EP0935008A1 - Iron-cobalt alloy - Google Patents
Iron-cobalt alloy Download PDFInfo
- Publication number
- EP0935008A1 EP0935008A1 EP99400112A EP99400112A EP0935008A1 EP 0935008 A1 EP0935008 A1 EP 0935008A1 EP 99400112 A EP99400112 A EP 99400112A EP 99400112 A EP99400112 A EP 99400112A EP 0935008 A1 EP0935008 A1 EP 0935008A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- iron
- cobalt alloy
- alloy
- niobium
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
Definitions
- the present invention relates to an iron-cobalt alloy with characteristics improved mechanics.
- Iron-cobalt alloys are well known, and are characterized by both very interesting magnetic properties and by a very great brittleness to the ordinary temperature, which makes their use delicate.
- the alloy Fe50Co50 containing 50% by weight of iron and 50% of cobalt, has an induction at very high saturation and good magnetic permeability, but it has the disadvantage of not being able to be cold rolled, which makes it unusable practically.
- This very great fragility results from the formation, below 730 ° C, approximately, of an ordered ⁇ 'phase, resulting from a disorder-order transformation.
- This disorder-order transformation can be slowed down by adding vanadium, which makes it possible to manufacture an alloy of the iron-cobalt type, containing little about 50% cobalt and about 50% iron, suitable for being cold rolled after very energetic overheating.
- vanadium which makes it possible to manufacture an alloy of the iron-cobalt type, containing little about 50% cobalt and about 50% iron, suitable for being cold rolled after very energetic overheating.
- This alloy which has very good magnetic properties after cold rolling and annealing between 720 ° C and 870 ° C approximately, however has the drawback of requiring special precautions during reheating prior to overheating, in order to limit the magnification of the grain which deteriorates the ductility.
- niobium or tantalum
- the limit elasticity can exceed 600 MPa.
- these mechanical characteristics do not can be obtained with relatively large additions of niobium or tantalum.
- the object of the present invention is to provide an iron-cobalt alloy having at the times satisfactory ductility, good magnetic properties and improved mechanical characteristics, while having good suitability for hot rolling.
- the inventors have surprisingly found that when added 0.0007% to 0.007% by weight, or better still 0.001% to 0.003%, of boron, to an alloy iron-cobalt containing, moreover, from 0.5% to 2.5%, or better still from 1.5% to 2.2%, of vanadium as well as a small amount of elements such as tantalum and niobium, we significantly increased the yield strength of the alloy, while retaining satisfactory magnetic characteristics and having very good suitability hot rolling.
- alloys A and B according to the invention and alloy C according to the prior art we have developed alloys A and B according to the invention and alloy C according to the prior art. With these alloys, we made 2 mm strips by hot rolling at around 1200 ° C thick which have been hyper-soaked by cooling in less than 1 second between 800 ° C and 100 ° C. The strips thus obtained were cold rolled to obtain strips 0.35 mm thick. These cold rolled strips then have been annealed, in accordance with the state of the art, at temperatures between 700 ° C and 900 ° C so as to give them the properties of use. We then measured the mechanical and magnetic characteristics obtained. Alloys A and B have been hot-rolled without difficulty, ie without the appearance of corner cracks.
- the chemical compositions were as follows (the complement being iron): Co V Your Nb B VS Mn Yes Cr Or Cu S P AT 48.5 1.98 - 0.044 0.0022 0.011 0.102 0.06 0.04 0.11 0.01 0.004 0.005 B 48.1 1.9 0.17 - 0.0012 0.005 0.05 0.05 0.02 0.2 0.01 0.002 0.005 VS 48.7 1.97 - 0.064 - 0.010 0.09 0.05 0.04 0.12 0.01 0.003 0.005
- alloys A and B in accordance with the invention have significantly higher mechanical characteristics, since the yield strength can exceed 500 MPa, these characteristics are comparable to those obtained with alloys according to the prior art having 0.3% niobium.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
La présente invention concerne un alliage fer-cobalt a caractéristiques mécaniques améliorées.The present invention relates to an iron-cobalt alloy with characteristics improved mechanics.
Les alliages fer-cobalt sont bien connus, et se caractérisent à la fois par des propriétés magnétiques très intéressantes et par une très grande fragilité à la température ordinaire, ce qui rend leur utilisation délicate. En particulier, l'alliage Fe50Co50, contenant 50 % en poids de fer et 50 % de cobalt, a une induction à saturation très élevée et une bonne perméabilité magnétique, mais il présente l'inconvénient de ne pas pouvoir être laminé à froid, ce qui le rend inutilisable pratiquement. Cette très grande fragilité résulte de la formation , en dessous de 730°C, environ, d'une phase α' ordonnée, résultant d'une transformation désordre-ordre. Cette transformation désordre-ordre peut être ralentie par une addition de vanadium, ce qui permet de fabriquer un alliage du type fer-cobalt, contenant à peu près 50% de cobalt et à peu près 50% de fer, apte à être laminé à froid après une hypertrempe très énergique. On a, ainsi, proposé un alliage contenant environ 49 % de cobalt et 2 % de vanadium, le reste étant du fer et des impuretés. Cet alliage, qui a de très bonnes propriétés magnétiques après laminage à froid et recuit entre 720°C et 870 °C environ, présente cependant l'inconvénient de nécessiter des précautions particulières lors du réchauffage précédant l'hypertrempe, afin de limiter le grossissement du grain qui détériore la ductilité.Iron-cobalt alloys are well known, and are characterized by both very interesting magnetic properties and by a very great brittleness to the ordinary temperature, which makes their use delicate. In particular, the alloy Fe50Co50, containing 50% by weight of iron and 50% of cobalt, has an induction at very high saturation and good magnetic permeability, but it has the disadvantage of not being able to be cold rolled, which makes it unusable practically. This very great fragility results from the formation, below 730 ° C, approximately, of an ordered α 'phase, resulting from a disorder-order transformation. This disorder-order transformation can be slowed down by adding vanadium, which makes it possible to manufacture an alloy of the iron-cobalt type, containing little about 50% cobalt and about 50% iron, suitable for being cold rolled after very energetic overheating. We have thus proposed an alloy containing approximately 49% cobalt and 2% vanadium, the remainder being iron and impurities. This alloy, which has very good magnetic properties after cold rolling and annealing between 720 ° C and 870 ° C approximately, however has the drawback of requiring special precautions during reheating prior to overheating, in order to limit the magnification of the grain which deteriorates the ductility.
Pour faciliter le réchauffage avant hypertrempe, on a proposé, notamment dans le brevet US 3,634,072, d'ajouter de 0,02 % à 0,5 % de niobium et éventuellement de 0,07 % à 0,3 % de zirconium afin de limiter le risque de grossissement du grain au cours du réchauffage. L'alliage ainsi obtenu a des propriétés magnétiques et une ductilité comparables, mais pas meilleures, que l'alliage ne contenant que 2 % de vanadium. Le réchauffage avant hypertrempe est simplement plus facile à réaliser.To facilitate reheating before overheating, it has been proposed, in particular in US Patent 3,634,072, to add 0.02% to 0.5% of niobium and possibly from 0.07% to 0.3% of zirconium in order to limit the risk of grain enlargement during reheating. The alloy thus obtained has comparable but no better magnetic properties and ductility than the alloy containing only 2% vanadium. Reheating before overheating is just easier to do.
Par ailleurs, il a été constaté que le vanadium pouvait être remplacé par du niobium ou du tantale. C'est ainsi qu'il a été proposé dans le brevet US 4,933,026, un alliage contenant au moins un élément pris parmi le niobium et le tantale en des teneurs telles que leur somme soit comprise entre 0,15 % et 0,5 % (en poids). Cet alliage qui présente une ductilité comparable au précédent, à l'avantage de pouvoir être recuit à plus haute température ce qui permet d'obtenir des propriétés magnétiques meilleures. Mais il présente l'inconvénient d'avoir une résistivité électrique relativement faible, ce qui augmente les pertes par courants induits et limite ses possibilités d'emploi.In addition, it was found that vanadium could be replaced by niobium or tantalum. This is how it was proposed in US patent 4,933,026, an alloy containing at least one element selected from niobium and tantalum in contents such that their sum is between 0.15% and 0.5% (by weight). This alloy which has a ductility comparable to the previous one, with the advantage of being able be annealed at a higher temperature which gives properties magnetic better. But it has the disadvantage of having a resistivity relatively weak electric, which increases losses by induced currents and limits his employment possibilities.
Enfin, tous ces alliages présentent des caractéristiques mécaniques de résistance à la traction insuffisantes pour certaines applications telles que les circuits magnétiques de machines tournantes à très grande vitesse de rotation. Il n'est, en effet, guère possible d'obtenir une limite d'élasticité supérieure à 480 MPa.Finally, all of these alloys have mechanical characteristics of insufficient tensile strength for certain applications such as circuits magnetic rotating machines with very high speed of rotation. It is, in In fact, it is hardly possible to obtain a yield strength greater than 480 MPa.
Afin d'améliorer ces caractéristiques mécaniques, il a été proposé, notamment dans la demande de brevet internationale WO 96/36059, un alliage contenant essentiellement (en poids) 48 % à 50 % de cobalt, 1,8 % à 2,2 % de vanadium, 0,15 % à 0,5 % de niobium et de 0,003 % à 0,02 % de carbone, le reste étant du fer et des impuretés. Dans cette demande de brevet il est précisé que le niobium peut être remplacé totalement ou partiellement par du tantale à raison de 1 atome de tantale pour 1 atome de niobium, ce qui, compte tenu des poids atomiques respectifs du tantale et du niobium, correspond à plus de 2 % en poids de tantale pour 1 % en poids de niobium. Dans cet alliage, le niobium (ou le tantale), forment le long des joints de grain des phases de Laves qui empêchent le grain de grossir, ce qui augmente significativement la limite d'élasticité sans toutefois améliorer sensiblement la ductilité. A titre d'exemple, après un recuit à 720 °C, la limite d'élasticité peut dépasser 600 MPa. Cependant, ces caractéristiques mécaniques ne peuvent être obtenues qu'avec des additions relativement importantes de niobium ou de tantale.In order to improve these mechanical characteristics, it has been proposed, in particular in international patent application WO 96/36059, an alloy containing essentially (by weight) 48% to 50% cobalt, 1.8% to 2.2% vanadium, 0.15 % to 0.5% niobium and 0.003% to 0.02% carbon, the remainder being iron and impurities. In this patent application it is specified that niobium can be totally or partially replaced by tantalum at the rate of 1 atom of tantalum for 1 atom of niobium, which, taking into account the respective atomic weights of tantalum and niobium, corresponds to more than 2% by weight of tantalum for 1% in niobium weight. In this alloy, niobium (or tantalum), form along the grain seals of the lava phases which prevent the grain from growing, which significantly increases the elastic limit without improving substantially the ductility. For example, after annealing at 720 ° C, the limit elasticity can exceed 600 MPa. However, these mechanical characteristics do not can be obtained with relatively large additions of niobium or tantalum.
Les additions relativement importantes de niobium ou de tantale sont nécessaires pour obtenir une limite d'élasticité élevée tout en effectuant un recuit dans le haut de la plage de température de recristallisation, ce qui a l'avantage de conduire à une faible sensibilité du résultat obtenu à la température effective de recuit. En revanche, cette solution présente l'inconvénient de diminuer l'aptitude de l'alliage au laminage à chaud.The relatively large additions of niobium or tantalum are necessary to obtain a high yield strength while annealing at the top of the recrystallization temperature range, which has the advantage of lead to a low sensitivity of the result obtained at the effective temperature of annealed. However, this solution has the disadvantage of reducing the ability to the alloy with hot rolling.
Le but de la présente invention est de proposer un alliage fer-cobalt ayant à la fois une ductilité satisfaisante, de bonne propriétés magnétiques et des caractéristiques mécaniques améliorées, tout en ayant une bonne aptitude au laminage à chaud.The object of the present invention is to provide an iron-cobalt alloy having at the times satisfactory ductility, good magnetic properties and improved mechanical characteristics, while having good suitability for hot rolling.
A cet effet, l'invention a pour objet un alliage fer-cobalt dont la composition chimique comprend, en poids :
- de 35 % à 55 %, et de préférence de 40 % à 50 % de cobalt,
- de 0,5 % à 2,5 %, et de préférence de 1,5 % à 2,2 % de vanadium,
- au moins un élément pris parmi le tantale et le niobium, en des teneurs telles que 0,02 % ≤ Ta + 2 x Nb ≤ 0,2 %, et de préférence telles que 0,03 %≤ Ta + Nb ≤ 0,15 %, et mieux encore, Nb ≤ 0,03 %,
- de 0,0007 % à 0,007 %, et de préférence de 0,001 % à 0,003 %, de bore,
- moins de 0,05 %, et de préférence, moins de 0,007 % de carbone,
De préférence, les impuretés que sont le manganèse, le silicium, le chrome, le molybdène, le cuivre, le nickel et le soufre ont des teneurs telles que : Mn + Si ≤ 0,2 % , Cr + Mo + Cu ≤ 0,2 %, Ni ≤ 0,2 % et S ≤ 0,005 %.To this end, the subject of the invention is an iron-cobalt alloy, the chemical composition of which comprises, by weight:
- from 35% to 55%, and preferably from 40% to 50% of cobalt,
- from 0.5% to 2.5%, and preferably from 1.5% to 2.2% of vanadium,
- at least one element taken from tantalum and niobium, in contents such as 0.02% ≤ Ta + 2 x Nb ≤ 0.2%, and preferably such as 0.03% ≤ Ta + Nb ≤ 0.15 %, and better still, Nb ≤ 0.03%,
- from 0.0007% to 0.007%, and preferably from 0.001% to 0.003%, of boron,
- less than 0.05%, and preferably less than 0.007% carbon,
Preferably, the impurities that are manganese, silicon, chromium, molybdenum, copper, nickel and sulfur have contents such as: Mn + Si ≤ 0.2%, Cr + Mo + Cu ≤ 0, 2%, Ni ≤ 0.2% and S ≤ 0.005%.
Les inventeurs ont constaté de façon surprenante, que, lorsqu'on ajoute de 0,0007 % à 0,007 % en poids, ou mieux de 0,001 % à 0,003 %, de bore, à un alliage fer-cobalt contenant, par ailleurs, de 0,5 % à 2,5 %, ou mieux de 1,5 % à 2,2 %, de vanadium ainsi qu'une petite quantité d'éléments tels que le tantale et le niobium, on augmentait de façon très sensible la limite d'élasticité de l'alliage, tout en conservant des caractéristiques magnétiques satisfaisantes et en ayant une très bonne aptitude au laminage à chaud.The inventors have surprisingly found that when added 0.0007% to 0.007% by weight, or better still 0.001% to 0.003%, of boron, to an alloy iron-cobalt containing, moreover, from 0.5% to 2.5%, or better still from 1.5% to 2.2%, of vanadium as well as a small amount of elements such as tantalum and niobium, we significantly increased the yield strength of the alloy, while retaining satisfactory magnetic characteristics and having very good suitability hot rolling.
A titre d'exemple et de comparaison, on a élaboré les alliages A et B conformes à l'invention et l'alliage C conforme à l'art antérieur. Avec ces alliages, on a fabriqué par laminage à chaud aux environs de 1200 °C des bandes de 2 mm d'épaisseur qui ont été hypertrempées par refroidissement en moins de 1 seconde entre 800 °C et 100 °C. Les bandes ainsi obtenues ont été laminées à froid pour obtenir des bandes de 0,35 mm d'épaisseur. Ces bandes laminées à froid ont alors été recuites, conformément à l'état de l'art, à des températures comprises entre 700 °C et 900 °C de façon à leur conférer les propriétés d'emploi. On a alors mesuré les caractéristiques mécaniques et magnétiques obtenues. Les alliages A et B ont été laminés à chaud sans difficultés, c'est à dire sans apparition de criques d'angle. As an example and comparison, we have developed alloys A and B according to the invention and alloy C according to the prior art. With these alloys, we made 2 mm strips by hot rolling at around 1200 ° C thick which have been hyper-soaked by cooling in less than 1 second between 800 ° C and 100 ° C. The strips thus obtained were cold rolled to obtain strips 0.35 mm thick. These cold rolled strips then have been annealed, in accordance with the state of the art, at temperatures between 700 ° C and 900 ° C so as to give them the properties of use. We then measured the mechanical and magnetic characteristics obtained. Alloys A and B have been hot-rolled without difficulty, ie without the appearance of corner cracks.
Les compositions chimiques étaient les suivantes (le complément étant du
fer):
Les caractéristiques magnétiques mesurées étaient :
- les valeurs de l'induction magnétique B (en tesla), pour des excitations magnétiques H en courant continu de 20 Oe = 1600 A/m, 50 Oe = 4000 A/m et 100 Oe = 8000 A/m ;
- le champ coercitif Hc en A/m,
- les pertes ferromagnétiques (en W/kg) à 400 Hz pour une induction sinusoïdale de 2 tesla de valeur crête.
- the values of magnetic induction B (in tesla), for magnetic excitations H in direct current of 20 Oe = 1600 A / m, 50 Oe = 4000 A / m and 100 Oe = 8000 A / m;
- the coercive field Hc in A / m,
- ferromagnetic losses (in W / kg) at 400 Hz for a sinusoidal induction of 2 tesla peak value.
Ces valeurs étaient :
- après un recuit à 725 °C :
- après un recuit à 760 °C :
- après un recuit à 850 °C :
- after annealing at 725 ° C:
- after annealing at 760 ° C:
- after annealing at 850 ° C:
Ces résultats montrent que, tout en ayant des propriétés magnétiques très voisines de celles de l'alliage C selon l'art antérieur, les alliages A et B conformes à l'invention ont des caractéristiques mécaniques nettement plus élevées, puisque la limite d'élasticité peut dépasser 500 MPa, ces caractéristiques sont comparables à celles qu'on obtient avec des alliages selon l'art antérieur ayant 0,3 % de niobium.These results show that, while having very magnetic properties close to those of alloy C according to the prior art, alloys A and B in accordance with the invention have significantly higher mechanical characteristics, since the yield strength can exceed 500 MPa, these characteristics are comparable to those obtained with alloys according to the prior art having 0.3% niobium.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9801310A FR2774397B1 (en) | 1998-02-05 | 1998-02-05 | IRON-COBALT ALLOY |
FR9801310 | 1998-02-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0935008A1 true EP0935008A1 (en) | 1999-08-11 |
EP0935008B1 EP0935008B1 (en) | 2002-10-02 |
Family
ID=9522600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99400112A Expired - Lifetime EP0935008B1 (en) | 1998-02-05 | 1999-01-19 | Iron-cobalt alloy |
Country Status (10)
Country | Link |
---|---|
US (1) | US6146474A (en) |
EP (1) | EP0935008B1 (en) |
JP (1) | JPH11264058A (en) |
CN (1) | CN1091162C (en) |
DE (1) | DE69903202T2 (en) |
ES (1) | ES2185294T3 (en) |
FR (1) | FR2774397B1 (en) |
HK (1) | HK1021651A1 (en) |
IL (2) | IL128067A (en) |
RU (1) | RU2201990C2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1593132A2 (en) * | 2003-01-30 | 2005-11-09 | Metglas, Inc. | Gapped amorphous metal-based magnetic core |
US20100048322A1 (en) * | 2008-08-21 | 2010-02-25 | Ryo Sugawara | Golf club head, face of the golf club head, and method of manufacturing the golf club head |
WO2013087997A1 (en) * | 2011-12-16 | 2013-06-20 | Aperam | Method for producing a thin strip made from soft magnetic alloy, and resulting strip |
WO2016008780A1 (en) * | 2014-07-16 | 2016-01-21 | Robert Bosch Gmbh | Soft magnetic alloy composition and a method for producing same |
FR3127649A1 (en) * | 2021-09-24 | 2023-03-31 | Erneo | ROTATING PART OF THE “ROTOR” TYPE OF ELECTRIC AND/OR MAGNETIC MACHINE AND ASSOCIATED MACHINE. |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6855240B2 (en) * | 2000-08-09 | 2005-02-15 | Hitachi Global Storage Technologies Netherlands B.V. | CoFe alloy film and process of making same |
FR2816959B1 (en) | 2000-11-17 | 2003-08-01 | Imphy Ugine Precision | PROCESS FOR MANUFACTURING A STRIP OR A CUT PIECE IN A COLD-ROLLED MARAGING STEEL STRIP |
US6685882B2 (en) * | 2001-01-11 | 2004-02-03 | Chrysalis Technologies Incorporated | Iron-cobalt-vanadium alloy |
DE10134056B8 (en) | 2001-07-13 | 2014-05-28 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process |
DE10320350B3 (en) * | 2003-05-07 | 2004-09-30 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron-based alloy used as a material for magnetic bearings and rotors, e.g. in electric motors and in aircraft construction contains alloying additions of cobalt, vanadium and zirconium |
DE102005034486A1 (en) * | 2005-07-20 | 2007-02-01 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of a soft magnetic core for generators and generator with such a core |
US20100201469A1 (en) * | 2006-08-09 | 2010-08-12 | General Electric Company | Soft magnetic material and systems therewith |
US20080035245A1 (en) * | 2006-08-09 | 2008-02-14 | Luana Emiliana Iorio | Soft magnetic material and systems therewith |
ATE418625T1 (en) | 2006-10-30 | 2009-01-15 | Vacuumschmelze Gmbh & Co Kg | SOFT MAGNETIC ALLOY BASED ON IRON-COBALT AND METHOD FOR THE PRODUCTION THEREOF |
US9057115B2 (en) | 2007-07-27 | 2015-06-16 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron-cobalt-based alloy and process for manufacturing it |
US8012270B2 (en) | 2007-07-27 | 2011-09-06 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it |
US9243304B2 (en) | 2011-07-01 | 2016-01-26 | Vacuumschmelze Gmbh & Company Kg | Soft magnetic alloy and method for producing a soft magnetic alloy |
GB2492406B (en) * | 2011-07-01 | 2013-12-18 | Vacuumschmelze Gmbh & Co Kg | Soft magnetic alloy and method for producing a soft magnetic alloy |
US10294549B2 (en) | 2011-07-01 | 2019-05-21 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic alloy and method for producing soft magnetic alloy |
GB2495465B (en) * | 2011-07-01 | 2014-07-09 | Vacuumschmelze Gmbh & Co Kg | Soft magnetic alloy and method for producing a soft magnetic alloy |
CN103111811B (en) * | 2013-03-07 | 2015-09-23 | 茂名市兴丽高岭土有限公司 | A kind of manufacture method of kaolin iron removal filter screen |
CN106011543A (en) * | 2016-07-11 | 2016-10-12 | 陕西航空精密合金有限公司 | Improved type Fe-Co-V alloy and manufacturing method thereof |
TWI619817B (en) * | 2016-10-26 | 2018-04-01 | 光洋應用材料科技股份有限公司 | Co-Fe-Nb-based Sputtering Target |
DE102016222805A1 (en) * | 2016-11-18 | 2018-05-24 | Vacuumschmelze Gmbh & Co. Kg | Semi-finished product and method for producing a CoFe alloy |
DE102018112491A1 (en) * | 2017-10-27 | 2019-05-02 | Vacuumschmelze Gmbh & Co. Kg | High permeability soft magnetic alloy and method of making a high permeability soft magnetic alloy |
DE102020134301A1 (en) | 2020-12-18 | 2022-06-23 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic alloy and method of making a soft magnetic alloy |
US11827961B2 (en) | 2020-12-18 | 2023-11-28 | Vacuumschmelze Gmbh & Co. Kg | FeCoV alloy and method for producing a strip from an FeCoV alloy |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3634072A (en) * | 1970-05-21 | 1972-01-11 | Carpenter Technology Corp | Magnetic alloy |
US3891475A (en) * | 1972-04-26 | 1975-06-24 | Hitachi Ltd | Pole piece for producing a uniform magnetic field |
GB1523881A (en) * | 1975-03-04 | 1978-09-06 | Telcon Metals Ltd | Magnetic alloys |
FR2423550A1 (en) * | 1978-04-17 | 1979-11-16 | Telcon Metals Ltd | MAGNETIC ALLOY WITH GOOD MECHANICAL PROPERTIES |
GB2207927A (en) * | 1987-07-03 | 1989-02-15 | Telcon Metals Ltd | Soft magnetic alloys |
JPH01255645A (en) * | 1988-04-05 | 1989-10-12 | Daido Steel Co Ltd | Fe-co groupe magnetic alloy and its production |
US5501747A (en) * | 1995-05-12 | 1996-03-26 | Crs Holdings, Inc. | High strength iron-cobalt-vanadium alloy article |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2519277A (en) * | 1947-01-15 | 1950-08-15 | Bell Telephone Labor Inc | Magnetostrictive device and alloy and method of producing them |
US3065118A (en) * | 1959-01-16 | 1962-11-20 | Gen Electric | Treatment of iron-cobalt alloys |
-
1998
- 1998-01-14 IL IL12806798A patent/IL128067A/en not_active IP Right Cessation
- 1998-02-05 FR FR9801310A patent/FR2774397B1/en not_active Expired - Fee Related
-
1999
- 1999-01-14 IL IL12806799A patent/IL128067A0/en unknown
- 1999-01-15 US US09/231,765 patent/US6146474A/en not_active Expired - Fee Related
- 1999-01-19 EP EP99400112A patent/EP0935008B1/en not_active Expired - Lifetime
- 1999-01-19 ES ES99400112T patent/ES2185294T3/en not_active Expired - Lifetime
- 1999-01-19 DE DE69903202T patent/DE69903202T2/en not_active Expired - Fee Related
- 1999-02-02 JP JP11025528A patent/JPH11264058A/en not_active Withdrawn
- 1999-02-04 CN CN99101766A patent/CN1091162C/en not_active Expired - Fee Related
- 1999-02-04 RU RU99102555/02A patent/RU2201990C2/en not_active IP Right Cessation
-
2000
- 2000-02-02 HK HK00100635A patent/HK1021651A1/en not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3634072A (en) * | 1970-05-21 | 1972-01-11 | Carpenter Technology Corp | Magnetic alloy |
US3891475A (en) * | 1972-04-26 | 1975-06-24 | Hitachi Ltd | Pole piece for producing a uniform magnetic field |
GB1523881A (en) * | 1975-03-04 | 1978-09-06 | Telcon Metals Ltd | Magnetic alloys |
FR2423550A1 (en) * | 1978-04-17 | 1979-11-16 | Telcon Metals Ltd | MAGNETIC ALLOY WITH GOOD MECHANICAL PROPERTIES |
GB2207927A (en) * | 1987-07-03 | 1989-02-15 | Telcon Metals Ltd | Soft magnetic alloys |
US4933026A (en) * | 1987-07-03 | 1990-06-12 | Rawlings Rees D | Soft magnetic alloys |
JPH01255645A (en) * | 1988-04-05 | 1989-10-12 | Daido Steel Co Ltd | Fe-co groupe magnetic alloy and its production |
US5501747A (en) * | 1995-05-12 | 1996-03-26 | Crs Holdings, Inc. | High strength iron-cobalt-vanadium alloy article |
WO1996036059A1 (en) * | 1995-05-12 | 1996-11-14 | Crs Holdings, Inc. | High strength iron-cobalt-vanadium alloy article |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 14, no. 7 (C - 673) 10 January 1989 (1989-01-10) * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1593132A2 (en) * | 2003-01-30 | 2005-11-09 | Metglas, Inc. | Gapped amorphous metal-based magnetic core |
EP1593132A4 (en) * | 2003-01-30 | 2011-03-09 | Metglas Inc | Gapped amorphous metal-based magnetic core |
US20100048322A1 (en) * | 2008-08-21 | 2010-02-25 | Ryo Sugawara | Golf club head, face of the golf club head, and method of manufacturing the golf club head |
US8475294B2 (en) * | 2008-08-21 | 2013-07-02 | Seiko Instruments Inc. | Golf club head, face of the golf club head, and method of manufacturing the golf club head |
WO2013087997A1 (en) * | 2011-12-16 | 2013-06-20 | Aperam | Method for producing a thin strip made from soft magnetic alloy, and resulting strip |
WO2013087939A1 (en) * | 2011-12-16 | 2013-06-20 | Aperam | Process for manufacturing a thin strip made of soft magnetic alloy and strip obtained |
US10957481B2 (en) | 2011-12-16 | 2021-03-23 | Aperam | Process for manufacturing a thin strip made of soft magnetic alloy and strip obtained |
US11600439B2 (en) | 2011-12-16 | 2023-03-07 | Aperam | Process for manufacturing a thin strip made of soft magnetic alloy and strip obtained |
WO2016008780A1 (en) * | 2014-07-16 | 2016-01-21 | Robert Bosch Gmbh | Soft magnetic alloy composition and a method for producing same |
FR3127649A1 (en) * | 2021-09-24 | 2023-03-31 | Erneo | ROTATING PART OF THE “ROTOR” TYPE OF ELECTRIC AND/OR MAGNETIC MACHINE AND ASSOCIATED MACHINE. |
Also Published As
Publication number | Publication date |
---|---|
IL128067A (en) | 2001-10-31 |
EP0935008B1 (en) | 2002-10-02 |
ES2185294T3 (en) | 2003-04-16 |
RU2201990C2 (en) | 2003-04-10 |
DE69903202D1 (en) | 2002-11-07 |
DE69903202T2 (en) | 2003-06-18 |
HK1021651A1 (en) | 2000-06-23 |
IL128067A0 (en) | 1999-11-30 |
CN1227271A (en) | 1999-09-01 |
JPH11264058A (en) | 1999-09-28 |
CN1091162C (en) | 2002-09-18 |
US6146474A (en) | 2000-11-14 |
FR2774397A1 (en) | 1999-08-06 |
FR2774397B1 (en) | 2000-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0935008B1 (en) | Iron-cobalt alloy | |
EP0629714A1 (en) | Martensitic stainless steel with improved machinability | |
EP1041168B1 (en) | Soft magnetic alloy for a timepiece | |
JPH0153347B2 (en) | ||
EP0551711A1 (en) | Heater sheath alloy | |
JPH03166340A (en) | High strength lead frame material and its manufacture | |
EP0337846B1 (en) | Austeno-ferritic stainless steel | |
EP0143727A2 (en) | Aluminium-based alloys having a high heat stability | |
JPS5942741B2 (en) | Semi-hard magnetic alloy and its manufacturing method | |
JP2006219728A (en) | Ferro-alloy for resistor having high resistance | |
US2072910A (en) | Alloy | |
EP0178222B1 (en) | Steel alloys, particularly for tubes for bicycle frames | |
JPH0941056A (en) | Motor commutator material | |
JPH0250937A (en) | Free cutting stainless steel for header | |
EP0935007B1 (en) | Cobalt-free and titanium-free maraging steel | |
JPS5844144B2 (en) | Ni-Fe based high permeability alloy with good hot workability and machinability | |
JPH02118053A (en) | Heat-resistant alloy | |
FR2836156A1 (en) | SOFT MAGNETIC ALLOY FOR MAGNETIC SHIELDING | |
JPH07188866A (en) | Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid | |
JPH0788556B2 (en) | High yield strength and high corrosion resistance duplex stainless cast steel | |
BE737336A (en) | Metastable austenitic stainless steels with improved - hot machining properties | |
JPH0379426B2 (en) | ||
JPS6058689B2 (en) | Composite materials for jewelry | |
BE346137A (en) | ||
JPS5937341B2 (en) | Corrosion resistant casting alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: IMPHY UGINE PRECISION |
|
17P | Request for examination filed |
Effective date: 20000211 |
|
AKX | Designation fees paid |
Free format text: DE ES FR GB IT |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20020117 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69903202 Country of ref document: DE Date of ref document: 20021107 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030129 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2185294 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030703 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040105 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040108 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040109 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20040122 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050119 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050802 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20050120 |