JP2701306B2 - Method for producing Fe-Co based magnetic alloy - Google Patents

Method for producing Fe-Co based magnetic alloy

Info

Publication number
JP2701306B2
JP2701306B2 JP63083915A JP8391588A JP2701306B2 JP 2701306 B2 JP2701306 B2 JP 2701306B2 JP 63083915 A JP63083915 A JP 63083915A JP 8391588 A JP8391588 A JP 8391588A JP 2701306 B2 JP2701306 B2 JP 2701306B2
Authority
JP
Japan
Prior art keywords
less
magnetic
solution treatment
alloy
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63083915A
Other languages
Japanese (ja)
Other versions
JPH01255645A (en
Inventor
愼一郎 矢萩
貴伸 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP63083915A priority Critical patent/JP2701306B2/en
Publication of JPH01255645A publication Critical patent/JPH01255645A/en
Application granted granted Critical
Publication of JP2701306B2 publication Critical patent/JP2701306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Fe-Co系磁性合金に関し、特に最大透磁率
が高く、保磁力が低い特性をもつ磁性部品に関し、例え
ばドットプリンタ用ヨーク材、磁気回路用ヨーク材、ド
ットプリンタ用アーマチャ、電話機用振動板等に適用さ
れる。
Description: FIELD OF THE INVENTION The present invention relates to an Fe—Co-based magnetic alloy, and more particularly to a magnetic component having a high maximum magnetic permeability and a low coercive force, for example, a yoke material for a dot printer. , Magnetic circuit yoke materials, dot printer armatures, telephone diaphragms, and the like.

(従来の技術) 一般にヨーク材としては、重量%でFe-49%Co−2%
V合金(2Vパーメンジュール)等の冷間加工材が広く使
用されている。
(Prior art) Generally, yoke material is Fe-49% Co-2% by weight.
Cold work materials such as V alloy (2V permendur) are widely used.

この2Vパーメンジュールは、冷間加工材であると比較
的高い飽和磁束密度、低い保磁力、高い最大透磁率をも
っているが、しかし、鋳造品であると保磁力が増大し、
最大透磁率は低下する傾向にある。
This 2V permendur has a relatively high saturation magnetic flux density, a low coercive force, and a high maximum permeability when it is a cold-worked material, but when it is a cast product, the coercive force increases,
The maximum permeability tends to decrease.

(発明が解決しようとする課題) しかし、2Vパーメンジュールを例えばドットプリンタ
のヨーク部品に用いると、電気抵抗率が低いので高速動
作させた場合に渦電流が発生して発熱し、高速動作化で
きないという問題があった。さらに、鋳造体では鍛造品
や圧延品に比べ磁気特性が劣化するという問題があっ
た。
(Problems to be solved by the invention) However, when 2V permendur is used for a yoke component of a dot printer, for example, an eddy current is generated when the device is operated at high speed because of low electric resistivity, and heat is generated, thereby increasing the speed of operation. There was a problem that it was not possible. Further, there is a problem that the magnetic properties of cast products are deteriorated as compared with forged products and rolled products.

本発明は、このような問題点を解決するために成され
たもので、その目的は、Fe-Co系合金にV、Si、Alを含
有しさらに必要に応じてCr、Ni、Mn、Ti、Mo、Nb、W、
Zrから選ばれた1種以上を合計で10重量%以下を添加す
ることにより、電気抵抗率を高め、さらに鋳造品におい
ては溶体化処理により磁気特性を向上させることであ
る。
The present invention has been made to solve such a problem, and an object of the present invention is to contain V, Si, and Al in a Fe-Co alloy and further include Cr, Ni, Mn, and Ti as necessary. , Mo, Nb, W,
By adding one or more selected from Zr in a total amount of 10% by weight or less, the electric resistivity is increased, and in a cast product, the magnetic properties are improved by solution treatment.

(課題を解決するための手段) 本発明のFe-Co系磁性合金の製造方法は、重量%でCo4
0〜60%、V5.0%以下(0を含まず)、Si3.0%以下(0
を含まず)、Al3.0%以下(0を含まず)、C0.1%以下
を含有し、さらに必要に応じてCr、Ni、Mn、Ti、Mo、N
b、W、Zrから選ばれた1種以上を合計で10重量%以下
含有し、残部実質的にFeからなる合金を、950℃以上の
温度から30℃/sec以上の冷却速度で溶体化処理し、その
後700℃以上のα相(フェライト相)領域の温度で焼鈍
することを特徴とする。
(Means for Solving the Problems) The method for producing a Fe—Co-based magnetic alloy according to the present invention comprises:
0-60%, V5.0% or less (excluding 0), Si3.0% or less (0
), Al3.0% or less (excluding 0), C0.1% or less, and Cr, Ni, Mn, Ti, Mo, N
b, solution treatment of an alloy containing at least one selected from W and Zr in a total amount of 10% by weight or less and the balance substantially consisting of Fe from a temperature of 950 ° C or more at a cooling rate of 30 ° C / sec or more. Thereafter, annealing is performed at a temperature in the α phase (ferrite phase) region of 700 ° C. or higher.

本発明のFe-Co系磁性合金の製造方法は、重量%でCo4
0〜60%、V5.0%以下(0を含まず)、Si3.0%以下(0
を含まず)、Al3.0%以下(0を含まず)、C0.1%以
下、さらに必要に応じてCr、Ni、Mn、Ti、Mo、Nb、W、
Zrから選ばれた1種以上を合計で10重量%以下を含有
し、残部実質的にFeからなる合金溶湯から鋳造体を造
り、この鋳造体を950℃以上の温度から30℃/sec以上の
冷却速度で溶体化処理し、その後700℃以上のα相領域
の温度で焼鈍することを特徴とする。
The method for producing a Fe—Co-based magnetic alloy according to the present invention comprises
0-60%, V5.0% or less (excluding 0), Si3.0% or less (0
), Al3.0% or less (excluding 0), C0.1% or less, and, if necessary, Cr, Ni, Mn, Ti, Mo, Nb, W,
A cast body is made from a molten alloy containing at least 10% by weight of at least one selected from Zr and the balance substantially consisting of Fe, and the cast body is heated from a temperature of 950 ° C or more to 30 ° C / sec or more. A solution treatment is performed at a cooling rate, and thereafter, annealing is performed at a temperature in the α phase region of 700 ° C. or more.

本発明のFe-Co系磁性合金において、Coを40〜60%含
有するのは、この範囲で高い磁束密度が得られるからで
ある。
The reason why the Fe—Co-based magnetic alloy of the present invention contains 40 to 60% of Co is that a high magnetic flux density can be obtained in this range.

Alを添加したのは、Alが電気抵抗を高め、保磁力を低
下させるからであり、Alを3%以下としたのは、3%を
超えると冷間鍛造性の悪化を招くためである。
The reason for adding Al is that Al increases the electric resistance and lowers the coercive force. The reason for setting the Al content to 3% or less is that if the content exceeds 3%, the cold forgeability deteriorates.

Siを添加したのは、Siが保磁力を低下させかつ最大透
磁率を高める効果があり、しかもSiが電気抵抗を上昇さ
せる添加元素であることから本発明の合金を磁気回路ヨ
ーク材等の電気機器ヨーク材として用いた場合に渦流損
失を減少させる効果があるからである。Siを3%以下と
したのは、3%を超えると材質が脆くなり冷間鍛造性が
低下するためである。
Si is added because Si has the effect of lowering the coercive force and increasing the maximum magnetic permeability, and since Si is an additive element that raises the electrical resistance, the alloy of the present invention is used in electric circuits such as magnetic circuit yoke materials. This is because when used as a device yoke material, there is an effect of reducing eddy current loss. The reason why the content of Si is set to 3% or less is that if it exceeds 3%, the material becomes brittle and the cold forgeability is reduced.

Cr、Ni、Mn、Ti、Mo、Nb、W、Zrを添加したのは、合
金の靱性を向上させ、さらに電気抵抗率を高め、磁気特
性を向上させるためである。
The addition of Cr, Ni, Mn, Ti, Mo, Nb, W, and Zr is for improving the toughness of the alloy, further increasing the electrical resistivity, and improving the magnetic properties.

これらの選択元素Cr、Ni、Mn、Ti、Mo、Nb、W、Zrを
合計10%以下としたのは、10%を超えると磁気特性等を
阻害するからである。
The total content of these selected elements, Cr, Ni, Mn, Ti, Mo, Nb, W, and Zr, is set to 10% or less, because if it exceeds 10%, magnetic properties and the like are impaired.

溶体化処理の温度を950℃以上としたのは、比較的高
温のγ相から急冷すると焼が入りやすく、マルテンサイ
ト組織が得られ、その後の焼鈍によりマルテンサイト相
からα(フェライト)相への変態の駆動力で結晶粒が粗
大化し、得られた磁性合金は、低保磁力、高最大透磁率
になるからである。
The temperature of the solution treatment was set to 950 ° C. or higher because quenching is easy when quenching from a relatively high temperature γ phase, a martensitic structure is obtained, and the subsequent annealing converts the martensite phase to the α (ferrite) phase. This is because the crystal grains are coarsened by the driving force of the transformation, and the obtained magnetic alloy has a low coercive force and a high maximum magnetic permeability.

冷却速度を30℃/sec以上としたのは、水焼入れ、ある
いは油焼入れなどにより冷却速度が速いほど焼が入りや
すく上述の如く低保磁力、高最大透磁率が得られるため
である。
The reason why the cooling rate is set to 30 ° C./sec or more is that as the cooling rate is increased by water quenching, oil quenching, or the like, quenching is easily performed, and a low coercive force and a high maximum permeability are obtained as described above.

前記溶体化処理を施した後700℃以上のα相領域の温
度で焼鈍するとしたのは、上述した磁気特性の改善のほ
か、冷間加工性の改善、被削性の向上をはかるためであ
る。
The reason for performing annealing at a temperature of the α phase region of 700 ° C. or more after performing the solution treatment is to improve the above-described magnetic properties, to improve cold workability, and to improve machinability. .

前記Fe-Co系磁性合金から鋳造体を造り、この鋳造体
に所定の溶体化処理を施すのが望ましいとしたのは、後
述する実験データより、鍛造体あるいは圧延体に比べ鋳
造体の方が低保磁力、高最大透磁率が得られたからであ
る。
From the experimental data described below, it is preferable that a cast body is produced as compared with a forged body or a rolled body, based on the experimental data described later, that a cast body is produced from the Fe-Co-based magnetic alloy and that the cast body is preferably subjected to a predetermined solution treatment. This is because a low coercive force and a high maximum magnetic permeability were obtained.

(実施例) 本発明の実施例を説明する。(Example) An example of the present invention will be described.

各種の合金溶湯から鍛造品、圧延品、鋳造品を作製
し、これらに所定の溶体化処理、熱処理等を行なった。
そしてそれぞれの製品について、電気抵抗率、保磁力、
最大透磁率、磁束密度を測定した。ここで、電気抵抗率
は直径5mm×長さ100mm、磁気特性は外径45mm、内径33m
m、高さ7mmの各試験片で評価した。磁束密度は印加磁界
250eで測定した。
Forged products, rolled products, and cast products were prepared from various molten alloys, and were subjected to predetermined solution treatment, heat treatment, and the like.
And for each product, electrical resistivity, coercivity,
The maximum magnetic permeability and magnetic flux density were measured. Here, the electric resistivity is 5 mm in diameter x 100 mm in length, and the magnetic characteristics are 45 mm in outer diameter and 33 m in inner diameter
Each test piece having a height of 7 mm and a height of 7 mm was evaluated. Magnetic flux density is applied magnetic field
Measured at 250e.

以下、本発明の実施例について述べる。 Hereinafter, examples of the present invention will be described.

実施例1〜7 これらの実施例は、合金の成分が0.005%C、49.1%C
o、0.1%Si、0.05%Al、残部Feからなる合金を溶解し、
この合金溶湯から鋳造品を作成し、各種の溶体化処理
後、焼鈍した。溶体化処理条件及び焼鈍条件について
は、第1表に示すとおりである。
Examples 1 to 7 In these examples, the composition of the alloy was 0.005% C, 49.1% C
o, an alloy consisting of 0.1% Si, 0.05% Al and the balance Fe
A casting was prepared from this molten alloy, and after various solution treatments, annealed. Solution treatment conditions and annealing conditions are as shown in Table 1.

得られた製品について電気抵抗率と磁気特性を測定し
た。測定結果は第1表に示すとおりである。
The electrical resistivity and magnetic properties of the obtained product were measured. The measurement results are as shown in Table 1.

なお、第1表中、記号W.Qは水焼入れ(冷却速度約400
℃/sec)O.Qは油焼入れ(冷却速度約150℃/sec)A.Cは
空冷(冷却速度約10℃/sec)をそれぞれ示し、(α)、
(γ)はそれぞれ溶体化処理温度での相の状態を示して
いる。hrは時間を示す。
In Table 1, the symbol WQ indicates water quenching (cooling rate of about 400
° C / sec) OQ means oil quenching (cooling rate about 150 ° C / sec) AC means air cooling (cooling rate about 10 ° C / sec), (α),
(Γ) indicates the state of the phase at the solution treatment temperature. hr indicates time.

第1表から明らかなように、実施例3では、溶体化処
理温度1100℃30分、水焼入れの溶体化処理を施し、その
後850℃3時間保持後焼鈍を行なっているが、実施例3
は他の実施例1、2、4〜7と対比して保磁力が最も低
く、かつ最大透磁率が最も高く、磁気特性に優れている
ことがわかる。
As is clear from Table 1, in Example 3, the solution heat treatment was performed at a temperature of 1100 ° C. for 30 minutes, water quenching, followed by annealing at 850 ° C. for 3 hours.
It can be seen that the coercive force is the lowest, the maximum magnetic permeability is the highest, and the magnetic properties are excellent as compared with the other Examples 1, 2, 4 to 7.

実施例8〜10 これらの実施例は、0.007%C、48.7%Co、2.0%V、
0.15%Si、0.10%Al、残部Feからなる合金を溶解し、こ
れより鋳造品を作製し、所定の溶体化処理および焼鈍を
施した。そしてこれらの製品について電気抵抗率と磁気
特性を測定した。
Examples 8-10 These examples show that 0.007% C, 48.7% Co, 2.0% V,
An alloy consisting of 0.15% Si, 0.10% Al and the balance Fe was melted, and a casting was prepared from the alloy, and was subjected to a predetermined solution treatment and annealing. The electrical resistivity and magnetic properties of these products were measured.

溶体化処理条件及び焼鈍条件及び磁気特性の結果は第
1表に示すとおりである。
The results of the solution treatment conditions, the annealing conditions, and the magnetic properties are as shown in Table 1.

第1表から明らかなように実施例10では、鋳造品を10
50℃に1時間保持し、この温度から水焼入れによる溶体
化処理を施し、その後830℃に2時間保持した後200℃/h
rの冷却速度で焼鈍した。この実施例10は、実施例8と
9に比べ保磁力が低くかつ最大透磁率が最も高くかつ磁
束密度が最も高い。
As is clear from Table 1, in Example 10, the casting was
The solution was kept at 50 ° C. for 1 hour, subjected to a solution treatment by water quenching from this temperature, and then kept at 830 ° C. for 2 hours and then 200 ° C./h
Annealed at a cooling rate of r. The tenth embodiment has a lower coercive force, the highest maximum magnetic permeability and the highest magnetic flux density as compared with the eighth and ninth embodiments.

実施例11、12 これらの実施例は、0.008%C、49.0%Co、1.8%V、
0.09%Si、0.05%Al、残部Feからなる合金を溶解し、こ
の溶湯から圧延品を作製し、この圧延品について第1表
に示す溶体化処理及び焼鈍を施した。そして電気抵抗率
と磁気特性を測定した。結果は、第1表に示すとおりで
ある。
Examples 11 and 12 These examples show that 0.008% C, 49.0% Co, 1.8% V,
An alloy consisting of 0.09% Si, 0.05% Al and the balance Fe was melted to produce a rolled product from the molten metal, and the rolled product was subjected to solution treatment and annealing shown in Table 1. Then, the electric resistivity and the magnetic characteristics were measured. The results are as shown in Table 1.

実施例11、12は、保磁力がともに低くしかも最大透磁
率が高く残留磁束密度も相対的に高い値となっている。
In Examples 11 and 12, both the coercive force is low, the maximum magnetic permeability is high, and the residual magnetic flux density is a relatively high value.

実施例13、14 これらの実施例は、0.004%C、48.5%Co、1.5%V、
0.5%Si、0.5%Al、残部Feからなる合金を溶解し、これ
より鋳造品を作製し、この鋳造品について第2表に示す
溶体化処理及び焼鈍を施し、得られたものについて電気
抵抗率と磁気特性を測定した。結果は、第2表に示すと
おりである。
Examples 13 and 14 These examples demonstrate that 0.004% C, 48.5% Co, 1.5% V,
An alloy consisting of 0.5% Si, 0.5% Al and the balance Fe is melted to form a cast product. The cast product is subjected to solution treatment and annealing as shown in Table 2, and the obtained product is subjected to electrical resistivity. And the magnetic properties were measured. The results are as shown in Table 2.

実施例14は、溶体化処理を施さなかった実施例13に比
べ、低保磁力、高最大透磁率、高残留磁束密度となり相
対的に磁気特性が優れている。
Example 14 has a lower coercive force, a higher maximum magnetic permeability, and a higher residual magnetic flux density than the example 13 in which the solution treatment was not performed, and has relatively excellent magnetic properties.

実施例15、16 これらの実施例は、0.011%C、48.0%Co、1.3%V、
1.8%Cr、1.0%Si、0.9%Al、残部Feからなる合金を溶
解し、この溶湯から鋳造品を作製し、これについて所定
の溶体化処理及び焼鈍を施し、その後電気抵抗率と磁気
特性を測定した。結果は、第2表に示すとおりである。
Examples 15 and 16 These examples demonstrate that 0.011% C, 48.0% Co, 1.3% V,
An alloy consisting of 1.8% Cr, 1.0% Si, 0.9% Al and the balance Fe is melted to produce a casting from this molten metal, which is subjected to a predetermined solution treatment and annealing, and then the electrical resistivity and the magnetic properties are determined. It was measured. The results are as shown in Table 2.

実施例16は、実施例15に比べ溶体化処理温度が1100℃
と高く、焼鈍温度が800℃と低い温度から冷却してい
る。結果は、実施例16は、実施例15に比べ低保磁力、高
最大透磁率、高残留磁束密度となっている。
Example 16 had a solution treatment temperature of 1100 ° C. compared to Example 15.
And the annealing temperature is as low as 800 ° C. As a result, Example 16 had lower coercive force, higher maximum magnetic permeability, and higher residual magnetic flux density than Example 15.

実施例17、18 これらの実施例は、0.021%C、47.5%Co、1.2%V、
1.0%Ni、0.5%Mn、1.5%Si、0.6%Al残部Feからなる合
金を溶解し、これより鋳造品を作製して、所定の溶体化
処理及び焼鈍を施し、その後電気抵抗率と磁気特性を測
定した。結果は、第2表に示すとおりである。
Examples 17 and 18 These examples demonstrate that 0.021% C, 47.5% Co, 1.2% V,
An alloy consisting of 1.0% Ni, 0.5% Mn, 1.5% Si and 0.6% Al balance Fe is melted to produce a cast product, which is subjected to a prescribed solution treatment and annealing, and then to electrical resistivity and magnetic properties Was measured. The results are as shown in Table 2.

実施例18は、溶体化処理を施さなかった実施例17に比
べ、低保磁力、高最大透磁率、高磁束密度となった。
Example 18 had lower coercive force, higher maximum magnetic permeability, and higher magnetic flux density than Example 17 in which no solution treatment was performed.

比較例19 比較例19は、0.005%C、49.3%Co、残部Feからなる
合金を溶解し、鋳造品を作製し、その後溶体化処理を施
さないで第2表に示す焼鈍を行なった。電気抵抗率と磁
気特性を測定した結果、結果は第2表に示すとおりであ
った。
Comparative Example 19 In Comparative Example 19, an alloy composed of 0.005% C, 49.3% Co, and the balance Fe was melted to produce a cast product, and thereafter the annealing shown in Table 2 was performed without performing a solution treatment. As a result of measuring the electrical resistivity and the magnetic properties, the results were as shown in Table 2.

比較例19では、V、Al及びSiを添加していない例であ
る。この比較例19では、上述した実施例に比べ電気抵抗
率は低く、高保磁力、低最大透磁率となり磁気特性が悪
化していることがわかる。
Comparative Example 19 is an example in which V, Al and Si were not added. In Comparative Example 19, the electric resistivity was lower, the coercive force was lower, and the maximum magnetic permeability was lower than those of the above-described examples.

比較例20 比較例20は、0.006%C、49.0%Co、1.5%V、4.0%S
i、1.1%Al、残部Feからなる合金を溶解し、これより鋳
造品を作成し、溶体化処理を施さないで第2表に示す焼
鈍を行なった。その後電気抵抗率と磁気特性を測定し
た。結果は第2表に示すとおりであった。
Comparative Example 20 In Comparative Example 20, 0.006% C, 49.0% Co, 1.5% V, 4.0% S
An alloy consisting of i, 1.1% Al and the balance Fe was melted to prepare a cast product, which was annealed as shown in Table 2 without being subjected to a solution treatment. Thereafter, the electrical resistivity and the magnetic properties were measured. The results were as shown in Table 2.

比較例20は、Siを4%添加した例である。結果は、磁
気特性が高保磁力、低最大透磁率、低磁束密度となり磁
気特性が悪化している。
Comparative Example 20 is an example in which 4% of Si was added. As a result, the magnetic characteristics are high coercive force, low maximum magnetic permeability, and low magnetic flux density, and the magnetic characteristics are deteriorated.

(発明の効果) 以上説明したように本発明によれば、Fe-Co系磁性合
金においてγ相領域より溶体化処理し、その後の焼鈍を
α相領域で行なうことにより、マルテンサイト相からフ
ェライト相への変態時の駆動力で結晶粒が粗大化し、低
保磁力、高最大透磁率等の優れた磁気特性が得られると
いう効果がある。
(Effects of the Invention) As described above, according to the present invention, a solution treatment is performed from the γ phase region in the Fe—Co based magnetic alloy, and the subsequent annealing is performed in the α phase region, so that the ferrite phase is changed from the martensite phase. There is an effect that the crystal grains are coarsened by the driving force at the time of transformation to, and excellent magnetic properties such as low coercive force and high maximum magnetic permeability can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/10 C22F 1/10 E // C22F 1/00 660 8719−4K 1/00 660C 692 8719−4K 692A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location C22F 1/10 C22F 1/10 E // C22F 1/00 660 8719-4K 1/00 660C 692 8719 -4K 692A

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%でCo40〜60%、V5.0%以下(0を含
まず)、Si3.0%以下(0を含まず)、Al3.0%以下(0
を含まず)、C0.1%以下、さらに必要に応じてCr、Ni、
Mn、Ti、Mo、Nb、W、Zrから選ばれた1種以上を合計で
10重量%以下含有し、残部実質的にFeからなる合金を、
950℃以上の温度から30℃/sec以上の冷却速度で溶体化
処理し、その後700℃以上のα相領域の温度で焼鈍する
ことを特徴とするFe-Co系磁性合金の製造方法。
1. Co40 to 60% by weight, V5.0% or less (not including 0), Si3.0% or less (not including 0), Al3.0% or less (0%)
), C0.1% or less, and Cr, Ni,
At least one selected from Mn, Ti, Mo, Nb, W, and Zr
An alloy containing 10% by weight or less, and the balance substantially consisting of Fe,
A method for producing a Fe-Co-based magnetic alloy, comprising: performing a solution treatment from a temperature of 950 ° C or more at a cooling rate of 30 ° C / sec or more, and then annealing at a temperature of an α phase region of 700 ° C or more.
【請求項2】重量%でCo40〜60%、V5.0%以下(0を含
まず)、Si3.0%以下(0を含まず)、Al3.0%以下(0
を含まず)、C0.1%以下、さらに必要に応じてCr、Ni、
Mn、Ti、Mo、Nb、W、Zrから選ばれた1種以上を合計で
10重量%以下含有し残部実質的にFeからなる合金溶湯か
ら鋳造体を造り、この鋳造体を950℃以上の温度から30
℃/sec以上の冷却速度で溶体化処理し、その後700℃以
上のα相領域の温度で焼鈍することを特徴とするFe-Co
系磁性合金の製造方法。
2. Co40 to 60% by weight, V5.0% or less (not including 0), Si3.0% or less (not including 0), Al3.0% or less (0%)
), C0.1% or less, and Cr, Ni,
At least one selected from Mn, Ti, Mo, Nb, W, and Zr
A casting is made from a molten alloy containing 10% by weight or less and the balance substantially consisting of Fe.
Solution treatment at a cooling rate of at least ℃ / sec, and then annealing at a temperature in the α phase region of at least 700 ° C.
Method of manufacturing magnetic alloys.
JP63083915A 1988-04-05 1988-04-05 Method for producing Fe-Co based magnetic alloy Expired - Fee Related JP2701306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63083915A JP2701306B2 (en) 1988-04-05 1988-04-05 Method for producing Fe-Co based magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63083915A JP2701306B2 (en) 1988-04-05 1988-04-05 Method for producing Fe-Co based magnetic alloy

Publications (2)

Publication Number Publication Date
JPH01255645A JPH01255645A (en) 1989-10-12
JP2701306B2 true JP2701306B2 (en) 1998-01-21

Family

ID=13815897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63083915A Expired - Fee Related JP2701306B2 (en) 1988-04-05 1988-04-05 Method for producing Fe-Co based magnetic alloy

Country Status (1)

Country Link
JP (1) JP2701306B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL128067A (en) * 1998-02-05 2001-10-31 Imphy Ugine Precision Iron-cobalt alloy
GB2339798B (en) * 1998-07-24 2002-12-11 Telcon Ltd High Strength soft magnetic alloys
US6685882B2 (en) * 2001-01-11 2004-02-03 Chrysalis Technologies Incorporated Iron-cobalt-vanadium alloy
WO2013087997A1 (en) 2011-12-16 2013-06-20 Aperam Method for producing a thin strip made from soft magnetic alloy, and resulting strip

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110846A (en) * 1983-11-21 1985-06-17 Hitachi Metals Ltd High permeability magnetic alloy

Also Published As

Publication number Publication date
JPH01255645A (en) 1989-10-12

Similar Documents

Publication Publication Date Title
US11114226B2 (en) Ultra-low cobalt iron-cobalt magnetic alloys
RU2201990C2 (en) Alloy iron-cobalt
US4536229A (en) Fe-Ni-Mo magnet alloys and devices
US4093477A (en) Anisotropic permanent magnet alloy and a process for the production thereof
US4540453A (en) Magnetically soft ferritic Fe-Cr-Ni alloys
JP2701306B2 (en) Method for producing Fe-Co based magnetic alloy
EP0049141B1 (en) Iron-chromium-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
EP0877825A1 (en) Method of preparing a magnetic article from a duplex ferromagnetic alloy
JPS6312936B2 (en)
JPH06293943A (en) Magnetic material with high core loss
JP2003226945A (en) Soft magnetic steel having excellent cold forgeability and magnetic permeability, soft magnetic steel parts having excellent magnetic permeability and production method therefor
JP5742446B2 (en) Electromagnetic stainless steel
JP2674137B2 (en) High permeability magnetic material
JPH06346201A (en) Magnetic alloy having high saturation magnetic flux density and high electric resistance
JPH06264195A (en) Fe-co series magnetic alloy
JPH055162A (en) Soft magnetic alloy high in magnetic permeability
US4398972A (en) Ferritic Fe-Ni magnetic alloys
JP3220386B2 (en) Iron-based soft magnetic alloy
JPH07166281A (en) Wear resistant magnetic alloy
JP3438819B2 (en) Stainless steel for magnetism and its manufacturing method
JPH0261526B2 (en)
JP3413609B2 (en) Fe-Cr-Co magnet alloy and method for producing the same
KR810000626B1 (en) Anisotropic permanent magnet alloy
JP2003193207A (en) Fe-Cr-Co BASED PERMANENT MAGNET ALLOY

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees