EP0935008B1 - Iron-cobalt alloy - Google Patents

Iron-cobalt alloy Download PDF

Info

Publication number
EP0935008B1
EP0935008B1 EP99400112A EP99400112A EP0935008B1 EP 0935008 B1 EP0935008 B1 EP 0935008B1 EP 99400112 A EP99400112 A EP 99400112A EP 99400112 A EP99400112 A EP 99400112A EP 0935008 B1 EP0935008 B1 EP 0935008B1
Authority
EP
European Patent Office
Prior art keywords
iron
cobalt alloy
alloy
niobium
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99400112A
Other languages
German (de)
French (fr)
Other versions
EP0935008A1 (en
Inventor
Lucien Coutu
Laurent Chaput
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aperam Stainless Precision SAS
Original Assignee
Imphy Ugine Precision SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imphy Ugine Precision SA filed Critical Imphy Ugine Precision SA
Publication of EP0935008A1 publication Critical patent/EP0935008A1/en
Application granted granted Critical
Publication of EP0935008B1 publication Critical patent/EP0935008B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the present invention relates to an iron-cobalt alloy with characteristics improved mechanics.
  • Iron-cobalt alloys are well known, and are characterized by both very interesting magnetic properties and by a very great brittleness to the ordinary temperature, which makes their use delicate.
  • the alloy Fe50Co50 containing 50% by weight of iron and 50% of cobalt, has an induction at very high saturation and good magnetic permeability, but it has the disadvantage of not being able to be cold rolled, which makes it unusable practically.
  • This very great fragility results from the formation, below 730 ° C, approximately, of an ordered ⁇ 'phase, resulting from a disorder-order transformation.
  • This disorder-order transformation can be slowed down by adding vanadium, which makes it possible to manufacture an alloy of the iron-cobalt type, containing little about 50% cobalt and about 50% iron, suitable for being cold rolled after very energetic overheating.
  • vanadium which makes it possible to manufacture an alloy of the iron-cobalt type, containing little about 50% cobalt and about 50% iron, suitable for being cold rolled after very energetic overheating.
  • This alloy which has very good magnetic properties after cold rolling and annealing between 720 ° C and 870 ° C approximately, however has the drawback of requiring special precautions during reheating prior to overheating, in order to limit the magnification of the grain which deteriorates the ductility.
  • niobium or tantalum
  • the limit elasticity can exceed 600 MPa.
  • these mechanical characteristics do not can be obtained with relatively large additions of niobium or tantalum.
  • the object of the present invention is to provide an iron-cobalt alloy having at the times satisfactory ductility, good magnetic properties and improved mechanical characteristics, while having good suitability for hot rolling.
  • the inventors have surprisingly found that when added 0.0007% to 0.007% by weight, or better still 0.001% to 0.003%, of boron, to an alloy iron-cobalt containing, moreover, from 0.5% to 2.5%, or better still from 1.5% to 2.2%, of vanadium as well as a small amount of elements such as tantalum and niobium, we significantly increased the yield strength of the alloy, while retaining satisfactory magnetic characteristics and having very good suitability hot rolling.
  • alloys A and B according to the invention and alloy C according to the prior art we have developed alloys A and B according to the invention and alloy C according to the prior art. With these alloys, we made 2 mm strips by hot rolling at around 1200 ° C thick which have been hyper-soaked by cooling in less than 1 second between 800 ° C and 100 ° C. The strips thus obtained were cold rolled to obtain strips 0.35 mm thick. These cold rolled strips then have been annealed, in accordance with the state of the art, at temperatures between 700 ° C and 900 ° C so as to give them the properties of use. We then measured the mechanical and magnetic characteristics obtained. Alloys A and B have been hot-rolled without difficulty, ie without the appearance of corner cracks.
  • alloys A and B in accordance with the invention have significantly higher mechanical characteristics, since the yield strength can exceed 500 MPa, these characteristics are comparable to those obtained with alloys according to the prior art having 0.3% niobium.

Description

La présente invention concerne un alliage fer-cobalt a caractéristiques mécaniques améliorées.The present invention relates to an iron-cobalt alloy with characteristics improved mechanics.

Les alliages fer-cobalt sont bien connus, et se caractérisent à la fois par des propriétés magnétiques très intéressantes et par une très grande fragilité à la température ordinaire, ce qui rend leur utilisation délicate. En particulier, l'alliage Fe50Co50, contenant 50 % en poids de fer et 50 % de cobalt, a une induction à saturation très élevée et une bonne perméabilité magnétique, mais il présente l'inconvénient de ne pas pouvoir être laminé à froid, ce qui le rend inutilisable pratiquement. Cette très grande fragilité résulte de la formation , en dessous de 730 °C, environ, d'une phase α' ordonnée, résultant d'une transformation désordre-ordre. Cette transformation désordre-ordre peut être ralentie par une addition de vanadium, ce qui permet de fabriquer un alliage du type fer-cobalt, contenant à peu près 50% de cobalt et à peu près 50% de fer, apte à être laminé à froid après une hypertrempe très énergique. On a, ainsi, proposé un alliage contenant environ 49 % de cobalt et 2 % de vanadium, le reste étant du fer et des impuretés. Cet alliage, qui a de très bonnes propriétés magnétiques après laminage à froid et recuit entre 720°C et 870 °C environ, présente cependant l'inconvénient de nécessiter des précautions particulières lors du réchauffage précédant l'hypertrempe, afin de limiter le grossissement du grain qui détériore la ductilité.Iron-cobalt alloys are well known, and are characterized by both very interesting magnetic properties and by a very great brittleness to the ordinary temperature, which makes their use delicate. In particular, the alloy Fe50Co50, containing 50% by weight of iron and 50% of cobalt, has an induction at very high saturation and good magnetic permeability, but it has the disadvantage of not being able to be cold rolled, which makes it unusable practically. This very great fragility results from the formation, below 730 ° C, approximately, of an ordered α 'phase, resulting from a disorder-order transformation. This disorder-order transformation can be slowed down by adding vanadium, which makes it possible to manufacture an alloy of the iron-cobalt type, containing little about 50% cobalt and about 50% iron, suitable for being cold rolled after very energetic overheating. We have thus proposed an alloy containing approximately 49% cobalt and 2% vanadium, the remainder being iron and impurities. This alloy, which has very good magnetic properties after cold rolling and annealing between 720 ° C and 870 ° C approximately, however has the drawback of requiring special precautions during reheating prior to overheating, in order to limit the magnification of the grain which deteriorates the ductility.

Pour faciliter le réchauffage avant hypertrempe, on a proposé, notamment dans le brevet US 3,634,072, d'ajouter de 0,02 % à 0,5 % de niobium et éventuellement de 0,07 % à 0,3 % de zirconium afin de limiter le risque de grossissement du grain au cours du réchauffage. L'alliage ainsi obtenu a des propriétés magnétiques et une ductilité comparables, mais pas meilleures, que l'alliage ne contenant que 2 % de vanadium. Le réchauffage avant hypertrempe est simplement plus facile à réaliser.To facilitate reheating before overheating, it has been proposed, in particular in US Patent 3,634,072, to add 0.02% to 0.5% of niobium and possibly from 0.07% to 0.3% of zirconium in order to limit the risk of grain enlargement during reheating. The alloy thus obtained has comparable but no better magnetic properties and ductility than the alloy containing only 2% vanadium. Reheating before overheating is just easier to do.

Par ailleurs, il a été constaté que le vanadium pouvait être remplacé par du niobium ou du tantale. C'est ainsi qu'il a été proposé dans le brevet US 4,933,026, un alliage contenant au moins un élément pris parmi le niobium et le tantale en des teneurs telles que leur somme soit comprise entre 0,15 % et 0,5 % (en poids). Cet alliage qui présente une ductilité comparable au précédent, à l'avantage de pouvoir être recuit à plus haute température ce qui permet d'obtenir des propriétés magnétiques meilleures. Mais il présente l'inconvénient d'avoir une résistivité électrique relativement faible, ce qui augmente les pertes par courants induits et limite ses possibilités d'emploi.In addition, it was found that vanadium could be replaced by niobium or tantalum. This is how it was proposed in US patent 4,933,026, an alloy containing at least one element selected from niobium and tantalum in contents such that their sum is between 0.15% and 0.5% (by weight). This alloy which has a ductility comparable to the previous one, with the advantage of being able be annealed at a higher temperature which gives properties magnetic better. But it has the disadvantage of having a resistivity relatively weak electric, which increases losses by induced currents and limits his employment possibilities.

Enfin, tous ces alliages présentent des caractéristiques mécaniques de résistance à la traction insuffisantes pour certaines applications telles que les circuits magnétiques de machines tournantes à très grande vitesse de rotation. Il n'est, en effet, guère possible d'obtenir une limite d'élasticité supérieure à 480 MPa.Finally, all of these alloys have mechanical characteristics of insufficient tensile strength for certain applications such as circuits magnetic rotating machines with very high speed of rotation. It is, in In fact, it is hardly possible to obtain a yield strength greater than 480 MPa.

Afin d'améliorer ces caractéristiques mécaniques, il a été proposé, notamment dans la demande de brevet internationale WO 96/36059, un alliage contenant essentiellement (en poids) 48 % à 50 % de cobalt, 1,8 % à 2,2 % de vanadium, 0,15 % à 0,5 % de niobium et de 0,003 % à 0,02 % de carbone, le reste étant du fer et des impuretés. Dans cette demande de brevet il est précisé que le niobium peut être remplacé totalement ou partiellement par du tantale à raison de 1 atome de tantale pour 1 atome de niobium, ce qui, compte tenu des poids atomiques respectifs du tantale et du niobium, correspond à plus de 2 % en poids de tantale pour 1 % en poids de niobium. Dans cet alliage, le niobium (ou le tantale), forment le long des joints de grain des phases de Laves qui empêchent le grain de grossir, ce qui augmente significativement la limite d'élasticité sans toutefois améliorer sensiblement la ductilité. A titre d'exemple, après un recuit à 720 °C, la limite d'élasticité peut dépasser 600 MPa. Cependant, ces caractéristiques mécaniques ne peuvent être obtenues qu'avec des additions relativement importantes de niobium ou de tantale.In order to improve these mechanical characteristics, it has been proposed, in particular in international patent application WO 96/36059, an alloy containing essentially (by weight) 48% to 50% cobalt, 1.8% to 2.2% vanadium, 0.15 % to 0.5% niobium and 0.003% to 0.02% carbon, the remainder being iron and impurities. In this patent application it is specified that niobium can be totally or partially replaced by tantalum at the rate of 1 atom of tantalum for 1 atom of niobium, which, taking into account the respective atomic weights of tantalum and niobium, corresponds to more than 2% by weight of tantalum for 1% in niobium weight. In this alloy, niobium (or tantalum), form along the grain seals of the lava phases which prevent the grain from growing, which significantly increases the elastic limit without improving substantially the ductility. For example, after annealing at 720 ° C, the limit elasticity can exceed 600 MPa. However, these mechanical characteristics do not can be obtained with relatively large additions of niobium or tantalum.

Les additions relativement importantes de niobium ou de tantale sont nécessaires pour obtenir une limite d'élasticité élevée tout en effectuant un recuit dans le haut de la plage de température de recristallisation, ce qui a l'avantage de conduire à une faible sensibilité du résultat obtenu à la température effective de recuit. En revanche, cette solution présente l'inconvénient de diminuer l'aptitude de l'alliage au laminage à chaud.The relatively large additions of niobium or tantalum are necessary to obtain a high yield strength while annealing at the top of the recrystallization temperature range, which has the advantage of lead to a low sensitivity of the result obtained at the effective temperature of annealing. However, this solution has the disadvantage of reducing the ability to the alloy with hot rolling.

Le but de la présente invention est de proposer un alliage fer-cobalt ayant à la fois une ductilité satisfaisante, de bonne propriétés magnétiques et des caractéristiques mécaniques améliorées, tout en ayant une bonne aptitude au laminage à chaud.The object of the present invention is to provide an iron-cobalt alloy having at the times satisfactory ductility, good magnetic properties and improved mechanical characteristics, while having good suitability for hot rolling.

A cet effet, l'invention a pour objet un alliage fer-cobalt dont la composition chimique comprend, en poids :

  • de 35 % à 55 %, et de préférence de 40 % à 50 % de cobalt,
  • de 0,5 % à 2,5 %, et de préférence de 1,5 % à 2,2 % de vanadium,
  • au moins un élément pris parmi le tantale et le niobium, en des teneurs telles que 0,02 % ≤ Ta + 2 x Nb ≤ 0,2 %, et de préférence telles que 0,03 %≤ Ta + Nb ≤ 0,15 %, et mieux encore, Nb ≤ 0,03 %,
  • de 0,0007 % à 0,007 %, et de préférence de 0,001 % à 0,003 %, de bore,
  • moins de 0,05 %, et de préférence, moins de 0,007 % de carbone,
le reste étant du fer et des impuretés résultant de l'élaboration.
De préférence, les impuretés que sont le manganèse, le silicium, le chrome, le molybdène, le cuivre, le nickel et le soufre ont des teneurs telles que : Mn + Si ≤ 0,2 %, Cr + Mo + Cu ≤ 0,2 %, Ni ≤ 0,2 % et S ≤ 0,005 %.To this end, the subject of the invention is an iron-cobalt alloy, the chemical composition of which comprises, by weight:
  • from 35% to 55%, and preferably from 40% to 50% of cobalt,
  • from 0.5% to 2.5%, and preferably from 1.5% to 2.2% of vanadium,
  • at least one element taken from tantalum and niobium, in contents such as 0.02% ≤ Ta + 2 x Nb ≤ 0.2%, and preferably such as 0.03% ≤ Ta + Nb ≤ 0.15 %, and better still, Nb ≤ 0.03%,
  • from 0.0007% to 0.007%, and preferably from 0.001% to 0.003%, of boron,
  • less than 0.05%, and preferably less than 0.007% carbon,
the remainder being iron and impurities resulting from processing.
Preferably, the impurities that are manganese, silicon, chromium, molybdenum, copper, nickel and sulfur have contents such as: Mn + Si ≤ 0.2%, Cr + Mo + Cu ≤ 0, 2%, Ni ≤ 0.2% and S ≤ 0.005%.

Les inventeurs ont constaté de façon surprenante, que, lorsqu'on ajoute de 0,0007 % à 0,007 % en poids, ou mieux de 0,001 % à 0,003 %, de bore, à un alliage fer-cobalt contenant, par ailleurs, de 0,5 % à 2,5 %, ou mieux de 1,5 % à 2,2 %, de vanadium ainsi qu'une petite quantité d'éléments tels que le tantale et le niobium, on augmentait de façon très sensible la limite d'élasticité de l'alliage, tout en conservant des caractéristiques magnétiques satisfaisantes et en ayant une très bonne aptitude au laminage à chaud.The inventors have surprisingly found that when added 0.0007% to 0.007% by weight, or better still 0.001% to 0.003%, of boron, to an alloy iron-cobalt containing, moreover, from 0.5% to 2.5%, or better still from 1.5% to 2.2%, of vanadium as well as a small amount of elements such as tantalum and niobium, we significantly increased the yield strength of the alloy, while retaining satisfactory magnetic characteristics and having very good suitability hot rolling.

A titre d'exemple et de comparaison, on a élaboré les alliages A et B conformes à l'invention et l'alliage C conforme à l'art antérieur. Avec ces alliages, on a fabriqué par laminage à chaud aux environs de 1200 °C des bandes de 2 mm d'épaisseur qui ont été hypertrempées par refroidissement en moins de 1 seconde entre 800 °C et 100 °C. Les bandes ainsi obtenues ont été laminées à froid pour obtenir des bandes de 0,35 mm d'épaisseur. Ces bandes laminées à froid ont alors été recuites, conformément à l'état de l'art, à des températures comprises entre 700 °C et 900 °C de façon à leur conférer les propriétés d'emploi. On a alors mesuré les caractéristiques mécaniques et magnétiques obtenues. Les alliages A et B ont été laminés à chaud sans difficultés, c'est à dire sans apparition de criques d'angle. As an example and comparison, we have developed alloys A and B according to the invention and alloy C according to the prior art. With these alloys, we made 2 mm strips by hot rolling at around 1200 ° C thick which have been hyper-soaked by cooling in less than 1 second between 800 ° C and 100 ° C. The strips thus obtained were cold rolled to obtain strips 0.35 mm thick. These cold rolled strips then have been annealed, in accordance with the state of the art, at temperatures between 700 ° C and 900 ° C so as to give them the properties of use. We then measured the mechanical and magnetic characteristics obtained. Alloys A and B have been hot-rolled without difficulty, ie without the appearance of corner cracks.

Les compositions chimiques étaient les suivantes (le complément étant du fer): Co V Ta Nb B C Mn Si Cr Ni Cu S P A 48,5 1,98 - 0,044 0,0022 0,011 0,102 0,06 0,04 0,11 0,01 0,004 0,005 B 48,1 1,9 0,17 - 0,0012 0,005 0,05 0,05 0,02 0,2 0,01 0,002 0,005 C 48,7 1,97 - 0,064 - 0,010 0,09 0,05 0,04 0,12 0,01 0,003 0,005 Les caractéristiques mécaniques obtenues après recuit à 725 °C, 760 °C et 850 °C étaient (Re0,2 = limite d'élasticité ; HV = dureté Vickers) :

Figure 00040001
The chemical compositions were as follows (the complement being iron): Co V Your Nb B VS mn Yes Cr Or Cu S P AT 48.5 1.98 - 0.044 0.0022 0,011 0,102 0.06 0.04 0.11 0.01 0,004 0.005 B 48.1 1.9 0.17 - 0.0012 0.005 0.05 0.05 0.02 0.2 0.01 0,002 0.005 VS 48.7 1.97 - 0.064 - 0,010 0.09 0.05 0.04 0.12 0.01 0,003 0.005 The mechanical characteristics obtained after annealing at 725 ° C, 760 ° C and 850 ° C were (Re0,2 = elastic limit; HV = Vickers hardness):
Figure 00040001

Les caractéristiques magnétiques mesurées étaient :

  • les valeurs de l'induction magnétique B (en tesla), pour des excitations magnétiques H en courant continu de 20 Oe = 1600 A/m, 50 Oe = 4000 A/m et 100 Oe = 8000 A/m ;
  • le champ coercitif Hc en A/m,
  • les pertes ferromagnétiques (en W/kg) à 400 Hz pour une induction sinusoïdale de 2 tesla de valeur crête.
The magnetic characteristics measured were:
  • the values of magnetic induction B (in tesla), for magnetic excitations H in direct current of 20 Oe = 1600 A / m, 50 Oe = 4000 A / m and 100 Oe = 8000 A / m;
  • the coercive field Hc in A / m,
  • ferromagnetic losses (in W / kg) at 400 Hz for a sinusoidal induction of 2 tesla peak value.

Ces valeurs étaient :

  • après un recuit à 725 °C
    Figure 00040002
  • après un recuit à 760 °C :
    Figure 00050001
  • après un recuit à 850 °C :
    Figure 00050002
These values were:
  • after annealing at 725 ° C
    Figure 00040002
  • after annealing at 760 ° C:
    Figure 00050001
  • after annealing at 850 ° C:
    Figure 00050002

Ces résultats montrent que, tout en ayant des propriétés magnétiques très voisines de celles de l'alliage C selon l'art antérieur, les alliages A et B conformes à l'invention ont des caractéristiques mécaniques nettement plus élevées, puisque la limite d'élasticité peut dépasser 500 MPa, ces caractéristiques sont comparables à celles qu'on obtient avec des alliages selon l'art antérieur ayant 0,3 % de niobium.These results show that, while having very magnetic properties close to those of alloy C according to the prior art, alloys A and B in accordance with the invention have significantly higher mechanical characteristics, since the yield strength can exceed 500 MPa, these characteristics are comparable to those obtained with alloys according to the prior art having 0.3% niobium.

Claims (8)

  1. Iron-cobalt alloy characterized in that its chemical composition comprises, by weight: 35% ≤ Co ≤ 55% 0.5% ≤ V ≤ 2.5% 0.02% ≤ Ta + 2 x Nb ≤ 0.2% 0.0007% ≤ B ≤ 0.007% C ≤ 0.05% the balance being iron and impurities resulting from the smelting operation.
  2. Iron-cobalt alloy according to Claim 1, characterized in that: 1.5% ≤ V < 2.2%.
  3. Iron-cobalt alloy according to Claim 1 or Claim 2, characterized in that: 0.03% ≤ Ta + Nb ≤ 0.15%.
  4. Iron-cobalt alloy according to Claim 1, 2 or 3, characterized in that: Nb ≤ 0.03%.
  5. Iron-cobalt alloy according to Claim 1, 2, 3 or 4, characterized in that: 0.001% ≤ B ≤ 0.003%.
  6. Iron-cobalt alloy according to any one of Claims 1 to 5, characterized in that: C ≤ 0.007%.
  7. Iron-cobalt alloy according to any one of Claims 1 to 6, characterized in that the impurities resulting from the smelting operation have contents such that: Mn + Si ≤ 0.2% Cr + Mo + Cu ≤ 0.2% Ni ≤ 0.2% S ≤ 0.005%.
  8. Iron-cobalt alloy according to any one of Claims 1 to 7, characterized in that: 40% ≤ Co ≤ 50%.
EP99400112A 1998-02-05 1999-01-19 Iron-cobalt alloy Expired - Lifetime EP0935008B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9801310 1998-02-05
FR9801310A FR2774397B1 (en) 1998-02-05 1998-02-05 IRON-COBALT ALLOY

Publications (2)

Publication Number Publication Date
EP0935008A1 EP0935008A1 (en) 1999-08-11
EP0935008B1 true EP0935008B1 (en) 2002-10-02

Family

ID=9522600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99400112A Expired - Lifetime EP0935008B1 (en) 1998-02-05 1999-01-19 Iron-cobalt alloy

Country Status (10)

Country Link
US (1) US6146474A (en)
EP (1) EP0935008B1 (en)
JP (1) JPH11264058A (en)
CN (1) CN1091162C (en)
DE (1) DE69903202T2 (en)
ES (1) ES2185294T3 (en)
FR (1) FR2774397B1 (en)
HK (1) HK1021651A1 (en)
IL (2) IL128067A (en)
RU (1) RU2201990C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582171B2 (en) 2003-05-07 2009-09-01 Vacuumschmelze Gmbh & Co. Kg High-strength, soft-magnetic iron-cobalt-vanadium alloy
US11827961B2 (en) 2020-12-18 2023-11-28 Vacuumschmelze Gmbh & Co. Kg FeCoV alloy and method for producing a strip from an FeCoV alloy

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855240B2 (en) * 2000-08-09 2005-02-15 Hitachi Global Storage Technologies Netherlands B.V. CoFe alloy film and process of making same
FR2816959B1 (en) 2000-11-17 2003-08-01 Imphy Ugine Precision PROCESS FOR MANUFACTURING A STRIP OR A CUT PIECE IN A COLD-ROLLED MARAGING STEEL STRIP
US6685882B2 (en) * 2001-01-11 2004-02-03 Chrysalis Technologies Incorporated Iron-cobalt-vanadium alloy
DE10134056B8 (en) 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
US6992555B2 (en) * 2003-01-30 2006-01-31 Metglas, Inc. Gapped amorphous metal-based magnetic core
DE102005034486A1 (en) * 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Process for the production of a soft magnetic core for generators and generator with such a core
US20080035245A1 (en) * 2006-08-09 2008-02-14 Luana Emiliana Iorio Soft magnetic material and systems therewith
US20100201469A1 (en) * 2006-08-09 2010-08-12 General Electric Company Soft magnetic material and systems therewith
US7909945B2 (en) 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
JP5262423B2 (en) * 2008-08-21 2013-08-14 セイコーインスツル株式会社 Golf club head, face portion thereof, and manufacturing method thereof
US10294549B2 (en) 2011-07-01 2019-05-21 Vacuumschmelze Gmbh & Co. Kg Soft magnetic alloy and method for producing soft magnetic alloy
GB2495465B (en) * 2011-07-01 2014-07-09 Vacuumschmelze Gmbh & Co Kg Soft magnetic alloy and method for producing a soft magnetic alloy
GB2492406B (en) * 2011-07-01 2013-12-18 Vacuumschmelze Gmbh & Co Kg Soft magnetic alloy and method for producing a soft magnetic alloy
US9243304B2 (en) 2011-07-01 2016-01-26 Vacuumschmelze Gmbh & Company Kg Soft magnetic alloy and method for producing a soft magnetic alloy
WO2013087997A1 (en) 2011-12-16 2013-06-20 Aperam Method for producing a thin strip made from soft magnetic alloy, and resulting strip
CN103111811B (en) * 2013-03-07 2015-09-23 茂名市兴丽高岭土有限公司 A kind of manufacture method of kaolin iron removal filter screen
DE102014213794A1 (en) * 2014-07-16 2016-01-21 Robert Bosch Gmbh Soft magnetic alloy composition and method for producing such
CN106011543A (en) * 2016-07-11 2016-10-12 陕西航空精密合金有限公司 Improved type Fe-Co-V alloy and manufacturing method thereof
TWI619817B (en) * 2016-10-26 2018-04-01 光洋應用材料科技股份有限公司 Co-Fe-Nb-based Sputtering Target
DE102016222805A1 (en) * 2016-11-18 2018-05-24 Vacuumschmelze Gmbh & Co. Kg Semi-finished product and method for producing a CoFe alloy
DE102018112491A1 (en) * 2017-10-27 2019-05-02 Vacuumschmelze Gmbh & Co. Kg High permeability soft magnetic alloy and method of making a high permeability soft magnetic alloy
FR3127649A1 (en) * 2021-09-24 2023-03-31 Erneo ROTATING PART OF THE “ROTOR” TYPE OF ELECTRIC AND/OR MAGNETIC MACHINE AND ASSOCIATED MACHINE.

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2519277A (en) * 1947-01-15 1950-08-15 Bell Telephone Labor Inc Magnetostrictive device and alloy and method of producing them
US3065118A (en) * 1959-01-16 1962-11-20 Gen Electric Treatment of iron-cobalt alloys
US3634072A (en) * 1970-05-21 1972-01-11 Carpenter Technology Corp Magnetic alloy
JPS5110806B2 (en) * 1972-04-26 1976-04-07
GB1523881A (en) * 1975-03-04 1978-09-06 Telcon Metals Ltd Magnetic alloys
GB1592419A (en) * 1978-04-17 1981-07-08 Telcon Metals Ltd Magnetic alloys
GB8715726D0 (en) * 1987-07-03 1987-08-12 Telcon Metals Ltd Soft magnetic alloys
JP2701306B2 (en) * 1988-04-05 1998-01-21 大同特殊鋼株式会社 Method for producing Fe-Co based magnetic alloy
US5501747A (en) * 1995-05-12 1996-03-26 Crs Holdings, Inc. High strength iron-cobalt-vanadium alloy article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582171B2 (en) 2003-05-07 2009-09-01 Vacuumschmelze Gmbh & Co. Kg High-strength, soft-magnetic iron-cobalt-vanadium alloy
US11827961B2 (en) 2020-12-18 2023-11-28 Vacuumschmelze Gmbh & Co. Kg FeCoV alloy and method for producing a strip from an FeCoV alloy

Also Published As

Publication number Publication date
DE69903202T2 (en) 2003-06-18
RU2201990C2 (en) 2003-04-10
ES2185294T3 (en) 2003-04-16
CN1227271A (en) 1999-09-01
DE69903202D1 (en) 2002-11-07
US6146474A (en) 2000-11-14
FR2774397A1 (en) 1999-08-06
JPH11264058A (en) 1999-09-28
FR2774397B1 (en) 2000-03-10
IL128067A0 (en) 1999-11-30
HK1021651A1 (en) 2000-06-23
EP0935008A1 (en) 1999-08-11
IL128067A (en) 2001-10-31
CN1091162C (en) 2002-09-18

Similar Documents

Publication Publication Date Title
EP0935008B1 (en) Iron-cobalt alloy
FR2490680A1 (en) FERRITIC STAINLESS STEEL HAVING IMPROVED TENABILITY AND WELDABILITY
EP1339880B1 (en) Method for making a strip or a workpiece cut out from a cold rolled maraging steel strip
EP1041168B1 (en) Soft magnetic alloy for a timepiece
JPH0153347B2 (en)
EP0931844B1 (en) Cobalt-free maraging steel
EP0784100B1 (en) Iron-cobalt alloy, manufacturing process for strips made from iron-cobalt alloy and product obtained
JPH03166340A (en) High strength lead frame material and its manufacture
JP3886303B2 (en) Copper alloy for electrical and electronic parts
JP4543171B2 (en) Iron alloy for high resistors
EP0337846B1 (en) Austeno-ferritic stainless steel
JPS5942741B2 (en) Semi-hard magnetic alloy and its manufacturing method
JP4202626B2 (en) Titanium alloy for eyeglass frames with excellent cold workability and fatigue strength after brazing
JPH0941056A (en) Motor commutator material
JPH0250937A (en) Free cutting stainless steel for header
JP2017218634A (en) Maraging steel
JPH02118053A (en) Heat-resistant alloy
FR2836156A1 (en) SOFT MAGNETIC ALLOY FOR MAGNETIC SHIELDING
JPS5844144B2 (en) Ni-Fe based high permeability alloy with good hot workability and machinability
JP2002047539A (en) Spring steel having excellent hostile-environment resistance
JPH07188866A (en) Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid
JPH0788556B2 (en) High yield strength and high corrosion resistance duplex stainless cast steel
JPS60248866A (en) Stainless steel for cryogenic service having excellent sea water resistance
JPS627832A (en) High-alloy steel having superior hot workability
JPH0379426B2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IMPHY UGINE PRECISION

17P Request for examination filed

Effective date: 20000211

AKX Designation fees paid

Free format text: DE ES FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020117

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69903202

Country of ref document: DE

Date of ref document: 20021107

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030129

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2185294

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040105

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040108

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040109

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040122

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050119

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050802

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050120