • the mold 16 is equipped with a first cooling device 24 for indirectly cooling the metal strand which solidifies on contact with the mold wall 26.
  • a second cooling device 30 is arranged within the die 18 and is used for the direct cooling of the profile strand 40 emerging from the die by direct application of coolant.
  • the profile chamber 14 can be provided with a corresponding mandrel insert in the same way as in the case of extrusion.
  • An insertion channel 46 for feeding an additional material 48 opens into the partially solid / partially liquid area in the molding chamber 14.
  • This additional material 48 can be in solid form as wire, fibers or powder, in liquid or also in gas shaped state are supplied.
  • a pull-out device 64 is arranged on the exit side of the die 18.
  • a tensile force K is applied to the extrusion 40 emerging from the die 18 in the pressing direction x via drive rollers 66. With this measure, the pressing process is relieved, so that an acceptable pressing speed can be achieved even at elevated pressing temperatures.
  • the preform 36 in the form of a metal bolt which has usually already been preheated is introduced into the preform chamber 12 and further heated via the heating lines 20.
  • the preform 36 is driven in the pressing direction x via a punch 32 with a pressing disk 34 and transferred to the desired partially solid / partially liquid state within the heating device 42.
  • the main part of the deformation of the preform 36 takes place in the molding chamber 14, the wall 22 of the molding chamber 14 continuously approaching the inlet opening of the mold 16.
  • the metal strand solidifies from the partially solid / partially liquid state f / fl to the solid state f along a solidification front 38 starting from the mold wall 26.
  • the solidified metal strand enters the die 18 and is finally shaped there in a die opening 28.
  • the shape of the profile strand 40 within the mold 16 is already approximated in such a way that there is only a slight change in cross-section or a weak deformation in the die 18, ie the die 18 is used primarily to form a high-quality profile surface and to produce a dimensionally accurate one Profile cross-section.
  • metals with metallic or non-metallic additives that have a higher melting point than the base metal are also suitable as materials for the preform 36 to be fed into the preform chamber 12.
  • These materials include, for example, particle or fiber reinforced materials with an aluminum matrix, i.e. so-called metal matrix composites.
  • Other suitable materials are alloys - in particular aluminum alloys - in the thixotropic state, and non-thixotropic hard alloys such as AlMg alloys, in particular alloys with eutectic solidification.
  • FIGS. Different preforms 36 with material areas A, B, C, D with different cross sections are shown by way of example in FIGS. It is easy to understand that these preforms can be used to produce profiles with different material properties. With a temperature profile within the heating device 42 that is cross-sectionally adapted to the respective material areas, it can be achieved that a uniform solid / liquid ratio is set in all material areas A, B, C, D at the outlet of the heating device 42.
  • the preforms 36 can in principle already be introduced into the preform chamber 12 in the partially solid / partially liquid state. Because of the simpler handling of completely rigid preforms, however, these are usually heated to just below the lowest solidus temperature and only converted into the desired partially solid / partially liquid state within the preform chamber 12 and the molding chamber 14.
  • the heating device 42 is composed of individual disk-shaped heating elements 50. These heating elements 50 made, for example, of steel have openings 52 which are surrounded by grooves 54 machined into the surface. After the insertion of heating wires 56, the grooves 54 are welded closed.
  • FIG. 7 shows the series of disk-shaped heating elements 50 to the heating device 42. The openings 52 of the individual disk-shaped heating elements 50 are matched to one another in such a way that they form the continuous flow channels 44.
  • FIG. 8 shows the percentage of liquid in the material to be processed over the length of the heating device 42 of FIG. 7.
  • FIG. 9 shows an alternative embodiment of a heating device 42.
  • Disk-shaped heating elements 58 made of, for example, boron nitride have heating conductors 60 integrated in their surface. The thickness of the heating elements 58 is, for example, 1 mm.
  • the individual heating elements 58 are separated from one another by intermediate plates 62 made of graphite reinforced with carbon fibers, for example.
  • the heating elements 58 and the intermediate disks 62 have openings 52 which form the flow channels 44 as a whole.
  • Such a heating device can be operated at temperatures above 1000 °, so that the radiation phase fraction can be set to approximately 20% by heat radiation into the preform 36 even before it enters the heating device 42.
  • a desired temperature profile can be set much faster and more precisely with this device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Extrusion Of Metal (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Telephone Function (AREA)

Abstract

Selon ce procédé de fabrication par extrusion d'une barre profilée (40) constituée au moins partiellement d'un matériau métallique, on extrude une préforme (36) dans un état partiellement solide ou partiellement liquide jusqu'à obtenir une barre profilée (40) et on conduit la barre profilée à l'état partiellement solide ou partiellement liquide à travers une coquille refroidie (16) afin de l'amener à se solidifier. Le dispositif correspondant comprend une chambre (12) de réception des préformes (36) le cas échéant chauffable, une chambre (14) d'extrusion des préformes (36) en barres profilées (40) qui est le cas échéant chauffable et suit la chambre de réception des préformes, et une coquille refroidie (16) qui suit la chambre (14) d'extrusion des préformes et dans laquelle les barres profilées se solidifient. Facultativement, une matrice (18) peut être directement située après la coquille (16) pour donner la forme définitive à la section transversale de la barre profilée. Ce procédé et ce dispositif permettent de produire des profilés dont la section transversale a des zones constituées de matériaux différents.
EP97943712A 1996-11-04 1997-10-20 Procede de fabrication par extrusion d'une barre profilee en metal Expired - Lifetime EP0935504B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97943712A EP0935504B1 (fr) 1996-11-04 1997-10-20 Procede de fabrication par extrusion d'une barre profilee en metal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP96810732A EP0839589A1 (fr) 1996-11-04 1996-11-04 Procédé pour la fabrication d'une corde profilée en métal
EP96810732 1996-11-04
EP97943712A EP0935504B1 (fr) 1996-11-04 1997-10-20 Procede de fabrication par extrusion d'une barre profilee en metal
PCT/CH1997/000391 WO1998019803A1 (fr) 1996-11-04 1997-10-20 Procede de fabrication par extrusion d'une barre profilee en metal

Publications (2)

Publication Number Publication Date
EP0935504A1 true EP0935504A1 (fr) 1999-08-18
EP0935504B1 EP0935504B1 (fr) 2001-12-12

Family

ID=8225742

Family Applications (2)

Application Number Title Priority Date Filing Date
EP96810732A Withdrawn EP0839589A1 (fr) 1996-11-04 1996-11-04 Procédé pour la fabrication d'une corde profilée en métal
EP97943712A Expired - Lifetime EP0935504B1 (fr) 1996-11-04 1997-10-20 Procede de fabrication par extrusion d'une barre profilee en metal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP96810732A Withdrawn EP0839589A1 (fr) 1996-11-04 1996-11-04 Procédé pour la fabrication d'une corde profilée en métal

Country Status (7)

Country Link
US (1) US6360576B1 (fr)
EP (2) EP0839589A1 (fr)
JP (1) JP2001503678A (fr)
CA (1) CA2270069A1 (fr)
DE (1) DE59705808D1 (fr)
NO (1) NO312156B1 (fr)
WO (1) WO1998019803A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027528A (en) * 1996-05-28 2000-02-22 Cordis Corporation Composite material endoprosthesis
AU8227301A (en) * 2000-08-11 2002-02-25 Univ Brunel Method and apparatus for making metal alloy castings
EP1264646A1 (fr) 2001-06-07 2002-12-11 Alcan Technology & Management AG Dispositif et méthode de fabrication des barres métalliques profilées
KR100494514B1 (ko) * 2003-04-21 2005-06-10 현대자동차주식회사 반용융 성형용 마그네슘합금 빌렛의 제조방법
CN100346892C (zh) * 2005-01-25 2007-11-07 广东兴发集团有限公司 7075铝合金型材快速挤压方法
DE102005052470B3 (de) 2005-11-03 2007-03-29 Neue Materialien Fürth GmbH Verfahren zur Herstellung eines Verbundwerkstoffs oder eines Vorprodukts zur Herstellung eines Verbundwerkstoffs
CN101970142B (zh) * 2008-01-14 2014-05-28 韩国生产技术研究院 触变挤压模制装置及触变挤压模制方法
US7942987B2 (en) * 2008-06-24 2011-05-17 Stratasys, Inc. System and method for building three-dimensional objects with metal-based alloys
EP2145704A1 (fr) * 2008-07-08 2010-01-20 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Procédé et appareil pour l'extrusion en continu de thixo-magnésium en produits d'extrusion en forme de plaques ou de barres
EP2224032A1 (fr) * 2009-02-13 2010-09-01 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Procédé de fabrication de produits à base d'alliage de magnésium
RU2444412C1 (ru) * 2010-09-13 2012-03-10 Государственное Образовательное Учреждение Высшего Профессионального Образования "Московский Государственный Технический Университет Имени Н.Э. Баумана" Способ тиксопрессования цилиндрической тиксозаготовки в режиме сверхпластичности ее твердой фазы
US9844806B2 (en) * 2013-03-14 2017-12-19 The Electric Materials Company Dual-phase hot extrusion of metals
US9144833B2 (en) * 2013-03-14 2015-09-29 The Electric Materials Company Dual-phase hot extrusion of metals
CN103143584B (zh) * 2013-04-09 2015-09-09 河南理工大学 一种用于制备组织和性能均匀合金的装置
US20160361763A1 (en) 2015-06-15 2016-12-15 Stratasys, Inc. Magnetically throttled liquefier assembly
WO2017075396A1 (fr) 2015-10-30 2017-05-04 Stratasys, Inc. Pompe pour fluides visqueux à réglage de remplissage et de débit et procédés s'y rapportant
DE102016219912A1 (de) * 2016-10-13 2018-04-19 Bayerische Motoren Werke Aktiengesellschaft 3D-Spritzpressvorrichtung und Verfahren zur Herstellung eines 3D-Hohlprofils
CN109909477B (zh) * 2019-03-06 2023-11-28 宿迁学院 一种塑性微成形装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU69788A1 (fr) * 1974-04-04 1976-03-17 Pechiney Aluminium
US4308742A (en) * 1976-12-30 1982-01-05 Harrison Nelson K Method of and machine for extruding
US4393917A (en) * 1977-06-27 1983-07-19 Western Electric Company, Inc. Methods and apparatus for casting and extruding material
US4208898A (en) * 1978-02-01 1980-06-24 Swiss Aluminium Ltd. Process and device for extruding a plurality of composite sections
JPS56148411A (en) * 1980-04-17 1981-11-17 Yokowo Mfg Co Ltd Extruder for semimolten metal
US4462234A (en) * 1980-06-19 1984-07-31 Battelle Development Corporation Rapid extrusion of hot-short-sensitive alloys
SU1128998A1 (ru) * 1981-07-24 1984-12-15 Предприятие П/Я Г-4908 Матричный блок дл гор чего прессовани заготовок
US4786467A (en) 1983-06-06 1988-11-22 Dural Aluminum Composites Corp. Process for preparation of composite materials containing nonmetallic particles in a metallic matrix, and composite materials made thereby
NZ209807A (en) * 1984-07-27 1986-11-12 Showa Aluminium Ind Horizontal continuous casting of metal
DE3527864A1 (de) * 1985-08-02 1987-02-05 Linde Ag Verfahren zum strangpressen bzw. strangziehen
EP0241193B1 (fr) * 1986-04-04 1991-06-26 Showa Aluminum Kabushiki Kaisha Procédé de fabrication de produits extrudés en alliages d'aluminium
US4758398A (en) * 1986-10-07 1988-07-19 The Dexter Corporation Method of manufacture preforms
EP0343103B1 (fr) * 1988-05-19 1992-11-11 Alusuisse-Lonza Services Ag Procédé et dispositif pour refroidir un objet
JPH01309717A (ja) * 1988-06-08 1989-12-14 Furukawa Electric Co Ltd:The 半溶融金属の押し出し金型
JPH02137613A (ja) * 1988-11-15 1990-05-25 Showa Alum Corp 押出材冷却用の液体窒素送給装置
US5040589A (en) * 1989-02-10 1991-08-20 The Dow Chemical Company Method and apparatus for the injection molding of metal alloys
US4943490A (en) 1989-08-07 1990-07-24 Dural Aluminum Composites Corp. Cast composite material having a matrix containing a stable oxide-forming element
SE466340B (sv) * 1990-06-05 1992-02-03 Asea Brown Boveri Saett att framstaella roer
DE4120165C2 (de) * 1990-07-05 1995-01-26 Friedrichs Konrad Kg Strangpreßwerkzeug zur Herstellung eines Hartmetall- oder Keramikstabes
JPH0466219A (ja) * 1990-07-05 1992-03-02 Leotec:Kk 金属押出し加工法と装置
US5031436A (en) * 1990-07-17 1991-07-16 Granco-Clark, Inc. Extrusion pulling with double puller lock
EP0539417B1 (fr) 1990-07-26 1996-06-19 Alcan International Limited Materiaux composites coules
WO1992018763A1 (fr) * 1991-04-10 1992-10-29 Alcan International Limited Chemises de cylindres de bloc-moteur en composites a base d'alliage d'aluminium
US5551997A (en) * 1991-10-02 1996-09-03 Brush Wellman, Inc. Beryllium-containing alloys of aluminum and semi-solid processing of such alloys
US5197319A (en) * 1991-12-05 1993-03-30 Brazeway, Inc. Extrusion apparatus for sheathing a temperature sensitive core material
JP2564082B2 (ja) * 1993-01-29 1996-12-18 有限会社矢野エンジニアリング 押出用圧力容器への長尺押出用素材の連続押込み供給装置
US5802905A (en) * 1993-02-18 1998-09-08 Sms Hasenclever Gmbh Process and device for applying a temperature profile to metal blocks for extrusion
US5666727A (en) * 1995-02-17 1997-09-16 General Motors Corporation Method of manufacturing a passenger compartment from a cylindrical tube
NO302804B1 (no) * 1995-09-08 1998-04-27 Norsk Hydro As Utstyr for horisontal direktekjölt stöping av lettmetaller, spesielt magnesium og magnesiumlegeringer
US5873699A (en) * 1996-06-27 1999-02-23 United Technologies Corporation Discontinuously reinforced aluminum gas turbine guide vane
US5680894A (en) * 1996-10-23 1997-10-28 Lindberg Corporation Apparatus for the injection molding of a metal alloy: sub-ring concept

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9819803A1 *

Also Published As

Publication number Publication date
NO312156B1 (no) 2002-04-02
EP0935504B1 (fr) 2001-12-12
WO1998019803A1 (fr) 1998-05-14
EP0839589A1 (fr) 1998-05-06
NO992170L (no) 1999-05-04
DE59705808D1 (de) 2002-01-24
CA2270069A1 (fr) 1998-05-14
NO992170D0 (no) 1999-05-04
US6360576B1 (en) 2002-03-26
JP2001503678A (ja) 2001-03-21

Similar Documents

Publication Publication Date Title
EP0935504B1 (fr) Procede de fabrication par extrusion d'une barre profilee en metal
DE69208528T2 (de) Verfahren zur Formgebung von amorphen metallischen Werkstoffen
DE69532617T2 (de) Target für die Kathodenzerstäubung mit ultrafeinen orienterten Körnern
EP0718059B1 (fr) Décrotteur d'oxyde
DE60107690T2 (de) Verfahren und vorrichtung zur herstellung von metall-legierungs-gussteilen
AT522377B1 (de) Herstellung eines Metall-Pulvers einer Aluminiumlegierung zur Verwendung als Werkstoff in der Additiven Fertigung
DE19744300B4 (de) Verfahren zur Herstellung von Poren aufweisenden Formkörpern bzw. Werkstücken auf Basis von (Leicht-)Metallen, deren Herstellung und deren Verwendung
DE69202728T2 (de) Metallische spritzung mittels mehrerer düsen.
EP1264646A1 (fr) Dispositif et méthode de fabrication des barres métalliques profilées
DE68915453T2 (de) Thermomechanische behandlung von schnell erstarrten al-legierungen.
DE69001845T2 (de) Dünne Bleche aus der intermetallischen Verbindung Titan-Aluminium und Verfahren zu ihrer Herstellung.
DE10150021B4 (de) Verfahren und Vorrichtung zur Herstellung von Profilen oder Blechformteilen aus Magnesium oder Magnesiumlegierungen
WO2018103787A1 (fr) Outil pour couler et/ou façonner une partie de moule, dispositif de coulée, presse et procédé pour compenser une sollicitation thermique exercée sur une partie de moule
EP1281459A2 (fr) Procédé et dispositif de thixomoulage par injection pour la fabrication de pièces métalliques
DE10317080B4 (de) Verfahren zur Herstellung von Blechformteilen und Vorrichtung zur Durchführung des Verfahrens
DE102005050481A1 (de) Aluminiumbasierte Legierungszusammensetzung und Verfahren zur Fertigung extrudierter Komponenten aus aluminiumbasierten Legierungszusammensetzungen
DE102017100911A1 (de) Kontinuierliches Strangpressverfahren für ein metallhaltigesSchüttgut und Metallpulverstrangpressanlage
DE102014109764B4 (de) Verfahren zur Herstellung eines metallischen Bauteils, metallisches Bauteil und Vorrichtung zur Herstellung eines metallischen Bauteils
DE10156034B4 (de) Vorrichtung zur Herstellung von Profilen oder Blechformteilen aus Magnesium oder Magnesiumlegierungen
EP0811446B1 (fr) Lingotière de coulée continue
EP0238478A2 (fr) Filière d'extrusion
DE10043562A1 (de) Verfahren und Anlage zur Wärmebehandlung von Strangpreßprofilen
DE3544759A1 (de) Verfahren zum herstellen von werkzeugen
EP1941953B1 (fr) Procédé destiné à l'extrusion d'alliages corroyés de magnésium et pièce fabriquée avec ce procédé
WO1990002034A1 (fr) Dispositif et procede pour façonner des demi-produits a partir de plastiques a poids moleculaire eleve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000829

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59705808

Country of ref document: DE

Date of ref document: 20020124

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020313

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041013

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041020

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041130

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051020

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630