JPH0261526B2 - - Google Patents

Info

Publication number
JPH0261526B2
JPH0261526B2 JP14001384A JP14001384A JPH0261526B2 JP H0261526 B2 JPH0261526 B2 JP H0261526B2 JP 14001384 A JP14001384 A JP 14001384A JP 14001384 A JP14001384 A JP 14001384A JP H0261526 B2 JPH0261526 B2 JP H0261526B2
Authority
JP
Japan
Prior art keywords
hours
semi
strength
magnetic
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14001384A
Other languages
Japanese (ja)
Other versions
JPS6119735A (en
Inventor
Hiromichi Horie
Isao Suzuki
Minoru Asada
Shigeharu Takai
Yasutaka Okada
Kikuo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Steel Corp
Proterial Ltd
Original Assignee
Toshiba Corp
Sumitomo Metal Industries Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Sumitomo Metal Industries Ltd, Sumitomo Special Metals Co Ltd filed Critical Toshiba Corp
Priority to JP14001384A priority Critical patent/JPS6119735A/en
Publication of JPS6119735A publication Critical patent/JPS6119735A/en
Publication of JPH0261526B2 publication Critical patent/JPH0261526B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明はマルエージング鋼による高強度半硬質
磁石に係り、特に無方向性を有する製造方法に関
するものである。 〔発明の技術的背景とその問題点〕 一般に高速ヒステリシスモータは、電流が負荷
によつて変化せず定速回転性が良好であるなど
種々の特性を有するため、最近は高速スピンドル
用モータ、レーザテレビ用モータ、ジヤイロ用モ
ータ等、高速回転の駆動部として多く使用される
ようになつてきた。 この高速ヒステリシスモータの性能は、モータ
の回転子材料となる半硬質磁石材料の諸特性によ
つて大きく左右されるため、回転子材料として次
に挙げる磁気的、機械的な特性を有することが要
求されている。 高速ヒステリシスモータの回転子材料は、磁
気的に優れた半硬質磁石特性を有し、その特性
は望ましくは残留磁束密度:Brが10KG(1.0T)
以上で保持力:BHcが40Oe(3183A/m)以上
であること。 ヒステリシスモータの運転特性から回転子材
料は磁気的に無方向性であり、また負荷条件、
駆動方法によつては200℃程度まで上昇するの
で、温度変化に対して、磁気特性の変動が少な
いことが望ましい。 回転子材料は高速回転に耐えるように十分大
きな機械的強度を有し、引張り強度150Kg/mm2
以上、伸びが8%以上、靭性の指標となる切欠
強度比が1.0以上であることが望ましく、更に
機械的性質も成るべく無方向性であることが望
ましい。 回転子材料は比較的薄い材料が使われること
が多いため、寸法精度に優れた冷間工板材とし
て成形できることが望ましい。 このような諸特性が要求される高速ヒステリシ
スモータの回転子材料としては、従来超強力鋼と
して知られているマルエージング鋼による半硬質
磁石材料が提案されている。 例えば特公昭51−31206、特開昭52−5619、特
開昭52−9621、特開昭52−9622、特開昭52−
12613等には無方向性の高強度半硬質磁石材料の
製造方法が開示されている。しかしなが、これら
の方法で製造された磁石材料は、何れも残留磁束
密度:Brが9KG(0.9T)以下しかなく、高速ヒス
テリシスモータの回転子材料としては満足できる
ものではなく、また冷間圧延を施すことができな
いため、寸法精度の高い材料を製造することがで
きない。 一方、特開昭51−96723、特開昭51−117915、
特開昭52−139617にはマルエージング鋼による半
硬質磁石製造方法として、時効処理と時効処理と
の間、または時効処理前に冷間圧延を施す方法が
開示されている。しかしながら、これらの方法で
製造された磁石材料は、何れも磁気的な方向性が
出る上、磁気特性の温度変化が大きいため高速ヒ
ステリシスモータ材料としては望ましくない。こ
のため冷間圧延をクロス圧延する方法も考えられ
るが、ロール幅によつて規定されめため、材料の
歩留り、板厚精度が悪く量産に適しない。 〔発明の目的〕 本発明はかかる点に鑑み、種々研究を行つた結
果、機械的、磁気的特性に優れていると共に、異
方性が改善され、しかも温度変変化に対する磁気
特性が安定していると共に、冷間圧延により量産
性も優れ、寸法精度も高く、特に高速ヒステリシ
スモータ回転子材料として好適な無方向性高強度
半硬質磁石合金の製造方法を提供するものであ
る。 〔発明の概要〕 本発明はマルエージング鋼による無方向性の高
強度半硬質磁石合金の製造方法であり、重量比で
Ni12.5〜19.0%、Co8.0〜20.0%、Mo3.0〜7.0%、
Ti1.10〜1.90%、Al0.15%以下、残部Feおよび不
純物とから成る合金を熱間加工した後、30%以上
の冷間加工を加え、次いで900〜1000℃で1〜5
時間保持した後、自然空冷以上の冷却速度で冷却
する第一段の溶体化処理を行い、更に800〜880℃
で1〜10時間保持した後、自然空冷以上の冷却速
度で冷却する第二段の溶体化処理を行い、更にこ
の後520〜590℃で10〜200時間の時効処理を施す
ことを特徴とするものである。 以下本発明の方法を詳細に説明する。 先ず本発明の半硬質磁石材料の化学組成につい
て説明する。なお%は重量比を示す。 Niは磁石材料の半硬質磁石特性、強度、靭性
を向上させるのに効果的な元素で、12.5%未満で
はその効果が少なく、また19%をを越えて過剰に
添加すると、時効処理中にオーステナイトが生成
し易く、残留磁束密度を低下させ、温度上昇に伴
う磁気特性の変化を促進させる。 Coは半硬質磁石特性の向上と強度の向上に効
果的な作用をなし、8.0%未満では十分な効果が
得られず、また20.0%を越えて過剰に添加して
も、これらの効果が飽和してしまう上、靭性が低
下してくる。 MoはNiやFeと金属間化合物を生成して強度と
半硬質磁石特性を向上させる反面Ms点を著しく
低下させオーステナイトを生成し易い作用があ
る。したがつて3.0%未満では半硬質磁石特性強
度に対する効果が低く、また7.0%を越えると飽
和磁束密度が低下すると共に、金属間化合物が残
留し靭性を大きく低下させてしまう。 Tiは半硬質特性の上昇に有効であると共に、
時効処理中のオーステナイトの発生を抑制する作
用がある。この場合1.10%未満ではその添加効果
が少なく、また1.90%を越えるとミクロ偏析が発
生し易くなり、飽和磁束密度と機械的性質を大き
く劣化させる。 Alは脱酸剤として作用し、特にTiの酸化防止
等により添加歩留を向上させるもので、0.15%を
越えて多重に添加すると、その効果が飽和し、析
出強化に寄与するが靭性を劣化させる。 なお不純物としては、靭性を劣化させないため
にSiおよびMnは0.10%以下、PおよびSは0.01
%以下、Cはは0.05%以下に抑える必要がある。 次に上記組成の合金を用いて磁石合金を製造す
る方法について、工程に従つて説明する。 上記組成の合金を熱間で鍛造、ソーキング処
理、熱間加工を行つた後、この熱間加工材を30%
以上の加工率で冷間加工を行い、所定の板厚とす
る。この場合、30%未満の加工率では、その後の
熱処理工程における再結晶が不十分となり、十分
な延性や靭性がえられない。この冷間加工の後
に、第一段の溶体化処理を行う。この溶体化処理
は900〜1000℃で1〜5時間保持した後、自然空
冷以上の冷却速度で冷却することにより、圧延異
方性を改善し、無方向性を与えるものである。こ
の場合900℃、1時間未満の加熱では再結晶が十
分でなく、機械的、磁気的な異方性が生じる。ま
た1000℃、5時間を越える長時間加熱を行うと、
圧延による異方性性はなくなるが、結晶粒が粗大
になり、強度、延性、靭性、磁気特性が夫々低下
する。 このように第一段の溶体化処理を行つて異方性
を改善した後、第二段の溶体化処理は800〜880℃
で1〜10時間保持した後、自然空冷以上の冷却速
度で冷却することにより靭性のあるマルテンサイ
ト組織を形成することができる。 この場合、800℃、1時間未満の加熱では、残
留析出物、残留オーステナイトが発生し、機械
的、磁気的特性とも低下し、また880℃、10時間
を越えると、強度、靭性が低下する。 このように二段階の容体化処理を経た後、最後
に時効処理を行なう。この時効処理は、520〜590
℃で10〜200時間保持することにより、Ni3Ti、
Ni3Mo、FeMo等非強磁性体の金属間化合物を粒
内に微細に析出させることによつて、より高い強
度と良好な延性、靭性等の機械的特性を向上させ
ると共に、半硬質磁石としての磁気特性と温度安
定性を向上させることができる。 この場合、520℃10時間未満の加熱では、機械
的特性が向上するが、磁気特性が十分に得られな
い。また590℃を越える温度ではオーステナイト
の析出が多くなり、強度が低下する。しかも磁気
特性は飽和磁束密度と残留磁束密度が低下し、逆
に保磁力は増加するが、磁気特性の温度変化が大
きくなる。また処理時間が200時間を越えると、
オーステナイトの析出が活発となり、前述と同様
に磁気的、機械的特性が低下する。 なお、必要に応じて熱間加工と冷間加工との間
に、1000〜1200℃で1〜5時間の熱処理工程を予
め行うと、熱間加工材のミクロ偏析、圧延異方性
の改善に有効であると共に、十分に軟化して次工
程の冷間加工を容易にすることができる。この場
合1000℃1時間未満の熱処理ではその効果が少な
く、また1200℃5時間を越えると結晶粒が著しく
粗大化し、冷間加工性が劣化するばかりか、その
後の冷間加工、熱処理において結晶粒の微細化が
不十分となり靭性が劣化する。 〔発明の実施例〕 実施例 第1表および第2表のNo.1〜No.18に示す組成の
合金を溶解してインゴツトとし、更にこのインゴ
ツトを熱間で鍛造、ソーキング処理した後、熱間
圧延を行なうことにより所定の板厚に仕上げる。
該熱間圧延は900℃以上の温度で行ない、加工後
は自然空冷以上の冷却速度で冷却する。この熱間
加工材を同表に示す条件で熱処理、冷間加工、第
一段および第二段に溶体化処理、時効処理を行つ
た。 このようにして得られた18種の半硬質磁石合金
について0.2%耐力、引張強さ、伸び、切欠強度
比などの機械的特性、および飽和磁束密度、残留
磁束密度、保磁力などの磁気特性を測定し、これ
らを基に異方性の有無を判定して、その結果を第
4表および第5表に示した。。 比較例 第3表のNo.19〜No.23の合金は本発明に規定する
化学成分の範囲であるが、溶体化処理、時効処理
条件を規定範囲外としたものである。 このようにして得られた半硬質磁石合金につい
ても、同様に機械的特性および磁気的特性を測定
し、その結果を第6表に示した。 従来例 第3表のNo.24〜No.29に示す化学組成の従来合金
を、表に示す条件で製造し、得られた半硬質磁石
について、夫々機械的および磁気的特性を測定
し、その結果を第6表に併記した。
[Technical Field of the Invention] The present invention relates to a high-strength semi-hard magnet made of maraging steel, and more particularly to a method for producing a non-directional magnet. [Technical background of the invention and its problems] In general, high-speed hysteresis motors have various characteristics such as the current does not change depending on the load and good constant speed rotation performance, so recently they have been used as high-speed spindle motors and laser They have come to be widely used as high-speed rotation drive parts such as TV motors and gyro motors. The performance of this high-speed hysteresis motor is greatly influenced by the properties of the semi-hard magnetic material that is the motor's rotor material, so the rotor material is required to have the following magnetic and mechanical properties: has been done. The rotor material of the high-speed hysteresis motor has excellent magnetic properties as a semi-hard magnet, and its properties are preferably such that the residual magnetic flux density: Br is 10KG (1.0T)
Holding force: B Hc must be 40Oe (3183A/m) or more. Due to the operating characteristics of a hysteresis motor, the rotor material is magnetically non-directional, and depending on the load conditions,
Depending on the driving method, the temperature can rise up to about 200°C, so it is desirable that the magnetic properties fluctuate little with respect to temperature changes. The rotor material has sufficient mechanical strength to withstand high-speed rotation, with a tensile strength of 150Kg/mm 2
As mentioned above, it is desirable that the elongation is 8% or more, the notch strength ratio, which is an index of toughness, is 1.0 or more, and it is also desirable that the mechanical properties are as non-directional as possible. Since rotor materials are often relatively thin, it is desirable that they can be formed into cold-worked plates with excellent dimensional accuracy. As a rotor material for a high-speed hysteresis motor that requires such various characteristics, a semi-hard magnet material made of maraging steel, which is conventionally known as ultra-strong steel, has been proposed. For example, JP-A-51-31206, JP-A-52-5619, JP-A-52-9621, JP-A-52-9622, JP-A-52-
No. 12613 and the like disclose a method for manufacturing a non-directional high-strength semi-hard magnetic material. However, all of the magnet materials manufactured by these methods have a residual magnetic flux density (Br) of only 9KG (0.9T) or less, which is not satisfactory as a rotor material for a high-speed hysteresis motor. Since rolling cannot be performed, materials with high dimensional accuracy cannot be manufactured. On the other hand, JP-A-51-96723, JP-A-51-117915,
JP-A-52-139617 discloses a method for manufacturing semi-hard magnets using maraging steel, in which cold rolling is performed between or before aging treatments. However, magnet materials manufactured by these methods are not desirable as materials for high-speed hysteresis motors because they exhibit magnetic directionality and their magnetic properties vary greatly with temperature. For this reason, a method of cross-rolling cold rolling is considered, but since it is determined by the roll width, the material yield and thickness accuracy are poor and it is not suitable for mass production. [Object of the Invention] In view of the above points, the present invention has been developed as a result of various researches, and has been developed to have excellent mechanical and magnetic properties, improved anisotropy, and stable magnetic properties against temperature changes. In addition, the present invention provides a method for manufacturing a non-directional high-strength semi-hard magnetic alloy that is excellent in mass production through cold rolling, has high dimensional accuracy, and is particularly suitable as a rotor material for a high-speed hysteresis motor. [Summary of the Invention] The present invention is a method for manufacturing a non-directional high-strength semi-hard magnetic alloy using maraging steel.
Ni12.5~19.0%, Co8.0~20.0%, Mo3.0~7.0%,
After hot working an alloy consisting of 1.10 to 1.90% Ti, 0.15% or less Al, and the balance Fe and impurities, it is cold worked to 30% or more, and then at 900 to 1000℃ for 1 to 5
After holding for a period of time, the first stage of solution treatment is performed to cool at a cooling rate higher than that of natural air cooling, and then the temperature is further increased to 800 to 880℃.
After holding at a temperature of 1 to 10 hours, a second stage solution treatment is performed in which the material is cooled at a cooling rate higher than that of natural air cooling, and then an aging treatment is performed at 520 to 590°C for 10 to 200 hours. It is something. The method of the present invention will be explained in detail below. First, the chemical composition of the semi-hard magnetic material of the present invention will be explained. Note that % indicates weight ratio. Ni is an effective element for improving the semi-hard magnetic properties, strength, and toughness of magnet materials.If it is less than 12.5%, the effect is small, and if it is added in excess of 19%, it will cause austenite during aging treatment. is easily generated, lowers the residual magnetic flux density, and promotes changes in magnetic properties as temperature rises. Co has an effective effect on improving semi-hard magnetic properties and strength, but if it is less than 8.0%, sufficient effects cannot be obtained, and even if it is added in excess of 20.0%, these effects will be saturated. In addition, the toughness decreases. Mo forms intermetallic compounds with Ni and Fe to improve strength and semi-hard magnetic properties, but on the other hand, it has the effect of significantly lowering the Ms point and facilitating the formation of austenite. Therefore, if it is less than 3.0%, the effect on the characteristic strength of a semi-hard magnet will be low, and if it exceeds 7.0%, the saturation magnetic flux density will decrease and intermetallic compounds will remain, resulting in a significant decrease in toughness. Ti is effective in increasing semi-hard properties, and
It has the effect of suppressing the generation of austenite during aging treatment. In this case, if it is less than 1.10%, the effect of its addition is small, and if it exceeds 1.90%, micro-segregation tends to occur, greatly deteriorating the saturation magnetic flux density and mechanical properties. Al acts as a deoxidizing agent and improves the addition yield, especially by preventing Ti from oxidizing. If it is added in excess of 0.15%, its effect becomes saturated and it contributes to precipitation strengthening, but deteriorates toughness. let As impurities, Si and Mn should be 0.10% or less, and P and S should be 0.01% to avoid deteriorating toughness.
% or less, C must be kept to 0.05% or less. Next, a method for manufacturing a magnet alloy using an alloy having the above composition will be explained step by step. After hot forging the alloy with the above composition, soaking treatment, and hot working, this hot worked material is 30%
Cold working is performed at the above processing rate to obtain a predetermined plate thickness. In this case, if the processing rate is less than 30%, recrystallization in the subsequent heat treatment step will be insufficient, and sufficient ductility and toughness will not be obtained. After this cold working, a first stage solution treatment is performed. This solution treatment improves the rolling anisotropy and imparts non-directionality by holding at 900 to 1000°C for 1 to 5 hours and then cooling at a cooling rate higher than natural air cooling. In this case, heating at 900° C. for less than 1 hour will not result in sufficient recrystallization, resulting in mechanical and magnetic anisotropy. Also, if heated at 1000℃ for a long time exceeding 5 hours,
Although the anisotropy caused by rolling is eliminated, the crystal grains become coarse and the strength, ductility, toughness, and magnetic properties are reduced. After the first stage solution treatment is performed to improve the anisotropy, the second stage solution treatment is performed at 800 to 880℃.
After holding for 1 to 10 hours, a tough martensitic structure can be formed by cooling at a cooling rate higher than natural air cooling. In this case, if heated at 800°C for less than 1 hour, residual precipitates and retained austenite will be generated, resulting in decreased mechanical and magnetic properties, and if heated at 880°C for more than 10 hours, strength and toughness will decrease. After going through the two-stage container treatment in this way, the final aging treatment is performed. This aging process is 520 to 590
Ni3Ti , by holding for 10-200 hours at °C.
By finely precipitating non-ferromagnetic intermetallic compounds such as Ni 3 Mo and FeMo within the grains, mechanical properties such as higher strength, good ductility, and toughness are improved, and it can be used as a semi-hard magnet. can improve magnetic properties and temperature stability. In this case, heating at 520° C. for less than 10 hours improves mechanical properties, but does not provide sufficient magnetic properties. Furthermore, at temperatures exceeding 590°C, austenite precipitation increases and strength decreases. Furthermore, the saturation magnetic flux density and the residual magnetic flux density decrease in the magnetic properties, and the coercive force increases, but the temperature change in the magnetic properties increases. Also, if the processing time exceeds 200 hours,
Austenite precipitation becomes active, and the magnetic and mechanical properties deteriorate as described above. Note that if necessary, a heat treatment step of 1 to 5 hours at 1000 to 1200℃ between hot working and cold working can be performed in advance to improve microsegregation and rolling anisotropy of hot worked material. It is effective and can be sufficiently softened to facilitate cold working in the next step. In this case, heat treatment at 1000℃ for less than 1 hour will have little effect, and if it exceeds 1200℃ for 5 hours, the crystal grains will become significantly coarser, which will not only deteriorate cold workability but also cause crystal grains to deteriorate during subsequent cold working and heat treatment. is insufficiently refined and the toughness deteriorates. [Embodiments of the Invention] Examples The alloys having the compositions shown in Tables 1 and 2, No. 1 to No. 18, were melted to form an ingot, which was further hot-forged and soaked, and then heat-treated. The plate is finished to a predetermined thickness by performing inter-rolling.
The hot rolling is performed at a temperature of 900° C. or higher, and after processing, the product is cooled at a cooling rate higher than that of natural air cooling. This hot-worked material was subjected to heat treatment, cold working, first-stage and second-stage solution treatment, and aging treatment under the conditions shown in the same table. Mechanical properties such as 0.2% yield strength, tensile strength, elongation, and notch strength ratio, and magnetic properties such as saturation magnetic flux density, residual magnetic flux density, and coercive force were investigated for the 18 types of semi-hard magnetic alloys obtained in this way. The presence or absence of anisotropy was determined based on these measurements, and the results are shown in Tables 4 and 5. . Comparative Example Alloys No. 19 to No. 23 in Table 3 have chemical compositions within the range specified by the present invention, but solution treatment and aging treatment conditions were outside the specified range. The mechanical properties and magnetic properties of the thus obtained semi-hard magnetic alloy were similarly measured, and the results are shown in Table 6. Conventional example Conventional alloys having chemical compositions shown in No. 24 to No. 29 in Table 3 were manufactured under the conditions shown in the table, and the mechanical and magnetic properties of the semi-hard magnets obtained were measured. The results are also listed in Table 6.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明に係る無方向性高強度
半硬質磁石合金の製造方法によれば、機械的、磁
気的特性に優れていると共に、異方性が改善さ
れ、しかも温度変化に対する磁気特性が安定して
いると共に、冷間圧延により量産に優れ、寸法精
度も高く、特に高速ヒステリシスモータの回転子
材料として好適である。
As explained above, according to the method of manufacturing a non-oriented high-strength semi-hard magnetic alloy according to the present invention, it has excellent mechanical and magnetic properties, improves anisotropy, and has excellent magnetic properties against temperature changes. It is stable, has excellent mass production through cold rolling, and has high dimensional accuracy, making it particularly suitable as a rotor material for high-speed hysteresis motors.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比でNi12.5〜19.0%、Co8.0〜20.0%、
Mo3.0〜7.0%、Ti1.10〜1.90%、Al0.15%以下、
残部Feおよび不純物とから成る合金を熱間加工
した後、30%以上の冷間加工を加え、次いで900
〜1000℃で1〜5時間保持した後、自然空冷以上
の冷却速度で冷却する第一段の溶体化処理を行
い、更に800〜880℃で1〜10時間保持した後、自
然空冷以上の冷却速度で冷却する第二段の溶体化
処理行い、更にこの後、520〜590℃で10〜200時
間の時効処理を施すことを特徴とする無方向性高
強度半硬質磁石合金の製造方法。
1 Ni12.5-19.0%, Co8.0-20.0% by weight,
Mo3.0~7.0%, Ti1.10~1.90%, Al0.15% or less,
After hot working the alloy consisting of the balance Fe and impurities, it is cold worked by 30% or more, and then 900%
After holding at ~1000℃ for 1 to 5 hours, perform the first stage solution treatment of cooling at a cooling rate faster than natural air cooling, and after holding at 800 to 880℃ for 1 to 10 hours, cooling faster than natural air cooling. A method for producing a non-oriented high-strength semi-hard magnetic alloy, which comprises performing a second-stage solution treatment in which the alloy is cooled at a high speed, and then subjected to an aging treatment at 520 to 590°C for 10 to 200 hours.
JP14001384A 1984-07-06 1984-07-06 Preparation of non-directional high strength semi-hard magnetic alloy Granted JPS6119735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14001384A JPS6119735A (en) 1984-07-06 1984-07-06 Preparation of non-directional high strength semi-hard magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14001384A JPS6119735A (en) 1984-07-06 1984-07-06 Preparation of non-directional high strength semi-hard magnetic alloy

Publications (2)

Publication Number Publication Date
JPS6119735A JPS6119735A (en) 1986-01-28
JPH0261526B2 true JPH0261526B2 (en) 1990-12-20

Family

ID=15258901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14001384A Granted JPS6119735A (en) 1984-07-06 1984-07-06 Preparation of non-directional high strength semi-hard magnetic alloy

Country Status (1)

Country Link
JP (1) JPS6119735A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399332B1 (en) 1994-12-26 2003-09-26 히다치 가세고교 가부시끼가이샤 Laminating method using laminating film-like organic die-bonding material, die-bonding method, laminating device, die-bonding device, semiconductor device and method for manufacturing semiconductor device
CN109372869B (en) * 2018-09-30 2020-10-02 江苏永昊高强度螺栓有限公司 High-strength bolt and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6119735A (en) 1986-01-28

Similar Documents

Publication Publication Date Title
US3634072A (en) Magnetic alloy
JPH11264058A (en) Iron-cobalt alloy
JP2637371B2 (en) Method for producing Fe-Mn-based vibration damping alloy steel
JP3614869B2 (en) High strength non-magnetic low thermal expansion alloy
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JPH0261526B2 (en)
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JPS59170244A (en) Strong and tough co-free maraging steel
JPH0121845B2 (en)
JPS5942741B2 (en) Semi-hard magnetic alloy and its manufacturing method
JPH0579727B2 (en)
JP2574528B2 (en) High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same
JPH04272130A (en) Production of high mn nonmagnetic steel having superior drillability
JPH0774415B2 (en) Fe-Mn vibration damping alloy steel and method for producing the same
JP2537679B2 (en) High-strength stainless steel and its steel material
JPH02301514A (en) Method for allowing shape memory stainless steel to memorize shape
JPH0215116A (en) Production of soft magnetic material
JP2628806B2 (en) High strength non-magnetic low thermal expansion alloy and method for producing the same
JPH062046A (en) Production of ferritic stainless steel sheet excellent in surface characteristic and deep drawability
JPH05279784A (en) Fe-co type magnetic material having high strength and high elongation and its production
JPH04263014A (en) High hardness forming die steel and its production
JPH07166281A (en) Wear resistant magnetic alloy
JP3379760B2 (en) Manufacturing method of high strength and high permeability steel
JPH02270940A (en) Alloy for high temperature use bolt and its manufacture
JP2005023426A (en) High strength nonmagnetic low thermal expansion alloy