EP0928396A1 - Thermal shield component with cooling fluid recirculation and heat shield arrangement for a component circulating hot gas - Google Patents

Thermal shield component with cooling fluid recirculation and heat shield arrangement for a component circulating hot gas

Info

Publication number
EP0928396A1
EP0928396A1 EP97944734A EP97944734A EP0928396A1 EP 0928396 A1 EP0928396 A1 EP 0928396A1 EP 97944734 A EP97944734 A EP 97944734A EP 97944734 A EP97944734 A EP 97944734A EP 0928396 A1 EP0928396 A1 EP 0928396A1
Authority
EP
European Patent Office
Prior art keywords
heat shield
hot gas
wall
cooling fluid
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97944734A
Other languages
German (de)
French (fr)
Other versions
EP0928396B1 (en
Inventor
Heinz-Jürgen GROSS
Wilhelm Schulten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0928396A1 publication Critical patent/EP0928396A1/en
Application granted granted Critical
Publication of EP0928396B1 publication Critical patent/EP0928396B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/221Improvement of heat transfer
    • F05B2260/222Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/908Fluid jets

Definitions

  • the invention relates to a heat shield component with a hot gas wall to be cooled and to a heat shield arrangement which lines a hot gas-carrying component, in particular a combustion chamber of a gas turbine system, and has a plurality of heat shield components.
  • EP 0 224 817 B1 describes a heat shield arrangement, in particular for structural parts of gas turbine systems.
  • the heat shield arrangement serves to protect a support structure against a hot fluid, in particular for
  • the heat shield arrangement has an inner lining made of heat-resistant material, which is assembled to cover the entire surface from heat shield elements anchored to the supporting structure. These heat shield elements are left with
  • Each of these heat shield elements has a hat part and a shaft part in the manner of a mushroom.
  • the hat part is a flat or spatial, polygonal plate body with straight or curved edges.
  • the shaft part connects the central area of the plate body with the support structure.
  • the hat part preferably has a triangular shape, as a result of which an inner lining of almost any geometry can be produced by identical hat parts.
  • the hat parts and possibly other parts of the heat shield elements consist of a high-temperature-resistant material, in particular a steel.
  • the support structure has bores through which a cooling fluid, in particular air, can flow into an intermediate space between the hat part and the support structure and from there through the gaps to flow through the
  • Cooling fluids in a space area surrounded by the heat shield elements can flow in. This flow of cooling fluid reduces the penetration of hot gas into the space.
  • US Pat. No. 5,216,886 describes a metallic lining for a combustion chamber.
  • This lining consists of a multiplicity of cube-shaped hollow components (cells) arranged next to one another, which are fastened to a common metal plate.
  • the common metal plate has an opening for the inflow of cooling fluid associated with each cube-shaped cell.
  • the cube-shaped cells are arranged next to each other, leaving a gap. They contain a respective opening for the outflow of cooling fluid on each side wall in the vicinity of the common metal plate.
  • the cooling fluid consequently reaches the gap between adjacent cube-shaped cells, flows through this gap and forms a cooling film on a surface of the cells which can be exposed to a hot gas and is directed parallel to the metallic plate.
  • an open cooling system is defined in which cooling air enters the interior of the combustion chamber through a wall structure through the cells. The cooling air is therefore lost for further cooling purposes.
  • the wall in particular for gas turbine systems, which has cooling fluid channels.
  • the wall is preferably arranged between a hot room and a cooling fluid room. It is assembled from individual wall elements, with each of the wall elements being a plate body made of highly heat-resistant material. Each plate body has cooling channels distributed across its base surface which are parallel to one another and communicate with the cooling fluid space at one end and with the hot space at the other end. The cooling fluid flowing into the hot space and guided through the cooling fluid channels forms a cooling fluid film on the surface of the wall element and / or adjacent wall elements facing the hot space.
  • the object of the invention is to provide a heat shield component which can be cooled with cooling fluid, and a heat shield arrangement with heat shield components, so that when cooling a heat shield component there is at best little loss of cooling fluid and / or a slight pressure loss.
  • the object directed to a heat shield component is solved by one which has an interior space, a hot gas wall to be cooled and adjoining the interior space, an inlet channel and an outlet channel for cooling fluid, the inlet channel being directed towards the hot gas wall hm extended towards the hot gas wall, and the outlet channel can be connected to a discharge channel for returning the cooling fluid.
  • Inlet channel, outlet channel and the closed hot gas wall bring about a complete cooling fluid pressure control, so that no cooling fluid loss occurs as a result of a cooling of the heat shield component.
  • the inlet duct is preferably provided with a cover wall, e.g. a baffle cooling plate, which is adjacent to the hot gas wall and has passages for conducting the cooling fluid.
  • a cover wall e.g. a baffle cooling plate
  • the heat shield component preferably consists of a heat-resistant material, a metal or a metal alloy, which is cast in a particularly precise manner (investment casting).
  • the hot gas wall has cooling fins on its inner surface.
  • the cooling fluid that has reached the hot gas wall through the cover plate flows along these cooling fins.
  • the cooling fins can be connected to the cover plate, the impact cooling plate.
  • Air can preferably be supplied to the inlet duct from a compressor of a gas turbine system.
  • the air passed through the heat shield component preferably enters a combustion chamber, one or more burners and / or a compressor of the gas turbine system via the outlet channel.
  • cooling air When the cooling air is completely recirculated from the interior of the heat shield component, a mixture of hot gas and cooling fluid, in particular cooling air, is eliminated, so that a low hot gas temperature can be set in a gas turbine system. This is associated with a reduction in nitrogen oxide formation. Due to the closed cooling air return, there is also no flow around the edges of a heat shield component, so that a harmonious temperature distribution with low thermal stresses can be set in its material, the metal.
  • the supply of the heat shield component with cooling air and the return of the heated cooling air to a burner of the gas turbine system is preferably carried out via axially parallel supply channels.
  • the ducts can be expanded as required in the radial direction and their cross sections adapted to the required amount of cooling air. All heat shield components therefore have essentially identical cooling air entry conditions.
  • the flow path to the heat shield components or the heated cooling air to the burner is subject to only slight pressure losses due to its brevity.
  • the heat shield components arranged on an outside of a rotationally symmetrical hot gas-carrying component, in particular a combustion chamber of a gas turbine system are preferably supplied via the guide blades of the first row of guide blades of the gas turbine.
  • the amount of cooling air that can be guided through the guide vanes is not sufficient for sufficient cooling of the heat shield components, it is of course possible to guide supply channels past the hot gas-carrying component, in particular the combustion chamber, to the outside thereof.
  • the heated cooling air is preferably returned via separate discharge channels which lead directly to a burner of a gas turbine system. It is also possible to let the outlet duct of the heat shield components flow directly into a main duct, through which the compressor air is fed to the burner. As a result, the heat absorbed in the heat shield components can again be fed to the gas turbine process in a particularly favorable manner.
  • the outer wall of the heat shield component which extends from the hot gas wall in the direction of the support structure, can be wave-shaped at least in regions in the vicinity of the hot gas wall.
  • the inlet duct is preferably surrounded by the outlet duct in the interior of the heat shield component. It can expand in a funnel shape towards the cover plate.
  • the heat shield component For attachment to a support structure of the hot gas-carrying component, in particular the combustion chamber of a gas turbine system, the heat shield component preferably has an attachment point which surrounds the inlet duct and the outlet duct.
  • This fastening point preferably has a foot region which runs parallel to the supporting structure and is fastened there, for example by screws.
  • the heat shield component preferably has an outer wall which adjoins the hot gas wall and which has a holding step at least in regions.
  • a fastening component for example with a head part, can be arranged on this holding stage, the fastening component being connectable to a support structure of a combustion chamber.
  • the fastening component thus causes the heat shield component to be held on the support structure and enables the heat shield component to move due to the thermal load. can expand freely.
  • the fastening component can be a cooled screw, which is cast with high precision.
  • the hot gas wall preferably has a wall thickness of less than 10 mm.
  • the wall thickness is preferably in a range between 3 to 5 mm, as a result of which a high resistance to changes in the load of the heat shield components can be achieved due to a small temperature difference between the inner and outer surface.
  • the object directed to a heat shield arrangement for lining a hot gas-carrying component, in particular a combustion chamber of a gas turbine system is achieved by a heat shield arrangement which has a plurality of heat shield components with a cooling fluid pressure guide.
  • a heat shield component each has a hot gas wall to be cooled, which on its outer surface faces a hot gas which can be passed through the combustion chamber.
  • the heat shield component provides a closed guidance of cooling air without loss of cooling air, the cooling air being able to be supplied through an inlet channel which widens towards the hot gas wall and can be removed via an outlet channel.
  • Cooling fluid is fed to the inlet duct via a feed duct which is connected, for example, to the compressor of a gas turbine system.
  • the heated cooling fluid flowing out of the outlet channel is fed to a discharge channel and from there reaches the burner of a gas turbine system.
  • At least one feed duct is preferably guided through a guide vane of the gas turbine system.
  • Each heat shield component has a hot gas wall with its outer surface facing the flow area designed for guiding the hot gas, to which cooling fluid can be supplied via an outlet channel according to the principle of impingement cooling and the cooling fluid which has rebounded off the hot gas wall can be removed from the outlet channel.
  • the heat shield component preferably has a holding step on an outer wall, against which a fastening component with a head part rests.
  • the fastening component is fastened to a support structure via a shaft part connected to the head part, as a result of which the heat shield component is arranged on the support structure so that it can be moved warm.
  • the shaft part is preferably elastic, for example by means of a spring arrangement, fastened to the support structure, so that there is a heat-mobile, yet firm connection between the fastening component and the heat shield component.
  • the fastening component preferably has a cooling channel through which cooling fluid can flow and can therefore also be sufficiently cooled. The cooling channel can be opened into the interior of the hot gas-carrying component, so that small amounts of cooling fluid flow into this interior. Even in this case, the loss of cooling fluid is extremely small.
  • FIG. 1 shows a gas turbine system, partially cut open in the longitudinal direction, with an annular combustion chamber
  • the gas turbine system 10 has a shaft 26 and, in the axial direction, has a compressor 9, an annular combustion chamber 11 and the blading (guide blades 18, moving blades 27) in the axial direction.
  • Combustion air is compressed and heated in the compressor 9 and is partially supplied as a cooling fluid 4 (see FIGS. 2, 3, 4) to a heat shield arrangement 20.
  • the compressed air is fed to a plurality of burners 25 which are arranged in a circular shape around the annular combustion chamber 11.
  • a fuel not shown in the burners 25 and burned with the compressor air, forms a hot gas 29 in the combustion chamber 11, which flows from the combustion chamber 11 n into the blading of the gas turbine system 10 (guide vane 18, rotor blade 27) and thus causes the shaft 26 to rotate .
  • the combustion chamber 11 shown in FIG. 2 on an enlarged scale in a longitudinal section has a heat shield arrangement 20 which is constructed from a multiplicity of heat shield components 1.
  • the compressor air compressed in the compressor 9 is supplied in a supply channel 12 along the combustion chamber 11 to each heat shield component 1.
  • Compressor air is introduced as cooling air 4 into each heat shield component 1.
  • a partial flow of the compressor air is passed through the guide vanes 18 of the first guide vane lines of the gas turbine system 10.
  • the compressor air and the cooling air 4 heated in the heat shield components 1 are fed to a burner 25 in which fuel (not shown) is burned.
  • the combustion of the fuel in the burner 25 produces a hot gas 29 which flows through the combustion chamber 11 to the guide vane 18.
  • Each heat shield component 1 is charged with the hot gas 29 on a hot gas wall 2.
  • the interior 6 of each heat shield component 1 is delimited by the hot gas wall 2 and an outer wall 14 adjacent thereto and directed towards the feed channel 12.
  • FIG. 3 shows a longitudinal section of a detail through the combustion chamber 11 in the region of a support structure 17.
  • a heat shield arrangement 20 is provided on the support structure 17 a plurality of heat shield components 1 arranged.
  • Each heat shield component 1 is directed along a main axis 32, which is arranged essentially perpendicular to the support structure 17.
  • the heat shield component 1 has an essentially parallel to the support structure 17, the
  • Hot gas 29 exposed hot gas wall 2 which is adjacent to an interior 2A.
  • An inlet channel 3 for cooling fluid 4 directed along the main axis 32 widens the interior 2A in the direction of the hot gas wall 2 m. It is closed off with a cover wall 7, which passages 8 lead to
  • the cover wall 7 is directed essentially parallel to the hot gas wall 2 and extends essentially over its entire extent.
  • the cooling fluid 4 flowing through the passages 8 impinges on the inner surface 16 and effects an impingement cooling there.
  • the hot gas wall 2 has 16 cooling fins 15 on the inner surface, which cause an increase in the heat transfer from the hot gas wall 2 to the cooling fluid 4.
  • From the inner surface 16, the heated cooling fluid 4 comes out of the interior 2A of the heat shield component 1 through an outlet channel 5 which runs essentially parallel to the main axis 32.
  • the cooling fluid 4 used to cool the heat shield component 1 thus completely comes out of the heat shield component 1 again.
  • a discharge duct 13 adjoins the outlet duct 5, which can be designed, for example, as a pipe and is welded to the support structure 17.
  • the discharge duct 13 preferably leads to a burner 25 of the gas turbine system 10.
  • the feed duct 14 and discharge duct 13 are directed parallel to the shaft 26.
  • the outer wall 14 is at least partially wave-shaped in an environment of the hot gas wall 2, whereby a reduction in tension between the areas heated by the hot gas 29 and the cooled areas of the heat shield component 1 is achieved.
  • the outer wall 14 merges into a fastening point 19, which is directed at least partially parallel to the support structure 17 and directed parallel thereto Area with the support structure 17, for example via screws, not shown, is attached.
  • the supply duct 12 tapers in the transition to the inlet duct 3, and the discharge duct 13 widens accordingly at the transition from the outlet duct 5.
  • FIG. 4 shows a longitudinal section of a section through the combustion chamber 11 in the region of a support structure 17.
  • a heat shield arrangement 20 with a plurality of heat shield components 1 and fastening components 21 fastening the heat shield components 1, in the form of cooled screws, are arranged on the support structure 17.
  • the heat shield component 1 is directed along a main axis 32 which is essentially perpendicular to the support structure 17.
  • the heat shield component 1 has a substantially parallel to
  • Support structure 17 extending hot gas wall 2 exposed to the hot gas 29, which delimits an interior 2A at least in regions.
  • An inlet channel 3 for cooling fluid 4 directed along the main axis 32 widens in the interior 2A in the direction of the hot gas wall 2. It is closed off with a cover wall 7 which has passages 8 for the cooling fluid 4 to flow through.
  • the cover wall 7 is directed essentially parallel to the hot gas wall 2 and extends essentially over its entire extent.
  • the cooling fluid 4 flowing through the passages 8 impinges on the inner surface 16 of the hot gas wall 2 and effects an impact cooling there.
  • the hot gas wall 2 has, on the inner surface 16, cooling fins 15 or similar elements which improve the heat transfer and which cause an increase in the heat transfer from the hot gas wall 2 to the cooling fluid 4.
  • the heated cooling fluid 4 comes out of the interior 2A of the heat shield component 1 through an outlet channel 5 which runs essentially parallel to the main axis 32.
  • the cooling fluid 4 used for cooling the heat shield component 1 thus comes out of the heat shield component 1 completely, ie without loss.
  • the outlet channel 5 is preferably designed concentrically.
  • the hot gas wall 2 has one Wall thickness between 3 mm to 5 mm, so that due to small temperature differences in it, the heat shield arrangement 20 constructed from the heat shield components 1 has a high resistance to load changes. Due to the simple fastening, the heat shield components 1 can also be assembled and disassembled individually from the combustion chamber 11. Because of their simple geometry, they are also easy to coat.
  • a discharge duct 13 adjoins the outlet duct 5, which can be designed, for example, as a pipe and is welded to the support structure 17.
  • the discharge duct 13 preferably leads to a burner 25 of the gas turbine system 10.
  • the discharge duct 13 can also be a cast part of the support structure 17.
  • the heat shield component 1 For attachment to the support structure 17, the heat shield component 1 has a holding step 19A on an outer wall 14 which runs essentially parallel to the main axis 32. At this holding stage 19A there is a fastening component 21 with a head part 22 directed along a main axis 33. The head part 22 is adjoined by a shaft part 23 which penetrates the support structure 17 and is elastically fastened to it with disc springs 31.
  • the fastening component 21, which is preferably produced as an investment casting, has a cooling channel 24 which extends along the main axis 33 and leads the combustion chamber 11 into it. The cooling channel 24 is fed with cooling fluid 4 from a supply channel 12 running along the support structure 17. The cooling fluid 4 flowing through the fastening component 21 cools it and thus offers adequate protection against the hot gas 29.
  • the invention is characterized by a heat shield component, which is preferably designed as a precise casting (investment casting) and ensures a complete return of cooling fluid. Bounces inside the heat shield component
  • Cooling fluid on the entire inner surface of a hot gas wall exposed to the hot gas making this an effective Cooling experience.
  • the heated cooling fluid in particular compressor air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention relates to a heat shield component (1) with cooling fluid recirculation comprising a hot gas wall (22) to be cooled, an inlet duct (3) for the cooling fluid (4) and an outlet duct for the cooling fluid (4), wherein the inlet duct (3) is directed towards the hot gas wall (22) and extends in the direction of the hot gas wall (22). The invention also relates to a heat shield arrangement (20) which lines a component circulating hot gas (11), especially a combustion chamber (11) of a gas turbine installation (10) and presents a plurality of heat shield components (1) with cooling fluid recirculation.

Description

Beschreibungdescription
Hitzeschildkomponente mit Kühlfluidruckführung und Hitzeschildanordnung für eine heißgasfuhrende KomponenteHeat shield component with cooling fluid pressure guide and heat shield arrangement for a hot gas-carrying component
Die Erfindung betrifft eine Hitzeschildkomponente mit einer zu kühlenden Heißgaswand sowie eine Hitzeschildanordnung, die eine heißgasfuhrende Komponente, insbesondere eine Brennkammer einer Gasturbinenanlage auskleidet, und eine Mehrzahl von Hitzeschildkomponenten aufweist.The invention relates to a heat shield component with a hot gas wall to be cooled and to a heat shield arrangement which lines a hot gas-carrying component, in particular a combustion chamber of a gas turbine system, and has a plurality of heat shield components.
In der EP 0 224 817 Bl ist eine Hitzeschildanordnung, insbesondere für Strukturteile von Gasturbinenanlagen, beschrieben. Die Hitzeschildanordnung dient dem Schutz einer Trag- Struktur gegenüber einem heißen Fluid, insbesondere zumEP 0 224 817 B1 describes a heat shield arrangement, in particular for structural parts of gas turbine systems. The heat shield arrangement serves to protect a support structure against a hot fluid, in particular for
Schutz einer Heißgaskanalwand bei Gasturbinenanlagen. Die Hitzeschildanordnung weist eine Innenauskleidung aus hitzebe- standigem Material auf, welche flachendeckend zusammengesetzt ist aus an der Tragstruktur verankerten Hitzeschild-Elemen- ten. Diese Hitzeschild-Elemente sind unter Belassung vonProtection of a hot gas duct wall in gas turbine plants. The heat shield arrangement has an inner lining made of heat-resistant material, which is assembled to cover the entire surface from heat shield elements anchored to the supporting structure. These heat shield elements are left with
Spalten zur Durchstromung von Kuhlfluid nebeneinander angeordnet und warmebeweglich . Jedes dieser Hitzeschild-Elemente weist nach Art eines Pilzes einen Hutteil und einen Schaftteil auf. Der Hutteil ist ein ebener oder räumlicher, polygo- naler Plattenkorper mit geraden oder gekrümmten Berandungsli- nien. Der Schaftteil verbindet den Zentralbereich des Plat- tenkorpers mit der Tragstruktur. Der Hutteil hat vorzugsweise eine Dreiecksform, wodurch durch identische Hutteile eine Innenauskleidung nahezu beliebiger Geometrie herstellbar ist Die Hutteile sowie gegebenenfalls sonstige Teile der Hitzeschild-Elemente bestehen aus einem hochwarmfesten Werkstoff, insbesondere einem Stahl. Die Tragstruktur weist Bohrungen auf, durch welche ein Kuhlfluid, insbesondere Luft, in einen Zwischenraum zwischen Hutteil und Tragstruktur einströmen kann unα von dort durch die Spalte zur Durchstromung desColumns for the flow of cooling fluid are arranged next to each other and can be moved while warm. Each of these heat shield elements has a hat part and a shaft part in the manner of a mushroom. The hat part is a flat or spatial, polygonal plate body with straight or curved edges. The shaft part connects the central area of the plate body with the support structure. The hat part preferably has a triangular shape, as a result of which an inner lining of almost any geometry can be produced by identical hat parts. The hat parts and possibly other parts of the heat shield elements consist of a high-temperature-resistant material, in particular a steel. The support structure has bores through which a cooling fluid, in particular air, can flow into an intermediate space between the hat part and the support structure and from there through the gaps to flow through the
Kuhlfluids m einen von den Hitzeschild-Elementen umgebenen Raumbereich, beispielsweise eine Brennkammer einer Gasturbi- nenanlage, einströmen kann. Diese Kuhlfluidstromung vermindert das Eindringen von heißem Gas in den Zwischenraum.Cooling fluids in a space area surrounded by the heat shield elements, for example a combustion chamber of a gas turbine plant, can flow in. This flow of cooling fluid reduces the penetration of hot gas into the space.
In der US-PS 5,216,886 ist eine metallische Auskleidung für eine Verbrennungskammer beschrieben. Diese Auskleidung besteht aus einer Vielzahl nebeneinander angeordneter würfelförmiger Hohlbauteile (Zellen), die an einer gemeinsamen Metallplatte befestigt sind. Die gemeinsame Metallplatte weist jeweils jeder würfelförmigen Zelle zugeordnet eine Öffnung zur Einströmung von Kuhlfluid auf. Die würfelförmigen Zellen sind jeweils unter Belassung eines Spaltes nebeneinander angeordnet. Sie enthalten an jeder Seitenwand in der Nahe der gemeinsamen Metallplatte eine jeweilige Öffnung zum Ausstromen von Kuhlfluid. Das Kuhlfluid gelangt mithin m die Spalte zwischen benachbarte würfelförmige Zellen, strömt durch diese Spalte hindurch und bildet an einer einem Heißgas aussetzbaren parallel der metallischen Platte gerichteten Oberflache der Zellen einen Kühlfilm aus. Bei dem in der US-PS 5,216,886 beschriebenen Aufbau einer Wandstruktur wird ein offenes Kuhlsystem definiert, bei dem Kuhlluft über eine Wandstruktur durch die Zellen hindurch in das Innere der Brennkammer hineingelangt. Die Kühlluft ist mithin für weitere Kuhlzwecke verloren.US Pat. No. 5,216,886 describes a metallic lining for a combustion chamber. This lining consists of a multiplicity of cube-shaped hollow components (cells) arranged next to one another, which are fastened to a common metal plate. The common metal plate has an opening for the inflow of cooling fluid associated with each cube-shaped cell. The cube-shaped cells are arranged next to each other, leaving a gap. They contain a respective opening for the outflow of cooling fluid on each side wall in the vicinity of the common metal plate. The cooling fluid consequently reaches the gap between adjacent cube-shaped cells, flows through this gap and forms a cooling film on a surface of the cells which can be exposed to a hot gas and is directed parallel to the metallic plate. In the construction of a wall structure described in US Pat. No. 5,216,886, an open cooling system is defined in which cooling air enters the interior of the combustion chamber through a wall structure through the cells. The cooling air is therefore lost for further cooling purposes.
In der DE 35 42 532 AI ist eine Wand, insbesondere für Gasturbinenanlagen, beschrieben, die Kuhlfluidkanale aufweist. Die Wand ist vorzugsweise bei Gasturbinenanlagen zwischen einem Heißraum und einem Kuhlfluidraum angeordnet. Sie ist aus einzelnen Wandelementen zusammengefugt, wobei jedes der Wand- elemente ein aus hochwarmfestem Material gefertigter Plattenkorper ist. Jeder Plattenkorper weist über seine Grundflache verteilte, einander parallele Kuhlkanale auf, die an einem Ende mit dem Kuhlfluidraum und an dem anderen Ende mit dem Heißraum kommunizieren. Das m den Heißraum einströmende, durch die Kuhlfluidkanale geführte Kuhlfluid bildet auf der dem Heißraum zugewandten Oberflache des Wandelementes und/oder benachbarter Wandelemente einen Kuhlfluidfilm. Aufgabe der Erfindung ist es, eine Hitzeschildkomponente, die mit Kuhlfluid kuhlbar ist, sowie eine Hitzeschildanordnung mit Hitzeschildkomponenten anzugeben, so daß bei einer Kühlung einer Hitzeschildkomponente allenfalls ein geringer Ver- lust an Kuhlfluid und/oder ein geringer Druckverlust auftritt.DE 35 42 532 AI describes a wall, in particular for gas turbine systems, which has cooling fluid channels. In gas turbine systems, the wall is preferably arranged between a hot room and a cooling fluid room. It is assembled from individual wall elements, with each of the wall elements being a plate body made of highly heat-resistant material. Each plate body has cooling channels distributed across its base surface which are parallel to one another and communicate with the cooling fluid space at one end and with the hot space at the other end. The cooling fluid flowing into the hot space and guided through the cooling fluid channels forms a cooling fluid film on the surface of the wall element and / or adjacent wall elements facing the hot space. The object of the invention is to provide a heat shield component which can be cooled with cooling fluid, and a heat shield arrangement with heat shield components, so that when cooling a heat shield component there is at best little loss of cooling fluid and / or a slight pressure loss.
Erfmdungsgemaß wird die auf eine Hitzeschildkomponente gerichtete Aufgabe durch eine solche gelost, die einen Innen- räum, eine zu kühlende, an den Innenraum angrenzende Heißgas- wand, einen Einlaßkanal und einen Auslaßkanal für Kuhlfluid aufweist, wobei der Einlaßkanal zur Heißgaswand hm gerichtet ist und sich in Richtung zur Heißgaswand erweitert, und der Auslaßkanal für eine Rückführung des Kuhlfluides mit einem Abfuhrkanal verbindbar ist. Einlaßkanal, Auslaßkanal und die geschlossene Heißgaswand bewirken eine vollständige Kühlfluidruckführung, so daß durch eine K hlung der Hitzeschildkomponente keinerlei Verlust an Kuhlfluid auftritt.According to the invention, the object directed to a heat shield component is solved by one which has an interior space, a hot gas wall to be cooled and adjoining the interior space, an inlet channel and an outlet channel for cooling fluid, the inlet channel being directed towards the hot gas wall hm extended towards the hot gas wall, and the outlet channel can be connected to a discharge channel for returning the cooling fluid. Inlet channel, outlet channel and the closed hot gas wall bring about a complete cooling fluid pressure control, so that no cooling fluid loss occurs as a result of a cooling of the heat shield component.
Der Einlaßkanal ist vorzugsweise mit einer Abdeckwand, z.B. einem Prallkuhlblech, abgedeckt, welche der Heißgaswand benachbart ist und zur Stromungsfuhrung des Kuhlfluids Durchlasse aufweist. Eine Erweiterung des Einlaßkanals, die durch eine mit Durchlassen versehene Abdeckwand abgeschlossen ist, bewirkt eine Prallkuhlung der Heißgaswand über ihre gesamte Innenoberflache . Die Hitzeschildkomponente besteht vorzugsweise aus einem warmfesten Material, einem Metall oder einer Metallegierung, die insbesondere hochprazise gegossen ist (Feinguß) .The inlet duct is preferably provided with a cover wall, e.g. a baffle cooling plate, which is adjacent to the hot gas wall and has passages for conducting the cooling fluid. An expansion of the inlet channel, which is closed off by a cover wall provided with openings, effects an impact cooling of the hot gas wall over its entire inner surface. The heat shield component preferably consists of a heat-resistant material, a metal or a metal alloy, which is cast in a particularly precise manner (investment casting).
Eine Verbesserung der Kühlung ist dadurch erreichbar, daß die Heißgaswand an ihrer Innenoberflache Kuhlrippen aufweist. Entlang dieser Kuhlrippen strömt das durch die Abdeckplatte an die Heißgaswand gelangte Kuhlfluid. Die Kuhlrippen können mit der Abdeckplatte, dem Prallkuhlblech, verbunden sein. Dem Einlaßkanal ist vorzugsweise Luft aus einem Verdichter einer Gasturbinenanlage zuführbar. Die durch die Hitzeschildkomponente geführte Luft tritt über den Auslaßkanal vorzugsweise in eine Brennkammer, in einen oder mehrere Brenner und/oder einen Verdichter der Gasturbinenanlage ein.An improvement in the cooling can be achieved in that the hot gas wall has cooling fins on its inner surface. The cooling fluid that has reached the hot gas wall through the cover plate flows along these cooling fins. The cooling fins can be connected to the cover plate, the impact cooling plate. Air can preferably be supplied to the inlet duct from a compressor of a gas turbine system. The air passed through the heat shield component preferably enters a combustion chamber, one or more burners and / or a compressor of the gas turbine system via the outlet channel.
Bei einer vollständigen Rückführung der Kühlluft aus dem Innenraum der Hitzeschildkomponente heraus fällt eine Mischung von Heißgas und Kuhlfluid, insbesondere Kühlluft, weg, so daß in einer Gasturbinenanlage gegebenenfalls eine niedrige Heißgastemperatur einstellbar ist. Dies ist mit einer Reduzierung der Stickoxidbildung verbunden. Durch die geschlossene Kühl- luftrückführung tritt ebenfalls keine Kantenumströmung einer Hitzeschildkomponente auf, so daß in deren Material, dem Me- tall, eine harmonische Temperaturverteilung mit geringen thermischen Spannungen einstellbar ist.When the cooling air is completely recirculated from the interior of the heat shield component, a mixture of hot gas and cooling fluid, in particular cooling air, is eliminated, so that a low hot gas temperature can be set in a gas turbine system. This is associated with a reduction in nitrogen oxide formation. Due to the closed cooling air return, there is also no flow around the edges of a heat shield component, so that a harmonious temperature distribution with low thermal stresses can be set in its material, the metal.
Die Versorgung der Hitzeschildkomponente mit Kühlluft und die Rückführung der erwärmten Kühlluft zu einem Brenner der Gas- turbinenanlage erfolgt vorzugsweise über achsparallele Versorgungskanäle. Die Kanäle lassen sich in radialer Richtung beliebig erweitern und ihre Querschnitte der erforderlichen Kühlluftmenge anpassen. Alle Hitzeschildkomponenten haben somit im wesentlichen identische Kühllufteintrittsbedingungen. Der Strömungsweg zu den Hitzeschildkomponenten bzw. der erwärmten Kühlluft zu dem Brenner ist aufgrund seiner Kürze mit lediglich geringen Druckverlusten behaftet. Die Versorgung der an einer Außenseite einer rotationssymmetrischen heißgasführenden Komponente, insbesondere einer Brennkammer einer Gasturbinenanlage, angeordneten Hitzeschildkomponenten, erfolgt vorzugsweise über die Leitschaufeln der ersten Leitschaufelreihe der Gasturbine. Falls die durch die Leitschau- feln führbare Menge an Kühlluft nicht für eine ausreichende Kühlung der Hitzeschildkomponenten ausreicht, ist es selbst- verständlich möglich, Versorgungskanäle an der heißgasführenden Komponente, insbesondere der Brennkammer, vorbei an deren Außenseite zu führen. Die Rückführung der erwärmten Kuhlluft erfolgt vorzugsweise über separate Abfuhrkanale, die unmittelbar zu einem Brenner einer Gasturbinenanlage fuhren. Es ist ebenfalls möglich, den Auslaßkanal der Hitzeschildkomponenten unmittelbar in einen Hauptkanal, m welchem die Verdichterluft dem Brenner zugeführt wird, munden zu lassen. Hierdurch kann die m den Hitzeschildkomponenten aufgenommene Warme wieder besonders gunstig dem Gasturbinenprozeß zugeführt werden.The supply of the heat shield component with cooling air and the return of the heated cooling air to a burner of the gas turbine system is preferably carried out via axially parallel supply channels. The ducts can be expanded as required in the radial direction and their cross sections adapted to the required amount of cooling air. All heat shield components therefore have essentially identical cooling air entry conditions. The flow path to the heat shield components or the heated cooling air to the burner is subject to only slight pressure losses due to its brevity. The heat shield components arranged on an outside of a rotationally symmetrical hot gas-carrying component, in particular a combustion chamber of a gas turbine system, are preferably supplied via the guide blades of the first row of guide blades of the gas turbine. If the amount of cooling air that can be guided through the guide vanes is not sufficient for sufficient cooling of the heat shield components, it is of course possible to guide supply channels past the hot gas-carrying component, in particular the combustion chamber, to the outside thereof. The heated cooling air is preferably returned via separate discharge channels which lead directly to a burner of a gas turbine system. It is also possible to let the outlet duct of the heat shield components flow directly into a main duct, through which the compressor air is fed to the burner. As a result, the heat absorbed in the heat shield components can again be fed to the gas turbine process in a particularly favorable manner.
Die von der Heißgaswand in Richtung der Tragstruktur sich erstreckende .Außenwand der Hitzeschildkomponente kann in der Umgebung der Heißgaswand zumindest bereichsweise wellenförmig ausgebildet sein. Hierdurch kann der Übergang der Außenwand von dem mit Heißgas beaufschlagten Bereich hin zu dem der Tragstruktur benachbarten kalten Bereich spannungsmindernd ausgebildet werden. Der Einlaßkanal ist vorzugsweise im Inneren der Hitzeschildkomponente von dem Auslaßkanal umgeben. Er kann sich trichterförmig zu der Abdeckplatte hin erweitern.The outer wall of the heat shield component, which extends from the hot gas wall in the direction of the support structure, can be wave-shaped at least in regions in the vicinity of the hot gas wall. As a result, the transition of the outer wall from the area to which hot gas is applied to the cold area adjacent to the support structure can be designed to reduce stress. The inlet duct is preferably surrounded by the outlet duct in the interior of the heat shield component. It can expand in a funnel shape towards the cover plate.
Für eine Befestigung an einer Tragstruktur der heißgasfuhren- den Komponente, insbesondere der Brennkammer einer Gasturbinenanlage, weist die Hitzeschildkomponente vorzugsweise ein Befestigungstell auf, welches den Einlaßkanal und den Auslaß- kanal umgibt. Dieses Befestigungstell hat vorzugsweise einen Fußbereich, welcher parallel zu der Tragstruktur verlauft und dort beispielsweise durch Schrauben befestigt ist.For attachment to a support structure of the hot gas-carrying component, in particular the combustion chamber of a gas turbine system, the heat shield component preferably has an attachment point which surrounds the inlet duct and the outlet duct. This fastening point preferably has a foot region which runs parallel to the supporting structure and is fastened there, for example by screws.
Die Hitzeschildkomponente hat vorzugsweise eine sich an die Heißgaswand anschließende Außenwand, welche zumindest bereichsweise eine Haltestufe aufweist. An dieser Haltestufe ist eine Befestigungskomponente, beispielsweise mit einem Kopfteil, anordenbar, wobei die Befestigungskomponente mit einer Tragstruktur einer Brennkammer verbindbar ist. Die Be- festigungskomponente bewirkt somit eine Halterung der Hitzeschildkomponente an der Tragstruktur und ermöglicht es, daß sich die Hitzeschildkomponente aufgrund der thermischen Bela- stung ungehindert ausdehnen kann. Die Befestigungskomponente kann eine gekühlte Schraube, welche hochprazise gegossen ist, sei .The heat shield component preferably has an outer wall which adjoins the hot gas wall and which has a holding step at least in regions. A fastening component, for example with a head part, can be arranged on this holding stage, the fastening component being connectable to a support structure of a combustion chamber. The fastening component thus causes the heat shield component to be held on the support structure and enables the heat shield component to move due to the thermal load. can expand freely. The fastening component can be a cooled screw, which is cast with high precision.
Die Heißgaswand weist vorzugsweise eine Wandstarke von unter 10 mm auf. Die Wandstarke liegt vorzugsweise in einem Bereich zwischen 3 bis 5 mm, wodurch aufgrund eines kleinen Temperaturunterschiedes zwischen Innen- und Außenoberflache eine hohe Lastwechselbestandigkeit der Hitzeschildkomponenten er- reichbar ist.The hot gas wall preferably has a wall thickness of less than 10 mm. The wall thickness is preferably in a range between 3 to 5 mm, as a result of which a high resistance to changes in the load of the heat shield components can be achieved due to a small temperature difference between the inner and outer surface.
Die auf eine Hitzeschildanordnung zur Auskleidung einer heiß- gasfuhrenden Komponente, insbesondere einer Brennkammer einer Gasturbinenanlage, gerichtete Aufgabe wird durch eine Hitze- Schildanordnung gelost, die eine Mehrzahl Hitzeschildkomponenten mit Kühlfluidruckführung aufweist. Eine Hitzeschildkomponente hat jeweils eine zu kühlende Heißgaswand, die an ihrer äußeren Oberflache einem durch die Brennkammer fuhrbaren Heißgas zugewandt ist. Die Hitzeschildkomponente er og- licht eine geschlossene Fuhrung von Kuhlluft ohne Kuhlluftverlust, wobei die Kuhlluft durch einen Einlaßkanal, der sich hin zu der Heißgaswand erweitert, zufuhrbar und über einen Auslaßkanal abfuhrbar ist. Dem Einlaßkanal wird Kuhlfluid über einen Zufuhrkanal, welcher beispielsweise mit dem Ver- dichter einer Gasturbinenanlage verbunden ist, zugeführt. Das aus dem Auslaßkanal ausströmende erwärmte Kuhlfluid w rd einem Abfuhrkanal zugeführt und gelangt von dort in den Brenner einer Gasturbinenanlage. Vorzugsweise ist zumindest ein Zufuhrkanal durch eine Leitschaufel der Gasturbinenanlage ge- fuhrt.The object directed to a heat shield arrangement for lining a hot gas-carrying component, in particular a combustion chamber of a gas turbine system, is achieved by a heat shield arrangement which has a plurality of heat shield components with a cooling fluid pressure guide. A heat shield component each has a hot gas wall to be cooled, which on its outer surface faces a hot gas which can be passed through the combustion chamber. The heat shield component provides a closed guidance of cooling air without loss of cooling air, the cooling air being able to be supplied through an inlet channel which widens towards the hot gas wall and can be removed via an outlet channel. Cooling fluid is fed to the inlet duct via a feed duct which is connected, for example, to the compressor of a gas turbine system. The heated cooling fluid flowing out of the outlet channel is fed to a discharge channel and from there reaches the burner of a gas turbine system. At least one feed duct is preferably guided through a guide vane of the gas turbine system.
Jede Hitzeschildkomponente weist eine dem zur Fuhrung des Heißgases ausgelegten Stromungsbereich mit ihrer äußeren Oberflache zugewandte Heißgaswand auf, an die über einen Em- laßkanal Kuhlfluid nach dem Prinzip der Prallkuhlung zufuhrbar und das an der Heißgaswand abgeprallte Kuhlfluid über einen Auslaßkanal wieder aus dieser herausfuhrbar ist. Das in eine Hitzeschildkomponente heremgestromte Kuhlfluid, insbesondere Luft, gelangt somit vollständig wieder aus dieser heraus und steht somit zur Einspeisung in den thermodynami- schen Kreisprozeß m der Gasturbinenanlage zur Verfugung.Each heat shield component has a hot gas wall with its outer surface facing the flow area designed for guiding the hot gas, to which cooling fluid can be supplied via an outlet channel according to the principle of impingement cooling and the cooling fluid which has rebounded off the hot gas wall can be removed from the outlet channel. This in A heat shield component from which cooling fluid has flowed, in particular air, thus completely comes out of it again and is thus available for feeding into the thermodynamic cycle in the gas turbine system.
Die Hitzeschildkomponente weist vorzugsweise an einer Außenwand eine Haltestufe auf, an der eine Befestigungskomponente mit einem Kopfteil anliegt. Die Befestigungskomponente ist über einen mit dem Kopfteil verbundenen Schaftteil an einer Tragstruktur befestigt, wodurch die Hitzeschildkomponente warmebeweglich an der Tragstruktur angeordnet ist. Der Schaftteil ist vorzugsweise elastisch, beispielsweise über eine Federanordnung, an der Tragstruktur befestigt, so daß eine warmebewegliche und trotzdem feste Verbindung zwischen der Befestigungskomponente und der Hitzeschildkomponente gegeben ist. Die Befestigungskomponente weist vorzugsweise einen von Kuhlfluid durchstrombaren Kuhlkanal auf und ist somit ebenfalls hinreichend kuhlbar. Der Kuhlkanal kann in den Innenraum der heißgasfuhrenden Komponente hin geöffnet sein, so daß m geringen Mengen Kuhlfluid in diesen Innenraum einströmt. Selbst in diesem Fall ist der Verlust an Kuhlfluid äußerst gering.The heat shield component preferably has a holding step on an outer wall, against which a fastening component with a head part rests. The fastening component is fastened to a support structure via a shaft part connected to the head part, as a result of which the heat shield component is arranged on the support structure so that it can be moved warm. The shaft part is preferably elastic, for example by means of a spring arrangement, fastened to the support structure, so that there is a heat-mobile, yet firm connection between the fastening component and the heat shield component. The fastening component preferably has a cooling channel through which cooling fluid can flow and can therefore also be sufficiently cooled. The cooling channel can be opened into the interior of the hot gas-carrying component, so that small amounts of cooling fluid flow into this interior. Even in this case, the loss of cooling fluid is extremely small.
Anhand des in der Zeichnung dargestellten Ausfuhrungsbei- spiels werden ein Hitzeschildelement sowie eine Hitzeschildanordnung naher erläutert. Es zeigen m teilweise schematisierter und nicht maßstäblicher Darstellung:A heat shield element and a heat shield arrangement are explained in more detail with reference to the exemplary embodiment shown in the drawing. They show m partially schematic and not to scale:
FIG 1 eine teilweise in Längsrichtung aufgeschnittene Gasturbinenanlage mit einer Ringbrennkammer,1 shows a gas turbine system, partially cut open in the longitudinal direction, with an annular combustion chamber,
FIG 2 eine vergrößerte Darstellung der Ringbrennkammer in einem Längsschnitt und2 shows an enlarged view of the annular combustion chamber in a longitudinal section and
FIG 3 und 4 jeweils einen Längsschnitt durch eine Hitzeschildanordnung der Ringbrennkammer3 and 4 each show a longitudinal section through a heat shield arrangement of the annular combustion chamber
FIG 1 zeigt eine Gasturbinenanlage 10, die teilweise längs aufgeschnitten dargestellt ist. Die Gasturbinenanlage 10 hat eine Welle 26 und weist m axialer Richtung hmteremanderge- schaltet einen Verdichter 9, eine Ringbrennkammer 11 sowie die Beschaufelung (Leitschaufeln 18, Laufschaufeln 27) auf. In dem Verdichter 9 wird Verbrennungsluft verdichtet und er- wärmt, die teilweise als Kuhlfluid 4 (s. FIG 2, 3, 4) einer Hitzeschildanordnung 20 zugeführt wird. Die verdichtete Luft wird einer Mehrzahl von Brennern 25 zugeführt, die kreisnng- formig um die Ringbrennkammer 11 angeordnet sind. Ein in den Brennern 25 nicht dargestellter mit der Verdichterluft ver- brannter Brennstoff bildet in der Brennkammer 11 ein Heißgas 29, welches aus der Brennkammer 11 n die Beschaufelung der Gasturbinenanlage 10 (Leitschaufel 18, Laufschaufel 27) einströmt und damit eine Rotation der Welle 26 hervorruft.1 shows a gas turbine system 10, which is shown partially cut open lengthways. The gas turbine system 10 has a shaft 26 and, in the axial direction, has a compressor 9, an annular combustion chamber 11 and the blading (guide blades 18, moving blades 27) in the axial direction. Combustion air is compressed and heated in the compressor 9 and is partially supplied as a cooling fluid 4 (see FIGS. 2, 3, 4) to a heat shield arrangement 20. The compressed air is fed to a plurality of burners 25 which are arranged in a circular shape around the annular combustion chamber 11. A fuel, not shown in the burners 25 and burned with the compressor air, forms a hot gas 29 in the combustion chamber 11, which flows from the combustion chamber 11 n into the blading of the gas turbine system 10 (guide vane 18, rotor blade 27) and thus causes the shaft 26 to rotate .
Die m FIG 2 in vergrößertem Maßstab in einem Längsschnitt dargestellte Brennkammer 11 weist eine Hitzeschildanordnung 20 auf, die aus einer Vielzahl von Hitzeschildkomponenten 1 aufgebaut st. D e in dem Verdichter 9 komprimierte Verdichterluft wird in einem Zufuhrkanal 12 entlang der Brennkammer 11 zu jeder Hitzeschildkomponente 1 gefuhrt. Ein Teil derThe combustion chamber 11 shown in FIG. 2 on an enlarged scale in a longitudinal section has a heat shield arrangement 20 which is constructed from a multiplicity of heat shield components 1. The compressor air compressed in the compressor 9 is supplied in a supply channel 12 along the combustion chamber 11 to each heat shield component 1. A part of
Verdichterlu t wird als Kuhlluft 4 in jede Hitzeschildkomponente 1 eingef hrt. Ein Teilstrom der Verdichterluft wird durch die Leitschaufeln 18 der ersten Leitschaufelreine der Gasturbinenanlage 10 gefuhrt. Die Verdichterluft sowie die in den Hitzeschildkomponenten 1 erwärmte Kuhlluft 4 werden einem Brenner 25 zugeführt, in dem nicht dargestellter Brennstoff verbrannt wird. Durch Verbrennung des Brennstoffes in dem Brenner 25 entsteht ein Heißgas 29, welches durch die Brennkammer 11 zu der Leitschaufel 18 strömt. Jede Hitzeschildko - ponente 1 wird an einer Heißgaswand 2 mit dem Heißgas 29 beaufschlagt. Das Innere 6 jeder Hitzeschildkomponente 1 wird von der Heißgaswand 2 und einer daran angrenzenden zu dem Zufuhrkanal 12 gerichteten Außenwand 14 begrenzt.Compressor air is introduced as cooling air 4 into each heat shield component 1. A partial flow of the compressor air is passed through the guide vanes 18 of the first guide vane lines of the gas turbine system 10. The compressor air and the cooling air 4 heated in the heat shield components 1 are fed to a burner 25 in which fuel (not shown) is burned. The combustion of the fuel in the burner 25 produces a hot gas 29 which flows through the combustion chamber 11 to the guide vane 18. Each heat shield component 1 is charged with the hot gas 29 on a hot gas wall 2. The interior 6 of each heat shield component 1 is delimited by the hot gas wall 2 and an outer wall 14 adjacent thereto and directed towards the feed channel 12.
In FIG 3 ist m einem Längsschnitt ein Ausschnitt durch die Brennkammer 11 im Bereich einer Tragstruktur 17 dargestellt. An der Tragstruktur 17 ist eine Hitzeschildanordnung 20 mit einer Mehrzahl von Hitzeschildkomponenten 1 angeordnet. Jede Hitzeschildkomponente 1 ist entlang einer Hauptachse 32 gerichtet, d e im wesentlichen senkrecht zur Tragstruktur 17 angeordnet ist. Die Hitzeschildkomponente 1 weist eine m we- sentlichen parallel zur Tragstruktur 17 verlaufende, dem3 shows a longitudinal section of a detail through the combustion chamber 11 in the region of a support structure 17. A heat shield arrangement 20 is provided on the support structure 17 a plurality of heat shield components 1 arranged. Each heat shield component 1 is directed along a main axis 32, which is arranged essentially perpendicular to the support structure 17. The heat shield component 1 has an essentially parallel to the support structure 17, the
Heißgas 29 ausgesetzte Heißgaswand 2 auf, die an einen Innenraum 2A angrenzt. Ein entlang der Hauptachse 32 gerichteter Einlaßkanal 3 für Kuhlfluid 4 verbreitert sich in Richtung der Heißgaswand 2 m den Innenraum 2A hinein. Er ist mit ei- ner Abdeckwand 7 abgeschlossen, welche Durchlasse 8 zurHot gas 29 exposed hot gas wall 2, which is adjacent to an interior 2A. An inlet channel 3 for cooling fluid 4 directed along the main axis 32 widens the interior 2A in the direction of the hot gas wall 2 m. It is closed off with a cover wall 7, which passages 8 lead to
Durchstromung von Kuhlfluid 4 aufweist. Die .Abdeckwand 7 ist im wesentlichen parallel zur Heißgaswand 2 gerichtet und erstreckt sich im wesentlichen über deren gesamte Ausdehnung. Das durch die Durchlasse 8 stromende Kuhlfluid 4 prallt auf der Innenoberflache 16 auf und bewirkt dort eine Prallkuhlung. Die Heißgaswand 2 weist an der Innenoberflache 16 Kuhlrippen 15 auf, die eine Erhöhung des Warmeubertrags von der Heißgaswand 2 auf das Kuhlfluid 4 bedingen. Von der Innen- oberflache 16 gelangt das erwärmte Kuhlfluid 4 durch einen im wesentlichen parallel zur Hauptachse 32 verlaufenden Auslaßkanal 5 aus dem Innenraum 2A der Hitzeschildkomponente 1 heraus. Das zur Kühlung der Hitzeschildkomponente 1 verwendete Kuhlfluid 4 gelangt somit vollständig aus der Hitzeschildkomponente 1 wieder heraus. An den Auslaßkanal 5 schließt sich ein Abfuhrkanal 13 an, der beispielsweise als Rohr ausgeführt sein kann und mit der Tragstruktur 17 verschweißt ist. Der Abfuhrkanal 13 fuhrt vorzugsweise zu einem Brenner 25 der Gasturbinenanlage 10. Zufuhrkanal 14 und Abfuhrkanal 13 sind parallel zur Welle 26 gerichtet.Has flow of cooling fluid 4. The cover wall 7 is directed essentially parallel to the hot gas wall 2 and extends essentially over its entire extent. The cooling fluid 4 flowing through the passages 8 impinges on the inner surface 16 and effects an impingement cooling there. The hot gas wall 2 has 16 cooling fins 15 on the inner surface, which cause an increase in the heat transfer from the hot gas wall 2 to the cooling fluid 4. From the inner surface 16, the heated cooling fluid 4 comes out of the interior 2A of the heat shield component 1 through an outlet channel 5 which runs essentially parallel to the main axis 32. The cooling fluid 4 used to cool the heat shield component 1 thus completely comes out of the heat shield component 1 again. A discharge duct 13 adjoins the outlet duct 5, which can be designed, for example, as a pipe and is welded to the support structure 17. The discharge duct 13 preferably leads to a burner 25 of the gas turbine system 10. The feed duct 14 and discharge duct 13 are directed parallel to the shaft 26.
Die Außenwand 14 ist zumindest bereichsweise in einer Umgebung der Heißgaswand 2 wellenförmig ausgeführt, wodurch eine Spannungsminderung zwischen durch das Heißgas 29 aufgeheizten Bereichen und gekühlten Bereichen der Hitzeschildkomponente 1 erreicht ist. Die Außenwand 14 geht in ein Befestigungstell 19 über, welches zumindest teilweise parallel zu der Tragstruktur 17 gerichtet ist und an diesem parallel gerichteten Bereich mit der Tragstruktur 17, beispielsweise über nicht dargestellte Schrauben, befestigt ist. Der Zufuhrkanal 12 verjungt sich im Übergang zu dem Einlaßkanal 3, entsprechend erweitert sich der Abfuhrkanal 13 bei Übergang aus dem Aus- laßkanal 5 heraus.The outer wall 14 is at least partially wave-shaped in an environment of the hot gas wall 2, whereby a reduction in tension between the areas heated by the hot gas 29 and the cooled areas of the heat shield component 1 is achieved. The outer wall 14 merges into a fastening point 19, which is directed at least partially parallel to the support structure 17 and directed parallel thereto Area with the support structure 17, for example via screws, not shown, is attached. The supply duct 12 tapers in the transition to the inlet duct 3, and the discharge duct 13 widens accordingly at the transition from the outlet duct 5.
In FIG 4 ist in einem Längsschnitt ein Ausschnitt durch die Brennkammer 11 im Bereich einer Tragstruktur 17 dargestellt. An der Tragstruktur 17 ist eine Hitzeschildanordnung 20 mit einer Mehrzahl von Hitzeschildkomponenten 1 sowie die Hitzeschildkomponenten 1 befestigende Befestigungskomponenten 21, in Form von gekühlten Schrauben, angeordnet. Die Hitzeschildkomponente 1 ist entlang einer Hauptachse 32 gerichtet, die im wesentlichen senkrecht zur Tragstruktur 17 ist. Die Hitze- Schildkomponente 1 weist eine im wesentlichen parallel zur4 shows a longitudinal section of a section through the combustion chamber 11 in the region of a support structure 17. A heat shield arrangement 20 with a plurality of heat shield components 1 and fastening components 21 fastening the heat shield components 1, in the form of cooled screws, are arranged on the support structure 17. The heat shield component 1 is directed along a main axis 32 which is essentially perpendicular to the support structure 17. The heat shield component 1 has a substantially parallel to
Tragstruktur 17 verlaufende, dem Heißgas 29 ausgesetzte Heiß- gaswand 2 auf, die zumindest bereichsweise einen Innenraum 2A begrenzt. Ein entlang der Hauptachse 32 gerichteter Einlaßkanal 3 für Kuhlfluid 4 verbreitert sich in dem Innenraum 2A m Richtung der Heißgaswand 2. Er ist mit einer Abdeckwand 7 abgeschlossen, welche Durchlasse 8 zur Durchstromung von Kuhlfluid 4 aufweist. Die Abdeckwand 7 ist im wesentlichen parallel zur Heißgaswand 2 gerichtet und erstreckt sich im wesentlichen über deren gesamte Ausdehnung. Das durch d e Durch- lasse 8 stromende Kuhlfluid 4 prallt auf der Innenoberflache 16 der Heißgaswand 2 auf und bewirkt dort eine Prallkuhlung. Die Heißgaswand 2 weist an der Innenoberflache 16 Kuhlrippen 15 oder ähnliche, den Warmeubertrag verbessernde Elemente auf, die eine Erhöhung des Warmeubertrags von der Heißgaswand 2 auf das Kuhlfluid 4 bedingen. Von der Innenoberflache 16 gelangt das erwärmte Kuhlfluid 4 durch einen im wesentlichen parallel zur Hauptachse 32 verlaufenden Auslaßkanal 5 aus dem Innenraum 2A der Hitzeschildkomponente 1 heraus. Das zur Kühlung der Hitzeschildkomponente 1 verwendete Kuhlfluid 4 ge- langt somit vollständig, d.h. ohne Verlust, aus der Hitzeschildkomponente 1 wieder heraus. Der Auslaßkanal 5 ist vorzugsweise konzentrisch ausgeführt. Die Heißgaswand 2 hat eine Wandstarke zwischen 3 mm bis 5 mm, so daß aufgrund geringer Temperaturunterschiede in ihr die aus den Hitzeschildkomponenten 1 aufgebaute Hitzeschildanordnung 20 eine hohe Last- wechselbestandigkeit aufweist. Die Hitzeschildkomponenten 1 lassen sich aufgrund der einfachen Befestigung auch einzeln von der Brennkammer 11 aus montieren und demontieren. Aufgrund ihrer einfachen Geometrie sind sie ebenfalls einfach zu beschichten. An den Auslaßkanal 5 schließt sich ein Abfuhrkanal 13 an, der beispielsweise als Rohr ausgeführt sein kann und mit der Tragstruktur 17 verschweißt ist. Der Abfuhrkanal 13 fuhrt vorzugsweise zu einem Brenner 25 der Gasturbinenanlage 10. Der Abfuhrkanal 13 kann auch ein gegossener Bestandteil αer Tragstruktur 17 sein.Support structure 17 extending hot gas wall 2 exposed to the hot gas 29, which delimits an interior 2A at least in regions. An inlet channel 3 for cooling fluid 4 directed along the main axis 32 widens in the interior 2A in the direction of the hot gas wall 2. It is closed off with a cover wall 7 which has passages 8 for the cooling fluid 4 to flow through. The cover wall 7 is directed essentially parallel to the hot gas wall 2 and extends essentially over its entire extent. The cooling fluid 4 flowing through the passages 8 impinges on the inner surface 16 of the hot gas wall 2 and effects an impact cooling there. The hot gas wall 2 has, on the inner surface 16, cooling fins 15 or similar elements which improve the heat transfer and which cause an increase in the heat transfer from the hot gas wall 2 to the cooling fluid 4. From the inner surface 16, the heated cooling fluid 4 comes out of the interior 2A of the heat shield component 1 through an outlet channel 5 which runs essentially parallel to the main axis 32. The cooling fluid 4 used for cooling the heat shield component 1 thus comes out of the heat shield component 1 completely, ie without loss. The outlet channel 5 is preferably designed concentrically. The hot gas wall 2 has one Wall thickness between 3 mm to 5 mm, so that due to small temperature differences in it, the heat shield arrangement 20 constructed from the heat shield components 1 has a high resistance to load changes. Due to the simple fastening, the heat shield components 1 can also be assembled and disassembled individually from the combustion chamber 11. Because of their simple geometry, they are also easy to coat. A discharge duct 13 adjoins the outlet duct 5, which can be designed, for example, as a pipe and is welded to the support structure 17. The discharge duct 13 preferably leads to a burner 25 of the gas turbine system 10. The discharge duct 13 can also be a cast part of the support structure 17.
Zur Befestigung an der Tragstruktur 17 weist die Hitzeschildkomponente 1 an einer im wesentlichen parallel zur Hauptachse 32 verlaufenden Außenwand 14 eine Haltestufe 19A auf. An dieser Haltestufe 19A liegt eine entlang einer Hauptachse 33 gerichtete Befestigungskomponente 21 mit einem Kopfteil 22 an. An das Kopfteil 22 schließt sich ein Schaftteil 23 an, welches die Tragstruktur 17 durchdringt und an dieser mit Tellerfedern 31 elastisch befestigt ist. Die Befestigungskomponente 21, welche vorzugsweise als Feinguß hergestellt ist, hat einen Kuhlkanal 24, der sich entlang der Hauptachse 33 erstreckt und m die Brennkammer 11 hineinfuhrt. Der Kuhlkanal 24 wird aus einem entlang der Tragstruktur 17 verlaufenden Zufuhrkanal 12 mit Kuhlfluid 4 gespeist. Das durch die Befestigungskomponente 21 stromende Kuhlfluid 4 kühlt diese und bietet somit einen hinreichenden Schutz gegenüber dem Heißgas 29.For attachment to the support structure 17, the heat shield component 1 has a holding step 19A on an outer wall 14 which runs essentially parallel to the main axis 32. At this holding stage 19A there is a fastening component 21 with a head part 22 directed along a main axis 33. The head part 22 is adjoined by a shaft part 23 which penetrates the support structure 17 and is elastically fastened to it with disc springs 31. The fastening component 21, which is preferably produced as an investment casting, has a cooling channel 24 which extends along the main axis 33 and leads the combustion chamber 11 into it. The cooling channel 24 is fed with cooling fluid 4 from a supply channel 12 running along the support structure 17. The cooling fluid 4 flowing through the fastening component 21 cools it and thus offers adequate protection against the hot gas 29.
Die Erfindung zeichnet sich durch eine Hitzeschildkomponente aus, welche vorzugsweise als präzises Gußteil (Feinguß) ausgebildet ist und eine vollständige Rückführung von Kuhlfluid gewährleistet. Im Inneren der Hitzeschildkomponente pralltThe invention is characterized by a heat shield component, which is preferably designed as a precise casting (investment casting) and ensures a complete return of cooling fluid. Bounces inside the heat shield component
Kuhlfluid auf der gesamten Innenoberflache einer dem Heißgas ausgesetzten Heißgaswand auf, wodurch diese eine effektive Kühlung erfahrt. Das erwärmte Kuhlfluid, insbesondere Verdichterluft, wird durch einen Auslaßkanal aus der Hitzeschildkomponente herausgeführt und vorzugsweise einem Brenner der Gasturbinenanlage zugeführt. Je nach Ausfuhrung und Befestigung des Hitzeschildelementes erfolgt eine vollständige Rückführung von aus der Verdichterluft abgezweigtem Kuhlfluid in den Hauptstrom der Verdichterluft zurück. Dies fuhrt zu einer deutlichen Wirkungsgradsteigerung der Gasturbinenanlage. Cooling fluid on the entire inner surface of a hot gas wall exposed to the hot gas, making this an effective Cooling experience. The heated cooling fluid, in particular compressor air, is led out of the heat shield component through an outlet channel and is preferably fed to a burner of the gas turbine system. Depending on the design and attachment of the heat shield element, there is a complete return of cooling fluid branched off from the compressor air back into the main stream of the compressor air. This leads to a significant increase in the efficiency of the gas turbine system.

Claims

Patentansprüche claims
1. Hitzeschildkomponente (1) mit einem Innenraum (2A) , der bereichsweise von einer zu kühlenden Heißgaswand (2) begrenzt ist, mit einem Einlaßkanal (3) zur Einströmung von Kuhlfluid (4) in den Innenraum (2A) und einem Auslaßkanal (5) zur Ruck- fuhrung des Kuhlfluides (4) aus dem Innenraum (2A) heraus, wobei der Einlaßkanal (3) zur Heißgaswand (2) hin gerichtet ist und sich m Richtung zur Heißgaswand (2) erweitert und der Auslaßkanal (5) für eine Kühlfluidruckführung mit einem Abfuhrkanal (13) verbindbar ist.1. heat shield component (1) with an interior (2A), which is delimited in some areas by a hot gas wall (2) to be cooled, with an inlet channel (3) for the inflow of cooling fluid (4) into the interior (2A) and an outlet channel (5 ) for returning the cooling fluid (4) from the interior (2A), the inlet channel (3) facing the hot gas wall (2) and widening in the direction of the hot gas wall (2) and the outlet channel (5) for one Cooling fluid pressure guide can be connected to a discharge channel (13).
2. Hitzeschildkomponente (1) nach Anspruch 1, m deren Innerem (6) der Auslaßkanal (5) den Einlaßkanal (3) weitgehend umgibt.2. Heat shield component (1) according to claim 1, m the interior (6) of which the outlet channel (5) largely surrounds the inlet channel (3).
3. Hitzeschildkomponente (1) nach Anspruch 1 oder 2, bei der der Einlaßkanal (3) mit einer Abdeckwand (7) abgedeckt ist, welche der Heißgaswand (2) benachbart ist und zur Stromungs- furung des Kuhlfluids (4) Durchlasse (8) aufweist.3. Heat shield component (1) according to claim 1 or 2, wherein the inlet channel (3) is covered with a cover wall (7) which is adjacent to the hot gas wall (2) and for the flow of the cooling fluid (4) passages (8) having.
4. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, die aus einem Metall oder einer Metallegierung hergestellt, insbesondere gegossen, ist.4. heat shield component (1) according to any one of the preceding claims, which is made of a metal or a metal alloy, in particular cast.
5. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, wobei dem Einlaßkanal (3) Luft (4) aus einem Verdichter (9) und die Luft (4) über den Auslaßkanal (5) der Brennkammer (11) und/oder dem Verdichter (9) einer Gasturbi- nenanlage (10) zufuhrbar ist.5. heat shield component (1) according to any one of the preceding claims, wherein the inlet channel (3) air (4) from a compressor (9) and the air (4) via the outlet channel (5) of the combustion chamber (11) and / or the compressor (9) can be fed to a gas turbine system (10).
6. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, mit einer sich an die Heißgaswand (2) anschließenden Außenwand (14), welche Außenwand (14) zumindest bereich- weise wellenförmig ausgebildet ist.6. The heat shield component (1) according to one of the preceding claims, with an outer wall (14) adjoining the hot gas wall (2), which outer wall (14) is at least partially wavy.
7. Hitzeschildkomponente (1) nach einem der vorhergehenden 7. Heat shield component (1) according to one of the preceding
.Ansprüche, die zur Befestigung an eine Tragstruktur (17) ein den Einlaßkanal (2) und den Auslaßkanal (4) umgebendes Befestigungsteil (19) aufweist..Claims, which has a fastening part (19) surrounding the inlet duct (2) and the outlet duct (4) for fastening to a supporting structure (17).
8. Hitzeschildkomponente (1) nach einem der vorhergehenden8. Heat shield component (1) according to one of the preceding
Ansprüche, bei der die Heißgaswand (2) an ihrer Innenoberfläche (16) Kuhlrippen (15) aufweist.Claims, in which the hot gas wall (2) has cooling fins (15) on its inner surface (16).
9. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, bei der sich der Einlaßkanal (3) trichterförmig erweitert .9. heat shield component (1) according to any one of the preceding claims, wherein the inlet channel (3) widens in a funnel shape.
10. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, bei der der Einlaßkanal (3) mit einer Abdeckwand (7) abgedeckt ist, welche der Heißgaswand (2) benachbart ist und zur Stromungsfuhrung des Kuhlfluids (4) Durchlasse (8) aufweist .10. Heat shield component (1) according to one of the preceding claims, in which the inlet channel (3) is covered with a cover wall (7) which is adjacent to the hot gas wall (2) and for conducting the flow of the cooling fluid (4) has passages (8).
11. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, mit einer sich an die Heißgaswand (2) anschließenden Außenwand (14), welche Außenwand (14) zumindest bereichsweise eine Haltestufe (19A) aufweist.11. The heat shield component (1) according to one of the preceding claims, having an outer wall (14) adjoining the hot gas wall (2), which outer wall (14) has a holding step (19A) at least in regions.
12. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, bei der die Heißgaswand (2) zumindest bereichswei¬ se eine Wandstärke von unter 10 mm, insbesondere zwischen 3 mm bis 5mm, aufweist.12. The heat shield component (1) according to one of the preceding claims, in which the hot gas wall (2) at least in regions ¬ se has a wall thickness of less than 10 mm, in particular between 3 mm to 5 mm.
13. Hitzeschildanordnung (20), die eine heißgasfuhrende Kom- ponente (11), insbesondere eine Brennkammer einer Gasturbinenanlage (10), auskleidet und eine Mehrzahl Hitzeschildkomponenten (1) mit Kühlfluidruckführung aufweist, wobei jede Hitzeschildkomponente (1) jeweils eine der Auskleidung dienende, zu kühlende Heißgaswand (2), einen Einlaßkanal (3) für Kuhlfluid (4) und einen Auslaßkanal (5) für das Kuhlfluid (4) hat, wobei der Einlaßkanal (3) zur Heißgaswand (2) hin gerichtet ist, sich m Richtung zur Heißgaswand (2) erweitert und mit einem Zufuhrkanal (12) zur Zufuhrung von Kuhlfluid (4) verbunden ist sowie der Auslaßkanal (5) zur Abfuhr des Kuhlfluids (4) mit einem Abfuhrkanal (13) verbunden ist.13. Heat shield arrangement (20) which lines a hot gas-carrying component (11), in particular a combustion chamber of a gas turbine system (10), and has a plurality of heat shield components (1) with cooling fluid pressure guide, each heat shield component (1) serving in each case one of the liners, has to be cooled hot gas wall (2), an inlet channel (3) for cooling fluid (4) and an outlet channel (5) for the cooling fluid (4), wherein the inlet channel (3) is directed towards the hot gas wall (2) in the direction of Hot gas wall (2) expanded and is connected to a supply channel (12) for supplying cooling fluid (4) and the outlet channel (5) for discharging the cooling fluid (4) is connected to a discharge channel (13).
14. Hitzeschildanordnung (20) nach Anspruch 13, bei der zumindest ein Zufuhrkanal (12) durch eine Leitschaufel (18) der Gasturbinenanlage (10) gefuhrt ist.14. The heat shield arrangement (20) according to claim 13, in which at least one feed channel (12) is guided through a guide vane (18) of the gas turbine system (10).
15. Hitzeschildanordnung (20) nach Anspruch 13 oder 14, bei der der Zufuhrkanal (12) und/oder der Abfuhrkanal (13) im wesentlichen senkrecht zu einer Welle (26) einer Gasturbinenanlage (10) gerichtet ist bzw. sind.15. Heat shield arrangement (20) according to claim 13 or 14, in which the feed channel (12) and / or the discharge channel (13) is or are essentially perpendicular to a shaft (26) of a gas turbine system (10).
16. Hitzeschildanordnung (20) nach einem der Ansprüche 13 bis 15, bei der ede Hitzeschildkomponente (1) eine Außenwand16. Heat shield arrangement (20) according to one of claims 13 to 15, in the ede heat shield component (1) an outer wall
(14) mit einer Haltestufe (19A) aufweist und zur Befestigung an eine Tragstruktur (17) Befestigungskomponenten (21) mit jeweils einem Kopfteil (22) und einem Schaftteil (23) vorgesehen sind, wobei der Schaftteil (23) jeder Befestigungskom- ponente (21) an der Tragstruktur (17) befestigt ist, und jeweils der Kopfteil (22) einer Befestigungskomponente (21) die Hitzeschildkomponente (1) haltend an der Haltestufe (19A) aufliegt .(14) with a holding step (19A) and fastening components (21) each having a head part (22) and a shaft part (23) are provided for fastening to a support structure (17), the shaft part (23) of each fastening component ( 21) is fastened to the support structure (17), and in each case the head part (22) of a fastening component (21) lies on the holding step (19A) while holding the heat shield component (1).
17. Hitzeschildanordnung (20) nach Anspruch 16, bei der ede Befestigungskomponente (21) kuhlbar ist, insbesondere einen von Kuhlfluid (4) durchstrombaren Kuhlkanal (24) aufweist. 17. Heat shield arrangement (20) according to claim 16, in which each fastening component (21) can be cooled, in particular has a cooling channel (24) through which cooling fluid (4) can flow.
EP97944734A 1996-09-26 1997-09-24 Thermal shield component with cooling fluid recirculation and heat shield arrangement for a component circulating hot gas Expired - Lifetime EP0928396B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19639630 1996-09-26
DE19639694 1996-09-26
DE19639630 1996-09-26
DE19639694 1996-09-26
PCT/DE1997/002168 WO1998013645A1 (en) 1996-09-26 1997-09-24 Thermal shield component with cooling fluid recirculation and heat shield arrangement for a component circulating hot gas

Publications (2)

Publication Number Publication Date
EP0928396A1 true EP0928396A1 (en) 1999-07-14
EP0928396B1 EP0928396B1 (en) 2001-11-21

Family

ID=26029819

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97944734A Expired - Lifetime EP0928396B1 (en) 1996-09-26 1997-09-24 Thermal shield component with cooling fluid recirculation and heat shield arrangement for a component circulating hot gas

Country Status (6)

Country Link
US (1) US6047552A (en)
EP (1) EP0928396B1 (en)
JP (1) JP2001504565A (en)
DE (1) DE59706065D1 (en)
RU (1) RU2190807C2 (en)
WO (1) WO1998013645A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043479A2 (en) * 1999-04-06 2000-10-11 General Electric Company Internally grooved turbine wall

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29714742U1 (en) 1997-08-18 1998-12-17 Siemens AG, 80333 München Heat shield component with cooling fluid return and heat shield arrangement for a hot gas-carrying component
SE9801822L (en) * 1998-05-25 1999-11-26 Abb Ab combustion device
DE10003728A1 (en) * 2000-01-28 2001-08-09 Siemens Ag Heat shield arrangement for a component carrying hot gas, in particular for structural parts of gas turbines
EP1245792A1 (en) * 2001-03-30 2002-10-02 Siemens Aktiengesellschaft Coolable turbine shroud and process of manufacturing the shroud
EP1247943A1 (en) * 2001-04-04 2002-10-09 Siemens Aktiengesellschaft Coolable turbine shroud member
EP1271056A1 (en) * 2001-06-20 2003-01-02 Siemens Aktiengesellschaft Gas turbine combustion chamber and process for supplying air therein
GB0117110D0 (en) 2001-07-13 2001-09-05 Siemens Ag Coolable segment for a turbomachinery and combustion turbine
DE10233805B4 (en) * 2002-07-25 2013-08-22 Alstom Technology Ltd. Annular combustion chamber for a gas turbine
ES2278847T3 (en) * 2002-08-16 2007-08-16 Siemens Aktiengesellschaft INTERIOR COOLING SCREW.
EP1389692A1 (en) * 2002-08-16 2004-02-18 Siemens Aktiengesellschaft Self-locking mounting device
EP1420208A1 (en) * 2002-11-13 2004-05-19 Siemens Aktiengesellschaft Combustion chamber
EP1431661A1 (en) * 2002-12-19 2004-06-23 Siemens Aktiengesellschaft Flow guiding body
EP1443275B1 (en) * 2003-01-29 2008-08-13 Siemens Aktiengesellschaft Combustion chamber
EP1507116A1 (en) 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Heat shield arrangement for a high temperature gas conveying component, in particular for a gas turbine combustion chamber
US7093441B2 (en) * 2003-10-09 2006-08-22 United Technologies Corporation Gas turbine annular combustor having a first converging volume and a second converging volume, converging less gradually than the first converging volume
EP1672281A1 (en) * 2004-12-16 2006-06-21 Siemens Aktiengesellschaft Thermal shield element
JP4453021B2 (en) * 2005-04-01 2010-04-21 セイコーエプソン株式会社 Semiconductor device manufacturing method and semiconductor manufacturing apparatus
EP1715271A1 (en) * 2005-04-19 2006-10-25 Siemens Aktiengesellschaft Heat shield element, combustion chamber and gas turbine
EP1724526A1 (en) * 2005-05-13 2006-11-22 Siemens Aktiengesellschaft Shell for a Combustion Chamber, Gas Turbine and Method for Powering up and down a Gas Turbine.
US20070245710A1 (en) * 2006-04-21 2007-10-25 Honeywell International, Inc. Optimized configuration of a reverse flow combustion system for a gas turbine engine
WO2008017550A1 (en) 2006-08-07 2008-02-14 Alstom Technology Ltd Combustion chamber of a combustion installation
EP2049841B1 (en) 2006-08-07 2016-12-28 General Electric Technology GmbH Combustion chamber of a combustion plant
JP4362834B2 (en) * 2006-10-11 2009-11-11 セイコーエプソン株式会社 Semiconductor device manufacturing method, electronic device manufacturing method, and semiconductor manufacturing apparatus
JP4407685B2 (en) 2006-10-11 2010-02-03 セイコーエプソン株式会社 Semiconductor device manufacturing method and electronic device manufacturing method
US8522557B2 (en) 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component
EP1998115A1 (en) * 2007-05-29 2008-12-03 Siemens Aktiengesellschaft Cooling channel for cooling a component carrying a hot gas
FR2921463B1 (en) * 2007-09-26 2013-12-06 Snecma COMBUSTION CHAMBER OF A TURBOMACHINE
DE102007062699A1 (en) * 2007-12-27 2009-07-02 Rolls-Royce Deutschland Ltd & Co Kg combustion liner
US8240988B2 (en) * 2008-03-26 2012-08-14 Siemens Energy, Inc. Fastener assembly with cyclone cooling
DE102008028025B4 (en) * 2008-06-12 2011-05-05 Siemens Aktiengesellschaft Heat shield arrangement
EP2591881A1 (en) * 2011-11-09 2013-05-15 Siemens Aktiengesellschaft Device, method and cast screw for safe exchange of heat shield panels of gas turbines
EP2613080A1 (en) * 2012-01-05 2013-07-10 Siemens Aktiengesellschaft Combustion chamber of an annular combustor for a gas turbine
EP2693121B1 (en) * 2012-07-31 2018-04-25 Ansaldo Energia Switzerland AG Near-wall roughness for damping devices reducing pressure oscillations in combustion systems
US9322334B2 (en) * 2012-10-23 2016-04-26 General Electric Company Deformable mounting assembly
EP2728255A1 (en) * 2012-10-31 2014-05-07 Alstom Technology Ltd Hot gas segment arrangement
US10370981B2 (en) * 2014-02-13 2019-08-06 United Technologies Corporation Gas turbine engine component cooling circuit with respirating pedestal
GB201501971D0 (en) * 2015-02-06 2015-03-25 Rolls Royce Plc A combustion chamber
US10101029B2 (en) 2015-03-30 2018-10-16 United Technologies Corporation Combustor panels and configurations for a gas turbine engine
DE102016211613A1 (en) * 2016-06-28 2017-12-28 Siemens Aktiengesellschaft Heat shield arrangement of a combustion chamber with disc spring package
RU209216U1 (en) * 2021-08-30 2022-02-07 Антон Владимирович Новиков HEAT SHIELD FOR GAS TURBINE COMBUSTION CHAMBER
RU209161U1 (en) * 2021-12-01 2022-02-03 Антон Владимирович Новиков HEAT SHIELD FOR GAS TURBINE COMBUSTION CHAMBER
CN115962488A (en) * 2023-01-16 2023-04-14 上海电气燃气轮机有限公司 Heat shield fixing structure of combustion chamber of gas turbine and fixing method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849255A (en) * 1956-11-01 1960-09-21 Josef Cermak Method of and arrangements for cooling the walls of combustion spaces and other spaces subject to high thermal stresses
GB1283953A (en) * 1969-06-19 1972-08-02 Rolls Royce Wall for hot fluid streams
EP0224817B1 (en) 1985-12-02 1989-07-12 Siemens Aktiengesellschaft Heat shield arrangement, especially for the structural components of a gas turbine plant
EP0225527A2 (en) * 1985-12-02 1987-06-16 Siemens Aktiengesellschaft Cooled wall structure for gas turbines
US4820097A (en) * 1988-03-18 1989-04-11 United Technologies Corporation Fastener with airflow opening
US5216886A (en) 1991-08-14 1993-06-08 The United States Of America As Represented By The Secretary Of The Air Force Segmented cell wall liner for a combustion chamber
JP2792304B2 (en) * 1992-01-22 1998-09-03 日本電気株式会社 Cooling device for integrated circuits
DE59208713D1 (en) * 1992-11-09 1997-08-21 Asea Brown Boveri Gas turbine combustor
DE4244302C2 (en) * 1992-12-28 2002-08-29 Alstom Impact cooling device
US5363654A (en) * 1993-05-10 1994-11-15 General Electric Company Recuperative impingement cooling of jet engine components
GB2298267B (en) * 1995-02-23 1999-01-13 Rolls Royce Plc An arrangement of heat resistant tiles for a gas turbine engine combustor
US5782294A (en) * 1995-12-18 1998-07-21 United Technologies Corporation Cooled liner apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9813645A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043479A2 (en) * 1999-04-06 2000-10-11 General Electric Company Internally grooved turbine wall
EP1043479A3 (en) * 1999-04-06 2002-10-02 General Electric Company Internally grooved turbine wall

Also Published As

Publication number Publication date
RU2190807C2 (en) 2002-10-10
WO1998013645A1 (en) 1998-04-02
US6047552A (en) 2000-04-11
EP0928396B1 (en) 2001-11-21
JP2001504565A (en) 2001-04-03
DE59706065D1 (en) 2002-02-21

Similar Documents

Publication Publication Date Title
WO1998013645A1 (en) Thermal shield component with cooling fluid recirculation and heat shield arrangement for a component circulating hot gas
EP1005620B1 (en) Thermal shield component with recirculation of cooling fluid
EP1654495B1 (en) Heat shield arrangement for a high temperature gas conveying component, in particular for a gas turbine combustion chamber
EP1032791B2 (en) Combustion chamber for cooling a combustion chamber with vapour
DE102005025823B4 (en) Method and device for cooling a combustion chamber lining and a transition part of a gas turbine
DE69210118T2 (en) Construction of a combustion chamber dome
DE10303088B4 (en) Exhaust casing of a heat engine
EP1443275B1 (en) Combustion chamber
DE69621867T2 (en) System to cool the rotor of a gas turbine compressor
DE3873130T2 (en) FORCED COOLING FOR A GAS TURBINE INLET CHANNEL.
DE2907769C2 (en) Turbine blade casing holder
DE3942203C2 (en) Turbine frame arrangement
DE2718661C2 (en) Guide vane grille for a gas turbine with an axial flow
DE69102032T2 (en) Gas turbine combustion chamber.
DE3200972C2 (en)
EP1636526B1 (en) Combustion chamber
EP2084368B1 (en) Turbine blade
EP2275743A2 (en) Gas turbine combustion chamber with starter film for cooling the combustion chamber wall
WO2014177371A1 (en) Burner lance having heat shield for a burner of a gas turbine
EP2812636A2 (en) Annular-combustion-chamber bypass
EP1250555B1 (en) Thermal shield for a component carrying hot gases, especially for structural components of gas turbines
DE69719376T2 (en) FLAME HOLDER FOR GAS TURBINE AFTERBURNER
EP1165942B1 (en) Turbo-engine with an array of wall elements that can be cooled and method for cooling an array of wall elements
WO2006072528A1 (en) Gas turbine comprising a prerotation generator and method for operating a gas turbine
EP1384950B1 (en) Annular combustion chamber for a gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19990827

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59706065

Country of ref document: DE

Date of ref document: 20020221

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020216

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060912

Year of fee payment: 10

Ref country code: FR

Payment date: 20060912

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061120

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070924