EP0932708A1 - Elektrolysevorrichtung - Google Patents

Elektrolysevorrichtung

Info

Publication number
EP0932708A1
EP0932708A1 EP98941241A EP98941241A EP0932708A1 EP 0932708 A1 EP0932708 A1 EP 0932708A1 EP 98941241 A EP98941241 A EP 98941241A EP 98941241 A EP98941241 A EP 98941241A EP 0932708 A1 EP0932708 A1 EP 0932708A1
Authority
EP
European Patent Office
Prior art keywords
membrane
electrolysis
electrolysis device
contact
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98941241A
Other languages
English (en)
French (fr)
Other versions
EP0932708B1 (de
Inventor
Anwer Puthawala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0932708A1 publication Critical patent/EP0932708A1/de
Application granted granted Critical
Publication of EP0932708B1 publication Critical patent/EP0932708B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms

Definitions

  • the invention relates to an electrolysis device with a number of membrane electrolysis cells, each of which comprises a membrane provided on both sides with a contact layer.
  • an electrolysis device In an electrolysis device, a medium is electrolytically decomposed by applying a supply voltage between an anode and a cathode. When water is used as the medium, hydrogen and oxygen are formed. Such an electrolysis device can thus be used to generate hydrogen and / or oxygen as required.
  • an electrolysis device can be provided for the need-based gassing of the primary cooling circuit of a pressurized water reactor with hydrogen.
  • An electrolysis device can be designed as a membrane electrolyzer.
  • the electrolysis device comprises a number of membrane electrolysis cells in which the operating principle of a fuel cell is reversed.
  • the principle of operation of a fuel cell is described, for example, in the article "Fuel cells for electrical traction", K. Straßer, VDI reports, No. 912 (1992), pages 125ff.
  • a membrane electrolysis cell the water provided as the medium is fed to a membrane arranged between the anode and the cathode, in particular to a cation exchange membrane provided as an electrolyte.
  • the membrane is usually provided on both sides with a contact layer, the first contact layer serving as the anode and the second contact layer as the cathode.
  • Such a membrane electrolysis cell is characterized by a particularly compact design, so that an electrolysis unit unit can be accommodated with a number of membrane electrolysis cells in a particularly narrow space.
  • an electrolysis device As a hydrogen generator in the industrial area or in the power plant area, it is necessary to design its production capacity with regard to the underlying need for hydrogen.
  • the design of the electrolysis device as a membrane electrolyzer which is desirable in terms of structural advantages, may be unsuitable, in particular for applications with a comparatively high hydrogen requirement.
  • the invention is therefore based on the object of specifying an electrolysis device with a number of membrane electrolyzers of the type mentioned above, which, with its compact design, is also suitable for comparatively high hydrogen production rates and can therefore be used particularly flexibly.
  • each contact plate is arranged on each contact layer, each contact plate having a channel system for transporting water and / or gas on its surface facing the associated contact layer.
  • the invention is based on the consideration that a membrane electrolyser, which is also suitable for high hydrogen production rates, should have a number of membrane electrolysis cells with membranes with particularly large dimensions. Even with such dimensioning of the membranes, reliable feeding of the membranes with the medium to be decomposed, in particular with water, should be ensured.
  • a reliable transport system for the medium and also for the gas generated in the electrolysis process is provided for each membrane of the electrolysis device and is also suitable for large-area membranes.
  • a special one A compact design can be achieved by integrating the transport system into the contact plates provided for the electrical contacting of the electrodes attached to the membranes.
  • each contact plate is preferably designed in the form of concentric circular segments. It has been found that with such an arrangement of the channel system, a particularly inexpensive and reliable supply to all active areas of a membrane can be achieved.
  • the membrane electrolysis cells are expediently connected electrically in a row.
  • a porous printed circuit board is arranged between each contact layer and the contact plate assigned to it.
  • a porous printed circuit board which can be formed, for example, from titanium, on the one hand establishes reliable electrical contact between the contact layer and the associated contact plate, on the other hand an unimpeded passage of the medium to be decomposed to the membrane and of the electrolytically generated gas into the Channel system is guaranteed.
  • the porous printed circuit board additionally favors the distribution of the supplied medium on the membrane.
  • the channel systems of the contact plates arranged on both sides of a membrane can be fed independently of one another with a medium, in particular with water or deionized water.
  • that contact layer of the membrane which is provided as the anode for the electrolysis process can be supplied with a different medium than the contact layer which is provided as the cathode.
  • the electrolysis device can thus be used particularly flexibly.
  • the contact layer of the membrane provided as the cathode bran can be supplied with coolant guided in the primary circuit of a nuclear plant, whereas deionate can be supplied to the membrane as the anode contact layer.
  • Such an electrolysis device can thus be used as a hydrogen generator for the reactor coolant, which is integrated directly into the coolant circuit of a nuclear plant.
  • the channel systems of the contact plates arranged on both sides of a membrane are expediently connected to gas discharge systems which are kept separate from one another.
  • the membrane electrolysis cells are expediently arranged in a stack shape within a housing, the housing having one on each end face
  • Locking element for bracing the membrane electrolysis cells together. Adjacent membrane electrolysis cells can be pressed flat against one another by means of the locking elements, so that a particularly reliable conductive connection between each contact layer and the contact plate assigned to it is ensured.
  • the contact layers of one or each membrane are preferably electrically connected to an analysis unit which determines the decay time of a voltage signal of this membrane when the membrane's power supply is switched off.
  • an analysis unit which determines the decay time of a voltage signal of this membrane when the membrane's power supply is switched off.
  • the membrane electrolysis cell can thus be identified in a particularly simple manner.
  • a sensor for determining a gas purity is connected to the analysis unit.
  • a prediction of the future operational reliability of the respective membrane can be derived in a particularly simple manner from the statement about the decay time of a membrane together with the statement about the gas purity.
  • the electrolysis device can thus be operated particularly reliably even when malfunctions of individual membrane electrolysis cells occur.
  • a defective membrane electrolysis cell can be short-circuited so that it no longer makes a contribution to gas production, the functionality of intact membrane electrolysis cells not being impaired.
  • the advantages achieved by the invention consist in particular in that the channel systems provided in the contact plates ensure reliable and large-area supply of the medium to be electrolytically decomposed to the membranes with a particularly compact design.
  • the membrane electrolysis cells can be operated independently of one another, so that the functionality of the electrolysis device is maintained even if individual membrane electrolysis cells fail. By determining the decay At the time of a voltage signal on a selected membrane analysis unit, a defective membrane electrolysis cell can also be detected in a particularly simple manner. In the event of operational malfunctions, a defective membrane electrolysis cell can thus be uncoupled in a particularly simple manner, the operation of the electrolysis device with the remaining intact membrane electrolysis cells being able to be maintained.
  • FIG. 1 shows an electrolysis device in longitudinal section
  • FIG. 2 shows the electrolysis device in cross section
  • Figure 3 schematically shows a gassing device for a subsystem of a technical system.
  • the electrolysis device 1 according to FIG. 1 is designed as a membrane electrolyser and comprises a number of membrane electrolysis cells 2 which are electrically connected in series. In the exemplary embodiment according to FIG. 1, four membrane electrolysis cells 2 connected in series are shown; however, any other number of membrane electrolysis cell 2 can also be provided.
  • Each membrane electrolysis cell 2 has a membrane 4 designed as a cation exchange membrane as an electrolyte for water as the medium to be decomposed.
  • the membrane 4 of each membrane electrolysis cell 2 is provided on both sides with a contact layer, not shown.
  • the two contact layers of a membrane 4 serve as electrodes during the electrolysis process.
  • the contact layer provided as the cathode of each membrane 4 is formed from platinum.
  • the contact layer of each membrane 4 provided as the anode however, mainly consists of iridium.
  • a contact plate 5 is arranged on each contact layer of each membrane 4. Each contact layer is electrically connected to its associated contact plate 5 via a porous circuit board 6.
  • the porous printed circuit board 6, which can be manufactured, for example, on a titanium basis, is arranged between the contact layer and the contact board 5 assigned to it.
  • the membrane electrolysis cells 2, each formed from a membrane 4, two printed circuit boards 6 and two contact plates 5, are arranged in a stack in the form of a housing 8. Adjacent contact plates 5 of different membrane electrolysis cells 2 are electrically separated from one another by an insulator plate 9. The series connection of the membrane electrolysis cells 2 is effected by an external line system, not shown in detail. Alternatively, adjacent contact plates 5 of different membrane electrolysis cells 2 can also be in direct electrical contact with one another or can also be embodied in one piece.
  • the housing 8 has at its end face 10 each as
  • Locking element 12 provided screw for clamping the membrane electrolysis cells 2 together.
  • Each contact plate 5 is, as shown in FIG. 2 with the aid of the electrolysis device 1 shown in cross section, approximately circular and has a channel system 14 on its surface facing the associated contact layer.
  • the channel system 14 is formed from m the respective contact plate 5 projecting depressions, the m shape of concentric circular segments on the surface of each because contact plate 5 are arranged.
  • the channel system 14 of each contact plate 5 is provided for the transport of the medium to be decomposed electrolytically to the respective membrane 4.
  • the channel system 14 of each contact plate 5 is connected to a supply system for an electrolysis medium.
  • a discharge system for gas or for gas-mixed electrolysis medium is connected to the channel system 14 of each contact plate 5.
  • the electrolysis device 1 is designed in such a way that the channel systems 14 of the contact plates 5 arranged on both sides of a membrane 4 can be fed with a medium independently of one another.
  • the medium or also a gas released during electrolysis can be removed independently of one another from the channel systems 14 of the contact plates 5 arranged on both sides of a membrane 4.
  • the channel systems 14 of all contact plates 5, which are assigned to a contact layer of a membrane 4 provided as a cathode are connected on the input side to a common supply system 16 and on the output side to a common discharge system 18.
  • the channel systems 14 of those contact plates 5 which are assigned to a contact layer of a membrane 4 provided as an anode are connected on the input side to a supply system 20 which is independent of the supply system 16 and on the output side to a discharge system 22 which is independent of the discharge system 18.
  • a supply system 20 which is independent of the supply system 16
  • a discharge system 22 which is independent of the discharge system 18.
  • the electrolysis device 1 can thus be used particularly flexibly.
  • the electrolysis device 1 can be integrated directly into a coolant circuit of a nuclear plant, the contact layers provided as cathodes being directly connected to the reactor coolant.
  • tel are feeds inexhaustibly as electrolysis medium, and wherein the enriched with hydrogen from the electrolysis Reaktorkühlmit ⁇ tel is returned directly into the coolant circuit of the nuclear facility.
  • the contact layers provided as the anode can be supplied with deionized water.
  • FIG. 3 schematically shows a gassing system 28 for a technical system, in particular for the primary circuit of a pressurized water reactor.
  • the gassing system 28 comprises, as a hydrogen generator, the electrolysis device 1, the feed and discharge systems 16, 18, 20, 22 of which are connected to the technical system in a manner not shown.
  • the electrolysis device 1 also includes an analysis unit 30. The contact layers of each membrane 4 are electrically connected to the analysis unit 30.
  • the analysis unit 30 is designed to determine the decay time of a voltage signal of this membrane 4 after the power supply to a membrane 4 has been switched off. From the decay time of the voltage signal, conclusions can be drawn in the analysis unit 30 about the functionality of the respective membrane 4. If the membrane 4 is intact, the respective membrane electrolysis cell 2 should act as a fuel cell for a short time after the power supply has been switched off until the gases released by it previously by electrolysis are removed. Therefore, if the membrane 4 is intact, the voltage signal dropping at it should initially be constant for a short time before it begins to decay. If the membrane 4 is defective, for example as a result of hole formation, the By contrast, the voltage decays immediately after the power supply is switched on, so that an intact from a defective membrane 4 can be distinguished by the analysis unit 30.
  • a sensor 32 for determining a gas purity is connected in the discharge systems 18 and 22 for each membrane 4.
  • the sensors 32 are also connected to the analysis unit 30.
  • Reliable cooling of the electrolysis device 1 during its operation is ensured by the selection of a suitable water throughput through the membrane electrolysis cells 2.
  • the medium to be moved, which is supplied to the electrolysis device 1, serves as the cooling medium.
  • further cooling devices for the housing 8, for example in the form of cooling fins, can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Es soll eine Elektrolysevorrichtung (1) mit einer Anzahl von Membranelektrolysezellen (2), von denen jede eine beidseitig mit einer Kontaktschicht versehene Membran (4) umfasst, angegeben werden, die bei kompakter Bauweise auch für vergleichsweise hohe Wasserstoffproduktionsraten geeignet und somit besonders flexibel einsetzbar ist. Dazu ist erfindungsgemäss an jeder Kontaktschicht jeweils eine Kontaktplatte (5) angeordnet, wobei jede Kontaktplatte (5) auf ihrer der ihr zugeordneten Kontaktschicht zugewandten Oberfläche ein Kanalsystem (14) zum Transport von Wasser und/oder Gas aufweist.

Description

Beschreibung
Elektrolysevorrichtung
Die Erfindung betrifft eine Elektrolysevorrichtung mit einer Anzahl von Membranelektrolysezellen, von denen jede eine beidseitig mit einer Kontaktschicht versehene Membran umfaßt.
In einer Elektrolysevorrichtung wird ein Medium durch Anlegen einer Versorgungsspannung zwischen einer Anode und einer Kathode elektrolytisch zersetzt. Bei Verwendung von Wasser als Medium wird dabei Wasserstoff und Sauerstoff gebildet. Eine derartige Elektrolysevorrichtung kann somit zur bedarfsgerechten Erzeugung von Wasserstoff und/oder Sauerstoff einge- setzt werden. Beispielsweise kann eine Elektrolysevorrichtung zur bedarfsgerechten Begasung des Primärkühlkreislaufs eines Druckwasserreaktors mit Wasserstoff vorgesehen sein.
Eine Elektrolysevorrichtung kann als Membranelektrolyseur ausgebildet sein. Dabei umfaßt die Elektrolysevorrichtung eine Anzahl von Membranelektrolysezellen, bei denen das Funktionsprinzip einer Brennstoffzelle umgekehrt ist. Das Funktionsprinzip einer Brennstoffzelle ist beispielsweise in dem Aufsatz "Brennstoffzellen für Elektrotraktion", K. Straßer, VDI-Berichte, Nr. 912 (1992), Seiten 125ff., beschrieben.
Bei einer derartigen Membranelektrolysezelle wird das als Medium vorgesehene Wasser einer zwischen der Anode und der Kathode angeordneten Membran, insbesondere einer als Elektrolyt vorgesehenen Kationenaustauschermembran, zugeführt. Die Membran ist dabei üblicherweise beidseitig mit jeweils einer Kontaktschicht versehen, wobei die erste Kontaktschicht als Anode und die zweite Kontaktschicht als Kathode dient. Eine derartige Membranelektrolysezelle zeichnet sich durch eine besonders kompakte Bauweise aus, so daß eine Elektrolyseein- heit mit einer Anzahl von Membranelektrolysezellen auf besonders engem Raum untergebracht sein kann.
Für die Verwendung einer Elektrolysevorrichtung als Wasser- stoffgenerator im industriellen Bereich oder im Kraftwerksbereich ist eine Auslegung ihrer Produktionskapazität im Hinblick auf den zugrundeliegenden Bedarf an Wasserstoff erforderlich. Dabei kann insbesondere für Anwendungen mit vergleichsweise hohem Wasserstoffbedarf die im Hinblick auf bau- liehe Vorteile wünschenswerte Auslegung der Elektrolysevorrichtung als Membranelektrolyseur ungeeignet sein.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Elektrolysevorrichtung mit einer Anzahl von Membranelektrolyseuren der obengenannten Art anzugeben, die bei kompakter Bauweise auch für vergleichsweise hohe Wasserstoffproduktionsraten geeignet und somit besonders flexibel einsetzbar ist.
Diese Aufgabe wird erfindungsgemäß gelöst, indem an jeder Kontaktschicht jeweils eine Kontaktplatte angeordnet ist, wobei jede Kontaktplatte auf ihrer der ihr zugeordneten Kontaktschicht zugewandten Oberfläche ein Kanalsystem zum Transport von Wasser und/oder Gas aufweist.
Die Erfindung geht dabei von der Überlegung aus, daß ein auch für hohe Wasserstoffproduktionsraten geeigneter Membranelektrolyseur eine Anzahl von Membranelektrolysezellen mit besonders großflächig dimensionierten Membranen aufweisen sollte. Auch bei einer derartigen Dimensionierung der Membranen sollte eine zuverlässige Bespeisung der Membranen mit dem zu zersetzenden Medium, insbesondere mit Wasser, gewährleistet sein. Dazu ist für jede Membran der Elektrolysevorrichtung ein zuverlässiges und auch für großflächige Membranen geeignetes Transportsystem für das Medium und auch für das im Elektrolyseprozeß generierte Gas vorgesehen. Eine besonders kompakte Bauweise ist dabei erreichbar, indem das Transportsystem in die zur elektrischen Kontaktierung der an den Membranen angebrachten Elektroden vorgesehenen Kontaktplatten integriert ist.
Vorzugsweise ist das Kanalsystem jeder Kontaktplatte in Form konzentrischer Kreissegmente ausgebildet. Wie sich herausgestellt hat, ist nämlich bei einer derartigen Anordnung des Kanalsystems eine besonders gunstige und zuverlässige Bespei- sung aller aktiven Bereiche einer Membran erreichbar. Die Membranelektrolysezellen sind dabei zweckmaßigerweise elektrisch m Reihe geschaltet.
In vorteilhafter Ausgestaltung ist zwischen jeder Kontakt- schicht und der ihr jeweils zugeordneten Kontaktplatte eine poröse Leiterplatte angeordnet. Eine derartige poröse Leiterplatte, die beispielsweise aus Titan gebildet sein kann, stellt einerseits einen zuverlässigen elektrischen Kontakt zwischen der Kontaktschicht und der ihr zugeordneten Kontakt- platte her, wobei andererseits ein ungehinderter Durchtritt des zu zersetzenden Mediums an die Membran sowie des elektrolytisch generierten Gases in das Kanalsyste gewährleistet ist. Die poröse Leiterplatte begünstigt dabei zusatzlich die Verteilung des zugefuhrten Mediums auf der Membran.
In weiterer vorteilhafter Ausgestaltung sind die Kanalsysteme der zu beiden Seiten einer Membran angeordneten Kontaktplatten unabhängig voneinander mit einem Medium, insbesondere mit Wasser oder Deionat, bespeisbar. Bei einer derartigen Anord- nung ist derjenigen Kontaktschicht der Membran, die als Anode für den Elektrolyseprozeß vorgesehen ist, ein anderes Medium zufuhrbar als derjenigen Kontaktschicht, die als Kathode vorgesehen ist. Die Elektrolysevorrichtung ist somit besonders flexibel einsetzbar. Beispielsweise ist bei einer derartigen Anordnung die als Kathode vorgesehene Kontaktschicht der Mem- bran mit im Primärkreislauf einer kerntechnischen Anlage geführten Kühlmittel bespeisbar, wohingegen der als Anode vorgesehenen Kontaktschicht der Membran Deionat zuführbar ist. Eine derartig ausgestaltete Elektrolysevorrichtung ist somit als direkt in den Kühlmittelkreislauf einer kerntechnischen Anlage integrierter Wasserstoffgenerator für das Reaktorkühlmittel einsetzbar. Die Kanalsysteme der zu beiden Seiten einer Membran angeordneten Kontaktplatten sind dabei zweckmäßigerweise an voneinander separat gehaltene Gasabführsystem an- geschlossen.
Für eine besonders zuverlässige Stromleitung innerhalb der Elektrolysevorrichtung sind die Membranelektrolysezellen zweckmäßigerweise stapeiförmig innerhalb eines Gehäuses ange- ordnet, wobei das Gehäuse an jeder Stirnseite jeweils ein
Feststellelement zum Verspannen der Membranelektrolysezellen miteinander aufweist. Benachbarte Membranelektrolysezellen sind dabei mittels der Feststellelemente flächig aneinander anpressbar, so daß eine besonders zuverlässige leitende Ver- bindung zwischen jeder Kontaktschicht und der ihr jeweils zugeordneten Kontaktplatte gewährleistet ist.
Für eine besonders hohe Betriebssicherheit der Elektrolysevorrichtung sind die Kontaktschichten einer oder jeder Mem- bran vorzugsweise elektrisch mit einer Analyseeinheit verbunden, die bei abgeschalteter Stromversorgung einer Membran die Abklingzeit eines Spannungssignals dieser Membran ermittelt. Dabei liegt die Erkenntnis zugrunde, daß ein betriebsbedingter Ausfall einer Membranelektrolysezelle vergleichsweise häufig auf eine Beschädigung ihrer Membran, beispielsweise durch Lochbildung, zurückzuführen ist. Eine derartige Beschädigung einer Membran durch Lochbildung ist auf besonders einfache Weise detektierbar, indem das zeitliche Verhalten der an der Membran abfallenden Spannung nach Abschaltung der Stromversorgung der Membran gemessen wird. In diesem Fall sollte sich nämlich die zu untersuchende Membranelektrolysezelle kurzzeitig wie eine Brennstoffzelle verhalten, da auf beiden Seiten der Membran noch Reste des zuvor generierten Wasserstoffs bzw. Sauerstoffs vorhanden sind. Bei intakter Membran sollte daher die über die Membran abfallende Spannung kurzzeitig konstant bleiben, bevor das Spannungssignal abklingt. Falls die Membran hingegen beschädigt ist, setzt das Abklingen des Spannungssignals vergleichsweise früher ein. Über die Ermittlung der Abklingzeit des Spannungssignals ist somit ein Rückschluß auf den Zustand der Membran möglich. Somit ist eine defekte Membranelektrolysezelle auf besonders einfache Weise identifizierbar.
In zweckmäßiger Weiterbildung ist dabei an die Analyseeinheit ein Sensor zur Ermittlung einer Gasreinheit angeschlossen. Aus der Aussage über die Abklingzeit einer Membran zusammen mit der Aussage über die Gasreinheit ist dabei in besonders einfacher Weise eine Prognose über die zukünftige Betriebssicherheit der jeweiligen Membran ableitbar. Die Elektrolyse- Vorrichtung ist somit auch bei Auftreten von Betriebsstörungen einzelner Membranelektrolysezelle besonders zuverlässig betreibbar. Eine defekte Membranelektrolysezelle kann dabei kurzgeschlossen werden, so daß sie keinen Beitrag mehr zur Gasproduktion leistet, wobei die Funktionsfähigkeit intakter Membranelektrolysezellen nicht beeinträchtigt ist.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch die in den Kontaktplatten vorgesehenen Kanalsysteme eine zuverlässige und großflächige Zufuhr des elektrolytisch zu zersetzenden Mediums zu den Membranen bei besonders kompakter Bauweise gewährleistet ist. Die Membranelektrolysezellen sind dabei unabhängig voneinander betreibbar, so daß auch bei einem Ausfall einzelner Membranelektrolysezellen die Funktionsfähigkeit der Elektrolysevorrichtung aufrechterhalten ist. Durch die zur Ermittlung der Abkling- zeit eines Spannungssignals an einer ausgewählten Membran vorgesehene Analyseeinheit ist eine defekte Membranelektrolysezelle zudem auf besonders einfache Weise detektierbar . Bei auftretenden Betriebsstörungen ist somit die Abkopplung einer defekten Membranelektrolysezelle auf besonders einfache Weise möglich, wobei der Betrieb der Elektrolysevorrichtung mit den verbleibenden intakten Membranelektrolysezellen aufrechterhalten werden kann.
Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnung näher erläutert. Darin zeigen:
Figur 1 eine Elektrolysevorrichtung im Längsschnitt,
Figur 2 die Elektrolysevorrichtung im Querschnitt, und
Figur 3 schematisch eine Begasungsvorrichtung für ein Teilsystem einer technischen Anlage.
Gleiche Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Die Elektrolysevorrichtung 1 gemäß Figur 1 ist als Membran- elektrolyseur ausgebildet und umfaßt eine Anzahl von elek- trisch in Reihe geschalteten Membranelektrolysezellen 2. Im Ausführungsbeispiel gemäß Figur 1 sind dabei vier in Reihe geschaltete Membranelektrolysezellen 2 dargestellt; es kann aber auch eine beliebige andere Anzahl von Membranelektrolysezelle 2 vorgesehen sein. Jede Membranelektrolysezelle 2 weist eine als Kationenaustauschermembran ausgebildete Membran 4 als Elektrolyt für Wasser als zu zersetzendes Medium auf. Die Membran 4 jeder Membranelektrolysezelle 2 ist beidseitig mit jeweils einer nicht näher dargestellten Kontaktschicht versehen. Die beiden Kontaktschichten einer Membran 4 dienen beim Elektrolysevorgang als Elektroden. Im Ausfüh- rungsbeispiel ist die als Kathode vorgesehene Kontaktschicht jeder Membran 4 aus Platin gebildet. Die als Anode vorgesehene Kontaktschicht jeder Membran 4 besteht hingegen in der Hauptsache aus Iridium.
An jeder Kontaktschicht jeder Membran 4 ist jeweils eine Kontaktplatte 5 angeordnet. Jede Kontaktschicht ist dabei mit der ihr jeweils zugeordneten Kontaktplatte 5 über eine poröse Leiterplatte 6 elektrisch verbunden. Die poröse Leiterplatte 6, die beispielsweise auf Titanbasis gefertigt sein kann, ist dabei jeweils zwischen der Kontaktschicht und der dieser zugeordneten Kontaktplatte 5 angeordnet.
Die aus jeweils einer Membran 4, zwei Leiterplatten 6 und zwei Kontaktplatten 5 gebildeten Membranelektrolysezellen 2 sind stapelformig innerhalb eines Gehäuses 8 angeordnet. Benachbarte Kontaktplatten 5 verschiedener Membranelektrolysezellen 2 sind dabei voneinander elektrisch durch jeweils eine Isolatorplatte 9 getrennt. Die Hintereinanderschaltung der Membranelektrolysezellen 2 ist dabei durch ein nicht naher dargestelltes externes Leitungssystem bewirkt. Alternativ können benachbarte Kontaktplatten 5 verschiedener Membranelektrolysezellen 2 auch unmittelbar m elektrischem Kontakt miteinander stehen oder auch emstuckig ausgeführt sein. Das Gehäuse 8 weist an seinen Stirnseite 10 jeweils eine als
Feststellelement 12 vorgesehen Schraube zum Verspannung der Membranelektrolysezellen 2 miteinander auf.
Jede Kontaktplatte 5 ist, wie m Figur 2 anhand der im Quer- schnitt abgebildeten Elektrolysevorrichtung 1 dargestellt, annähernd kreisförmig ausgebildet und weist auf ihrer der ihr zugeordneten Kontaktschicht zugewandten Oberflache ein Kanalsystem 14 auf. Das Kanalsystem 14 ist dabei aus m die jeweilige Kontaktplatte 5 ragenden Vertiefungen gebildet, die m Form konzentrischer Kreissegmente auf der Oberflache der je- weiligen Kontaktplatte 5 angeordnet sind. Das Kanalsystem 14 jeder Kontaktplatte 5 ist dabei zum Transport von elektrolytisch zu zersetzendem Medium zur jeweiligen Membran 4 vorgesehen. Dazu ist das Kanalsystem 14 jeder Kontaktplatte 5 mit einem Zuführsystem für ein Elektrolysemedium verbunden. Zudem ist an das Kanalsystem 14 jeder Kontaktplatte 5 ein Abführsystem für Gas oder für mit Gas versetztes Elektrolysemedium angeschlossen.
Die Elektrolysevorrichtung 1 ist dabei derart ausgebildet, daß die Kanalsysteme 14 der zu beiden Seiten einer Membran 4 angeordneten Kontaktplatten 5 unabhängig voneinander mit einem Medium bespeisbar sind. Zudem ist das Medium oder auch ein bei der Elektrolyse freigesetztes Gas aus den Kanalsyste- men 14 der zu beiden Seiten einer Membran 4 angeordneten Kontaktplatten 5 unabhängig voneinander abführbar. Dazu sind die Kanalsysteme 14 aller Kontaktplatten 5, die einer als Kathode vorgesehenen Kontaktschicht einer Membran 4 zugeordnet sind, eingangsseitig an ein gemeinsames Zuführsystem 16 und aus- gangsseitig an ein gemeinsames Abführsystem 18 angeschlossen.
Die Kanalsysteme 14 derjenigen Kontaktplatten 5, die einer als Anode vorgesehenen Kontaktschicht einer Membran 4 zugeordnet sind, sind hingegen eingangsseitig an ein vom Zuführ- System 16 unabhängiges Zuführsystem 20 und ausgangsseitig an ein vom Abführsystem 18 unabhängiges Abführsystem 22 angeschlossen. Bei einer derartigen Anordnung ist die Bespeisung der als Kathoden vorgesehenen Kontaktschichten mit einem anderen Elektrolysemedium als dem für die Bespeisung der als Anoden vorgesehenen Kontaktschichten verwendeten Elektrolysemedium möglich. Die Elektrolysevorrichtung 1 ist somit besonders flexibel einsetzbar. Beispielsweise kann die Elektrolysevorrichtung 1 direkt in einen Kühlmittelkreislauf einer kerntechnischen Anlage integriert sein, wobei die als Katho- den vorgesehenen Kontaktschichten direkt mit Reaktorkühlmit- tel als Elektrolysemedium bespeist werden, und wobei das mit Wasserstoff aus der Elektrolyse angereicherte Reaktorkühlmit¬ tel direkt in den Kühlmittelkreislauf der kerntechnischen Anlage rückgeführt wird. Die als Anode vorgesehenen Kontakt- schichten sind dabei mit Deionat bespeisbar. Beim Betrieb einer derartig angeordneten Elektrolysevorrichtung 1 werden die mit Deionat bespeisbaren Anoden mit einem höheren Betriebsdruck beaufschlagt als die mit Reaktorkühlmittel beaufschlagten Kathoden. Somit ist auch bei einem Membranbruch oder ei- ner Leckage eine Freisetzung von Reaktorkühlmittel an die Umgebung sicher vermieden.
In Figur 3 ist schematisch ein Begasungssystem 28 für eine technische Anlage, insbesondere für den Primärkreislauf eines Druckwasserreaktors, dargestellt. Das Begasungssystem 28 umfaßt als Wasserstoffgenerator die Elektrolysevorrichtung 1, deren Zu- und Abführsysteme 16, 18, 20, 22 in nicht näher dargestellter Weise an die technischen Anlage angeschlossen sind. Die Elektrolysevorrichtung 1 umfaßt zudem eine Analyse- einheit 30. Dabei sind die Kontaktschichten jeder Membran 4 elektrisch mit der Analyseeinheit 30 verbunden.
Die Analyseeinheit 30 ist dazu ausgelegt, nach Abschalten der Stromversorgung einer Membran 4 die Abklingzeit eines Span- nungssignals dieser Membran 4 zu ermitteln. Aus der Abklingzeit des Spannungssignals können dann in der Analyseeinheit 30 Rückschlüsse auf die Funktionsfähigkeit der jeweiligen Membran 4 gezogen werden. Bei intakter Membran 4 sollte die jeweilige Membranelektrolysezelle 2 nämlich nach Abschalten der Stromversorgung kurzzeitig als Brennstoffzelle wirken, bis die von ihr zuvor durch Elektrolyse freigesetzten Gase abtransportiert sind. Daher sollte bei intakter Membran 4 das an ihr abfallende Spannungssignal zunächst kurzzeitig konstant sein, bevor ein Abklingen einsetzt. Bei fehlerhafter Membran 4, beispielsweise infolge von Lochbildung, sollte die Spannung nach Anschalten der Stromversorgung hingegen unmittelbar abklingen, so daß durch die Analyseeinheit 30 eine intakte von einer fehlerhaften Membran 4 unterscheidbar ist.
Für zusätzliche Diagnosezwecke ist in die Abführsysteme 18 und 22 für jede Membran 4 jeweils ein Sensor 32 zur Ermittlung einer Gasreinheit geschaltet. Die Sensoren 32 sind ebenfalls an die Analyseeinheit 30 angeschlossen. Durch eine Kombination der Information über die Ablingzeit des Spannungs- signals an einer ausgewählten Membran 4 mit der Information über die Reinheit der von der zugehörigen Membranelektrolysezelle 2 gelieferten Elektrolysegase ist eine besonders zuverlässige Prognose über das Betriebsverhalten der jeweiligen Membranelektrolysezelle 2 möglich.
Eine zuverlässige Kühlung der Elektrolysevorrichtung 1 bei ihrem Betrieb ist durch die Wahl eines geeigneten Wasserdurchsatzes durch die Membranelektrolysezellen 2 sichergestellt. Als Kühlmedium dient dabei das der Elektrolysevor- richtung 1 zugeführte, zu versetzende Medium. Zusätzlich können weitere Kühlvorrichtungen für das Gehäuse 8, beispielsweise in Form von Kühlrippen, vorgesehen sein.

Claims

Patentansprüche
1. Elektrolysevorrichtung (1) mit einer Anzahl von Membranelektrolysezellen (2) , von denen jede eine beidseitig mit einer Kontaktschicht versehene Membran (4) umfaßt, wobei an jeder Kontaktschicht jeweils eine Kontaktplatte (5) angeordnet ist, und wobei jede Kontaktplatte (5) auf ihrer der ihr zugeordneten Kontaktschicht zugewandten Oberfläche ein Kanalsystem (14) zum Transport von Wasser und/oder Gas aufweist.
2. Elektrolysevorrichtung (1) nach Anspruch 1, bei der das Kanalsystem jeder Kontaktplatte (5) in Form konzentrischer Kreissegmente ausgebildet ist.
3. Elektrolysevorrichtung (1) nach Anspruch 1 oder 2, bei der die Membranelektrolysezellen (2) elektrisch in Reihe geschaltet sind.
4. Elektrolysevorrichtung (1) nach einem der Ansprüche 1 bis 3, bei der zwischen jeder Kontaktschicht und der ihr jeweils zugeordneten Kontaktplatte (5) eine poröse Leiterplatte (6) angeordnet ist.
5. Elektrolysevorrichtung (1) nach einem der Ansprüche 1 bis 4, bei der die Kanalsysteme (5) der zu beiden Seiten einer
Membran (4) angeordneten Kontaktplatten (5) unabhängig voneinander mit einem Medium, insbesondere mit Wasser oder Deionat, bespeisbar sind.
6. Elektrolysevorrichtung (1) nach einem der Ansprüche 1 bis 5, deren Membranelektrolysezellen (2) stapeiförmig innerhalb eines Gehäuses (8) angeordnet sind, das an jeder Stirnseite (10) jeweils ein Feststellelement (12) zum Verspannen der Membranelektrolysezellen (2) miteinander aufweist.
7. Elektrolysevorrichtung (1) nach einem der Ansprüche 1 bis 6, bei der die Kontaktschichten einer oder jeder Membran (4) elektrisch mit einer Analyseeinheit (30) verbunden sind, die bei abgeschalteter Stromversorgung einer Membran (4) die Abklingzeit eines Spannungssignals dieser Membran ermittelt.
8. Elektrolysevorrichtung (1) nach Anspruch 7, bei der an die Analyseeinheit (30) ein Sensor zur Ermittlung einer Gasreinheit angeschlossen ist.
EP98941241A 1997-07-09 1998-06-26 Elektrolysevorrichtung Expired - Lifetime EP0932708B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19729429A DE19729429C1 (de) 1997-07-09 1997-07-09 Elektrolysevorrichtung
DE19729429 1997-07-09
PCT/DE1998/001770 WO1999002761A1 (de) 1997-07-09 1998-06-26 Elektrolysevorrichtung

Publications (2)

Publication Number Publication Date
EP0932708A1 true EP0932708A1 (de) 1999-08-04
EP0932708B1 EP0932708B1 (de) 2001-12-05

Family

ID=7835188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98941241A Expired - Lifetime EP0932708B1 (de) 1997-07-09 1998-06-26 Elektrolysevorrichtung

Country Status (7)

Country Link
US (1) USRE38066E1 (de)
EP (1) EP0932708B1 (de)
JP (1) JP3748896B2 (de)
DE (2) DE19729429C1 (de)
ES (1) ES2167922T3 (de)
TW (1) TW495562B (de)
WO (1) WO1999002761A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040140202A1 (en) * 2003-01-17 2004-07-22 Framatome Anp Gmbh Electrolysis unit
US20080296904A1 (en) * 2007-05-29 2008-12-04 Nasik Elahi System for capturing energy from a moving fluid
US20110017607A1 (en) * 2009-07-22 2011-01-27 Green On Demand, LLP (G.O.D.) On demand hydrogen production unit and method for the on demand production of hydrogen
US8147661B2 (en) 2009-08-31 2012-04-03 Green On Demand Gmbh Unit for the electrolysis of water
US20110147204A1 (en) * 2009-12-17 2011-06-23 Green On Demand, LLP (G.O.D.) Apparatus for on demand production of hydrogen by electrolysis of water
EP2985096B1 (de) 2014-08-14 2016-11-02 Melicon GmbH Gasdiffusionselektrode
US11319635B2 (en) * 2018-03-27 2022-05-03 Tokuyama Corporation Electrolysis vessel for alkaline water electrolysis
EP3982501A1 (de) 2020-10-12 2022-04-13 Siemens Energy Global GmbH & Co. KG Betreiben einer elektrolysevorrichtung
DE102022206878A1 (de) 2022-07-06 2024-01-11 Siemens Energy Global GmbH & Co. KG Betreiben einer eine Mehrzahl von Elektrolysezellen aufweisenden Elektrolysevorrichtung
DE102022206877A1 (de) 2022-07-06 2024-01-11 Siemens Energy Global GmbH & Co. KG Betreiben einer Elektrolysezelle
DE102022130553A1 (de) 2022-11-18 2024-05-23 Melicon Gmbh Gasdiffusionselektrode, Membran-Elektroden-Anordnung und Elektrolysevorrichtung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056452A (en) * 1976-02-26 1977-11-01 Billings Energy Research Corporation Electrolysis apparatus
US4247376A (en) * 1979-01-02 1981-01-27 General Electric Company Current collecting/flow distributing, separator plate for chloride electrolysis cells utilizing ion transporting barrier membranes
US4210512A (en) * 1979-01-08 1980-07-01 General Electric Company Electrolysis cell with controlled anolyte flow distribution
US4210511A (en) * 1979-03-08 1980-07-01 Billings Energy Corporation Electrolyzer apparatus and electrode structure therefor
JPS5693883A (en) * 1979-12-27 1981-07-29 Permelec Electrode Ltd Electrolytic apparatus using solid polymer electrolyte diaphragm and preparation thereof
US4331523A (en) * 1980-03-31 1982-05-25 Showa Denko Kk Method for electrolyzing water or aqueous solutions
US5186806A (en) * 1990-12-31 1993-02-16 California Institute Of Technology Ceramic distribution members for solid state electrolyte cells and method of producing
US5460705A (en) * 1993-07-13 1995-10-24 Lynntech, Inc. Method and apparatus for electrochemical production of ozone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9902761A1 *

Also Published As

Publication number Publication date
WO1999002761A1 (de) 1999-01-21
JP3748896B2 (ja) 2006-02-22
TW495562B (en) 2002-07-21
DE19729429C1 (de) 1999-01-14
JP2001500194A (ja) 2001-01-09
DE59802319D1 (de) 2002-01-17
USRE38066E1 (en) 2003-04-08
ES2167922T3 (es) 2002-05-16
EP0932708B1 (de) 2001-12-05

Similar Documents

Publication Publication Date Title
EP0918363B1 (de) Verfahren und Vorrichtung zum Überwachen einer ausgewählten Gruppe von Brennstoffzellen eines Hochtemperatur-Brennstoff-zellenstapels
EP0932708A1 (de) Elektrolysevorrichtung
DE102007030037B4 (de) Brennstoffzellen-Diagnosevorrichtung und-Diagnoseverfahren
EP0762927A1 (de) Einfach- und mehrfachelektrolysezellen sowie anordnungen davon zur entionisierung von wässrigen medien
DE102017206729A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems
EP0168600B1 (de) Bipolarer Elektrolyseapparat mit Gasdiffusionskathode
EP3612664A1 (de) Elektrochemievorrichtung, funktionelles element sowie verfahren zu dessen herstellung
DE10244884A1 (de) Brennstoffzellen-Stapelkörper
EP0306627B1 (de) Elektrochemische Membranzelle mit einer beiderseits einer Membran angeordneten ebenen Elektrodenstruktur
US6071386A (en) Electrolysis apparatus
EP2434570B1 (de) Elektrochemische Batterie und Verfahren zur Entfernung von Zellen aus einer derartigen Batterie
EP1580564B1 (de) Verfahren zur Bestimmung der Stromdichteverteilung in Brennstoffzellen
WO2022128856A2 (de) Anordnung elektrochemischer zellen
WO2023011714A9 (de) Vorrichtung zum elektrolytischen erzeugen von gas
DE112020003883T5 (de) Brennstoff-batteriestapel
EP0776994B1 (de) Elektrolyseur mit flüssigem Elektrolyten
DE102019218870A1 (de) Brennstoffzelle, Brennstoffzellenstapel sowie Verfahren zum Betreiben eines Brennstoffzellenstapels
DE102018003703A1 (de) Elektrochemische Speicherzelle
DE102020112955B4 (de) Reiheneinbaugerät, Automatisierungssystem und Verfahren zur Prozessautomation
WO2017202624A1 (de) Brennstoffzellenmodul
EP0893837B1 (de) Regenerative elektrochemische Brennstoffzelle
DE10236997A1 (de) Elektrochemischer Zellenstapel
DE102022113312A1 (de) Zellstapelpaket
DE102019122955A1 (de) Verfahren zum Herstellen einer Spannungsabgriffsanordnung für eine elektrochemische Vorrichtung und elektrochemische Vorrichtung
DE112007001409B4 (de) Vielkanal-Meßgerät für den Anschluß an einen Brennstoffzellenstapel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB LI SE

17Q First examination report despatched

Effective date: 20000719

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAMATOME ANP GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59802319

Country of ref document: DE

Date of ref document: 20020117

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020218

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2167922

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FRAMATOME ANP GMBH

Free format text: FRAMATOME ANP GMBH#FREYESLEBENSTRASSE 1#91058 ERLANGEN (DE) -TRANSFER TO- FRAMATOME ANP GMBH#FREYESLEBENSTRASSE 1#91058 ERLANGEN (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: AREVA NP GMBH

Free format text: FRAMATOME ANP GMBH#FREYESLEBENSTRASSE 1#91058 ERLANGEN (DE) -TRANSFER TO- AREVA NP GMBH#PAUL-GOSSEN-STRASSE 100#91052 ERLANGEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59802319

Country of ref document: DE

Representative=s name: TERGAU & WALKENHORST PATENTANWAELTE - RECHTSAN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59802319

Country of ref document: DE

Representative=s name: TERGAU & WALKENHORST PATENTANWAELTE PARTGMBB, DE

Effective date: 20130618

Ref country code: DE

Ref legal event code: R082

Ref document number: 59802319

Country of ref document: DE

Representative=s name: TERGAU & WALKENHORST PATENTANWAELTE - RECHTSAN, DE

Effective date: 20130618

Ref country code: DE

Ref legal event code: R081

Ref document number: 59802319

Country of ref document: DE

Owner name: AREVA GMBH, DE

Free format text: FORMER OWNER: AREVA NP GMBH, 91052 ERLANGEN, DE

Effective date: 20130618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140620

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140623

Year of fee payment: 17

Ref country code: CH

Payment date: 20140620

Year of fee payment: 17

Ref country code: ES

Payment date: 20140618

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140630

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140617

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59802319

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150627

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150626

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150627